JP4628994B2 - Airship type aerial crane - Google Patents

Airship type aerial crane Download PDF

Info

Publication number
JP4628994B2
JP4628994B2 JP2006147528A JP2006147528A JP4628994B2 JP 4628994 B2 JP4628994 B2 JP 4628994B2 JP 2006147528 A JP2006147528 A JP 2006147528A JP 2006147528 A JP2006147528 A JP 2006147528A JP 4628994 B2 JP4628994 B2 JP 4628994B2
Authority
JP
Japan
Prior art keywords
rotor blade
inclination
type aerial
airship
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006147528A
Other languages
Japanese (ja)
Other versions
JP2007314095A (en
Inventor
昌彦 恩田
政明 佐野
雅樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006147528A priority Critical patent/JP4628994B2/en
Priority to PCT/JP2006/324373 priority patent/WO2007138727A1/en
Publication of JP2007314095A publication Critical patent/JP2007314095A/en
Application granted granted Critical
Publication of JP4628994B2 publication Critical patent/JP4628994B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/24Arrangement of propulsion plant
    • B64B1/30Arrangement of propellers
    • B64B1/34Arrangement of propellers of lifting propellers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)
  • Jib Cranes (AREA)

Description

本発明は、飛行船にクレーンを搭載し、安価で安全に貨物を吊り上げて移送することができるようにした飛行船型空中クレーンに関する。   The present invention relates to an airship type aerial crane in which a crane is mounted on an airship so that cargo can be lifted and transported safely at low cost.

国土の7割が山岳の日本では森林保全のために間伐材が発生するが、安価な搬出手段が無い為や林業若年労働者の不足により搬出困難となっており、山間に放置され腐敗し地球温暖化を加速するメタンガスの放出源となっている。この間伐材は集積して液化燃料やガスに変換すれば自動車や工場や家庭用燃料として役立つ。このバイオマス燃料は太陽や風のエネルギーと比較しても格段に安価で再生可能なクリーン・エネルギーである。   In Japan, where 70% of the country is mountainous, thinned wood is generated for forest conservation, but it is difficult to carry out due to the lack of inexpensive means of carrying out and the lack of young forestry workers. It is a source of methane gas that accelerates global warming. If this thinned wood is accumulated and converted into liquefied fuel or gas, it will be useful as fuel for automobiles, factories and households. This biomass fuel is a clean energy that is much cheaper and more renewable than solar and wind energy.

したがって、上記のような森林であっても容易に且つ安価に間伐材等を搬出する手段が求められている。その手段の一つとしてヘリコプタを利用することが考えられるが、ヘリコプタは高価であり、搬送料が高くなって間伐材等の搬出には適していない。したがって水素ガス等の軽量ガスを用いる飛行船や、空気を加熱して浮力を得る熱気球の利用が考えられるが、熱気球は燃料を大量消費するため適していない。そのため飛行船を空中クレーンとして使用することが好ましい。   Therefore, there is a need for means for carrying out thinned wood and the like easily and inexpensively even in the above forests. It is conceivable to use a helicopter as one of the means, but the helicopter is expensive and is not suitable for carrying out thinned wood and the like due to high transportation charges. Therefore, it is conceivable to use an airship using a light gas such as hydrogen gas or a hot air balloon that obtains buoyancy by heating air, but a hot air balloon is not suitable because it consumes a large amount of fuel. Therefore, it is preferable to use an airship as an aerial crane.

飛行船を空中クレーンとして利用する計画は以前にもあり、その一つとして、アメリカで試作されたヘリスタットは飛行船のガス嚢とヘリコプタを結合した構造であり、この機体は飛行船用に作られたガス嚢に4機のヘリコプタを結合してヘリウムの浮力で自重を負担し運搬物の重量をヘリコプタの揚力で受け持つ方式であった。そのため荷役運搬中は大きな騒音と振動が発生し、またヘリコプタのロータ径が大きいので気嚢から離れた片持ち構造となり、この支持構造の剛性不足で試験運転中に破損し開発が中止された。   There has been a plan to use an airship as an aerial crane, and one of them is a helistat prototype manufactured in the United States, which is a structure that combines an airship gas sac and a helicopter. This aircraft is a gas sac made for an airship. In this system, four helicopters were connected to each other and heavier heaviness was used to bear the weight of the helicopter, and the weight of the transported goods was handled by the helicopter lift. As a result, large noise and vibrations were generated during cargo handling and the helicopter rotor diameter was large, resulting in a cantilever structure away from the air sac.

また、近年、ドイツで160トンの荷物を一本吊りし、10,000km以上、無着陸で輸送するカーゴリフタ号の開発が計画された。この機体は全長150m、最大径70m、ガス嚢の排除体積は40万mで総浮力は約400トンになる。ベルリン郊外に同機2機が入れる格納庫の建設が完了したものの以降の開発は資金問題等で進められていない。 In recent years, the development of the cargo lifter, which carries a 160-ton baggage in Germany and transports it more than 10,000 km without landing, has been planned. This aircraft has a total length of 150 m, a maximum diameter of 70 m, a gas sac displacement volume of 400,000 m 3 and a total buoyancy of about 400 tons. Although the construction of the hangar where two of the Aircraft will be installed in the suburbs of Berlin has been completed, further development has not been promoted due to financial problems.

