JP2003201530A - High-strength titanium alloy with excellent hot workability - Google Patents

High-strength titanium alloy with excellent hot workability

Info

Publication number
JP2003201530A
JP2003201530A JP2002302159A JP2002302159A JP2003201530A JP 2003201530 A JP2003201530 A JP 2003201530A JP 2002302159 A JP2002302159 A JP 2002302159A JP 2002302159 A JP2002302159 A JP 2002302159A JP 2003201530 A JP2003201530 A JP 2003201530A
Authority
JP
Japan
Prior art keywords
strength
titanium alloy
mass
alloy
deformation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002302159A
Other languages
Japanese (ja)
Inventor
Soichiro Kojima
壮一郎 小島
Hideto Oyama
英人 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002302159A priority Critical patent/JP2003201530A/en
Publication of JP2003201530A publication Critical patent/JP2003201530A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium alloy which has cold strength equal to or higher than that of a Ti-6Al-4V alloy used for general purpose as a high-strength titanium alloy and also has excellent hot workability including hot forgeability and subsequent secondary workability and can be efficiently hot-worked into desired shape at a low cost. <P>SOLUTION: In the high-strength titanium alloy with excellent hot workability, tensile strength at room temperature (25°C) after annealing at 700°C is ≥895 MPa and deformation resistance at high-speed tension at 850°C is ≤200 MPa and, further, the ratio between the tensile strength and the deformation resistance is ≥9. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、実用温度域で高強
度を示すと共に高温時の変形抵抗が小さくて熱間加工性
に優れたチタン合金に関し、このチタン合金は、高強度
と優れた熱間加工性を活かして、例えば航空機分野、自
動車分野、船舶分野などに幅広く利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium alloy which exhibits high strength in a practical temperature range, small deformation resistance at high temperature and excellent hot workability. The titanium alloy has high strength and excellent heat resistance. Utilizing the inter-workability, it can be widely used in the fields of aircraft, automobiles, ships, etc.

【0002】[0002]

【従来の技術】Ti−6Al−4V合金に代表されるα
−β型チタン合金は、軽量且つ高強度で優れた耐食性を
有していることから、航空機や自動車、船舶分野などを
始めとする様々の分野で、鉄鋼材料に代わる構造材や外
板材等としての実用化が積極的に進められている。
2. Description of the Related Art α represented by Ti-6Al-4V alloy
-Beta-type titanium alloys are lightweight, have high strength, and have excellent corrosion resistance, so they are used as structural materials and outer plate materials in place of steel materials in various fields including the fields of aircraft, automobiles, and ships. Is being actively put into practical use.

【0003】ところが、高強度のチタン合金はα−β温
度域、即ち熱間加工温度域での変形抵抗が大きくて鍛造
加工性や2次加工性が悪いため、汎用化を進める上で大
きな障害となっている。そのため、熱間加工時の加工回
数と加熱回数を増やし、製品歩留まりを犠牲にして充分
な余肉をつけた状態で熱間加工を行っているのが実情で
あり、熱間プレス加工を行うにしても、適用可能なプレ
ス能力の限界サイズに甘んじている。また棒状や線状に
熱間圧延する場合でも、高速圧延を採用すると大きな変
形抵抗に起因して大きな加工発熱を生じ組織不良を招く
ので低速で圧延せざるを得ず、生産性を高める上で大き
な障害となっている。
However, since a high strength titanium alloy has a large deformation resistance in the α-β temperature range, that is, a hot working temperature range and is poor in forgeability and secondary workability, it is a major obstacle in promoting general use. Has become. Therefore, the number of times of hot working and the number of times of heating are increased, and it is the actual situation that hot working is performed with sufficient surplus at the expense of product yield. Even, I'm at the limit of applicable press capacity. Even in the case of hot rolling in the form of a rod or a wire, if high-speed rolling is adopted, large deformation resistance causes a large amount of processing heat and causes a structural failure.Therefore, it has to be rolled at a low speed to improve productivity. It is a big obstacle.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記のような
事情に着目してなされたものであって、その目的は、高
強度チタン合金として現在最も広範に利用されているT
i−6Al−4V合金に匹敵し、或いはこれを上回る常
温強度を有すると共に、熱間鍛造やその後の2次加工を
含めた熱間加工性に優れ、所望形状に低コストで効率よ
く熱間加工することのできるチタン合金を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and the purpose thereof is T, which is currently most widely used as a high strength titanium alloy.
It has room temperature strength comparable to or higher than that of i-6Al-4V alloy, and has excellent hot workability including hot forging and subsequent secondary processing, and it is efficient and hot workable to a desired shape at low cost. It is to provide a titanium alloy that can be manufactured.

【0005】[0005]

【課題を達成するための手段】上記課題を解決すること
のできた本発明に係るチタン合金とは、700℃で焼鈍
した後の室温(25℃)での引張強さと、850℃での
高速引張りにおける変形抵抗との比が9以上であり、高
い常温強度を有すると共に卓越した熱間加工性を有する
高強度チタン合金である。
The titanium alloy according to the present invention, which has been able to solve the above-mentioned problems, has a tensile strength at room temperature (25 ° C.) after annealing at 700 ° C. and a high-speed tensile strength at 850 ° C. It is a high-strength titanium alloy having a ratio of 9 or more with respect to the deformation resistance in Table 1 above, having high room temperature strength and excellent hot workability.

【0006】本発明にかかる高強度チタン合金のより好
ましい特性は、700℃焼鈍後の室温(25℃)での引
張強さで895MPa以上の高強度を有し、且つ、85
0℃での高速引張りにおける変形抵抗は200MPa以
下の低い値を示し、或いは更に、700℃で焼鈍した後
の500℃での引張強さが、室温(25℃)での引張強
さの45%以上で、実用温度域では充分な耐熱強度を有
しているものであり、こうした特性は、従来の高強度チ
タン合金に見られない特異な特性である。
More preferable properties of the high-strength titanium alloy according to the present invention are that it has a high tensile strength of 895 MPa or more at room temperature (25 ° C.) after annealing at 700 ° C.
The deformation resistance in high-speed tension at 0 ° C shows a low value of 200 MPa or less, or the tensile strength at 500 ° C after annealing at 700 ° C is 45% of the tensile strength at room temperature (25 ° C). As described above, it has sufficient heat resistance in a practical temperature range, and such characteristics are peculiar characteristics not found in conventional high strength titanium alloys.

