JP4627903B2 - Ceramic wiring board and manufacturing method thereof - Google Patents

Ceramic wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP4627903B2
JP4627903B2 JP2001052406A JP2001052406A JP4627903B2 JP 4627903 B2 JP4627903 B2 JP 4627903B2 JP 2001052406 A JP2001052406 A JP 2001052406A JP 2001052406 A JP2001052406 A JP 2001052406A JP 4627903 B2 JP4627903 B2 JP 4627903B2
Authority
JP
Japan
Prior art keywords
low
wiring layer
ceramic
wiring board
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001052406A
Other languages
Japanese (ja)
Other versions
JP2002261411A (en
Inventor
憲次郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001052406A priority Critical patent/JP4627903B2/en
Publication of JP2002261411A publication Critical patent/JP2002261411A/en
Application granted granted Critical
Publication of JP4627903B2 publication Critical patent/JP4627903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Description

【0001】
【発明の属する技術分野】
本発明は、高熱膨張性を有する低温焼成セラミック焼結体およびその製造方法と、それを絶縁基板とするメタライズ配線層を具備する配線基板に関するものである。
【0002】
【従来技術】
従来、配線基板は、絶縁基板の表面あるいは内部にメタライズ配線層が配設された構造からなる。また、この配線基板を用いた代表的な例として、半導体素子、特にLSI(大規模集積回路素子)等の半導体集積回路素子を収容するための半導体素子収納用パッケージがある。
【0003】
これらの半導体素子収納用パッケージは、一般にアルミナセラミックス等の電気絶縁材料を用いており、その絶縁基板の表面および、内部にかけてW、Mo等の高融点金属粉末から成る複数個のメタライズ配線層が形成される。さらに、その絶縁基板下面には接続パッドが形成されており、その接続パッドには適当な接続端子が取り付けられ、外部回路基板と電気的に接続する。絶縁基板上面に搭載された半導体素子は、蓋体によって気密に封止された構造からなる。
【0004】
また、半導体素子収納用パッケージにおける絶縁基板としては、前記アルミナセラミックス等に代えて、最近では、メタライズ配線層をCu、Agなどの低抵抗金属を用いることができる1000℃前後で焼成可能なガラス−セラミックスなどの焼結体からなる絶縁材料が提案されており、低温焼成配線基板に用いる低抵抗の配線層は現在、銅系材料が配線層を形成するための主流となっている。
【0005】
ガラスセラミックスからなる絶縁基板の表面および/または内部に銅を主成分とするメタライズ配線層を形成する具体的方法としては、ガラスセラミックス原料粉末、有機バインダーに溶剤を添加して調製したスラリーをドクターブレード法などによってシート状に成形し、得られたグリーンシートに貫通孔を打ち抜き加工し、該貫通孔に銅を主成分とする導体ペーストを充填してビアホール導体を形成し、同時にグリーンシート上に銅を主成分とする導体ペーストを配線パターン状にスクリーン印刷法などで印刷形成し、配線パターンやビアホール導体が形成されたグリーンシートを複数枚加圧積層し、800〜1000℃で焼成することにより作製されている。
【0006】
前記銅を主成分とする導体ペーストとして主成分のCuまたはCu2O、あるいはCu−Cu2O混合物またはCu−CuO混合物に対して、金属酸化物としてAl23,ZrO2,Y23,NiO,MgO,ZnO,Mg2SiO4,MgSiO3,SiO2,Nb25,または金属としてNi,W,Mo,Si,Fe,Co,Agのうち少なくとも一種を無機成分中に総量で0.5〜30.0体積%含有したことを特徴とする銅メタライズ組成物などが提案されている。(特開平10−95686号公報)
【0007】
上記銅メタライズ組成物では、後工程の半田濡れ性を阻害せず、かつガラスセラミック磁器からなる絶縁基板の反りやうねりなどの変形を効果的に防止することができ、銅配線層とガラスセラミック磁器との界面の接着強度が高く、安定した接着強度を得ることができる。
【0008】
【発明が解決しようとする課題】
しかしながら、ガラスセラミック磁器は、一般的に30〜100重量%のガラスと0〜70重量%のフィラーで構成されるが、中でもガラスは有機物をその表面に吸着しやすいことから、有機バインダーのガスが軟化したガラスに閉じ込められる。そこで、磁器表面にメタライズペーストを塗布して磁器と同時焼成して配線層を形成する場合、メタライズ配線層が焼結した後にそのガスがメタライズ配線層と磁器との界面に浮き上がったり、あるいはガラスセラミック磁器が焼結するに伴い磁器内部の気孔が消失する過程で、内部気
孔中のガスが磁器表面より排出される際、焼結したメタライズ配線層を押し上げる現象が起こり、その結果、絶縁基板とメタライズ配線層との間に気泡が閉じ込められ、膨れが発生するという課題があった。
【0009】
さらに、前記提案の銅メタライズ組成物では、メタライズ配線層がガラスセラミック磁器との接着強度を高く維持できる条件では、絶縁基板とメタライズ配線層との間に膨れが発生し、膨れが発生しない条件では接着強度が維持できないという課題があった。
【0010】
従って、本発明は、低抵抗金属を含むメタライズ配線層を具備した配線基板において、磁器とメタライズ配線層との同時焼成が可能で、絶縁基板とメタライズ配線層との間の膨れを防止でき、かつメタライズ配線層と絶縁基板の接着強度が維持できる配線基板を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明のセラミック配線基板は、低温焼成セラミックスからなる絶縁基板の少なくとも表面に該絶縁基板と同時焼成して形成され、且つ低抵抗金属を主体するメタライズ配線層を被着形成してなるセラミック配線基板において、前記メタライズ配線層中に、低抵抗金属100重量部当たり、MgをMgO換算で0.2〜10重量部の割合で含み、かつ平均最大径が4μm以上のMg含有酸化物相として分散含有するとともに、前記低抵抗金属および前記Mg含有酸化物相の粒界にガラス相が存在することを特徴とするものである。かかるセラミック配線基板によれば、前記Mg含有酸化物相は、前記メタライズ配線層中に10〜50面積%の割合で存在することが望ましい。
【0012】
さらに、セラミック配線基板の製造方法として、低抵抗金属と、平均粒径が2μm以上のMg含有酸化物と、ガラス粉末とを含み、前記Mg含有酸化物を低抵抗金属100重量部当たりMgO換算で0.2〜10重量部の割合で含む導体ペーストを低温焼成セラミック成形体の表面に塗布した後、前記成形体と導体ペーストを同時に焼成することを特徴とする。ここで、前記低温焼成セラミック成形体は、ガラス粉末とセラミックフィラー粉末とを含有し、また、前記導体ペースト中のガラス粉末と、前記低温焼成セラミック成形体中のガラス粉末とが、実質的に同一組成からなることがメタライズ配線層との同時焼結性とメタライズ配線層との接着強度を高めることができる。