なお飛行船にクレーンを搭載し貨物を搬送可能とした技術は特許文献1に記載されている。
特開2004−249954号公報
Japanese Patent Application Laid-Open No. 2004-151867 describes a technique that enables a cargo to be carried by mounting a crane on an airship.
Japanese Patent Application Laid-Open No. 2004-249954

前記のように大規模な飛行船型クレーンの開発が資金問題等で中絶した経験から、本件発明者等は小型・小規模、地上操縦と自動操縦による飛行船型クレーンの開発を目指して研究開発を進め、各種の試作を行っている。このような飛行船型クレーンは「新しい産業機械」ということができ、型式証明を得た航空機の様にどの空域でも自由に飛行出来る様にするよりは、始めは限られた空間で飛行させ運行コストを押さえることが考えられる。限られた空間とは、たとえば、通常、航空機の飛行しない空域で地上高度150m以下程度であり、この高さ制限内で、空中クレーンの操縦者と少数の作業者しか居ない山林内や海や湖沼上空での飛行を想定している。   Based on the experience of aborting the development of large-scale airship cranes as described above, the present inventors have advanced research and development aiming to develop airship-type cranes that are small and small-sized, ground-operated and automatically controlled. Various prototypes are being made. Such an airship type crane can be called a “new industrial machine”, and it can be operated in a limited space at first, rather than allowing it to fly freely in any airspace like an aircraft that has obtained type certification. It is possible to hold down. The limited space is usually, for example, an altitude of 150 m or less in an airspace where an aircraft does not fly, and within this height limit, in a mountain forest or sea where there are only a few operators and an aerial crane operator. It is assumed to fly over a lake.

今後、小型の飛行船型クレーンが広く社会に受け入れられるようになった時の具体的用途としては、(1)山林・海上での輸送や運搬車両・作業船のための荷役。(2)産業廃棄物の不法投棄監視。(3)災害時の救難支援および通信と監視基地。(4)市街地での警備・監視、(5)湖沼・原野での監視・観測や採取作業、等の広範囲での利用が期待されるが、特に前記のような山岳地帯での樹木の集材に好適に利用することができる。   Specific applications when small airship-type cranes are widely accepted by society in the future include (1) transportation in mountain forests and seas, and cargo handling for transport vehicles and work ships. (2) Monitoring illegal dumping of industrial waste. (3) Disaster relief support and communication and monitoring base. (4) Guarding and monitoring in urban areas, (5) Monitoring, observation and sampling work in lakes and wilderness are expected to be used in a wide range, but gathering trees especially in mountainous areas as mentioned above Can be suitably used.

したがって本発明は、山岳地帯での樹木の集材を初めとする広範囲の分野で、安価で安全に、且つ簡単な操作で貨物の搬送を行うことができるようにした飛行船型空中クレーンを提供することを主たる目的とする。   Accordingly, the present invention provides an airship-type aerial crane that can carry cargo in a wide range of fields, such as gathering trees in mountainous areas, at low cost, safely, and with simple operation. The main purpose.

本発明に係る飛行船型空中クレーンは、上記課題を解決するため、浮揚ガスを充填したガス嚢からなる機体と、機体の左右において各々前後に設けた推進機と、機体の左右両側に、前記ガス嚢の浮心と同一垂線上で、かつ浮心と水平位置が同位置に、前記機体の前後方向に回動する支点で支持された支持アームと、該支持アームを介して、吊り荷の支点が前記浮心と合致するよう、回動自在に設けた吊り下げ具とを備え、前記各推進機は、駆動軸から放射状に延びる駆動腕の端部に回動自在に支持した複数の回転翼と、前記複数の回転翼の傾斜を相互に関連して調節可能にする回転翼傾斜調節部材とを有し、前記回転翼傾斜調節部材により回転翼の傾斜を調節して推進方向を可変とし、機体の上昇・降下、ピッチ角及びヨー角の制御、並びに前後並進移動を行うことを特徴とする。 In order to solve the above-described problem, an airship type aerial crane according to the present invention includes an airframe composed of a gas sac filled with a levitation gas, a propulsion device provided on the left and right sides of the airframe, and the gas on both left and right sides of the airframe. A support arm that is supported by a fulcrum that rotates in the front-rear direction of the airframe, the fulcrum and the horizontal position being the same position as the buoyancy of the sac , and a fulcrum of the suspended load via the support arm And a plurality of rotary blades that are rotatably supported at the ends of the drive arms that extend radially from the drive shaft. And a rotor blade inclination adjusting member that makes it possible to adjust the inclinations of the plurality of rotor blades in relation to each other, and adjusting the inclination of the rotor blades by the rotor blade inclination adjusting member to make the propulsion direction variable, rise and fall of the aircraft, the control of the pitch angle and yaw angle, and And performing post-translational movement.

また本発明に係る他の飛行船型空中クレーンは、前記飛行船型空中クレーンにおいて、前記回転翼傾斜調節部材は、任意に移動可能に設けた1つのスリップリングと、該スリップリングを中心に回動する支持板と、各回転翼と前記支持板とを両端部で回動自在に各々連結する制御腕とからなり、前記スリップリングの移動により前記複数の回転翼の傾斜を相互に関連して調節可能にしたことを特徴とする。   Further, another airship type aerial crane according to the present invention is the airship type aerial crane, wherein the rotary blade inclination adjusting member is rotated about one slip ring provided so as to be arbitrarily movable and the slip ring. It consists of a support plate, and a control arm that rotatably connects each rotor blade and the support plate at both ends, and the inclination of the plurality of rotor blades can be adjusted in relation to each other by the movement of the slip ring. It is characterized by that.

また本発明に係る他の飛行船型空中クレーンは、前記飛行船型空中クレーンにおいて、前記回転翼の駆動腕による支持部分は、回転翼の空力中心と重心とを一致させた部分とし、回転翼の空力負荷と遠心力による慣性負荷力を駆動腕で受けるように構成したことを特徴とする。   In addition, in the airship type aerial crane according to the present invention, in the airship type aerial crane, the support portion by the driving arm of the rotary wing is a portion in which the aerodynamic center and the center of gravity of the rotary wing coincide with each other. The present invention is characterized in that an inertial load force due to a load and a centrifugal force is received by a drive arm.