【0007】本発明の上記チタン合金において更に好ま
しい態様は、α−β型に属し、β変態点が850℃超で
あるチタン合金であり、β変態点を850℃超とするこ
とにより、チタン合金本来の温度と鍛造性の観点から如
何なる組成であっても、換言すれば純チタンであっても
熱間鍛造が難しくなる800℃以下での加工を避けるこ
とができ、顕著な加工割れなどを起こすことがなくなる
ので好ましい。
A further preferred embodiment of the titanium alloy of the present invention is a titanium alloy which belongs to the α-β type and has a β transformation point of more than 850 ° C., and a titanium alloy having a β transformation point of more than 850 ° C. From any point of view of the original temperature and forgeability, it is possible to avoid processing at 800 ° C or less, which makes hot forging difficult even with pure titanium, in other words pure titanium, causing remarkable processing cracks. It is preferable because it will not occur.

【0008】また、上記特性を発揮する本発明の高強度
チタン合金を成分組成の観点からみると、好ましいの
は、α安定化元素としてAlを3〜7質量%、Cを0.
08〜0.25質量%含有し、且つβ安定化元素を、下
記式で示されるMo当量で3.0〜10質量%含有する
ものである。 Mo当量=Mo(mass%)+(1/1.5)V(mass%)+1.25Cr(mass%)+
2.5Fe(mass%)
From the viewpoint of the component composition of the high strength titanium alloy of the present invention which exhibits the above characteristics, it is preferable that Al is 3 to 7 mass% and C is 0.1% as an α stabilizing element.
The content of the β-stabilizing element is 3.0 to 10 mass% in terms of Mo equivalent represented by the following formula. Mo equivalent = Mo (mass%) + (1 / 1.5) V (mass%) + 1.25Cr (mass%) +
2.5Fe (mass%)

【0009】より具体的には、α安定化元素としてAl
を3〜7質量%、Cを0.08〜0.25%含み、β安
定化元素として上記Mo,V,Cr,Feよりなる群か
ら選択される少なくとも1種、より好ましくはこれらの
うちCrとFeを、上記Mo当量で3.5〜8.0質量
%含有するものである。
More specifically, Al is used as an α-stabilizing element.
Of 3 to 7% by mass, C of 0.08 to 0.25%, and at least one selected from the group consisting of Mo, V, Cr, and Fe as a β-stabilizing element, and more preferably Cr among these. And Fe in an amount of 3.5 to 8.0 mass% in terms of Mo equivalent.

【0010】また、更に他の元素として、Sn:1〜5
質量%、Zr:1〜5質量%、Si:0.2〜0.8質
量%よりなる群から選択される少なくとも1種の元素を
含むチタン合金も好ましいものとして推奨される。
Further, as another element, Sn: 1 to 5
A titanium alloy containing at least one element selected from the group consisting of mass%, Zr: 1 to 5 mass% and Si: 0.2 to 0.8 mass% is also recommended as a preferable one.

【0011】[0011]

【発明の実施の形態】本発明者らは、先に指摘した様な
従来技術の問題点に鑑み、現在、高強度チタン合金とし
て最も広範に利用されているTi−6Al−4V合金に
匹敵し、或いはこれを上回る常温強度を有すると共に、
通常の上限使用温度域である約500℃付近でも充分な
強度を確保しつつ、通常のα−β型チタン合金では熱間
加工性が難しくなる800℃前後以上の高温での変形抵
抗を下げることで熱間加工性を改善し、強度と熱間加工
性の共に優れたチタン合金を開発すべく、特にチタン合
金組成を中心にして研究を進めてきた。
DETAILED DESCRIPTION OF THE INVENTION In view of the problems of the prior art as pointed out above, the inventors of the present invention are comparable to Ti-6Al-4V alloy, which is the most widely used high strength titanium alloy at present. Or, it has room temperature strength higher than this,
Lowering the deformation resistance at a high temperature of around 800 ° C or more, which is difficult to hot work with ordinary α-β titanium alloys, while ensuring sufficient strength even at around 500 ° C, which is the normal upper limit operating temperature range. In order to improve the hot workability, and develop a titanium alloy that has both excellent strength and hot workability, we have been conducting research with particular emphasis on the titanium alloy composition.

【0012】その結果、後述する如く合金元素の種類や
含有率をうまく調整してやれば、常温〜約500℃程度
の実用温度域ではTi−6Al−4V合金に匹敵し、或
いはこれを上回る強度を有しつつ、卓越した熱間加工性
を有するチタン合金が得られることを知り、上記本発明
に想到したものである。
As a result, if the kind and content of the alloying elements are properly adjusted as will be described later, it has strength comparable to or exceeding Ti-6Al-4V alloy in the practical temperature range from room temperature to about 500 ° C. At the same time, the inventors have arrived at the present invention, knowing that a titanium alloy having excellent hot workability can be obtained.

【0013】こうした高強度と優れた熱間加工性を兼ね
備えたチタン合金は、後述する如く主として合金元素の
種類と量を適切に選択・制御することによって得ること
ができるが、現存するチタン合金には見られない本発明
チタン合金の特殊性は、常温強度と高温条件下での高速
引張りにおける変形抵抗との比に現れる。即ち本発明の
チタン合金は、当該合金を700℃で2時間加熱焼鈍し
たのち自然放冷したものの室温(25℃)での引張強度
(ASTM E8に準拠して求められる値)Aと、当該
チタン合金を850℃×5分間大気雰囲気下で加熱し、
その直後に歪速度100/secで高速引張試験を行っ
た時の変形抵抗(引張試験片の平行部長さが均一に変形
すると仮定して、歪速度100/secでの高速引張試
験における最大荷重を、引張試験前の平行部の面積で除
した値)Bとの比(A/B)が9以上を示すところに特
徴を有している。
The titanium alloy having both such high strength and excellent hot workability can be obtained mainly by appropriately selecting and controlling the kinds and amounts of alloying elements as described later. The peculiarity of the titanium alloy of the present invention, which is not seen, appears in the ratio between the room temperature strength and the deformation resistance in high-speed tensile under high temperature conditions. That is, the titanium alloy of the present invention has a tensile strength (value determined according to ASTM E8) A at room temperature (25 ° C.), which is obtained by annealing the alloy at 700 ° C. for 2 hours and then allowing it to cool naturally, and the titanium. The alloy is heated at 850 ° C. for 5 minutes in the atmosphere,
Immediately after that, the deformation resistance when performing a high-speed tensile test at a strain rate of 100 / sec (assuming that the parallel portion length of the tensile test piece is uniformly deformed, the maximum load in the high-speed tensile test at a strain rate of 100 / sec is The characteristic (A / B) of the value obtained by dividing by the area of the parallel portion before the tensile test) B is 9 or more.