【0013】
本発明によれば、Mg含有酸化物相を所定の大きさでメタライズ配線層中に含有させることにより、メタライズの焼結を阻害し、未焼結のメタライズ配線層の気孔を磁器から発生するガスの通路とすることにより、絶縁基板とメタライズ配線層間でガスをトラップすることによって発生する膨れを防止でき、かつガラスを含有せしめることによって、ガス通過後のメタライズ配線層の焼結性を高め、かつ絶縁基板とメタライズ配線層との接着強度を高めることができる。
【0014】
【発明の実施の形態】
以下、本発明の内容を、実施例に示す添付図面に基づいて、詳細に説明する。
図1にて本発明の配線基板の一例を示す。これは絶縁基板の表面あるいは内部にメタライズ配線層が配設された、いわゆる配線基板を基礎的構造とするものであるが、図1は、その代表的な例として半導体素子収納用パッケージとその実装構造の一実施例を示す概略断面図であり、Aは半導体素子収納用パッケージ、Bは外部回路基板である。
【0015】
半導体素子収納用パッケージAは、低温焼成セラミックスからなる絶縁基板1と蓋体2と、低抵抗金属を含むメタライズ配線層3と接続端子4およびパッケージの内部に収納される半導体素子5により構成され、絶縁基板1及び蓋体2は半導体素子5を内部に気密に収容するためのキャビティ6を構成する。つまり、絶縁基板1は上面に半導体素子5が載置収容され半導体素子5はガラス、樹脂等の接着剤を介して絶縁基板1に接着固定される。
【0016】
また、絶縁基板1には半導体素子5が載置された周辺から下面にかけて複数個のメタライズ配線層3が被着形成されており、更に絶縁基板1の下面には多数の接続パッド4aが設けられており、メタライズ配線層3と電気的に接続されている。この接続パッド4aの表面には半田(錫−鉛合金)などのロウ材から成る突起状端子4bが外部回路基板Bへの接続端子として取着されている。
【0017】
なお、接続パッド4aと電気的に接続されたメタライズ配線層3は、半導体素子5の各電極とボンディングワイヤを介して電気的に接続されることにより、半導体素子の電極は、接続パッド4aと電気的に接続されることになる。
【0018】
一方、外部回路基板Bは、絶縁体7表面に配線導体8が形成されている。絶縁体7は、具体的には、ガラス−エポキシ系複合材料などのような40〜400℃における線熱膨張係数が12〜16ppm/℃の絶縁材料からなる。また、配線導体8は、絶縁体との線熱膨張係数の整合性と、良電気伝導性の点で通常Cu、Au、Al、Ni、Pb−Snなどの金属導体からなる。
【0019】
半導体素子収納用パッケージAを外部回路基板Bに実装するには、パッケージAの絶縁基板1下面の接続パッド4aに取着されている突起状端子4bを外部回路基板Bの配線導体8上に載置当接させ、しかる後、約250〜400℃の温度で加熱することにより、半田などのロウ材からなる突起状端子4b自体が溶融し、突起状端子4bを配線導体8に接合させることによって外部回路基板B上に実装される。この時、配線導体8の表面には突起状端子4bとのロウ材による接続を容易に行うためにロウ材が被着形成されていることが望ましい。
【0020】
本発明によれば、上記半導体素子収納用パッケージAにおけるメタライズ配線層3が、低抵抗金属、具体的には、Cu、Ag、Au、Alの群から選ばれる少なくとも1種を主成分とし、前記メタライズ配線層3中に、低抵抗金属100重量部当たり、MgをMgO換算で0.2〜10重量部の割合で含み、また、このMgは、平均最大径が4μm以上のMg含有酸化物相として点在してなるものである。
【0021】
このようにMg含有量を上記の範囲に設定したのは、0.2重量部未満の場合、絶縁基板1とメタライズ配線層3間の膨れ防止に効果がなく、10重量部を超えると、メタライズ配線層3表面にMgの金属酸化物が析出し、それによりめっき性が著しく低下してしまうからである。
【0022】
このMgは、平均最大径が4μm以上のMg含有酸化物相としてメタライス配線層3中に点在することによって、Mg含有酸化物相がメタライズ配線層3の焼結性を阻害し、ガスの通路を形成するもので、そのMg含有酸化物相の平均最大径が4μmよりも小さいと、本発明の目的である磁器からのガスを効率良く排出させる効果が無くなり、絶縁基板1とメタライズ配線層3間の膨れ防止の効果が得られなくなってしまうからである。また、ガスの排出効果は、前記Mg含有酸化物相は、メタライズ配線層中に10〜50面積%の割合で存在したときに最も効果的であって、絶縁基板1とメタライズ配線層3間の膨れ防止の効果が得られている。
【0023】
また、このメタライズ配線層3中には、絶縁基板1との密着性を高めるためにガラス相が存在することが重要である。また、このガラス相が多すぎると、メッキ性を阻害することがあるために、ガラス相は、1〜20体積%、特に3〜10体積%であることが望ましい。
【0024】
本発明の配線基板における絶縁基板を形成する低温焼成セラミックスとしては、ガラス成分、あるいはガラス成分とセラミックフィラー成分との混合物を焼成したものが好適に用いられる。ガラス成分としては、硼珪酸ガラス、硼珪酸亜鉛系ガラス、リチウム珪酸系ガラス、PbO系ガラス、BaO系ガラスなどが用いられる。また、セラミックフィラー成分としては、Al23、SiO2、ムライト、フォルステライト、ペタライト、ネフェリン、リチウムシリケート、カーネギアナイト、ガーナイト、ジルコニアなどが使用される。また、かかる低温焼成セラミックス中には、ガラス成分、セラミックフィラー成分以外に、Cr、Co,Fe、Ni、Vの群から選ばれる少なくとも1種を着色などの特性改善のために、酸化物換算で0.05〜10重量%、特に0.1〜2重量%の割合で含有することもできる。
【0025】
次に、上記の半導体素子収納用パッケージAをはじめとする配線基板を製造する方法について以下に説明する。まず、絶縁基板1を構成するための前述したようなガラスとフィラーからなる原料粉末に適当な有機バインダー、可塑剤、溶剤を添加混合して泥漿物を作るとともに該泥漿物をドクターブレード法やカレンダーロール法を採用することによってグリーンシート(生シート)を作製する。
【0026】
そして、メタライズ配線層3及び接続パッド4aとして、低抵抗金属粉末を含む導体ペーストを前記グリーンシートに周知のスクリーン印刷法により所定パターンに印刷塗布する。また、場合によっては、前記グリーンシートに適当な打ち抜き加工してスルーホールを形成し、このホール内にも導体ペーストを充填する。
【0027】
本発明によれば、ここで用いる導体ペーストにおける無機成分が、低抵抗金属を主成分とする導体成分と、平均粒径が2μm以上のMg含有酸化物粉末と、ガラス粉末とを含み、前記Mg含有酸化物含有量が低抵抗金属100重量部当たり、MgO換算で0.2〜10重量部であることが重要である。
【0028】
Mg含有酸化物粉末の平均粒径を2μm以上としたのは、かかる平均粒径のMg含有酸化物を導体ペーストに含むことにより前述した効果が充分に発揮され、絶縁基板1とメタライズ配線層3間の膨れを防ぐことができ、平均粒径が2μmよりも小さいと、メタライズ配線層中のMg含有酸化物相を平均最大径4μm以上の相として点在させることができないためである。また、上記のMg含有酸化物の含有量が0.2重量部未満の場合、絶縁基板1とメタライズ配線層3間の膨れを防止できず、10重量部を超えると、焼成後にメタライズ配線層3表面にMgの金属酸化物が析出し、それによりめっき性が著しく低下してしまう。
【0029】
また、導体ペースト中のMg含有酸化物粉末は、メタライズ配線層3の焼結を阻害していることから、メタライズ配線層3と絶縁基板1との間に膜強度が発生しにくい構造となり、メタライズ配線層3と絶縁基板1間の接着強度が維持できなくなってしまう。そこで、本発明によれば、このメタライズペースト中にガラス粉末を含むことにより、ガラス成分が絶縁基板に拡散し、メタライズ配線層3と絶縁基板1間の接着強度を発生させることができる。