また本発明に係る他の飛行船型空中クレーンは、前記飛行船型空中クレーンにおいて、前記回転翼の重心を、前記回転翼の駆動腕による支持部分と、前記回転翼傾斜調節部材の結合部との間に位置するように構成したことを特徴とする。   Further, another airship type aerial crane according to the present invention is the airship type aerial crane, wherein the center of gravity of the rotor blade is between the support portion by the driving arm of the rotor blade and the coupling portion of the rotor blade inclination adjusting member. It is characterized by being configured to be located at.

本発明は上記のように構成したので、山岳地帯での樹木の集材を初めとする広範囲の分野で、安価で安全に、且つ簡単な操作で貨物の搬送を行うことができるようにした飛行船型空中クレーンを提供することができる。   Since the present invention is configured as described above, an airship capable of carrying cargo in a wide range of fields such as gathering trees in a mountainous area at low cost, safely and with a simple operation. A type aerial crane can be provided.

本発明は、山岳地帯での樹木の集材を初めとする広範囲の分野で、安価で安全に、且つ簡単な操作で貨物の搬送を行うことができるようにした飛行船型空中クレーンを提供するという課題を、浮揚ガスを充填した機体と、機体の左右において各々前後に設けた推進機と、機体の両側において機体の浮心と同一垂線上で浮心と水平位置が同位置になる各支点に回動自在に設けた吊り下げ具とを備え、前記各推進機は、駆動軸から放射状に延びる駆動腕の端部に回動自在に支持した複数の回転翼と、前記複数の回転翼の傾斜を相互に関連して調節可能にする回転翼傾斜調節部材とを有し、前記回転翼傾斜調節部材により回転翼の傾斜を調節して推進方向を可変とし、機体の任意の移動を行うことにより実現した。   The present invention provides an airship-type aerial crane capable of carrying cargo in a wide range of fields, such as gathering trees in mountainous areas, at low cost, safely, and with simple operation. Challenges are the aircraft filled with the levitation gas, the propulsion units installed on the left and right sides of the aircraft, and the fulcrum where the buoyancy and the horizontal position are the same on the same vertical line as the buoyancy of the aircraft on both sides of the aircraft. Each propulsion unit includes a plurality of rotor blades rotatably supported on an end of a drive arm extending radially from a drive shaft, and an inclination of the plurality of rotor blades. By adjusting the inclination of the rotor blade by the rotor blade inclination adjusting member to make the propulsion direction variable and performing arbitrary movement of the aircraft It was realized.

本発明の実施例を図面に沿って説明する。図1に示す例においては、充填するヘリウム等の浮揚ガスの浮力を利用するための回転楕円体、もしくは前後端部が円みをおびた円筒体のガス嚢を機体1としており、その前部左右の下側と後部左右の下側に各々1対づつ計4個の、後述するような水平軸回転翼式全方位推進機(サイクロイダル・プロペラという)2、3、4、5を取り付け、当該ガス嚢による機体1の浮心Pと同一垂線上で、浮心Pと水平位置がほぼ同位置に、機体1の前後方向に回動して振れることのできる支点で支持された支持アーム6を、機体の左側と右側に取り付け、両支持アーム6の下端にロッド7を固定し、ロッド7にはロープ等のクレーン用の吊り下げ具8を連結している。   Embodiments of the present invention will be described with reference to the drawings. In the example shown in FIG. 1, a spheroid for utilizing the buoyancy of a buoyant gas such as helium to be filled, or a gas sac of a cylindrical body with rounded front and rear ends is used as the body 1, Attach four horizontal axis rotary wing omnidirectional propulsion units (referred to as cycloidal propellers) 2, 3, 4, 5 as described later, one on each of the left and right lower sides and the rear left and right lower sides. A support arm 6 supported by a fulcrum that can swing and swing in the front-rear direction of the airframe 1 so that the horizontal position of the airflow center P and the horizontal position are substantially the same position on the same vertical line as the airborne center P of the airframe 1 by the gas sac. Are attached to the left and right sides of the airframe, and a rod 7 is fixed to the lower ends of both support arms 6, and a crane suspending tool 8 such as a rope is connected to the rod 7.

この吊り下げ具8にはウィンチ9を備え、このウィンチ9により下端にフック10を備えたロープ11を巻き取ることができるようにしている。このような構造により、フック10に地上の吊り荷を玉掛けし、地上または空中の一点から他の点へ、前記のようなサイクロイダル・プロペラを用いた推進機によって姿勢制御をしつつ、任意の地点に移動をさせることができる空中飛行船型クレーンとすることができる。なお、機体1において大きな力を受ける支持アーム6の取付部分には、適宜補強部材13を設ける。   The hanging tool 8 is provided with a winch 9 so that the rope 11 having a hook 10 at the lower end can be taken up by the winch 9. With such a structure, a suspended load on the ground is hung on the hook 10 and the position is controlled from one point on the ground or in the air to another point by the propulsion unit using the cycloidal propeller as described above. It can be set as the aerial airship type crane which can be moved to a point. It should be noted that a reinforcing member 13 is appropriately provided at the attachment portion of the support arm 6 that receives a large force in the body 1.