【0014】ちなみに図1は、後記実験例で得た本発明
のチタン合金、と、従来の代表的な高強度チタン合
金であるTi−6Al−4V合金(従来合金)および
JIS2種チタン(純チタン)について、試験温度と
引張強さおよび高速引張り時の変形抵抗の関係を示した
グラフである。尚、常温(25℃)から500℃までの間
の引張強さはASTM E8に準拠して求め、700℃
から950℃までの変形抵抗値は、歪速度100/se
cでの高速引張試験によって求めた値を示している。
By the way, FIG. 1 shows the titanium alloy of the present invention obtained in an experimental example described later, a Ti-6Al-4V alloy (conventional alloy) which is a typical conventional high-strength titanium alloy, and JIS type 2 titanium (pure titanium). Is a graph showing the relationship between the test temperature, the tensile strength, and the deformation resistance during high-speed tension. The tensile strength from room temperature (25 ° C) to 500 ° C is calculated according to ASTM E8 and is 700 ° C.
Deformation resistance value from 100 to 950 ° C is strain rate 100 / se
The value obtained by the high-speed tensile test at c is shown.

【0015】この図からも明らかな様に、本発明のチタ
ン合金、と従来合金や純チタンは、何れも試験
温度が高くなるにつれて強度(変形抵抗)が低下してい
くことに変わりはない。また、常温から約500℃程度
までの温度域(即ち、実際の使用温度域)における強度
低下傾向は、代表的な高強度チタン合金であるTi−6
Al−4Vからなる従来合金と本発明に係るチタン合
金、の間で大きな違いは見られない。
As is clear from this figure, the strength (deformation resistance) of the titanium alloy of the present invention, the conventional alloy, and the pure titanium all decrease as the test temperature increases. In addition, the strength decreasing tendency in the temperature range from room temperature to about 500 ° C. (that is, the actual use temperature range) shows that Ti-6 which is a typical high strength titanium alloy.
No significant difference is observed between the conventional alloy composed of Al-4V and the titanium alloy according to the present invention.

【0016】ところが、熱間加工温度域、殊に800〜
950℃のα−β温度域における変形抵抗を比較する
と、従来合金はかなり高い強度(変形抵抗)を維持し
ているのに対し、本発明チタン合金、の強度(変形
抵抗)は極端に低くなっている。このことから、本発明
のチタン合金は、常温から約500℃程度までの実用温
度域では高強度を示し、且つ熱間加工温度域では強度が
著しく低下し変形抵抗の大幅低下により優れた熱間加工
性を示すことが分る。
However, the hot working temperature range, especially 800 to
Comparing the deformation resistances in the α-β temperature range of 950 ° C., the conventional alloy maintains considerably high strength (deformation resistance), whereas the titanium alloy of the present invention has extremely low strength (deformation resistance). ing. From this, the titanium alloy of the present invention exhibits high strength in a practical temperature range from room temperature to about 500 ° C., and in the hot working temperature range, the strength is remarkably reduced and the deformation resistance is significantly reduced. It turns out that it shows workability.

【0017】本発明では、こうした常温強度〜500℃
程度までの高温強度に優れ、且つ熱間加工温度域での低
い変形抵抗(即ち、優れた熱間加工性)を、現存するチ
タン合金に見られない特性として定量化するため、例え
ば後記表1〜3に示す如く実際の測定値を基に、[70
0℃で2時間加熱焼鈍したのち自然放冷したものの室温
(25℃)での引張強度]Aと、[850℃×5分間大
気雰囲気で加熱しその直後に歪速度100/secで高
速引張試験を行った時の変形抵抗]Bとの比で、「A/
B≧9以上」であるものと定めた。本発明においてより
好ましいのは、A/Bが10以上、更に好ましくは12
以上のものである。
In the present invention, such room temperature strength to 500 ° C.
In order to quantify low deformation resistance in the hot working temperature range (that is, excellent hot workability) as a characteristic not found in existing titanium alloys, for example, Table 1 below. Based on actual measured values as shown in
Tensile strength at room temperature (25 ° C) after heat-annealing at 0 ° C for 2 hours and natural cooling] A and [850 ° C x 5 minutes in air atmosphere and immediately after that, high-speed tensile test at 100 / sec strain rate Deformation resistance when
B ≧ 9 or more ”. In the present invention, A / B is preferably 10 or more, more preferably 12
That is all.

【0018】ちなみに、α−β型の代表的な高強度チタ
ン合金であるTi−6Al−4V合金(従来合金)の
上記測定法によって求められるA/Bの値は、表3から
も明らかな如く[994/319=3.1]であり、本
発明で規定する上記「A/B≧9」の要件を大幅に下回
っている。なお図1や表1〜3には、参考のため従来の
チタン合金に比べて熱間加工の容易なJIS2種純チタ
ンの特性も併記した。
By the way, as is clear from Table 3, the A / B value of the Ti-6Al-4V alloy (conventional alloy), which is a typical α-β type high-strength titanium alloy, obtained by the above measurement method is clear. [994/319 = 3.1], which is far below the requirement of “A / B ≧ 9” defined in the present invention. For reference, FIG. 1 and Tables 1 to 3 also show the characteristics of JIS Class 2 pure titanium, which is easier to hot work than conventional titanium alloys.

【0019】即ち本発明の高強度チタン合金は、既存の
チタン合金に対し、上記「A/B≧9」という強度特性
によって特徴付けられ、公知のチタン合金とは明確に区
別される新規な高強度チタン合金である。更に本発明の
高強度チタン合金は、その優れた強度特性や熱間加工
性、或いは更に熱間加工時の組織制御の安定性等を考慮
すると、上記「A/B≧9」という強度特性に加えて、
下記特性を有するものが好ましい。
That is, the high-strength titanium alloy of the present invention is characterized by a strength characteristic of "A / B ≧ 9" described above with respect to the existing titanium alloy, and is a novel high strength which is clearly distinguished from known titanium alloys. It is a strength titanium alloy. Furthermore, the high-strength titanium alloy of the present invention has the above-mentioned strength characteristics of “A / B ≧ 9” in consideration of its excellent strength characteristics, hot workability, stability of structure control during hot working, and the like. in addition,
Those having the following characteristics are preferable.

【0020】700℃で焼鈍した後の室温(25℃)
での引張強さが895MPa以上であること。この特性
は、高強度チタン合金としての位置付けをより明確にす
る上で望ましい特性であり、前述した既存の代表的な高
強度チタン合金であるTi−6Al−4V合金のAST
M規格で定められる強度の下限値が895MPaである
ことから、この既存合金に匹敵する特性を満たす条件と
して定めた。ちなみに、後記実施例として挙げた本発明
に係る高強度チタン合金の常温強度は、通常のTi−6
Al−4V焼鈍材と同等の1000MPa前後の値を示
している。
Room temperature (25 ° C.) after annealing at 700 ° C.
Tensile strength at 895 MPa or more. This characteristic is a desirable characteristic for clarifying the positioning as a high-strength titanium alloy, and is the AST of Ti-6Al-4V alloy which is the existing representative high-strength titanium alloy described above.
Since the lower limit of the strength defined by the M standard is 895 MPa, it was defined as a condition satisfying the characteristics comparable to this existing alloy. By the way, the room-temperature strength of the high-strength titanium alloy according to the present invention, which is given as an example below, is the same as that of ordinary Ti-6
The value around 1000 MPa, which is equivalent to that of the Al-4V annealed material, is shown.