【0030】
このガラス成分は1〜20体積%の比率で混合することが望ましい。また、ここで用いるガラスとしては、硼珪酸ガラス、硼珪酸亜鉛系ガラス、リチウム珪酸系ガラス、PbO系ガラス、BaO系ガラスなどが用いられるが、特にガラスセラミック成形体中のガラスと同一のガラスであると、導体ペースト中のガラス成分と磁器中のガラス成分の相互拡散の効果を得ることができ、メタライズ配線層と絶縁基板間の接着強度をさらに高めることができる。
【0031】
そして、上記のように導体ペーストが施されたグリーンシートを複数枚積層した後、焼成する。焼成にあたっては、まず、成形のために配合したバインダー成分を除去する。バインダーの除去は、700℃前後の大気雰囲気中で行われるが、配線導体としてCuを用いる場合には、100〜700℃の水蒸気を含有する窒素雰囲気中で行われる。この時、成形体の収縮開始温度は700〜850℃程度であることが望ましく、かかる収縮開始温度がこれより低いとバインダーの除去が困難となるため、成形体中の結晶化ガラスの特性、特に屈伏点を本発明のように制御することが必要となる。
【0032】
焼成は、800℃〜1050℃の酸化性雰囲気中で行われ、これにより低温焼成セラミックスは相対密度90%以上まで緻密化される。但し、配線導体としてCuを用いる場合には、850〜1050℃の非酸化性雰囲気中で、Agを用いる場合には、酸化性雰囲気中で800〜1000℃で焼成される。
【0033】
また、この焼成においては、ガラスセラミック成形体の焼結が進行するが、平均粒径の大きいMg含有酸化物相がメタライズ配線層3中に存在するために、メタライズ配線層3の焼結が阻害された状態となる。そのために、ガラスセラミック成形体から発生したガスは、焼結が進行していないメタライズ配線層3を通過して系外に放出される。その後、メタライズ配線層3の焼結が徐々に進行することによって、共に緻密化し、ガラスセラミック絶縁基板1とメタライズ配線層3との間に膨れのない配線基板を得ることができる。
【0034】
なお、このようにして作製されたガラスセラミック絶縁基板1中には、結晶性ガラスから生成した結晶相、ガラスとフィラーとの反応により生成した結晶相、あるいはフィラー成分が分解して生成した結晶相等が存在し、これらの結晶相の粒界にはガラス相が存在する。
【0035】
本発明において、メタライズ配線層3中に分散含有し、あるいは導体ペースト中に添加するMg含有酸化物としては、MgO、フォルステライト、エンスタタイト、スピネルの群から選ばれる少なくとも1種が用いられ、特にMgO、フォルステライトが好適に使用される。
【0036】
【実施例】
重量比率で43%SiO2−8%B23−5%CaO−6%Al23−37%BaO−1%以下SrO(屈伏点700℃)の結晶性ガラス50重量%、クォーツ(SiO2)50重量%からなる混合物に有機バインダーとしてアクリル系樹脂を添加し、さらに溶媒としてトルエンを用いて粉砕後、ドクターブレード法により厚さ250μmのテープを作製した。
【0037】
次に平均粒径が4μmの銅粉末のCu換算100重量部に対して、平均粒径が1〜5μmのフォルステライト粉末、平均粒径が1〜5μmのMgO粉末、平均粒径が2μmのZnSi25粉末、平均粒径が3.5μmの上記結晶化ガラスA粉末をそれぞれ表1の比率で秤量混合し、さらに、これら無機物成分100重量部に対して有機バインダーとしてアクリル樹脂を2重量部、有機溶剤としてα‐テルピネオールを15重量部添加混錬し、導体ペーストを調製した。
【0038】
かくして得られた導体ペーストを前記ガラスセラミックグリーンシート上に焼成後の形状が2×5cm角、厚さ約15μmとなる銅配線用パターン状にスクリーン印刷し、その下部にグリーンシート4枚を加圧積層したものを、メタライズ配線層と絶縁基板の間の膨れ発生数をカウントする為のモニターとし、また、焼成後の形状が0.7mmφ、厚さ約15μmとなる銅配線用パターン状にスクリーン印刷し、その下部にグリーンシート6枚を加圧積層したものを、メタライズ配線層と絶縁基板の接着強度測定サンプルとした。
【0039】
次いで、この未焼結状態の配線パターンが形成された積層体を、有機バインダーなどの有機成分を分解除去するために、水蒸気含有窒素雰囲気中で700℃の温度で3時間保持して脱脂した後、窒素雰囲気中で910℃に昇温して1時間保持し、配線基板を作製した。
【0040】
作製した配線基板について、メタライズ配線層を走査型電子顕微鏡写真やEPMAで観察し、Mg含有酸化物相の任意の30個以上の相についてそれぞれ写真平面での最大径を測定し、その平均を算出した。また、合わせてメタライズ層中のMg含有量(低抵抗金属100重量部に対するMgO換算比率)、Mg含有酸化物相の有無、Mg含有酸化物相の面積比率を求め、表1に示した。なお、メタライズ層中のMg含有量は導体ペースト中の比率とほとんど同じであったために省略した。
【0041】
また、膨れ発生数カウントモニターは、顕微鏡20倍視野での観察で膨れ数をカウントし、0.3個/cm2以下の場合を良品とした。
【0042】
接着強度測定モニターは、その配線基板の銅メタライズ配線層に厚さ1μmのNiめっきを行い、その上に厚さ0.1μmのAuめっきを施し、その上にフラックスを塗布し、さらに直径0.7mmφのSn/Pb共晶半田ボールを乗せて、大気中で245℃で1min間保持して半田ボール付けを行った。そしてクランププル強度測定機にて、半田ボールをつかんで垂直方向に引っ張り銅メタライズ配線層が破断したときの最大荷重をメタライズ配線層の接着強度として評価した。なお、良否の判断としては、最大荷重が1kg/0.7mmφを超える場合を良品とした。
【0043】
また、膨れ発生数カウントモニターに接着強度測定モニターと同様のめっきをほどこし、めっき表面観察にて全体の98%以上めっきがかかっていれば○、80〜98%を△、80%以下を×として評価した。
【0044】
【表1】

Figure 0004627903
【0045】
表1より明らかなように、Mg含有酸化物量が0.2重量部よりも少ない試料No.1、10、27は、Mg含有酸化物相の含有量が10面積%よりも低く、メタライズ配線層に膨れが多く発生した。また、Mg含有酸化物粉末の平均粒径が2μmよりも小さい試料No.6、15では、メタライズ配線層のMg含有酸化物相の最大平均粒径が4μm以上とならず、ガスを充分に通過させることができず、膨れが多量に発生した。また、Mg含有酸化物を適量配合してもガラスを含まない試料No.20では、接着強度が低いものであった。また、Mg量が10重量%を超える試料No.14では、メッキ不良が発生した。
【0046】
これに対して、本発明品は、いずれも膨れの発生を0.3個/cm2以下に抑制することができ、また1kg/0.7mmφ以上の接着強度を有するものであった。なお、Mg含有化合物に代えてZnSi25を用いた試料No.18、19では、全く膨れ抑制の効果が得られなかった。
【0047】
【発明の効果】
以上の通り、本発明によれば、メタライズ配線層中の粒径の大きいMg含有酸化物相を分散させることによって、メタライズ配線層の焼結性を阻害し、絶縁基板を形成する低温焼成セラミックスから発生するガスをメタライズ配線層を通過させることができるために、絶縁基板とメタライズ配線層との間で膨れの発生を防止することができる。
【図面の簡単な説明】
【図1】本発明の配線基板の一例である半導体素子収納用パッケージの概略断面図である。
【符号の説明】
1 絶縁基板
2 蓋体
3 メタライズ配線層
4 接続端子
4a 接続パッド
5 半導体素子