上記のような空中飛行船型クレーンの飛行制御に際しては、
低速で効きの悪い尾翼等の受動的な制御翼は使用することなく、図2〜4に示すようにすべて前記サイクロイダル・プロペラで行う。即ち、機体姿勢のピッチ角の制御は図2に示すように、前・後のサイクロイダル・プロペラ2、3 を互いに反対に上下方向に推力を出すことにより行う。また機体のヨー角制御は図3に示すように、左・右に配置したサイクロイダル・プロペラを反対方向に推力を出させて行う。なお、ロール角制御は吊り下げ荷物の重量が拘束となり、不必要なので行わない。また、前後並進移動はすべてのサイクロイダル・プロペラの推力を前または後に向けて行う。更に図4に示すように、水平姿勢のままでの上昇・降下は、すべてのサイクロイダル・プロペラの推力を上または下に向けて行う。また、機体1の各姿勢角の中間方向への推進は、サイクロイダル・プロペラの推力方向をその方向に向けることにより行うことができる。
In the flight control of the above airborne crane,
Without using a passive control wing such as a tail wing that is not effective at low speed, all the cycloidal propellers are used as shown in FIGS. That is, as shown in FIG. 2, the pitch angle of the airframe posture is controlled by thrusting the front and rear cycloidal propellers 2 and 3 in the vertical direction opposite to each other. Further, as shown in FIG. 3, the yaw angle control of the airframe is performed by causing the cycloidal propellers arranged on the left and right to generate thrust in the opposite direction. Note that roll angle control is not performed because the weight of the suspended baggage is constrained and unnecessary. Also, the back-and-forth translation moves forward or backward with the thrust of all cycloidal propellers. Further, as shown in FIG. 4, ascent and descent in a horizontal posture is performed with the thrust of all the cycloidal propellers directed upward or downward. Further, the propulsion of each attitude angle of the airframe 1 in the middle direction can be performed by directing the thrust direction of the cycloidal propeller in that direction.

上記のように、飛行船型空中クレーンの駆動方式を4輪とし、吊り荷の吊り支点を浮揚ガスの気嚢の浮心Pとほぼ合致させることにより、空中飛行船型クレーンの飛行運動機能の中で、飛行安全上最も重要な上昇運動にかかわる、飛行船型空中クレーンの機体姿勢のピッチ角を自由に制御する機能を保持できる。   As described above, the driving method of the airship type aerial crane is four wheels, and by making the suspension fulcrum of the suspended load substantially coincide with the buoyancy P of the air bag of the floating gas, It can retain the function to freely control the pitch angle of the airframe attitude of an airship type aerial crane, which is involved in the most important climbing movement safety.

飛行船型空中クレーンの機体本体は加圧膜構造としても、ほぼシェル構造に近く、その構造表面内方向でのみ、負荷力を機体変形が最小に保持できるので、クレーンの吊り荷の支点は浮揚ガス気嚢である機体1の表面の2点とし、荷重が面内で作用する様に設置することが好ましい。この2点を結ぶ仮想線は当該気嚢中に保持されたガスの浮心点の近くを通過させることによって、この仮想線を機体ピッチ角運動の中心軸にでき、機体の飛行運動に対して、浮力と吊り荷による拘束モーメントが最小となるようにすることができる。   The body of an airship type aerial crane has a pressurized membrane structure, which is almost similar to a shell structure, and the load force can be kept to a minimum only in the direction of the surface of the structure. It is preferable that the air bag is installed at two points on the surface of the airframe 1 so that the load acts in the plane. An imaginary line connecting these two points can be used as the central axis of the aircraft pitch angle motion by passing near the buoyant point of the gas held in the air sac, and for the flight motion of the aircraft, The restraint moment due to buoyancy and suspended load can be minimized.

この支点の配置はガス嚢表面の任意の箇所に置くことが出来るが、飛行船型空中クレーンの飛行運動機能で安全上、最重量な上昇性能を支える機体ピッチ角制御への、浮力と吊り荷の負荷モーメント力を最小になるように決定することが最も好ましい。上昇機能として、飛行船型空中クレーンの機体を水平にしたまま並進運動して上昇する方法もあるが、この水平姿勢でのまま機体の横方向への並進運動は機体の抗力がもっとも大きくなり、不利である。したがって、機体の前方から風を受けて進む姿勢で上昇した方が最小推進パワーで、即ち抗力が最小で、最も速やかに上昇が可能となり、地面近くでの大気擾乱に遭遇した時の上昇退避が容易となる。   This fulcrum can be placed anywhere on the surface of the gas sac, but the flying motion function of the airship type aerial crane is used to control the buoyancy and suspended loads to control the aircraft pitch angle that supports the heaviest lifting performance. Most preferably, the load moment force is determined to be minimal. As an ascent function, there is also a method of ascending and moving the airship type aerial crane with the airframe horizontal, but the lateral translation of the airframe in this horizontal position has the greatest drag on the airframe, which is disadvantageous. It is. Therefore, it is the minimum propulsion power, that is, the drag is the least if it rises in the posture that receives the wind from the front of the aircraft, and it can rise as fast as possible, and it can be lifted and retreated when encountering atmospheric turbulence near the ground. It becomes easy.

上記のような飛行船型空中クレーンに用いるサイクロイダル・プロペラは、例えば図5に示すように回転する断面形状が対称形の2次元翼からなる回転翼20を図示の例では4枚、その運動軌跡が回転円筒となる面F上に配置し、回転方向にこれら各回転翼20の前縁を向け、すべての回転翼20を等間隔で回転円筒面F上に配置する。回転翼20は全て、その空力中心付点にピボットもしくは軸受の駆動支持部21を介して結合した駆動腕22を有し、この駆動腕22によってその中心Oの駆動軸を、図示されていないモータ等で回転駆動する。   The cycloidal propeller used in the airship type aerial crane as described above includes, for example, four rotor blades 20 having two-dimensional wings having a symmetric cross section as shown in FIG. Are arranged on a surface F to be a rotating cylinder, the front edges of these rotating blades 20 are directed in the rotation direction, and all the rotating blades 20 are arranged on the rotating cylindrical surface F at equal intervals. All of the rotor blades 20 have a driving arm 22 coupled to a point of aerodynamic center via a driving support portion 21 of a pivot or a bearing, and a driving shaft of the center O is connected to a motor (not shown) by the driving arm 22. Etc. to rotate.