【0021】850℃での高速引張りにおける変形抵
抗が200MPa以下であること。この特性は、既存の
高強度チタン合金には見られない卓越した熱間加工性を
より具体的に数値化した値である。通常の鍛造温度を想
定し、該温度条件下で充分に変形抵抗が小さく安定して
優れた加工性を保障するには、上記温度条件下での変形
抵抗が200MPa以下、より好ましくは150MPa
以下、更に好ましくは100MPa以下であることが望
ましい。ちなみに、後記実施例に示した本発明合金の該
変形抵抗値は何れも100MPa以下である。
The deformation resistance in high-speed tension at 850 ° C. is 200 MPa or less. This property is a more specific numerical value of the outstanding hot workability that is not found in existing high-strength titanium alloys. Assuming a normal forging temperature, the deformation resistance under the above temperature conditions is 200 MPa or less, and more preferably 150 MPa, in order to ensure a sufficiently small deformation resistance and stable and excellent workability under the temperature conditions.
Hereafter, it is desirable that the pressure is 100 MPa or less. Incidentally, the deformation resistance values of the alloys of the present invention shown in Examples below are all 100 MPa or less.

【0022】700℃で焼鈍した後の500℃での引
張強さが、室温(25℃)での引張強さの45%以上で
あること。この強度特性は、本発明合金を実用化する際
に曝される高温条件下での強度保持性、即ち実用上の耐
熱特性を表す指標として定めたもので、常温強度に対し
500℃レベルの高温条件下でも強度の低下が少なく、
耐熱強度特性に優れたものであることを表している。よ
り高レベルの耐熱強度特性を確保するには、50%以
上、更に好ましくは55%以上を維持することが望まし
い。ちなみに、後記実施例に挙げた本発明合金、は
何れも55%以上を有している。
The tensile strength at 500 ° C. after annealing at 700 ° C. is 45% or more of the tensile strength at room temperature (25 ° C.). This strength property is defined as an index showing the strength retention under high temperature conditions to which the alloy of the present invention is put into practical use, that is, the heat resistance property in practical use, and it is a high temperature of 500 ° C at room temperature strength. There is little decrease in strength even under conditions,
It shows that it has excellent heat resistance characteristics. In order to secure a higher level of heat resistance strength, it is desirable to maintain 50% or more, and more preferably 55% or more. By the way, each of the alloys of the present invention described in Examples below has 55% or more.

【0023】β変態点が850℃超であること。この
変態点は、熱間加工途上で被加工材が降温した場合で
も、熱間加工を安定して継続可能にするための特性とし
て定めたもので、最低でも850℃以上の加熱温度を確
保して熱間加工を行うには、β変態点が850℃超、よ
り好ましくは900℃以上であることが望ましい。ちな
みにβ変態点が850℃以下のものでは、等軸組織を得
るのに加熱温度を850℃(β変態点)以下の比較的低
温にしなければならず、如何なる組織であれ鍛造性が著
しく劣化し、鍛造時に割れなどを引き起こし易くなる。
The β transformation point is higher than 850 ° C. This transformation point is defined as a characteristic that enables the hot working to be continued stably even when the temperature of the workpiece is lowered during the hot working, and a heating temperature of at least 850 ° C or higher is secured. In order to perform hot working by heating, it is desirable that the β transformation point is higher than 850 ° C., more preferably 900 ° C. or higher. By the way, if the β transformation point is 850 ° C or lower, the heating temperature must be set to a relatively low temperature of 850 ° C (β transformation point) or lower in order to obtain an equiaxed structure, and any structure will significantly deteriorate the forgeability. , It becomes easy to cause cracks during forging.

【0024】α−β型であること。本発明のチタン合
金は、強度−延性バランスと耐熱性を良好なものとする
ための要件として、α−β型に属するものであることが
望ましい。しかして、α型チタン合金となる組成では熱
間変形抵抗が大きくなり易く、またβ型チタン合金とな
る組成では耐熱性に劣るものとなり易く、何れも本発明
で意図する高強度・高加工性チタン合金としての要求特
性になじみ難いものとなる。
Being α-β type. The titanium alloy of the present invention preferably belongs to the α-β type as a requirement for achieving good strength-ductility balance and heat resistance. However, a composition that becomes an α-type titanium alloy tends to have a large hot deformation resistance, and a composition that becomes a β-type titanium alloy tends to have poor heat resistance, and both have high strength and high workability intended by the present invention. It becomes difficult to adapt to the required characteristics as a titanium alloy.

【0025】上記強度特性を示す高強度チタン合金の製
法は特に制限されないが、本発明者らが実験により確認
したところでは合金元素の種類と含有量が重要になると
思われる。現時点で具体的な合金元素の種類や含有量を
特定することはできないが、以下に示す成分組成の要件
を満たすチタン合金は、本発明で定める前記強度特性を
満たす高性能のものになることを確認している。
The production method of the high-strength titanium alloy exhibiting the above-mentioned strength characteristics is not particularly limited, but the types and contents of alloying elements seem to be important, as confirmed by the present inventors through experiments. Although it is not possible to specify the type and content of specific alloying elements at this time, titanium alloys that satisfy the requirements for the composition of components shown below are those with high performance that satisfy the strength characteristics defined in the present invention. I'm confirming.

【0026】即ち、本発明にかかるチタン合金の好まし
い成分組成は、α安定化元素としてAlを3〜7質量%
(より好ましくは3.5〜5.5質量%)、Cを0.0
8〜0.25質量%(より好ましくは0.10〜0.2
2質量%)含有し、且つβ安定化元素を、下記式で示さ
れるMo当量で3.0〜10質量%(より好ましくは
3.5〜8.0質量%)含有するものである。 Mo当量=Mo(mass%)+(1/1.5)V(mass%)+1.25Cr(mass%)+
2.5Fe(mass%)
That is, the preferable composition of the titanium alloy according to the present invention is 3 to 7 mass% of Al as an α-stabilizing element.
(More preferably 3.5 to 5.5 mass%), C is 0.0
8 to 0.25 mass% (more preferably 0.10 to 0.2
2 mass%) and also contains a β-stabilizing element in an Mo equivalent of 3.0 to 10 mass% (more preferably 3.5 to 8.0 mass%) represented by the following formula. Mo equivalent = Mo (mass%) + (1 / 1.5) V (mass%) + 1.25Cr (mass%) +
2.5Fe (mass%)

【0027】より具体的には、α安定化元素としてAl
を3〜7質量%(より好ましくは3.5〜5.5質量
%)、Cを0.08〜0.25%(より好ましくは0.
10〜0.22質量%、更に好ましくは0.15〜0.
20質量%)含み、β安定化元素として、Mo,V,C
r,Feから選ばれる少なくとも1種、より好ましくは
これらのうち少なくともCrとFeを、上記Mo当量で
3.5〜8.0質量%含有するものである。また、これ
らの元素に加えて、Sn:1〜5質量%、Zr:1〜5
質量%、Si:0.2〜0.8質量%よりなる群から選
択される少なくとも1種の元素を含むチタン合金も、優
れた性能を発揮し得ることを確認している。
More specifically, Al is used as an α-stabilizing element.
Of 3 to 7% by mass (more preferably 3.5 to 5.5% by mass) and C of 0.08 to 0.25% (more preferably 0.
10 to 0.22% by mass, more preferably 0.15 to 0.
20 mass%), and as a β-stabilizing element, Mo, V, C
At least one selected from r and Fe, and more preferably at least Cr and Fe are contained in an amount of 3.5 to 8.0 mass% in terms of Mo equivalent. In addition to these elements, Sn: 1 to 5 mass%, Zr: 1 to 5
It has been confirmed that a titanium alloy containing at least one element selected from the group consisting of mass% and Si: 0.2 to 0.8 mass% can also exhibit excellent performance.

【0028】なお、上記で推奨する含有元素の好ましい
含有量を定めた理由は下記の通りである。まずAl含量
は、Ti−6Al−4V相当の強度を確保するために下
限値を推奨し、また上限値については、熱間加工条件下
において変形抵抗の上昇と熱間延性の低下を抑えること
のできる許容限として推奨している。またC量も、Ti
−6Al−4V相当の強度を確保するために下限値を推
奨し、また上限値については、TiCの多量析出により
熱間延性を劣化させることのない許容限として推奨して
いる。
The reason why the preferable content of the content element recommended above is determined is as follows. First, for the Al content, a lower limit value is recommended in order to secure strength equivalent to Ti-6Al-4V, and an upper limit value is to suppress an increase in deformation resistance and a decrease in hot ductility under hot working conditions. Recommended as a permissible limit. Also, the amount of C is Ti
The lower limit is recommended in order to secure strength equivalent to -6Al-4V, and the upper limit is recommended as an allowable limit that does not deteriorate hot ductility due to precipitation of a large amount of TiC.

【0029】またMo当量の下限を定めたのは、同様に
Ti−6Al−4V相当の強度を確保するためであり、
上限値については、熱間加工時の変形抵抗を上昇させず
且つβ変態点を下げ過ぎないための要件として推奨して
いる。更にSn,Zr,Siについては、常温〜500
℃レベルの温度域における強度上昇効果を発揮し得る量
として下限を規定し、一方、上限値については、Sn,
Zrの場合は熱間延性、Siの場合は常温延性を夫々劣
化させることのない量として推奨している。
Further, the lower limit of the Mo equivalent is set in order to secure the strength equivalent to Ti-6Al-4V in the same manner.
The upper limit is recommended as a requirement for not increasing the deformation resistance during hot working and not lowering the β transformation point too much. Further, for Sn, Zr, and Si, the room temperature to 500
The lower limit is defined as the amount capable of exerting the strength increasing effect in the temperature range of the ° C level, while the upper limit is Sn,
In the case of Zr, the hot ductility is recommended, and in the case of Si, the room temperature ductility is recommended.

【0030】本発明で好ましく使用されるチタン合金の
具体例としては、後記実施例でも明らかにする如く、
「Ti−5Al−6.25Cr−0.2C合金」や「T
i−5Al−0.5Mo−2.4V−2Fe−0.2C
合金」等が例示される。また、Sn,Zr,Si等を含
むチタン合金の具体例としては、「Ti−6Al−4S
n−4Cr−0.5Fe−0.2Si−0.2C」や
「Ti−6Al−4Sn−6Cr−0.5Fe−0.2
Si−0.2C」等が例示される。これら合金元素の作
用は、合金元素の種類や2種以上の元素の複合添加、更
にはそれらの添加量によってもかなり変動するので、そ
れら合金元素の種類や複合添加、或いは好適添加量など
は、用いる合金元素に応じて適宜に選択・決定すればよ
い。
Specific examples of the titanium alloy preferably used in the present invention are as shown in Examples below.
"Ti-5Al-6.25Cr-0.2C alloy" and "T
i-5Al-0.5Mo-2.4V-2Fe-0.2C
“Alloy” and the like are exemplified. Further, as a specific example of the titanium alloy containing Sn, Zr, Si, etc., "Ti-6Al-4S"
n-4Cr-0.5Fe-0.2Si-0.2C "and" Ti-6Al-4Sn-6Cr-0.5Fe-0.2.
Si-0.2C "etc. are illustrated. The action of these alloying elements varies considerably depending on the type of alloying elements, the combined addition of two or more elements, and the addition amount thereof, so the type and combined addition of these alloying elements, or a suitable addition amount, It may be appropriately selected and determined according to the alloy element used.

【0031】しかし、本発明で推奨する上記成分組成の
チタン合金に共通する化学成分は、代表的な高強度チタ
ン合金であるTi−6Al−4V合金に対してややAl
含量が少な目で、且つ少量のCを含んでいる点である。
そしてこれらAlやCの作用は次の様に推測される。即
ちAlやCは周知の通りα安定化元素であり、一般的に
は高温強度の上昇に寄与する。しかしこれらの含有率を
適切に制御すれば、室温から500℃レベルの温度まで
は温度上昇に伴う大幅な強度低下を起こさないが、より
高温の熱間加工温度域では強度上昇を抑え、変形抵抗を
大幅に低下させることが可能となる。特にCは、室温か
ら500℃レベルの温度域までは固溶強化に寄与する
が、熱間加工温度域では強化に寄与しなくなると考えら
れる。更にCは、微量の添加でβ変態点を大幅に上昇さ
せる作用も有しているため、本発明にとって極めて有用
な元素であると考えられる。
However, the chemical composition common to the titanium alloys of the above-mentioned composition recommended in the present invention is a little Al compared with Ti-6Al-4V alloy which is a typical high strength titanium alloy.
That is, the content is small and a small amount of C is contained.
And the action of these Al and C is presumed as follows. That is, Al and C are α-stabilizing elements as is well known, and generally contribute to the increase in high temperature strength. However, if these contents are properly controlled, the strength does not drop significantly with increasing temperature from room temperature to the temperature of 500 ° C, but in the higher hot working temperature range, the strength increase is suppressed and the deformation resistance increases. Can be significantly reduced. In particular, C contributes to solid solution strengthening from room temperature to a temperature range of 500 ° C., but is considered not to contribute to strengthening in the hot working temperature range. Further, since C also has the effect of significantly increasing the β transformation point by the addition of a trace amount, it is considered to be an extremely useful element for the present invention.

【0032】また、上記チタン合金を用いた熱間加工材
の製造条件も特に制限されないが、好ましい条件として
は、前記成分組成の好ましい要件を満たすチタン合金
を、常法に従って溶製し鋳造した後、該鋳塊を常法より
もやや低い温度域、好ましくは当該チタン合金のβ変態
温度(Tβ)を基準にしてTβ〜(Tβ+200℃)、
より好ましくはTβ〜(Tβ+100℃)に加熱してか
ら、70〜80%程度の加工率で荒鍛造し、次いで、好
ましくは(Tβ−50℃)〜800℃程度の温度域で、
70〜80%程度の加工率で仕上げ加工を施す方法であ
る。該仕上げ加工の後は、必要により700〜800℃
×60〜120分程度で焼鈍することも有効である。
The production conditions of the hot-worked material using the above titanium alloy are not particularly limited, but a preferable condition is that after melting and casting a titanium alloy satisfying the preferable requirements of the above-mentioned composition according to a usual method. , Tβ to (Tβ + 200 ° C) based on the β transformation temperature (Tβ) of the titanium alloy.
More preferably, it is heated to Tβ- (Tβ + 100 ° C), then rough forged at a working rate of about 70-80%, and then preferably in a temperature range of (Tβ-50 ° C) -800 ° C.
This is a method of performing finishing at a processing rate of about 70 to 80%. After the finishing, if necessary, 700 to 800 ° C
It is also effective to anneal for about 60 to 120 minutes.

【0033】尚、断面サイズが比較的小さいチタン合金
鋳塊の場合は、鋳造時の冷却速度が速いため鋳塊の結晶
粒は比較的小さくなる。従ってこの様な場合は高温での
荒鍛造を省略し、鋳塊をそのまま低温、即ちTi−Cの
2元系で言うところの包析温度以下に加熱してから仕上
げ鍛造することも有効である。
In the case of a titanium alloy ingot having a relatively small cross-sectional size, the crystal grain of the ingot is relatively small because the cooling rate during casting is high. Therefore, in such a case, it is also effective to omit the rough forging at a high temperature and to heat the ingot as it is at a low temperature, that is, below the encapsulation temperature of the binary system of Ti-C before finish forging. .

【0034】[0034]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更を加えて実施することも可能であり、そ
れらは何れも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately applied within a range compatible with the gist of the preceding and the following. Modifications can be made and implemented, and all of them are included in the technical scope of the present invention.

【0035】実施例1 本発明にかかる代表的なチタン合金として、Ti−5A
l−6.25Cr−0.2C合金(β変態点:915
℃)と、Ti−5Al−0.5Mo−2.4V−2Fe
−0.2C合金(変態点:967℃)を、コールドク
ルーシブルインダクション溶解法(CCIM)により溶
製・鋳造して25kg鋳塊を製造し、この鋳塊を、通常
よりやや低めの好ましい加熱温度として1000℃に加
熱した後、80%の加工率で荒鍛造する。次いで850
℃に加熱し、75%の加工率で仕上げ鍛造し、700℃
×2時間加熱→空冷で焼鈍を施すことにより鍛造丸棒を
作製した。
Example 1 As a typical titanium alloy according to the present invention, Ti-5A
1-6.25Cr-0.2C alloy (β transformation point: 915
C) and Ti-5Al-0.5Mo-2.4V-2Fe
A −0.2 C alloy (transformation point: 967 ° C.) is melted and cast by a cold crucible induction melting method (CCIM) to produce a 25 kg ingot, and this ingot is set as a preferable heating temperature slightly lower than usual. After heating to 1000 ° C., rough forging is performed at a working rate of 80%. Then 850
Heated to ℃, finish forged with a processing rate of 75%, 700 ℃
A forged round bar was prepared by annealing for 2 hours and then air cooling.

【0036】この鍛造材を用いて、室温から500℃ま
での引張強度(ASTM E8に準拠)を測定した。ま
た、上記鋳塊から図2に示す寸法・形状の試験片を切出
し、各試験片を大気雰囲気下に700℃〜950℃で5
分間加熱し、その直後に、高速引張試験機(富士電波工
機社製商品名「サーメックマスターZ」)を用いて、歪
速度100/secで高速引張り試験を行い、変形抵抗
を求めた。なお変形抵抗値は、該高速引張り試験で得た
最大荷重を引張試験前の平行部の面積で除して算出し
た。結果を表1に示す。
Using this forged material, the tensile strength (according to ASTM E8) from room temperature to 500 ° C. was measured. Further, test pieces having the dimensions and shapes shown in FIG. 2 were cut out from the ingot, and each test piece was subjected to 5 at 700 ° C. to 950 ° C. in an air atmosphere.
After heating for a minute, immediately after that, a high-speed tensile test was performed using a high-speed tensile tester (trade name “Thermec Master Z” manufactured by Fuji Denwa Koki Co., Ltd.) at a strain rate of 100 / sec to determine the deformation resistance. The deformation resistance value was calculated by dividing the maximum load obtained in the high-speed tensile test by the area of the parallel portion before the tensile test. The results are shown in Table 1.

【0037】また、上記で得た各鋳片、を使用し、
上記の条件で荒鍛造、仕上げ鍛造および等軸晶化のため
の焼鈍を行い、各々について、700℃で2時間加熱焼
鈍した後、0.1〜0.2℃/secの速度で冷却し、
島津製作所製の引張試験機(商品名「AG−E230k
N オートグラフ引張試験機」)を用いて、室温(25
℃)〜500℃での引張強度をASTM E8に準拠し
て求めた。結果を表2に示す。
Further, using the cast pieces obtained above,
Rough forging, finish forging and annealing for equiaxed crystallization are performed under the above conditions, and each of them is heated and annealed at 700 ° C. for 2 hours, and then cooled at a rate of 0.1 to 0.2 ° C./sec.
Shimadzu tensile tester (trade name "AG-E230k
N Autograph Tensile Tester ”) at room temperature (25
C.) to 500.degree. C. tensile strength was determined according to ASTM E8. The results are shown in Table 2.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】図1は、上記表1,2の結果を、試験温度
(℃)と引張強さ(常温〜500℃)および変形抵抗
(700℃〜950℃)の関係として図示したものであ
る。なお表1,2及び図1には、従来の代表的なチタン
合金であるTi−6Al−4V合金(従来合金)とJ
IS2種チタン(純チタン)の測定結果を併記した。
FIG. 1 shows the results of the above Tables 1 and 2 as the relationship between the test temperature (° C.), the tensile strength (normal temperature to 500 ° C.) and the deformation resistance (700 ° C. to 950 ° C.). In Tables 1 and 2 and FIG. 1, J-6Al-4V alloy (conventional alloy), which is a typical conventional titanium alloy, and J
The measurement results of IS2 type titanium (pure titanium) are also shown.