6 キャビティ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-temperature fired ceramic sintered body having high thermal expansibility, a method for producing the same, and a wiring substrate having a metallized wiring layer using the sintered ceramic substrate as an insulating substrate.
[0002]
[Prior art]
Conventionally, a wiring board has a structure in which a metallized wiring layer is disposed on or inside an insulating substrate. As a typical example using this wiring board, there is a semiconductor element housing package for housing a semiconductor element, particularly a semiconductor integrated circuit element such as an LSI (Large Scale Integrated Circuit element).
[0003]
These semiconductor element storage packages generally use an electrically insulating material such as alumina ceramics, and a plurality of metallized wiring layers made of refractory metal powders such as W and Mo are formed on the surface and inside of the insulating substrate. Is done. Further, a connection pad is formed on the lower surface of the insulating substrate, and an appropriate connection terminal is attached to the connection pad to be electrically connected to the external circuit board. The semiconductor element mounted on the upper surface of the insulating substrate has a structure hermetically sealed by a lid.
[0004]
Further, as an insulating substrate in a package for housing a semiconductor element, a glass that can be fired at around 1000 ° C. that can use a low-resistance metal such as Cu or Ag as a metallized wiring layer in place of the alumina ceramics or the like recently. An insulating material made of a sintered body such as ceramic has been proposed, and a low resistance wiring layer used for a low-temperature fired wiring board is currently a mainstream for forming a wiring layer by a copper-based material.
[0005]
As a specific method for forming a metallized wiring layer mainly composed of copper on the surface and / or inside of an insulating substrate made of glass ceramics, a slurry prepared by adding a glass ceramic raw material powder and a solvent to an organic binder is used as a doctor blade. The through hole is punched into the obtained green sheet by a method, etc., and the via hole conductor is formed by filling the through hole with a conductor paste mainly composed of copper. At the same time, copper is formed on the green sheet. This is produced by printing and forming a conductive paste mainly composed of copper on a wiring pattern by screen printing or the like, pressing and laminating a plurality of green sheets on which wiring patterns and via-hole conductors are formed, and firing at 800 to 1000 ° C. Has been.
[0006]
For the conductor paste containing copper as a main component, Cu or Cu 2 O as a main component, or a Cu—Cu 2 O mixture or Cu—CuO mixture as a metal oxide, Al 2 O 3 , ZrO 2 , Y 2 O 3 , NiO, MgO, ZnO, Mg 2 SiO 4 , MgSiO 3 , SiO 2 , Nb 2 O 5 , or at least one of Ni, W, Mo, Si, Fe, Co, and Ag as metals in the total amount in the inorganic component A copper metallized composition characterized by containing 0.5 to 30.0% by volume is proposed. (Japanese Patent Laid-Open No. 10-95686)
[0007]
The copper metallized composition does not hinder solder wettability in the subsequent process, and can effectively prevent warping and undulation of the insulating substrate made of glass ceramic porcelain. Adhesive strength at the interface with the surface is high, and stable adhesive strength can be obtained.