回転翼20における駆動支持部21から離れた点に、各回転翼20の対称軸線S上に別のピボットとしての制御支持部23を各々備え、この制御支持部23のピボットに対して制御腕26の一端部を回動自在に固定している。この制御腕26の他端部は、図6に拡大して示すように、前記回転円筒面Fの回転中心Oとは別であって、且つこれらの回転機構と干渉しない位置に配置された1個のスリップリング24に対して回動自在に支持されている支持板27に、それぞれ回動支点25において連結している。図示実施例における回動支点25は、スリップリング24の中心Qに対して放射状に配置しており、スリップリング24は図示されない別途の機構によって上下左右に任意に移動できるようにしている。   A control support portion 23 as another pivot is provided on the symmetry axis S of each rotary blade 20 at a point away from the drive support portion 21 in the rotary blade 20, and a control arm 26 is provided for the pivot of the control support portion 23. The one end part of this is fixed so that rotation is possible. As shown in an enlarged view in FIG. 6, the other end of the control arm 26 is different from the rotation center O of the rotating cylindrical surface F and is disposed at a position that does not interfere with these rotation mechanisms. Each pivot ring 25 is connected to a support plate 27 that is rotatably supported with respect to each slip ring 24. The rotation fulcrum 25 in the illustrated embodiment is arranged radially with respect to the center Q of the slip ring 24, and the slip ring 24 can be arbitrarily moved up and down and left and right by a separate mechanism not shown.

それにより、例えば図7(a)に示すように回転翼20の回転中心Oとスリップリング24中心Qが一致しているときには中立状態であって、推力は働かない。それに対して同図(b)のように、この場合はスリップリング24を上下に動かすと、回転翼20は駆動腕22によって回転しつつも、制御腕26の結合点の移動方向線上に対角に位置する2枚の回転翼20のピッチ角を同方向に偏角させることにより、この1対の回転翼20で同方向に推力を発生させることができる。このような力の発生状態を図5に示している。なお、このようなサイクロイダル・プロペラに類似する推進機構は、かって水上船舶分野で実用化されたことはあるが、未だ航空用に実用化されたことは無く、航空用に適用するためには複雑な制御機構の軽量化が必要となり、本発明者等による研究開発によって上記のような手法を開発し、実用化にめどをつけることができた。   Accordingly, for example, as shown in FIG. 7A, when the rotation center O of the rotary blade 20 and the center Q of the slip ring 24 coincide with each other, the neutral state is established and thrust does not work. On the other hand, as shown in FIG. 5B, in this case, when the slip ring 24 is moved up and down, the rotary blade 20 is rotated by the driving arm 22 but diagonally on the moving direction line of the coupling point of the control arm 26. By making the pitch angle of the two rotor blades 20 positioned in the same direction deviate in the same direction, the pair of rotor blades 20 can generate thrust in the same direction. Such a force generation state is shown in FIG. Such a propulsion mechanism similar to a cycloidal propeller has been put into practical use in the field of surface vessels, but has not yet been put into practical use for aviation. complex control mechanism weight is required of the research by the present inventors developed a method as described above, it could be given a prospect to practical use.

上記、サイクロイダル・プロペラにおいては、各回転翼20の全ての制御腕26の回転中心側の結合点を支持する支持板27を備えているスリップリング24は、回転翼20の回転にかかわらずに、機体上で、上下・左右に偏心させて、各回転翼20の迎角制御を行うので、スリップリング24を介して、回転翼の回転を逃げ、上下・左右の制御操作機構側への回転翼20の回転運動を免れることができる。   In the cycloidal propeller described above, the slip ring 24 including the support plate 27 that supports the coupling points on the rotation center side of all the control arms 26 of each rotor blade 20 is independent of the rotation of the rotor blade 20. The angle of attack of each rotor blade 20 is controlled by decentering it vertically and horizontally on the fuselage, so that the rotation of the rotor blades escapes through the slip ring 24 and rotates toward the control operation mechanism side of the top, bottom, left and right. The rotational movement of the wing 20 can be avoided.

回転翼20の回転中に隣同士の制御腕26のなす角度は変化するので、本来はこのスリップリング24は全ての制御腕に各々必要となるが、本発明においては図6の例に示すように、中心Oの回転駆動軸を逃げるように、この駆動軸と干渉することを避けるため、駆動軸を内包するように設置したスリップリングを用いる。この図6に示すように、1個のスリップリング24と同軸にならないように、当該スリップリング24にこの回転軸と直角に取り付けられた平板状の支持板27上に、制御腕の揺動を免れるピボットもしくは軸受を回転翼の数と同じだけ取り付ける。それにより、1個の当該スリップリング24と結合した当該支持板27とともに、各々独立したスリップリングの機能に代用する機構を持つサイクロイダル・プロペラの回転翼の制御機構を実現することができる。   Since the angle formed by the adjacent control arms 26 changes during the rotation of the rotor blade 20, this slip ring 24 is originally required for each of the control arms. In the present invention, as shown in the example of FIG. In addition, a slip ring installed so as to contain the drive shaft is used so as to avoid interference with the drive shaft so as to escape the rotational drive shaft at the center O. As shown in FIG. 6, the control arm is swung on a flat support plate 27 attached to the slip ring 24 at a right angle to the rotation axis so as not to be coaxial with one slip ring 24. Attach as many pivots or bearings as there are rotor blades. As a result, a control mechanism for the rotor blades of the cycloidal propeller can be realized that has a mechanism that substitutes for the function of the independent slip ring, together with the support plate 27 coupled to one slip ring 24.