【0041】表1,2及び図1からも明らかな様に、代
表的な高強度チタン合金である従来合金は、常温〜5
00℃の実用温度域で高強度を有している反面、熱間加
工温度域である700〜950℃の高温域でもかなり高
強度を維持しており、変形抵抗が大きいため熱間加工性
に欠ける。
As is clear from Tables 1 and 2 and FIG. 1, the conventional alloy, which is a typical high strength titanium alloy, has room temperature to 5
While it has high strength in the practical temperature range of 00 ° C, it also maintains high strength in the high temperature range of 700 to 950 ° C, which is the hot working temperature range, and it has a high deformation resistance, which makes it hot workable. Lack.

【0042】これらに対し本発明のチタン合金、
は、常温〜500℃の実用温度域では従来合金を上回
る高強度を有しており、しかも熱間加工が想定される8
00〜950℃の高温域での変形抵抗は、易加工性の純
チタンと同程度に低く、熱間加工性においても非常に
優れたものであることが分る。
On the other hand, the titanium alloy of the present invention,
Has a higher strength than conventional alloys in the practical temperature range of normal temperature to 500 ° C, and hot working is expected 8
It can be seen that the deformation resistance in the high temperature range of 00 to 950 ° C. is as low as that of pure titanium which is easily workable, and it is also very excellent in hot workability.

【0043】即ち、実用温度域での強度および熱間加工
温度域での変形抵抗について、本発明の規定要件を満た
すチタン合金、と従来合金や純チタンを比較す
ると、下記表3に示す通りであり、本発明のチタン合金
、はいずれも高強度と優れた熱間加工性を兼備して
いることが分る。
That is, when comparing the titanium alloy satisfying the requirements of the present invention with respect to the strength in the practical temperature range and the deformation resistance in the hot working temperature range, the conventional alloy and pure titanium are shown in Table 3 below. Therefore, it can be seen that each of the titanium alloys of the present invention has both high strength and excellent hot workability.

【0044】[0044]

【表3】 [Table 3]

【0045】実施例2 室温から500℃までの高強度化に主眼を置いたチタン
合金の例として、表4に示す符号a,bの合金を使用
し、それ以外は前記実施例1と全く同様にして溶製→鋳
造→鍛造→焼鈍を行い、得られた各焼鈍材について、同
様にして常温(25℃)および高温(500℃)引張強
度、並びに850℃での高速引張り時における変形抵抗
を測定し、表4に併記する結果を得た。また表4には、
比較のため前掲の代表的な従来合金であるTi−6Al
−4V合金を用いた場合の値も併記した。
Example 2 As an example of a titanium alloy focused on increasing the strength from room temperature to 500 ° C., the alloys indicated by the symbols a and b shown in Table 4 were used, and otherwise the same as Example 1 above. Then, melting, casting, forging, and annealing were performed, and for each of the obtained annealed materials, the room temperature (25 ° C.) and high temperature (500 ° C.) tensile strength and the deformation resistance during high-speed drawing at 850 ° C. were similarly determined. The measurement was performed and the results shown in Table 4 were obtained. Also, in Table 4,
For comparison, Ti-6Al, which is a typical conventional alloy described above, is used.
The value when using a -4V alloy is also shown.

【0046】[0046]

【表4】 [Table 4]

【0047】表4からも明らかな様に、本発明の規定要
件を満たす符号a,bのチタン合金は、代表的な高強度
チタン合金である符号cの従来合金に較べて、常温で格
段に優れた引張強度を有しているにも拘わらず、850
℃における変形抵抗は低く優れた熱間加工性を有してい
ることが分る。
As is clear from Table 4, the titanium alloys a and b satisfying the requirements of the present invention are much more remarkable at room temperature than the conventional alloy of the symbol c which is a typical high strength titanium alloy. 850 despite having excellent tensile strength
It can be seen that the deformation resistance at ° C is low and that it has excellent hot workability.

【0048】[0048]

【発明の効果】本発明は以上の様に構成されており、常
温〜500℃の実用温度域で高強度を有すると共に、熱
間加工温度域での変形抵抗が低くて優れた熱間加工性を
有しており、高い熱間加工性の下で高強度のチタン合金
部材を与えるチタン合金を提供し得ることになった。
EFFECTS OF THE INVENTION The present invention is constituted as described above, has high strength in a practical temperature range of normal temperature to 500 ° C., and has a low deformation resistance in a hot working temperature range and an excellent hot workability. Therefore, it is possible to provide a titanium alloy having a high strength and providing a high strength titanium alloy member under high hot workability.

【0049】また本発明の高強度チタン合金は、上記の
様に熱間加工温度域での変形抵抗が低いことから、1回
当たりの加工率(熱間鍛造時の鍛造比、熱延時の減面率
や圧下率など)を大きく取ることができ、所望サイズ、
厚さ、直径の加工品を少ない加工回数で生産性良く得る
ことができる。更には、熱間加工時の抵抗発熱が少な
く、熱間加工時の温度上昇も低く抑えられるので、当該
チタン合金のβ変態点を考慮して高めの加工温度を採用
した場合でも高温変態を起こすことなく、所望の強度特
性を備えた加工製品を容易に得ることが可能となる。
Further, since the high strength titanium alloy of the present invention has a low deformation resistance in the hot working temperature range as described above, the working ratio per one time (forging ratio during hot forging, reduction in hot rolling) is reduced. It is possible to take large values such as surface ratio and reduction ratio.
It is possible to obtain a product having a thickness and a diameter with a small number of times of processing and high productivity. Furthermore, since resistance heat generation during hot working is small and the temperature rise during hot working can be suppressed to a low level, high temperature transformation occurs even if a high working temperature is adopted considering the β transformation point of the titanium alloy. Without this, it is possible to easily obtain a processed product having desired strength characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高強度チタン合金と従来合金の試験温
度と引張強さ(および変形抵抗)の関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between test temperature and tensile strength (and deformation resistance) of a high strength titanium alloy of the present invention and a conventional alloy.

【図2】高温域での変形抵抗測定用試験片の形状・寸法
を示す説明図である。
FIG. 2 is an explanatory diagram showing the shape and dimensions of a test piece for measuring deformation resistance in a high temperature range.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 683 C22F 1/00 683 691 691B 691C 692 692A 692Z 694 694A 694B ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 683 C22F 1/00 683 691 691B 691C 692 692A 692Z 694 694A 694B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 700℃で焼鈍した後の室温(25℃)
での引張強さと、850℃での高速引張りにおける変形
抵抗との比が9以上であることを特徴とする熱間加工性
に優れた高強度チタン合金。
1. Room temperature (25 ° C.) after annealing at 700 ° C.
A high-strength titanium alloy with excellent hot workability, characterized in that the ratio of the tensile strength at room temperature to the deformation resistance during high-speed tensile at 850 ° C. is 9 or more.
【請求項2】 700℃で焼鈍した後の室温(25℃)
での引張強さが895MPa以上である請求項1に記載
の高強度チタン合金。
2. Room temperature (25 ° C.) after annealing at 700 ° C.
The high-strength titanium alloy according to claim 1, which has a tensile strength of 895 MPa or more.
【請求項3】 850℃での高速引張りにおける変形抵
抗が200MPa以下である請求項1または2に記載の
高強度チタン合金。
3. The high-strength titanium alloy according to claim 1, which has a deformation resistance of 200 MPa or less in high-speed tension at 850 ° C.
【請求項4】 700℃で焼鈍した後の500℃での引
張強さが、室温(25℃)での引張強さの45%以上で
ある請求項1〜3のいずれかに記載の高強度チタン合
金。
4. The high strength according to claim 1, wherein the tensile strength at 500 ° C. after annealing at 700 ° C. is 45% or more of the tensile strength at room temperature (25 ° C.). Titanium alloy.
【請求項5】 β変態点が850℃超である請求項1〜
4のいずれかに記載の高強度チタン合金。
5. The β transformation point is higher than 850 ° C.
The high-strength titanium alloy according to any one of 4 above.
【請求項6】 α−β型である請求項1〜5のいずれか
に記載の高強度チタン合金。
6. The high-strength titanium alloy according to claim 1, which is α-β type.
【請求項7】 α安定化元素としてAlを3〜7質量
%、Cを0.08〜0.25質量%含有し、且つβ安定
化元素を、下記式で示されるMo当量で3.0〜10質
量%含有するものである請求項6に記載の高強度チタン
合金。 Mo当量=Mo(mass%)+(1/1.5)V(mass%)+1.25Cr(mass%)+
2.5Fe(mass%)
7. The α-stabilizing element contains 3 to 7 mass% of Al and 0.08 to 0.25 mass% of C, and the β-stabilizing element is 3.0 in terms of Mo equivalent represented by the following formula. The high-strength titanium alloy according to claim 6, which contains 10 to 10 mass%. Mo equivalent = Mo (mass%) + (1 / 1.5) V (mass%) + 1.25Cr (mass%) +
2.5Fe (mass%)
【請求項8】 更に他の元素として、Sn:1〜5質量
%、Zr:1〜5質量%、Si:0.2〜0.8質量%
よりなる群から選択される少なくとも1種の元素を含む
ものである請求項6または7に記載の高強度チタン合
金。
8. As other elements, Sn: 1 to 5% by mass, Zr: 1 to 5% by mass, Si: 0.2 to 0.8% by mass.
The high-strength titanium alloy according to claim 6 or 7, containing at least one element selected from the group consisting of:
JP2002302159A 2001-10-22 2002-10-16 High-strength titanium alloy with excellent hot workability Pending JP2003201530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302159A JP2003201530A (en) 2001-10-22 2002-10-16 High-strength titanium alloy with excellent hot workability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001324075 2001-10-22
JP2001-324075 2001-10-22
JP2002302159A JP2003201530A (en) 2001-10-22 2002-10-16 High-strength titanium alloy with excellent hot workability

Publications (1)

Publication Number Publication Date
JP2003201530A true JP2003201530A (en) 2003-07-18

Family

ID=27666359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302159A Pending JP2003201530A (en) 2001-10-22 2002-10-16 High-strength titanium alloy with excellent hot workability

Country Status (1)

Country Link
JP (1) JP2003201530A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283062A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Heat-resistant titanium alloy, and engine valve formed using it
JP2007084915A (en) * 2005-09-23 2007-04-05 Taifu Chin Low density alloy for golf club head
JP2009515047A (en) * 2005-11-03 2009-04-09 ロベルト・ペー・ヘンペル Cold workable titanium alloy
US8562763B2 (en) 2004-04-09 2013-10-22 Nippon Steel & Sumitomo Metal Corporation High strength α+β type titanuim alloy
JP7401760B2 (en) 2020-02-21 2023-12-20 日本製鉄株式会社 Manufacturing method of α+β type titanium alloy bar material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562763B2 (en) 2004-04-09 2013-10-22 Nippon Steel & Sumitomo Metal Corporation High strength α+β type titanuim alloy
JP2006283062A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Heat-resistant titanium alloy, and engine valve formed using it
JP4492959B2 (en) * 2005-03-31 2010-06-30 株式会社神戸製鋼所 Heat resistant titanium alloy and engine valve formed thereby
JP2007084915A (en) * 2005-09-23 2007-04-05 Taifu Chin Low density alloy for golf club head
JP2009515047A (en) * 2005-11-03 2009-04-09 ロベルト・ペー・ヘンペル Cold workable titanium alloy
JP7401760B2 (en) 2020-02-21 2023-12-20 日本製鉄株式会社 Manufacturing method of α+β type titanium alloy bar material

Similar Documents

Publication Publication Date Title
US6849231B2 (en) α-β type titanium alloy
JP5582532B2 (en) Co-based alloy
US5516375A (en) Method for making titanium alloy products
CN107250416A (en) The manufacture method of Ni base superalloy
CN111826550B (en) Moderate-strength nitric acid corrosion resistant titanium alloy
JPH0138868B2 (en)
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JP2007084864A (en) alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP2009215631A (en) Titanium-aluminum-based alloy and production method therefor, and moving blade using the same
CN100478472C (en) Beta-titanium alloy, method for producing a hot-rolled product based on said alloy and the uses thereof
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP4507094B2 (en) Ultra high strength α-β type titanium alloy with good ductility
KR102318721B1 (en) Beta titanium alloys with excellent mechanical properties and ductility
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
WO2017170433A1 (en) Method for producing ni-based super heat-resistant alloy
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP2003201530A (en) High-strength titanium alloy with excellent hot workability
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JP2004091893A (en) High strength titanium alloy
US5417779A (en) High ductility processing for alpha-two titanium materials
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
KR102245612B1 (en) Ti-Al-Fe-Sn TITANIUM ALLOYS WITH EXCELLENT MECHANICAL PROPERTIES AND LOW COST
JP4263987B2 (en) High-strength β-type titanium alloy
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP3481428B2 (en) Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Effective date: 20041125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A131 Notification of reasons for refusal

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A02