[0008]
[Problems to be solved by the invention]
However, glass ceramic porcelain is generally composed of 30 to 100% by weight of glass and 0 to 70% by weight of filler. Among them, glass is easy to adsorb organic substances on its surface, so the gas of the organic binder is Confined in softened glass. Therefore, when a metallized paste is applied to the surface of the porcelain and the wiring layer is formed by cofiring with the porcelain, the gas rises at the interface between the metallized wiring layer and the porcelain after the metallized wiring layer is sintered, or glass ceramic. As the porcelain inside the porcelain disappears as the porcelain sinters, when the gas inside the porcelain is exhausted from the surface of the porcelain, a phenomenon of pushing up the sintered metallized wiring layer occurs. There was a problem that bubbles were trapped between the wiring layer and swelling occurred.
[0009]
Further, in the proposed copper metallized composition, under the condition that the metallized wiring layer can maintain a high adhesive strength with the glass ceramic porcelain, the swelling occurs between the insulating substrate and the metallized wiring layer, and under the condition where no blistering occurs. There was a problem that the adhesive strength could not be maintained.
[0010]
Accordingly, the present invention provides a wiring board having a metallized wiring layer containing a low-resistance metal, allows simultaneous firing of the porcelain and the metalized wiring layer, prevents swelling between the insulating substrate and the metalized wiring layer, and An object of the present invention is to provide a wiring board capable of maintaining the adhesive strength between the metallized wiring layer and the insulating substrate.
[0011]
[Means for Solving the Problems]
The ceramic wiring board of the present invention is formed by co-firing with at least the surface of an insulating substrate made of low-temperature fired ceramics, and a metallized wiring layer mainly composed of a low-resistance metal is deposited. In the metallized wiring layer, Mg is contained in a ratio of 0.2 to 10 parts by weight in terms of MgO per 100 parts by weight of the low-resistance metal, and dispersed and contained as an Mg-containing oxide phase having an average maximum diameter of 4 μm or more. In addition, a glass phase is present at a grain boundary between the low-resistance metal and the Mg-containing oxide phase. According to such a ceramic wiring board, it is desirable that the Mg-containing oxide phase is present in the metallized wiring layer at a ratio of 10 to 50 area%.
[0012]
Furthermore, as a method for manufacturing a ceramic wiring board, a low-resistance metal, an Mg-containing oxide having an average particle diameter of 2 μm or more, and a glass powder, the Mg-containing oxide is converted into MgO per 100 parts by weight of the low-resistance metal. After the conductor paste containing 0.2 to 10 parts by weight is applied to the surface of the low-temperature fired ceramic molded body, the molded body and the conductor paste are fired at the same time. Here, the low-temperature fired ceramic molded body contains glass powder and ceramic filler powder, and the glass powder in the conductor paste and the glass powder in the low-temperature fired ceramic molded body are substantially the same. The composition can increase the co-sinterability with the metallized wiring layer and the adhesive strength with the metallized wiring layer.
[0013]
According to the present invention, the Mg-containing oxide phase is contained in the metallized wiring layer in a predetermined size, thereby inhibiting the sintering of the metallization and generating the pores of the unsintered metalized wiring layer from the porcelain. By using the passage, it is possible to prevent swelling generated by trapping gas between the insulating substrate and the metallized wiring layer, and by containing glass, the sinterability of the metallized wiring layer after passing the gas is increased, and The adhesive strength between the insulating substrate and the metallized wiring layer can be increased.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the content of the present invention will be described in detail with reference to the accompanying drawings shown in the embodiments.
FIG. 1 shows an example of the wiring board of the present invention. This is a basic structure of a so-called wiring board in which a metallized wiring layer is disposed on the surface or inside of an insulating substrate. FIG. 1 shows a semiconductor element storage package and its mounting as a typical example. It is a schematic sectional drawing which shows one Example of a structure, A is a package for semiconductor element accommodation, B is an external circuit board.
[0015]
The semiconductor element storage package A is composed of an insulating substrate 1 made of low-temperature fired ceramics, a lid 2, a metallized wiring layer 3 containing a low-resistance metal, connection terminals 4, and a semiconductor element 5 housed inside the package. The insulating substrate 1 and the lid 2 constitute a cavity 6 for accommodating the semiconductor element 5 in an airtight manner. That is, the semiconductor element 5 is placed and accommodated on the upper surface of the insulating substrate 1, and the semiconductor element 5 is bonded and fixed to the insulating substrate 1 through an adhesive such as glass or resin.
[0016]
A plurality of metallized wiring layers 3 are deposited on the insulating substrate 1 from the periphery on which the semiconductor element 5 is placed to the lower surface, and a number of connection pads 4 a are provided on the lower surface of the insulating substrate 1. And is electrically connected to the metallized wiring layer 3. A protruding terminal 4b made of a brazing material such as solder (tin-lead alloy) is attached to the surface of the connection pad 4a as a connection terminal to the external circuit board B.
[0017]
The metallized wiring layer 3 electrically connected to the connection pad 4a is electrically connected to each electrode of the semiconductor element 5 via bonding wires, so that the electrode of the semiconductor element is electrically connected to the connection pad 4a. Will be connected.
[0018]
On the other hand, the external circuit board B has a wiring conductor 8 formed on the surface of the insulator 7. Specifically, the insulator 7 is made of an insulating material having a linear thermal expansion coefficient of 12 to 16 ppm / ° C. at 40 to 400 ° C. such as a glass-epoxy composite material. The wiring conductor 8 is usually made of a metal conductor such as Cu, Au, Al, Ni, Pb—Sn in terms of the consistency of the coefficient of linear thermal expansion with the insulator and good electrical conductivity.
[0019]
In order to mount the semiconductor element storage package A on the external circuit board B, the protruding terminals 4b attached to the connection pads 4a on the lower surface of the insulating substrate 1 of the package A are mounted on the wiring conductors 8 of the external circuit board B. By placing and abutting, and then heating at a temperature of about 250 to 400 ° C., the protruding terminal 4 b made of a brazing material such as solder is melted, and the protruding terminal 4 b is joined to the wiring conductor 8. It is mounted on the external circuit board B. At this time, it is desirable that a brazing material is formed on the surface of the wiring conductor 8 so that the brazing material can be easily connected to the protruding terminals 4b.