このような構成を採用することにより、駆動軸と干渉しないようにするために、上下・左右の偏心距離分だけの内径を必要とし、過大な形状となるスリップリング24を1個ににすることができ、他の複数個のスリップリングをすべて小型化できるため、軽量化に資することができる。また、回転駆動軸を大径のパイプ状にして、制御腕結合点をその中に位置し、干渉を排除する構造にしても同様の効果を奏することができる。   By adopting such a configuration, in order not to interfere with the drive shaft, an inner diameter corresponding to the up / down / left / right eccentric distance is required, and the slip ring 24 having an excessive shape is made into one. Since all the other plurality of slip rings can be reduced in size, it can contribute to weight reduction. Further, the same effect can be obtained by adopting a structure in which the rotary drive shaft is formed into a large-diameter pipe and the control arm coupling point is located therein to eliminate interference.

サイクロイダル・プロペラの回転翼制御の機構において、各回転翼20の空力中心に回転翼20の重心をほぼ一致させて、その点に軸受けもしくはピボットを置き、その点を駆動腕22で駆動すれることにより、各回転翼20の空力負荷と遠心力による慣性負荷力の両方を駆動腕22で大部分保持することができるため、制御腕26を動作させるのに小さいパワーで行うことができるようになる。   In the cycloidal propeller rotor blade control mechanism, the center of gravity of the rotor blade 20 is made to substantially coincide with the center of aerodynamic force of each rotor blade 20, a bearing or pivot is placed at that point, and the point is driven by the drive arm 22. As a result, most of the aerodynamic load of each rotor blade 20 and the inertial load force due to centrifugal force can be held by the drive arm 22, so that the control arm 26 can be operated with a small power. Become.

しかし、回転翼の回転速度が高くなり、推進機全体の前進速度が大きくなると、回転翼の偏角制御で大迎角が必要となり、図8に示すように、回転翼の外周の空気の流れで、回転翼の後縁が求心方向に押し戻されることになり、制御腕が圧縮力に耐える必要ができ、制御腕26の重量が増大する。これを押さえるため、図8に示すように回転翼内の駆動腕の軸受から回転翼後縁方向の適度な位置に回転翼重心を置くようにし、遠心力を適度に制御腕に作用させて、対気力により回転翼後縁が求心方向に押し戻されるのを防ぐか、もしくは軽減することより、制御腕26への圧縮力の負荷を防止するか軽減し、制御腕26の重量の軽減化を行うことができる。   However, when the rotational speed of the rotor blades increases and the forward speed of the entire propulsion device increases, a large angle of attack is required for the deflection angle control of the rotor blades. As shown in FIG. Thus, the trailing edge of the rotor blade is pushed back in the centripetal direction, the control arm needs to withstand the compressive force, and the weight of the control arm 26 increases. In order to suppress this, as shown in FIG. 8, the center of gravity of the rotor blade is placed at an appropriate position in the direction of the trailing edge of the rotor blade from the bearing of the drive arm in the rotor blade, and the centrifugal force is appropriately applied to the control arm, By preventing or reducing the trailing edge of the rotor blade from being pushed back in the centripetal direction by the air force, the load of the compressive force on the control arm 26 is prevented or reduced, and the weight of the control arm 26 is reduced. be able to.

前記のようなサイクロイダル・プロペラの動作の計算結果をグラフとともに示す。翼型はNACA-0012とし、前記図5の単独翼の迎角αと回転角度θの関係は図9に示すようになり、迎角αと揚力係数Clと抗力係数Cdの関係は図10に示すようになる。単独翼の周速度を25m/sとした時の揚力と抗力を計算した結果を図11に示す。推進機1基の推進翼が7枚の場合の揚力を翼毎に計算し、図中合計として示している合成値と共に図12に示す。単独翼の抗力は、翼の変動成分(23〜35N)と支持椀の一定成分(16N)からなり、7枚翼の合成抗力の最大値は約360Nとなった。また、回転数を変えた場合の揚力対動力特性を図13に示す。   The calculation result of the operation of the cycloidal propeller as described above is shown together with a graph. The airfoil is NACA-0012, and the relationship between the angle of attack α and the rotation angle θ of the single blade in FIG. 5 is as shown in FIG. 9, and the relationship between the angle of attack α, the lift coefficient Cl, and the drag coefficient Cd is shown in FIG. As shown. FIG. 11 shows the results of calculating lift and drag when the peripheral speed of the single blade is 25 m / s. FIG. 12 shows the lift when the number of propulsion blades of one propulsion unit is seven for each blade, together with the combined value shown as the total in the figure. The drag of the single blade was composed of the fluctuation component of the wing (23 to 35N) and the constant component of the support rod (16N), and the maximum value of the combined drag of the seven blades was about 360N. Further, FIG. 13 shows lift versus power characteristics when the rotational speed is changed.

上記のような本発明による飛行船型空中クレーンは、(1)山林・海上での輸送や運搬車両・作業船のための荷役。(2)産業廃棄物の不法投棄監視。(3)災害時の救難支援および通信と監視基地。(4)市街地での警備・監視、(5)湖沼・原野での監視・観測や採取作業、等の広範囲での利用が期待される。   The airship-type aerial crane according to the present invention as described above is (1) cargo handling for transportation in mountain forests / sea, transportation vehicles, and work ships. (2) Monitoring illegal dumping of industrial waste. (3) Disaster relief support and communication and monitoring base. It is expected to be used in a wide range of areas such as (4) security / surveillance in urban areas, (5) monitoring / observation and sampling work in lakes / fields.

本発明による飛行船型空中クレーンの実施例の概要図であり、(a)は側面図、(b)背面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the Example of the airship type air crane by this invention, (a) is a side view, (b) It is a rear view. 同実施例における機体のピッチ角制御時の作動図である。It is an action | operation figure at the time of the pitch angle control of the body in the Example. 同実施例における機体のヨー角制御時の作動図である。It is an action | operation figure at the time of the yaw angle control of the body in the Example. 同実施例における機体の上下動制御時の作動図である。It is an action | operation figure at the time of the vertical motion control of the body in the Example. 本発明で用いるサイクロイダル・プロペラの作動説明図である。It is operation | movement explanatory drawing of the cycloidal propeller used by this invention. 同サイクロイダル・プロペラの中心部分の拡大図である。It is an enlarged view of the central part of the cycloidal propeller. 同サイクロイダル・プロペラの各種作動態様を示す図である。It is a figure which shows the various operation | movement aspects of the same cycloidal propeller. 同サイクロイダル・プロペラの支持構造の説明図である。It is explanatory drawing of the support structure of the cycloidal propeller. 同サイクロイダル・プロペラにおける翼の迎角αと回転角度θの関係を示すグラフである。It is a graph which shows the relationship between the attack angle (alpha) of a wing | blade and rotation angle (theta) in the same cycloidal propeller. 同サイクロイダル・プロペラにおける翼の迎角αと揚力係数Clと抗力係数Cdの関係を示すグラフである。It is a graph which shows the relationship between the attack angle (alpha) of a wing | blade in the same cycloidal propeller, the lift coefficient Cl, and the drag coefficient Cd. 同サイクロイダル・プロペラにおいて、単独翼の周速度を25m/sとした時の揚力と抗力を計算した結果を示すグラフである。It is a graph which shows the result of having calculated the lift and drag when the peripheral speed of a single wing was 25m / s in the same cycloidal propeller. 同サイクロイダル・プロペラにおいて、推進機1基の推進翼が7枚の場合の揚力を翼毎に計算し合成値と共にに示すグラフである。In the same cycloidal propeller, when the number of propulsion blades of one propulsion unit is seven, the lift is calculated for each blade and is shown together with a composite value. 回転数を変えた場合の揚力対動力特性を示すグラフである。It is a graph which shows the lift vs. power characteristic at the time of changing rotation speed.

符号の説明Explanation of symbols

1 機体
2、3、4、5 サイクロイダル・プロペラ
6 支持アーム
7 ロッド
8 吊り下げ具
9 ウインチ
10 フック
11 ロープ
12 吊り荷
13 補強部材
1 Airframe 2, 3, 4, 5 Cycloidal propeller 6 Support arm 7 Rod 8 Suspension tool 9 Winch 10 Hook 11 Rope 12 Suspended load 13 Reinforcement member

Claims (4)

浮揚ガスを充填したガス嚢からなる機体と、
機体の左右において各々前後に設けた推進機と、
機体の左右両側に、前記ガス嚢の浮心と同一垂線上で、かつ浮心と水平位置が同位置に、前記機体の前後方向に回動する支点で支持された支持アームと、
該支持アームを介して、吊り荷の支点が前記浮心と合致するよう、回動自在に設けた吊り下げ具とを備え、
前記各推進機は、駆動軸から放射状に延びる駆動腕の端部に回動自在に支持した複数の回転翼と、前記複数の回転翼の傾斜を相互に関連して調節可能にする回転翼傾斜調節部材とを有し、前記回転翼傾斜調節部材により回転翼の傾斜を調節して推進方向を可変とし、機体の上昇・降下、ピッチ角及びヨー角の制御、並びに前後並進移動を行うことを特徴とする飛行船型空中クレーン。
An aircraft consisting of a gas sac filled with levitation gas;
Propulsion units provided on the left and right sides of the aircraft, respectively,
The left and right sides of the fuselage, on the same vertical line as buoyancy of the gas capsule and the buoyancy and the horizontal position is the same position, a support arm supported by a fulcrum for pivoting in the longitudinal direction of the machine body,
Via the support arm , provided with a hanging tool that can be pivoted so that the fulcrum of the suspended load matches the floating core ,
Each propulsion unit includes a plurality of rotor blades rotatably supported on an end of a drive arm that extends radially from a drive shaft, and a rotor blade inclination that adjusts the inclination of the plurality of rotor blades in relation to each other. An adjusting member, adjusting the inclination of the rotor blade by the rotor blade inclination adjusting member to change the propulsion direction, controlling the ascending / descending of the fuselage , controlling the pitch angle and yaw angle, and moving back and forth. An airship type aerial crane.
前記回転翼傾斜調節部材は、任意に移動可能に設けた1つのスリップリングと、該スリップリングを中心に回動する支持板と、各回転翼と前記支持板とを両端部で回動自在に各々連結する制御腕とからなり、前記スリップリングの移動により前記複数の回転翼の傾斜を相互に関連して調節可能にしたことを特徴とする請求項1記載の飛行船型空中クレーン。   The rotary blade inclination adjusting member includes a slip ring that is arbitrarily movable, a support plate that rotates around the slip ring, and each rotary blade and the support plate that can rotate at both ends. 2. An airship type aerial crane according to claim 1, comprising control arms connected to each other, wherein the inclination of the plurality of rotor blades can be adjusted in relation to each other by movement of the slip ring. 前記回転翼の駆動腕による支持部分は、回転翼の空力中心と重心とを一致させた部分とし、回転翼の空力負荷と遠心力による慣性負荷力を駆動腕で受けるように構成したことを特徴とする請求項1記載の飛行船型空中クレーン。   The support portion by the driving arm of the rotor blade is a portion in which the aerodynamic center and the center of gravity of the rotor blade are made to coincide with each other, and the inertia load force due to the aerodynamic load and centrifugal force of the rotor blade is received by the driving arm. The airship type aerial crane according to claim 1. 前記回転翼の重心を、前記回転翼の駆動腕による支持部分と、前記回転翼傾斜調節部材の結合部との間に位置するように構成したことを特徴とする請求項1記載の飛行船型空中クレーン。
2. The airship type aerial vehicle according to claim 1, wherein the center of gravity of the rotor blade is positioned between a support portion by a drive arm of the rotor blade and a coupling portion of the rotor blade inclination adjusting member. crane.
JP2006147528A 2006-05-29 2006-05-29 Airship type aerial crane Expired - Fee Related JP4628994B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006147528A JP4628994B2 (en) 2006-05-29 2006-05-29 Airship type aerial crane
PCT/JP2006/324373 WO2007138727A1 (en) 2006-05-29 2006-12-06 Airship-type aerial crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147528A JP4628994B2 (en) 2006-05-29 2006-05-29 Airship type aerial crane

Publications (2)

Publication Number Publication Date
JP2007314095A JP2007314095A (en) 2007-12-06
JP4628994B2 true JP4628994B2 (en) 2011-02-09

Family

ID=38778255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147528A Expired - Fee Related JP4628994B2 (en) 2006-05-29 2006-05-29 Airship type aerial crane

Country Status (2)

Country Link
JP (1) JP4628994B2 (en)
WO (1) WO2007138727A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445879B2 (en) * 2010-06-11 2014-03-19 国立大学法人大阪大学 Trochoid drive mechanism
KR101682573B1 (en) * 2015-12-04 2016-12-05 한국항공대학교산학협력단 Auxiliary parcel engaging apparatus for unmanned aerial vehicle
CA3081938C (en) * 2017-11-13 2023-10-03 Total Sa Hybrid airship and related assembly and/or maintenance method
RU2748809C1 (en) * 2020-06-01 2021-05-31 Федеральное государственное образовательное учреждение высшего образования "Санкт-Петербургский университет Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" Method for power supply and assembly of facilities in extreme conditions and air mobile unit for implementation thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310497A (en) * 1991-04-05 1992-11-02 Mitsubishi Heavy Ind Ltd Airship
JP2003212190A (en) * 2002-01-23 2003-07-30 National Institute Of Advanced Industrial & Technology Manned airship
JP2004224147A (en) * 2003-01-22 2004-08-12 National Institute Of Advanced Industrial & Technology Control mechanism for cycloidal propeller
JP2004249954A (en) * 2003-02-21 2004-09-09 Daigo Fukumoto Unit type multiple-purpose airship
DE102004017620A1 (en) * 2004-04-10 2005-10-27 Karnath, Günther Airship for flying clinic, has large container connected to airship and containing rooms, operating theaters and kitchens, which is detached when transported to desired location

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716674B1 (en) * 1994-02-28 1996-04-05 Electricite De France Slinging for the transport of loads by helicopter.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310497A (en) * 1991-04-05 1992-11-02 Mitsubishi Heavy Ind Ltd Airship
JP2003212190A (en) * 2002-01-23 2003-07-30 National Institute Of Advanced Industrial & Technology Manned airship
JP2004224147A (en) * 2003-01-22 2004-08-12 National Institute Of Advanced Industrial & Technology Control mechanism for cycloidal propeller
JP2004249954A (en) * 2003-02-21 2004-09-09 Daigo Fukumoto Unit type multiple-purpose airship
DE102004017620A1 (en) * 2004-04-10 2005-10-27 Karnath, Günther Airship for flying clinic, has large container connected to airship and containing rooms, operating theaters and kitchens, which is detached when transported to desired location

Also Published As

Publication number Publication date
JP2007314095A (en) 2007-12-06
WO2007138727A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
US11912404B2 (en) Vertical takeoff and landing aircraft
EP3287358B1 (en) Tethered unmanned aerial vehicle
US4695012A (en) Aerial load-lifting system
AU728095B2 (en) Landing and take-off assembly for vertical take-off and landing and horizontal flight aircraft
KR101838796B1 (en) Aerial vehicle having airfoil to control slope
TWI261567B (en) Rapid air quantity generating and wind direction changing device and aircraft having the device mounted on side face of airframe
CA2996633C (en) A variable pitch rotor, a gyro stabilized aircraft and a wind-driven power generator using the variable pitch rotor, and a stationary launching device
US20070102571A1 (en) Airship for lifting heavy loads & methods of operation
US11485477B2 (en) Flying apparatus
JP6426165B2 (en) Hybrid VTOL machine
US20110198438A1 (en) Propulsion and steering system for an airship
US6142414A (en) Rotor--aerostat composite aircraft
JP2007508998A (en) Tail boom stable VTOL machine
Ilieva et al. A critical review of propulsion concepts for modern airships
GB2141088A (en) Aerial load-lifting system
JPH0151400B2 (en)
US5082205A (en) Semi-buoyant composite aircraft with non-rotating aerostat
US3856236A (en) Composite aircraft
JP4628994B2 (en) Airship type aerial crane
CA2693672A1 (en) Propulsion and steering system for an airship
EP0619792B1 (en) Hybrid aircraft
CN101525049B (en) High-speed rotator type helicopter
JP4586158B2 (en) Space transfer system
US11753135B2 (en) Method for transporting a payload to a target location, and related hybrid airship
RU2661260C1 (en) Flying vehicle - 2 rg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees