JP4620487B2 - Oxygen sensor - Google Patents

Oxygen sensor Download PDF

Info

Publication number
JP4620487B2
JP4620487B2 JP2005044457A JP2005044457A JP4620487B2 JP 4620487 B2 JP4620487 B2 JP 4620487B2 JP 2005044457 A JP2005044457 A JP 2005044457A JP 2005044457 A JP2005044457 A JP 2005044457A JP 4620487 B2 JP4620487 B2 JP 4620487B2
Authority
JP
Japan
Prior art keywords
oxygen sensor
electrode
oxygen
antioxidant film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005044457A
Other languages
Japanese (ja)
Other versions
JP2006226966A (en
Inventor
勤也 鎌田
照明 北野
幹訓 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005044457A priority Critical patent/JP4620487B2/en
Publication of JP2006226966A publication Critical patent/JP2006226966A/en
Application granted granted Critical
Publication of JP4620487B2 publication Critical patent/JP4620487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

本発明は、鉛・ビスマス、ビスマス、鉛などの低融点液体金属中の酸素濃度を計測するための酸素センサ、特に、原子炉や廃熱回収施設などで使用されている低融点液体金属中の酸素濃度を計測するための酸素センサに関するものである。   The present invention relates to an oxygen sensor for measuring the oxygen concentration in a low melting point liquid metal such as lead / bismuth, bismuth, and lead, particularly in a low melting point liquid metal used in a nuclear reactor or a waste heat recovery facility. The present invention relates to an oxygen sensor for measuring oxygen concentration.

低融点液体金属は、熱や放射線に対して安定である。また、熱伝導性が優れていることから、冷却材として使用されている。その代表的な例が高速増殖炉の液体ナトリウム金属である。   Low melting point liquid metal is stable to heat and radiation. Moreover, since it is excellent in heat conductivity, it is used as a coolant. A typical example is liquid sodium metal in a fast breeder reactor.

このような目的に用いられている金属は、主として、ナトリウム(Na)、ナトリウム・カリウム(Na−K)、リチウム(Li)、ビスマス(Bi)、鉛(Pb)などの低融点液体金属であるが、こうした低融点液体金属を冷却材として使用する場合、この低融点液体金属による機器や配管などの構造材の腐食が問題となる。   Metals used for such purposes are mainly low melting point liquid metals such as sodium (Na), sodium potassium (Na-K), lithium (Li), bismuth (Bi), lead (Pb), and the like. However, when such a low melting point liquid metal is used as a coolant, the corrosion of structural materials such as equipment and piping by the low melting point liquid metal becomes a problem.

すなわち、低融点液体金属による腐食は、水溶液などの腐食に見られる電気化学的な腐食ではなく、機器や配管などの構造材が低融点液体金属の中に溶解することが主原因である。   That is, the corrosion due to the low melting point liquid metal is not the electrochemical corrosion seen in the corrosion of an aqueous solution or the like, but the main cause is that structural materials such as equipment and piping are dissolved in the low melting point liquid metal.

従って、冷却材として使用している低融点液体金属が熱回収のために、炉芯部などの高温部と、熱回収部などの低温部とを循環する場合、高温部で構造材から低融点液体金属中に溶解した金属元素が、低温部では過飽和となり、不純物として析出する、いわゆる、質量移動現象が生ずる。その結果、低温部では、析出した不純物によって小口径配管などの液体金属流路を閉塞させる恐れがある。   Therefore, when the low-melting-point liquid metal used as a coolant circulates between a high-temperature part such as a furnace core and a low-temperature part such as a heat-recovery part for heat recovery, A so-called mass transfer phenomenon occurs in which a metal element dissolved in a liquid metal becomes supersaturated at a low temperature portion and precipitates as an impurity. As a result, in the low temperature part, there is a possibility that the liquid metal flow path such as the small-diameter pipe is blocked by the deposited impurities.

機器や配管などの構造材の溶解速度を支配するのは、主として、高温部での不飽和度であるが、液体金属流路の構成や形状などの装置の状況、液体金属の流量や温度、高温部と低温部との温度差、液体金属流路の表面粗さ、不純物濃度など、多種多様な条件により左右される。   It is mainly the degree of unsaturation in the high temperature part that governs the dissolution rate of structural materials such as equipment and piping, but the status of the equipment such as the configuration and shape of the liquid metal flow path, the flow rate and temperature of the liquid metal, It depends on various conditions such as the temperature difference between the high temperature part and the low temperature part, the surface roughness of the liquid metal channel, and the impurity concentration.

中でも、液体金属中の不純物、特に、液体金属中の酸素濃度は、腐食現象および腐食速度に大きく影響を及ぼすことが知られている。このため、液体金属中の酸素濃度を適正な濃度に制御することにより、液体金属と接触している配管などの構造体の健全性を維持させることができるのである。   Among them, it is known that impurities in the liquid metal, particularly oxygen concentration in the liquid metal, has a great influence on the corrosion phenomenon and the corrosion rate. For this reason, by controlling the oxygen concentration in the liquid metal to an appropriate concentration, the soundness of a structure such as a pipe in contact with the liquid metal can be maintained.

このため、液体金属中の酸素濃度を、常時、計測することが必要になる。液体金属中の酸素濃度は、通常、酸素センサで計測する。例えば、図3に示すように、酸素センサ1を一定温度に加熱された液体金属Mの中に浸漬して、液体金属Mと酸素センサ1内に収容した標準極(基準極とも言う。)2との間に形成される酸素分圧差により発生する起電力を起電力計測器4で計測するのである。   For this reason, it is necessary to always measure the oxygen concentration in the liquid metal. The oxygen concentration in the liquid metal is usually measured with an oxygen sensor. For example, as shown in FIG. 3, a standard electrode (also referred to as a reference electrode) 2 in which the oxygen sensor 1 is immersed in a liquid metal M heated to a constant temperature and accommodated in the liquid metal M and the oxygen sensor 1. The electromotive force generated by the difference in oxygen partial pressure formed between the two is measured by the electromotive force measuring instrument 4.

すなわち、起電力Eは、次式で表すことができる。
E=(RT/4F)×In(P1 /P2
ここで、
R:ガス定数あるいは気体定数(8.3144mol-1-1
T:温度(K)
F:ファラデー定数(96485mol-1
In:自然対数
1 :計測側の酸素分圧(ここでは、溶融金属/鉛・ビスマス)
2 :標準極の酸素分圧
である。
That is, the electromotive force E can be expressed by the following equation.
E = (RT / 4F) × In (P 1 / P 2 )
here,
R: Gas constant or gas constant (8.3144 mol −1 K −1 )
T: Temperature (K)
F: Faraday constant (96485 mol −1 )
In: natural logarithm P 1 : oxygen partial pressure on the measurement side (here, molten metal / lead / bismuth)
P 2 is the oxygen partial pressure of the standard electrode.

図中、3は容器又は液体金属流路用配管、1aは内部電極5に接続する内部電極側のリード線、1bは外部電極となるセンサ本体6の側面に接続する対向極側のリード線を示している。   In the figure, 3 is a pipe for a container or a liquid metal flow path, 1a is a lead wire on the internal electrode side connected to the internal electrode 5, and 1b is a lead wire on the counter electrode side connected to the side surface of the sensor body 6 to be an external electrode. Show.

上記のような装置を用いて液体金属中の溶在酸素を測定する技術は、理論的に極めて優れたものであるが、実用に際して、いろいろな未解決の問題を有しており、これらの問題を解決しなければ、安定した測定を実現することが難しい。   The technique for measuring dissolved oxygen in liquid metal using the above-mentioned apparatus is theoretically very excellent, but has various unsolved problems in practical use. If it is not solved, it is difficult to realize stable measurement.

従来、液体金属中の酸素濃度を測定する酸素センサとして、図4に示すように、外部電極となる中空管状のセンサ本体6の先端にジルコニア系の固体電解質で成形した容器状の計測部7を装着すると共に、この容器状の計測部7の中にビスマスと酸化ビスマスとの粉末混合物から成る標準極2を収容し、更に、標準極2に内部電極5の先端を差し込んだ酸素センサが知られている(例えば、特許文献1参照。)。   Conventionally, as an oxygen sensor for measuring the oxygen concentration in a liquid metal, as shown in FIG. 4, a container-like measuring unit 7 formed of a zirconia-based solid electrolyte is formed at the tip of a hollow tubular sensor body 6 serving as an external electrode. An oxygen sensor is known in which the standard electrode 2 made of a powder mixture of bismuth and bismuth oxide is housed in the container-shaped measuring unit 7 and the tip of the internal electrode 5 is inserted into the standard electrode 2. (For example, refer to Patent Document 1).

また、図5に示すように、有底筒状の固体電解質素子9の中に、Al2 3 粉末及び/又はZrO2 粉末から選択された安定保護層10と、黒鉛粉末及び/又はカーバイト粉末から選択された酸素吸収層11と、石英ウール及び/又はアルミナウール及び/又はセラミックウールから選択された緩和層12と、耐火セメントから成る固結層13を充填した酸素センサが知られている(例えば、特許文献2参照。)。
特開2003−294692号公報 特開10−253582号公報
In addition, as shown in FIG. 5, in the bottomed cylindrical solid electrolyte element 9, a stable protective layer 10 selected from Al 2 O 3 powder and / or ZrO 2 powder, graphite powder and / or carbide. Oxygen sensors are known which are filled with an oxygen absorbing layer 11 selected from powder, a relaxation layer 12 selected from quartz wool and / or alumina wool and / or ceramic wool, and a consolidated layer 13 made of refractory cement. (For example, refer to Patent Document 2).
JP 2003-294692 A Japanese Patent Laid-Open No. 10-253582

前者の場合、内部電極として、標準極材であるBi/Bi2 3 粉末混合物、Pb/PbO粉末混合物、In/In2 3 粉末混合物、Pb−Bi/PbO粉末混合物に対して耐食性のあるMo(モリブデン)やW(タングステン)を使用しているが、使用期間中に内部電極が加熱されることから、内部電極として用いているモリブデンやタングステンが酸素と反応して劣化(酸化)するという問題があった。 In the former case, the internal electrode has corrosion resistance to the standard electrode materials Bi / Bi 2 O 3 powder mixture, Pb / PbO powder mixture, In / In 2 O 3 powder mixture, and Pb-Bi / PbO powder mixture. Although Mo (molybdenum) and W (tungsten) are used, the internal electrode is heated during the period of use, so that molybdenum or tungsten used as the internal electrode reacts with oxygen and deteriorates (oxidizes). There was a problem.

このために、時間の経過とともに内部電極の抵抗値が増加し、この抵抗値の増加に伴って起電力が上昇し、本来の起電力である正しい起電力を示さなくなるという問題があった。   For this reason, the resistance value of the internal electrode increases with the lapse of time, and the electromotive force rises with the increase of the resistance value, and there is a problem that the correct electromotive force that is the original electromotive force is not exhibited.

起電力が安定して正しい酸素濃度を計測できる時間は、酸素センサを浸漬している液体金属の温度や、酸素センサの浸漬状態(浸漬深さ)により異なるが、一般には、液体金属の温度が高く、かつ、酸素センサの浸漬深さが深いほど、短時間に起電力の上昇が生ずるため、正しい起電力を計測できる時間は短くなる。   The time during which the electromotive force is stable and the correct oxygen concentration can be measured varies depending on the temperature of the liquid metal in which the oxygen sensor is immersed and the immersion state (immersion depth) of the oxygen sensor. The higher the immersion depth of the oxygen sensor, the higher the electromotive force is generated in a short time. Therefore, the time during which a correct electromotive force can be measured is shortened.

他方、後者の場合は、上記のように、有底筒状の固体電解質素子9の中に、Al2 3 粉末及び/又はZrO2 粉末から選択された安定保護層10と、黒鉛粉末及び/又はカーバイト粉末から選択された酸素吸収層11と、石英ウール及び/又はアルミナウール及び/又はセラミックウールから選択された緩和層12と、耐火セメントから成る固結層13を充填している。 On the other hand, in the latter case, as described above, in the bottomed cylindrical solid electrolyte element 9, a stable protective layer 10 selected from Al 2 O 3 powder and / or ZrO 2 powder, graphite powder and / or Alternatively, an oxygen absorbing layer 11 selected from carbide powder, a relaxation layer 12 selected from quartz wool and / or alumina wool and / or ceramic wool, and a consolidated layer 13 made of refractory cement are filled.

しかしながら、ジルコニア系の固体電解質素子9と、固結層13を形成している耐火セメントの熱膨張率が異なることから、使用中にこれらの隙間から固体電解質素子9の中に空気が流入する恐れがある。   However, since the thermal expansion coefficients of the zirconia-based solid electrolyte element 9 and the refractory cement forming the consolidated layer 13 are different, air may flow into the solid electrolyte element 9 from these gaps during use. There is.

更に、安定保護層10に使用されているAl2 3 粉末などの粉末の隙間や、緩和層12に使用されている石英ウール、アルミナウール、セラミックウールなどのウール繊維の隙間に空気が存在しているために、これらの空気によってMo(モリブデン)やW(タングステン)で形成されている内部電極5が酸化(劣化)するという問題がある。 Furthermore, air exists in the gaps between the powders such as Al 2 O 3 powder used for the stable protective layer 10 and the gaps between the wool fibers such as quartz wool, alumina wool and ceramic wool used for the relaxation layer 12. Therefore, there is a problem that the internal electrode 5 formed of Mo (molybdenum) or W (tungsten) is oxidized (deteriorated) by these airs.

本発明は、このような問題を解消するためになされたものであり、その目的とするところは、Mo(モリブデン)やW(タングステン)で形成されている内部電極の酸化(劣化)を防止し、以て、酸素センサの耐久性の向上を図ることができる酸素センサをを提供することにある。   The present invention has been made to solve such a problem, and its object is to prevent oxidation (deterioration) of internal electrodes formed of Mo (molybdenum) or W (tungsten). Thus, an object of the present invention is to provide an oxygen sensor that can improve the durability of the oxygen sensor.

上記の課題を解決するため、本発明は、次のように構成されている。   In order to solve the above problems, the present invention is configured as follows.

請求項1に係る酸素センサは、外部電極となる中空管状のセンサ本体の下端部にジルコニア系の固電解質で成形した容器状の計測部を装着すると共に、前記計測部の中に金属とその金属の酸化物との粉末混合物から成る標準極を収容し、更に、該標準極に対して耐蝕性高いモリブデン又はタングステン製の内部電極の先端を前記標準極に差し込んだ酸素センサにおいて、前記標準極の上面からセンサ本体の中間部に至る区間に該当する前記内部電極の表面に、メッキ又は真空蒸着による貴金属の酸化防止膜をコーティングしたことを特徴とするものである。 Oxygen sensor according to claim 1, together with mounting a container-like measurement portion molded by a solid body electrolyte zirconia to a lower end portion of the hollow tubular sensor body serving as an external electrode, the metal in said measuring unit and its In an oxygen sensor that contains a standard electrode made of a powder mixture with a metal oxide, and further, the tip of an internal electrode made of molybdenum or tungsten having high corrosion resistance to the standard electrode is inserted into the standard electrode. The surface of the internal electrode corresponding to the section from the upper surface of the electrode to the middle part of the sensor body is coated with a noble metal antioxidant film by plating or vacuum deposition.

請求項に係る酸素センサは、酸化防止膜を形成する酸化防止膜材が、金、ルテニウム、ロジウム、パラジウム、オスミニウム、イリジウム、白金であることを特徴とするものである。 The oxygen sensor according to claim 2 is characterized in that the antioxidant film material forming the antioxidant film is gold, ruthenium, rhodium, palladium, osmium, iridium, or platinum.

上記のように、請求項1に記載の発明は、外部電極となる中空管状のセンサ本体の下端部にジルコニア系の固体電解質で成形した容器状の計測部を装着すると共に、前記計測部の中に金属とその金属の酸化物との粉末混合物から成る標準極を収容し、更に、該標準極に対して耐蝕性の高い内部電極の先端を前記標準極に差し込んだ酸素センサにおいて、前記標準極に差し込んだ先端部分を除く内部電極の表面に、酸化防止用のコーティングを施して酸化防止膜を形成したので、この酸化防止膜によって酸素センサ用の内部電極の酸化(劣化)を未然に防止することが可能となった。その結果、内部電極の耐久性が向上し、長期にわたって安定した起電力を示すようになった。   As described above, according to the first aspect of the present invention, a container-shaped measuring unit formed of a zirconia-based solid electrolyte is attached to the lower end of a hollow tubular sensor body serving as an external electrode. In the oxygen sensor in which a standard electrode made of a powder mixture of a metal and an oxide of the metal is accommodated, and the tip of an internal electrode having high corrosion resistance with respect to the standard electrode is inserted into the standard electrode, the standard electrode Since the anti-oxidation coating was formed on the surface of the internal electrode except for the tip portion inserted into the anti-oxidation film, the oxidation (deterioration) of the internal electrode for the oxygen sensor was prevented by this anti-oxidation film. It became possible. As a result, the durability of the internal electrode was improved and a stable electromotive force was exhibited over a long period of time.

従って、本発明の酸素センサによれば、液体金属中の酸素濃度を長期間にわたって連続して、かつ、確実に計測することができるようになった。   Therefore, according to the oxygen sensor of the present invention, the oxygen concentration in the liquid metal can be continuously and reliably measured over a long period of time.

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1において、1は、酸素センサである。この酸素センサ1は、ステンレス製の中空管状のセンサ本体(延長スリーブともいう。)6の先端に、同じくステンレス製の耐食スリーブ8を溶接し、更に、その先端にジルコニア系の固体電解質で成形した細長い容器状の計測部7を気密状に取り付けている。   In FIG. 1, 1 is an oxygen sensor. This oxygen sensor 1 has a stainless steel corrosion-resistant sleeve 8 welded to the tip of a stainless steel hollow tubular sensor main body (also called an extension sleeve) 6, and is further molded with a zirconia solid electrolyte at the tip. An elongated container-shaped measuring unit 7 is attached in an airtight manner.

この容器状の計測部7の中には、Bi/Bi2 3 粉末混合物(ビスマスと酸化ビスマスとの粉末混合物)等から成る標準極2を収容している。 The container-like measuring unit 7 accommodates a standard electrode 2 made of a Bi / Bi 2 O 3 powder mixture (a powder mixture of bismuth and bismuth oxide) or the like.

また、中空管状のセンサ本体6の中には、標準極としてのBi/Bi2 3 粉末混合物等に対して耐食性のある内部電極5が挿入されており、その先端は、標準極2の中に差し込まれている。 Further, in the hollow tubular sensor body 6, an internal electrode 5 having corrosion resistance with respect to a Bi / Bi 2 O 3 powder mixture or the like as a standard electrode is inserted, and its tip is in the standard electrode 2. Is plugged into.

この発明では、標準極2内に挿入する先端部分を除く内部電極5の表面に白金などの貴金属をコーティングして、同表面に貴金属による酸化防止膜15を形成している。そして、この酸化防止膜15によって内部電極5の酸化(劣化)を防止している。   In the present invention, the surface of the internal electrode 5 except for the tip portion inserted into the standard electrode 2 is coated with a noble metal such as platinum, and the antioxidant film 15 made of the noble metal is formed on the surface. The oxidation film 15 prevents oxidation (deterioration) of the internal electrode 5.

内部電極5の表面に白金などの貴金属をコーティングする方法としては、例えば、メッキ法、真空蒸着法などを挙げることができる。   Examples of the method for coating the surface of the internal electrode 5 with a noble metal such as platinum include a plating method and a vacuum deposition method.

酸化防止膜15の厚さとしては、50μm〜300μmの範囲が好ましい。酸化防止膜15の厚さが50μm未満の場合には、酸化防止膜としての膜性能が不足し、内部電極が次第に酸化(劣化)する恐れがある。   The thickness of the antioxidant film 15 is preferably in the range of 50 μm to 300 μm. When the thickness of the antioxidant film 15 is less than 50 μm, the film performance as the antioxidant film is insufficient, and the internal electrode may be gradually oxidized (deteriorated).

これとは反対に、酸化防止膜15の厚さが300μmを超える場合には、酸素センサ1の寿命に比して膜性能が過剰となり、不経済となる。   On the other hand, when the thickness of the antioxidant film 15 exceeds 300 μm, the film performance becomes excessive as compared with the life of the oxygen sensor 1, which is uneconomical.

また、この酸化防止膜15の外側には、アリミナ(Al2 3 )やムライト(3Al2 3 ・2SiO2 )などで形成された絶縁管16を被せている。そして、絶縁管16とセンサ本体6の上端部6aとの隙間をフッソ系樹脂やステンレス鋼などで形成された端部継手17で塞ぎ、空気がセンサ本体6内に流入しないようしている。 In addition, an insulating tube 16 formed of alumina (Al 2 O 3 ), mullite (3Al 2 O 3 .2SiO 2 ), or the like is covered on the outside of the antioxidant film 15. The gap between the insulating tube 16 and the upper end portion 6a of the sensor body 6 is closed with an end joint 17 formed of fluorine-based resin, stainless steel, or the like so that air does not flow into the sensor body 6.

その上、内部電極5には、標準極側のリード線1aを接続し、センサ本体6には、対向極側のリード線1bを接続している。   In addition, the standard electrode side lead wire 1 a is connected to the internal electrode 5, and the counter electrode side lead wire 1 b is connected to the sensor body 6.

ここで、固体電解質としては、イットリア(Y2 3 )添加ジルコニア(ZrO2 )、カルシア(CaO)添加ジルコニア、マグネシア(MgO)添加ジルコニアなどが好ましい。 Here, as the solid electrolyte, yttria (Y 2 O 3 ) -added zirconia (ZrO 2 ), calcia (CaO) -added zirconia, magnesia (MgO) -added zirconia and the like are preferable.

また、標準極としては、Bi/Bi2 3 粉末混合物(ビスマスと酸化ビスマスとの粉末混合物)、Pb/PbO粉末混合物(鉛と酸化鉛との粉末混合物)、In/In2 3 粉末混合物(インジウムと酸化インジウムとの粉末混合物)、Pb−Bi/PbO粉末混合物(鉛ビスマスと酸化鉛との粉末混合物)などが好ましい。 Also, as standard electrodes, Bi / Bi 2 O 3 powder mixture (powder mixture of bismuth and bismuth oxide), Pb / PbO powder mixture (powder mixture of lead and lead oxide), In / In 2 O 3 powder mixture (Powder mixture of indium and indium oxide), Pb—Bi / PbO powder mixture (powder mixture of lead bismuth and lead oxide) and the like are preferable.

また、内部電極の表面に酸化防止膜を形成する酸化防止膜材としては、金、ルテニウム、ロジウム、パラジウム、オスミニウム、イリジウム、白金などの貴金属が好ましい。   In addition, as an antioxidant film material for forming an antioxidant film on the surface of the internal electrode, a noble metal such as gold, ruthenium, rhodium, palladium, osmium, iridium, or platinum is preferable.

また、延長スリーブとしては、オーステナイト系ステンレス鋼が好ましい。   The extension sleeve is preferably austenitic stainless steel.

また、耐食スリーブとしては、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、クロムモリブデン鋼などのより耐食性のあるステンレス鋼が好ましい。   Further, as the corrosion resistant sleeve, stainless steel having higher corrosion resistance such as ferritic stainless steel, martensitic stainless steel, chrome molybdenum steel and the like is preferable.

(実施例)
Mo(モリブデン)製の内部電極の表面を貴金属製の酸化防止膜で被覆した本発明の酸素センサと、Mo(モリブデン)製の内部電極の表面を酸化防止膜で被覆しない従来の酸素センサとを用いて鉛ビスマス中の酸素濃度を計測した。
(Example)
An oxygen sensor according to the present invention in which the surface of an internal electrode made of Mo (molybdenum) is coated with an antioxidant film made of noble metal, and a conventional oxygen sensor in which the surface of an internal electrode made of Mo (molybdenum) is not coated with an antioxidant film It was used to measure the oxygen concentration in lead bismuth.

酸化防止コーティング材には、白金を用い、厚さ100μmのコーティングを行った。白金は、鉛やビスマスなどの標準極材料に溶解し易いので、標準極内に挿入する部分を除いて酸化防止膜で被覆している。   Platinum was used for the antioxidant coating material, and coating with a thickness of 100 μm was performed. Since platinum is easily dissolved in standard electrode materials such as lead and bismuth, it is covered with an antioxidant film except for the portion inserted into the standard electrode.

鉛ビスマスの構成は、鉛45重量%、ビスマス55重量%の共晶組成であり、温度を450℃に加熱保持した。その上、酸化鉛のボール(直径2〜5mm)を鉛ビスマスの中に浸漬して、鉛ビスマスの中の酸素を飽和状態にした。   The composition of lead bismuth was a eutectic composition of 45% by weight of lead and 55% by weight of bismuth, and the temperature was maintained at 450 ° C. In addition, a lead oxide ball (2-5 mm in diameter) was immersed in lead bismuth to saturate the oxygen in the lead bismuth.

酸素を飽和状態にした鉛ビスマスの中に前述の酸素センサを浸漬して、1000時間までの起電力の経時変化を連続的に計測した。その経時変化を図2に示す。   The aforementioned oxygen sensor was immersed in lead bismuth saturated with oxygen, and the time-dependent change in electromotive force up to 1000 hours was continuously measured. The change with time is shown in FIG.

酸素飽和理論起電力78mVに対して、本発明の酸素センサの起電力は、84mVから92mVの間をほぼ一定の値で推移した。   With respect to the oxygen saturation theoretical electromotive force of 78 mV, the electromotive force of the oxygen sensor of the present invention changed from 84 mV to 92 mV at a substantially constant value.

これに対し、従来の酸素センサの起電力は、150時間後あたりから急激に上昇し、最終的に500mVを超えた。この起電力の上昇は、電極材料の酸化に起因するものと推察される。   On the other hand, the electromotive force of the conventional oxygen sensor increased rapidly after about 150 hours and finally exceeded 500 mV. This increase in electromotive force is assumed to be caused by oxidation of the electrode material.

本発明にかかる酸素センサの断面図である。It is sectional drawing of the oxygen sensor concerning this invention. 酸素センサの起電力の経時変化を示す図である。It is a figure which shows the time-dependent change of the electromotive force of an oxygen sensor. 酸素濃度測定装置の概略構成図である。It is a schematic block diagram of an oxygen concentration measuring device. 従来の酸素センサの断面図である。It is sectional drawing of the conventional oxygen sensor. 従来の酸素センサの断面図である。It is sectional drawing of the conventional oxygen sensor.

符号の説明Explanation of symbols

6 外部電極となる中空管状のセンサ本体
7 容器状の計測部
2 標準極
5 内部電極
15 酸化防止膜
6 Hollow tubular sensor body as external electrode 7 Container-shaped measuring part 2 Standard electrode 5 Internal electrode 15 Antioxidation film

Claims (2)

外部電極となる中空管状のセンサ本体の下端部にジルコニア系の固電解質で成形した容器状の計測部を装着すると共に、前記計測部の中に金属とその金属の酸化物との粉末混合物から成る標準極を収容し、更に、該標準極に対して耐蝕性高いモリブデン又はタングステン製の内部電極の先端を前記標準極に差し込んだ酸素センサにおいて、前記標準極の上面からセンサ本体の中間部に至る区間に該当する前記内部電極の表面に、メッキ又は真空蒸着による貴金属の酸化防止膜をコーティングしたことを特徴とする酸素センサ。 With mounting a container-like measurement portion molded by a solid body electrolyte zirconia to a lower end portion of the hollow tubular sensor body serving as an external electrode, from a powder mixture of metal and oxide of the metal in the measuring section made to accommodate the standard electrode, further, the oxygen sensor is inserted into the standard pole tip of the inner electrode of the high molybdenum or tungsten corrosion resistance with respect to the standard electrode, the middle portion of the sensor body from the upper surface of said standard electrode An oxygen sensor, wherein the surface of the internal electrode corresponding to the section extending to is coated with a noble metal antioxidant film by plating or vacuum deposition. 酸化防止膜を形成する酸化防止膜材が、金、ルテニウム、ロジウム、パラジウム、オスミニウム、イリジウム、白金であることを特徴とする請求項1記載の酸素センサ。 2. The oxygen sensor according to claim 1, wherein the antioxidant film material forming the antioxidant film is gold, ruthenium, rhodium, palladium, osmium, iridium, or platinum .
JP2005044457A 2005-02-21 2005-02-21 Oxygen sensor Active JP4620487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044457A JP4620487B2 (en) 2005-02-21 2005-02-21 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044457A JP4620487B2 (en) 2005-02-21 2005-02-21 Oxygen sensor

Publications (2)

Publication Number Publication Date
JP2006226966A JP2006226966A (en) 2006-08-31
JP4620487B2 true JP4620487B2 (en) 2011-01-26

Family

ID=36988455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044457A Active JP4620487B2 (en) 2005-02-21 2005-02-21 Oxygen sensor

Country Status (1)

Country Link
JP (1) JP4620487B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018153A (en) * 2016-07-08 2016-10-12 哈尔滨工业大学 Device for testing anti-oxidation property of anti-oxidation coating between -160 DEG C and room temperature
CN114252484A (en) * 2021-12-14 2022-03-29 中国科学院近代物理研究所 Packaging device and method for liquid metal oxygen sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166758A (en) * 1990-10-30 1992-06-12 Hitachi Cable Ltd Method and apparatus for measuring concentration of oxygen in fused metal
JPH10253582A (en) * 1997-03-07 1998-09-25 Kawasou Denki Kogyo Kk Molten metal probe
JPH11118754A (en) * 1997-10-20 1999-04-30 Hitachi Cable Ltd Device for measuring oxygen concentration in melted metal
JP2003294692A (en) * 2002-03-29 2003-10-15 Mitsui Eng & Shipbuild Co Ltd Oxygen analyser
JP2003307589A (en) * 2002-04-15 2003-10-31 Mitsui Eng & Shipbuild Co Ltd Dissolved oxygen concentration control method in liquid metal
JP2004523766A (en) * 2001-03-28 2004-08-05 フォセコ インターナショナル リミテッド Solid electrolyte sensor for monitoring element concentrations in fluids, especially in molten metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166758A (en) * 1990-10-30 1992-06-12 Hitachi Cable Ltd Method and apparatus for measuring concentration of oxygen in fused metal
JPH10253582A (en) * 1997-03-07 1998-09-25 Kawasou Denki Kogyo Kk Molten metal probe
JPH11118754A (en) * 1997-10-20 1999-04-30 Hitachi Cable Ltd Device for measuring oxygen concentration in melted metal
JP2004523766A (en) * 2001-03-28 2004-08-05 フォセコ インターナショナル リミテッド Solid electrolyte sensor for monitoring element concentrations in fluids, especially in molten metal
JP2003294692A (en) * 2002-03-29 2003-10-15 Mitsui Eng & Shipbuild Co Ltd Oxygen analyser
JP2003307589A (en) * 2002-04-15 2003-10-31 Mitsui Eng & Shipbuild Co Ltd Dissolved oxygen concentration control method in liquid metal

Also Published As

Publication number Publication date
JP2006226966A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
US4003814A (en) Apparatus for the continuous measurement of the oxygen content of molten copper or alloys thereof
RU2107906C1 (en) Probe measuring concentration of oxygen and process of measurement of concentration of oxygen
US5516413A (en) Rugged electrode for electrochemical measurements at high temperatures and pressures
JP2014160006A (en) Sensor probe
JP4620487B2 (en) Oxygen sensor
JPH07167823A (en) Collating electrode for electrochemical measurement of partial pressure of oxygen in ionic melt
US4313799A (en) Oxygen sensor and method for determining the oxygen activity in molten glass
JP4620503B2 (en) Oxygen concentration sensor
US5596134A (en) Continuous oxygen content monitor
KR100313000B1 (en) Probe for detection of the concentration of various elements in molten metal
KR20060025078A (en) High-temperature ph sensing electrode and ph measuring system containing same
JP5299032B2 (en) Continuous temperature measurement method for molten steel
RU2117265C1 (en) Device measuring temperature of corrosive melts
JP6077636B1 (en) Oxygen sensor and method for manufacturing oxygen sensor
JPH0628687Y2 (en) Continuous oxygen concentration measuring device
JPH0472183B2 (en)
JP4085070B2 (en) Oxygen sensor
JP7265007B2 (en) Solid reference material and hydrogen gas sensor
JP5035853B2 (en) Oxygen concentration sensor, method for forming the same, and method for measuring oxygen concentration in high-temperature high-pressure water
JPH0339701Y2 (en)
KR100992890B1 (en) Oxygen ion sensing electrode for high-temperature molten salt system and quantitative analysis of oxygen ion using the same
JP2014160005A (en) Sensor probe
JPH0829379A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
JPH032850Y2 (en)
JP4714336B2 (en) Conductive refractories for immersion in molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141105

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250