[0020]
According to the present invention, the metallized wiring layer 3 in the semiconductor element housing package A is mainly composed of a low-resistance metal, specifically, at least one selected from the group consisting of Cu, Ag, Au, and Al. The metallized wiring layer 3 contains Mg in a proportion of 0.2 to 10 parts by weight in terms of MgO per 100 parts by weight of the low-resistance metal, and this Mg contains an Mg-containing oxide phase having an average maximum diameter of 4 μm or more. As a result, it is scattered.
[0021]
As described above, the Mg content is set in the above range when it is less than 0.2 parts by weight, which is not effective in preventing swelling between the insulating substrate 1 and the metallized wiring layer 3, and when it exceeds 10 parts by weight, the metallization is performed. This is because Mg metal oxide is deposited on the surface of the wiring layer 3, thereby significantly reducing the plating property.
[0022]
This Mg is scattered in the metallized wiring layer 3 as an Mg-containing oxide phase having an average maximum diameter of 4 μm or more, so that the Mg-containing oxide phase inhibits the sinterability of the metallized wiring layer 3 and gas passage When the average maximum diameter of the Mg-containing oxide phase is smaller than 4 μm, the effect of efficiently discharging the gas from the porcelain which is the object of the present invention is lost, and the insulating substrate 1 and the metallized wiring layer 3 are removed. This is because the effect of preventing the swollenness cannot be obtained. Further, the gas discharge effect is most effective when the Mg-containing oxide phase is present in the metallized wiring layer at a ratio of 10 to 50 area%, and is between the insulating substrate 1 and the metallized wiring layer 3. The effect of preventing swelling is obtained.
[0023]
Further, it is important that a glass phase is present in the metallized wiring layer 3 in order to improve the adhesion to the insulating substrate 1. Further, if the glass phase is too much, the plating property may be hindered. Therefore, the glass phase is preferably 1 to 20% by volume, particularly 3 to 10% by volume.
[0024]
As the low-temperature fired ceramic for forming the insulating substrate in the wiring board of the present invention, a fired glass component or a mixture of a glass component and a ceramic filler component is preferably used. As the glass component, borosilicate glass, zinc borosilicate glass, lithium silicate glass, PbO glass, BaO glass and the like are used. As the ceramic filler component, Al 2 O 3 , SiO 2 , mullite, forsterite, petalite, nepheline, lithium silicate, carne gearite, garnite, zirconia and the like are used. Further, in such low-temperature fired ceramics, in addition to the glass component and the ceramic filler component, at least one selected from the group of Cr, Co, Fe, Ni, and V is converted into an oxide in order to improve characteristics such as coloring. It can also be contained in a proportion of 0.05 to 10% by weight, particularly 0.1 to 2% by weight.
[0025]
Next, a method of manufacturing a wiring board including the above-described semiconductor element storage package A will be described below. First, a suitable organic binder, a plasticizer, and a solvent are added to the raw material powder made of glass and filler as described above for constituting the insulating substrate 1 to make a mud, and the mud is made by a doctor blade method or a calendar. A green sheet (raw sheet) is produced by adopting a roll method.
[0026]
Then, as the metallized wiring layer 3 and the connection pad 4a, a conductive paste containing a low-resistance metal powder is printed on the green sheet in a predetermined pattern by a well-known screen printing method. In some cases, the green sheet is appropriately punched to form a through hole, and the hole is filled with a conductive paste.
[0027]
According to the present invention, the inorganic component in the conductor paste used here includes a conductor component mainly composed of a low-resistance metal, an Mg-containing oxide powder having an average particle size of 2 μm or more, and a glass powder. It is important that the content of the contained oxide is 0.2 to 10 parts by weight in terms of MgO per 100 parts by weight of the low resistance metal.
[0028]
The reason why the average particle diameter of the Mg-containing oxide powder is 2 μm or more is that the above-described effects are sufficiently exhibited by including the Mg-containing oxide having the average particle diameter in the conductor paste, and the insulating substrate 1 and the metallized wiring layer 3 This is because interswelling can be prevented, and if the average particle diameter is smaller than 2 μm, the Mg-containing oxide phase in the metallized wiring layer cannot be interspersed as a phase having an average maximum diameter of 4 μm or more. In addition, when the content of the Mg-containing oxide is less than 0.2 parts by weight, swelling between the insulating substrate 1 and the metallized wiring layer 3 cannot be prevented, and when the content exceeds 10 parts by weight, the metallized wiring layer 3 after firing. The metal oxide of Mg is deposited on the surface, thereby significantly reducing the plating property.
[0029]
Further, since the Mg-containing oxide powder in the conductor paste hinders the sintering of the metallized wiring layer 3, it has a structure in which film strength is unlikely to occur between the metallized wiring layer 3 and the insulating substrate 1. The adhesive strength between the wiring layer 3 and the insulating substrate 1 cannot be maintained. Therefore, according to the present invention, by including glass powder in the metallized paste, the glass component diffuses into the insulating substrate, and the adhesive strength between the metallized wiring layer 3 and the insulating substrate 1 can be generated.
[0030]
This glass component is desirably mixed at a ratio of 1 to 20% by volume. As the glass used here, borosilicate glass, zinc borosilicate glass, lithium silicate glass, PbO glass, BaO glass, etc. are used, and in particular, the same glass as the glass in the glass ceramic molded body. If it exists, the effect of the mutual diffusion of the glass component in a conductor paste and the glass component in a porcelain can be acquired, and the adhesive strength between a metallized wiring layer and an insulated substrate can further be raised.
[0031]
Then, a plurality of green sheets coated with the conductive paste as described above are stacked and then fired. In baking, the binder component mix | blended for shaping | molding is removed first. The removal of the binder is performed in an air atmosphere at around 700 ° C., but when Cu is used as the wiring conductor, it is performed in a nitrogen atmosphere containing water vapor at 100 to 700 ° C. At this time, the shrinkage start temperature of the molded body is preferably about 700 to 850 ° C., and if the shrinkage start temperature is lower than this, it becomes difficult to remove the binder. It is necessary to control the yield point as in the present invention.
[0032]
Firing is performed in an oxidizing atmosphere at 800 ° C. to 1050 ° C., whereby the low-temperature fired ceramic is densified to a relative density of 90% or more. However, when Cu is used as the wiring conductor, it is fired at 850 to 1050 ° C. in a non-oxidizing atmosphere, and when Ag is used, it is fired at 800 to 1000 ° C. in an oxidizing atmosphere.
[0033]
In this firing, sintering of the glass ceramic molded body proceeds, but since the Mg-containing oxide phase having a large average particle size is present in the metallized wiring layer 3, the sintering of the metallized wiring layer 3 is inhibited. It will be in the state. Therefore, the gas generated from the glass ceramic molded body passes through the metallized wiring layer 3 where the sintering is not progressing and is released out of the system. Thereafter, the sintering of the metallized wiring layer 3 proceeds gradually, so that both of them become dense and a wiring board without swelling between the glass ceramic insulating substrate 1 and the metallized wiring layer 3 can be obtained.
[0034]
In addition, in the glass ceramic insulating substrate 1 produced in this manner, a crystal phase generated from crystalline glass, a crystal phase generated by a reaction between glass and a filler, a crystal phase generated by decomposition of a filler component, etc. There is a glass phase at the grain boundary of these crystal phases.
[0035]
In the present invention, as the Mg-containing oxide dispersedly contained in the metallized wiring layer 3 or added to the conductor paste, at least one selected from the group of MgO, forsterite, enstatite, and spinel is used. MgO and forsterite are preferably used.
[0036]
【Example】
43% SiO 2 -8% B 2 O 3 -5% CaO -6% Al 2 O 3 -37% BaO -1% or less by weight ratio Crystalline glass 50% by weight of SrO (bending point 700 ° C), quartz ( An acrylic resin as an organic binder was added to a mixture composed of 50% by weight of SiO 2 ), and further pulverized with toluene as a solvent, and then a tape having a thickness of 250 μm was prepared by a doctor blade method.
[0037]
Next, forsterite powder with an average particle diameter of 1 to 5 μm, MgO powder with an average particle diameter of 1 to 5 μm, ZnSi with an average particle diameter of 2 μm with respect to 100 parts by weight of Cu of copper powder with an average particle diameter of 4 μm 2 O 5 powder and the above crystallized glass A powder having an average particle size of 3.5 μm are weighed and mixed in the ratios shown in Table 1, and 2 parts by weight of an acrylic resin as an organic binder is added to 100 parts by weight of these inorganic components. Then, 15 parts by weight of α-terpineol as an organic solvent was added and kneaded to prepare a conductor paste.
[0038]
The conductor paste thus obtained is screen printed on the glass ceramic green sheet in a pattern for copper wiring having a shape of 2 × 5 cm square and a thickness of about 15 μm after firing, and four green sheets are pressed underneath The laminate is used as a monitor for counting the number of blisters between the metallized wiring layer and the insulating substrate, and is printed on a copper wiring pattern with a shape of 0.7 mmφ and a thickness of about 15 μm after firing. A sample obtained by pressurizing and stacking six green sheets underneath was used as a sample for measuring the adhesive strength between the metallized wiring layer and the insulating substrate.
[0039]
Next, after degreasing the laminate in which the wiring pattern in an unsintered state is formed, it is held in a steam-containing nitrogen atmosphere at a temperature of 700 ° C. for 3 hours in order to decompose and remove organic components such as an organic binder. Then, the temperature was raised to 910 ° C. in a nitrogen atmosphere and held for 1 hour to produce a wiring board.
[0040]
About the produced wiring board, the metallized wiring layer is observed with a scanning electron micrograph or EPMA, and the maximum diameter on each photographic plane is measured for any 30 or more phases of the Mg-containing oxide phase, and the average is calculated. did. In addition, the Mg content in the metallized layer (MgO conversion ratio with respect to 100 parts by weight of the low resistance metal), the presence or absence of the Mg-containing oxide phase, and the area ratio of the Mg-containing oxide phase were determined and shown in Table 1. The Mg content in the metallized layer was omitted because it was almost the same as the ratio in the conductor paste.
[0041]
In addition, the blister generation count monitor counted the number of blisters by observation with a 20 × microscope field of view, and the case where it was 0.3 pieces / cm 2 or less was regarded as a good product.
[0042]
The adhesive strength measurement monitor is formed by performing 1 μm thick Ni plating on the copper metallized wiring layer of the wiring board, applying 0.1 μm thick Au plating thereon, applying a flux thereon, and further having a diameter of 0.1 μm. A 7 mmφ Sn / Pb eutectic solder ball was placed thereon and held in the atmosphere at 245 ° C. for 1 min to perform solder ball attachment. Then, the maximum load when the copper metallized wiring layer was broken in a vertical direction by holding the solder ball with a clamp pull strength measuring machine was evaluated as the adhesive strength of the metallized wiring layer. In addition, as a judgment of pass / fail, the case where the maximum load exceeded 1 kg / 0.7 mmφ was determined as non-defective.
[0043]
In addition, the same plating as the adhesive strength measurement monitor is applied to the blister occurrence count monitor, and if the plating surface observation is 98% or more of the whole, ○, 80 to 98% is Δ, 80% or less is × evaluated.
[0044]
[Table 1]
Figure 0004627903
[0045]
As can be seen from Table 1, the sample No. 1 contained less than 0.2 parts by weight of the Mg-containing oxide. In Nos. 1, 10, and 27, the content of the Mg-containing oxide phase was lower than 10 area%, and the metallized wiring layer was greatly swollen. In addition, Sample No. 2 in which the average particle size of the Mg-containing oxide powder is smaller than 2 μm. In Nos. 6 and 15, the maximum average particle size of the Mg-containing oxide phase of the metallized wiring layer was not 4 μm or more, the gas could not be sufficiently passed, and a large amount of swelling occurred. Further, even when an appropriate amount of Mg-containing oxide is blended, Sample No. which does not contain glass. In No. 20, the adhesive strength was low. Sample No. with an Mg amount exceeding 10% by weight was used. In No. 14, defective plating occurred.
[0046]
On the other hand, all of the products of the present invention were able to suppress the occurrence of swelling to 0.3 pieces / cm 2 or less and had an adhesive strength of 1 kg / 0.7 mmφ or more. Incidentally, the sample was used ZnSi 2 O 5 in place of the Mg-containing compound No. In 18 and 19, no swelling suppression effect was obtained.
[0047]
【The invention's effect】
As described above, according to the present invention, by dispersing the Mg-containing oxide phase having a large particle size in the metallized wiring layer, the sinterability of the metallized wiring layer is inhibited, and the low-temperature fired ceramic forming the insulating substrate is used. Since the generated gas can pass through the metallized wiring layer, the occurrence of swelling between the insulating substrate and the metallized wiring layer can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a package for housing a semiconductor element, which is an example of a wiring board according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Cover body 3 Metallized wiring layer 4 Connection terminal 4a Connection pad 5 Semiconductor element 6 Cavity

Claims (5)

低温焼成セラミックスからなる絶縁基板の少なくとも表面に該絶縁基板と同時焼成して形成され、且つ低抵抗金属を主体するメタライズ配線層を被着形成してなるセラミック配線基板において、前記メタライズ配線層中に、低抵抗金属100重量部当たり、MgをMgO換算で0.2〜10重量部の割合で含み、かつ平均最大径が4μm以上のMg含有酸化物相として分散含有するとともに、前記低抵抗金属および前記Mg含有酸化物相の粒界にガラス相が存在することを特徴とするセラミック配線基板。In a ceramic wiring board formed by co-firing with an insulating substrate at least on the surface of an insulating substrate made of low-temperature fired ceramics and having a metallized wiring layer mainly composed of a low-resistance metal formed thereon, the metallized wiring layer includes , Per 100 parts by weight of the low resistance metal, Mg is contained in a proportion of 0.2 to 10 parts by weight in terms of MgO, and the average maximum diameter is dispersed and contained as an Mg-containing oxide phase of 4 μm or more, and the low resistance metal and A ceramic wiring board, wherein a glass phase is present at a grain boundary of the Mg-containing oxide phase. 前記Mg含有酸化物相が、前記メタライズ配線層中に10〜50面積%の割合で存在することを特徴とする請求項1記載のセラミック配線基板。The ceramic wiring board according to claim 1, wherein the Mg-containing oxide phase is present in the metallized wiring layer at a ratio of 10 to 50 area%. 請求項1または2記載のセラミック配線基板の製造方法であって、低抵抗金属と、平均粒径が2μm以上のMg含有酸化物と、ガラス粉末とを含み、前記Mg含有酸化物を前記低抵抗金属100重量部当たりMgO換算で0.2〜10重量部の割合で含む導体ペーストを低温焼成セラミック成形体の表面に塗布した後、前記低温焼成セラミック成形体と前記導体ペーストを同時に焼成することを特徴とするセラミック配線基板の製造方法。 A claim 1 or 2 method for producing a ceramic wiring board according includes a low-resistance metal, and the average particle size of Mg-containing oxides or 2 [mu] m, a glass powder, the low-resistance the Mg-containing oxide after the conductive paste in a proportion of 0.2 to 10 parts by weight of metal per 100 parts in terms of MgO was applied to the surface of the low-temperature fired ceramic molded body to sintering the low temperature sintering ceramic molded body and the conductive paste simultaneously A method for producing a ceramic wiring board, which is characterized. 前記低温焼成セラミック成形体が、ガラス粉末と前記セラミックフィラー粉末とを含有する請求項3記載のセラミック配線基板の製造方法。The method for producing a ceramic wiring board according to claim 3, wherein the low-temperature fired ceramic molded body contains glass powder and the ceramic filler powder. 前記導体ペースト中のガラス粉末と、前記低温焼成セラミック成形体中のガラス粉末とが、実質的に同一組成からなることを特徴とする請求項4記載のセラミック配線基板の製造方法。The method for producing a ceramic wiring board according to claim 4, wherein the glass powder in the conductor paste and the glass powder in the low-temperature fired ceramic molded body have substantially the same composition.
JP2001052406A 2001-02-27 2001-02-27 Ceramic wiring board and manufacturing method thereof Expired - Fee Related JP4627903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052406A JP4627903B2 (en) 2001-02-27 2001-02-27 Ceramic wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052406A JP4627903B2 (en) 2001-02-27 2001-02-27 Ceramic wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002261411A JP2002261411A (en) 2002-09-13
JP4627903B2 true JP4627903B2 (en) 2011-02-09

Family

ID=18913042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052406A Expired - Fee Related JP4627903B2 (en) 2001-02-27 2001-02-27 Ceramic wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4627903B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201996A (en) * 1988-02-05 1989-08-14 Fujitsu Ltd Manufacture of multi-layer ceramic printed-circuit board
JPH03291989A (en) * 1990-04-09 1991-12-24 Sumitomo Metal Ind Ltd Conductive copper paste, manufacture thereof and low temperature baked board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201996A (en) * 1988-02-05 1989-08-14 Fujitsu Ltd Manufacture of multi-layer ceramic printed-circuit board
JPH03291989A (en) * 1990-04-09 1991-12-24 Sumitomo Metal Ind Ltd Conductive copper paste, manufacture thereof and low temperature baked board

Also Published As

Publication number Publication date
JP2002261411A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
US7662477B2 (en) Multilayer ceramics substrate
JP3517062B2 (en) Copper metallized composition and glass-ceramic wiring board using the same
JP4673086B2 (en) Conductor paste for via conductor metallization and method of manufacturing ceramic wiring board using the same
JP3652196B2 (en) Manufacturing method of ceramic wiring board
JP4782397B2 (en) Conductive paste and method for manufacturing wiring board using the same
JP4627903B2 (en) Ceramic wiring board and manufacturing method thereof
JP4671836B2 (en) Method for producing glass ceramic sintered body
JP2006310340A (en) Conductor paste, molded body, and wiring board
JP4794040B2 (en) Ceramic sintered body and wiring board using the same
JP3527038B2 (en) Low-temperature fired ceramics, wiring board made of the ceramics
JP4587617B2 (en) Ceramic wiring board
JP2004087989A (en) Multilayer wiring substrate
JP4646362B2 (en) Conductor composition and wiring board using the same
JP2004235347A (en) Insulating ceramics and multilayer ceramic substrate using the same
JP3366479B2 (en) Metallized composition and method for producing wiring board
JP3699571B2 (en) Wiring board and its mounting structure
JP2004083373A (en) High thermal expansion porcelain formulation, high thermal expansion porcelain, its manufacturing method, multilayered wiring board, and its mounting structure
JP3827498B2 (en) Glass ceramic sintered body and wiring board
JP3934811B2 (en) High thermal expansion glass ceramic sintered body and manufacturing method thereof, wiring board and mounting structure thereof
JP3830296B2 (en) Manufacturing method of high thermal expansion glass ceramic sintered body
JP2000138428A (en) Wiring board
JP3450998B2 (en) Wiring board and its mounting structure
JP3314131B2 (en) Wiring board
JP4497627B2 (en) Glass ceramic sintered body, method for producing the same, wiring board, and mounting structure thereof
JP3450111B2 (en) Metallized composition and wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees