JP4617787B2 - Sewage treatment system - Google Patents

Sewage treatment system Download PDF

Info

Publication number
JP4617787B2
JP4617787B2 JP2004263437A JP2004263437A JP4617787B2 JP 4617787 B2 JP4617787 B2 JP 4617787B2 JP 2004263437 A JP2004263437 A JP 2004263437A JP 2004263437 A JP2004263437 A JP 2004263437A JP 4617787 B2 JP4617787 B2 JP 4617787B2
Authority
JP
Japan
Prior art keywords
sludge
water quality
biological reaction
amount
oxygen supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004263437A
Other languages
Japanese (ja)
Other versions
JP2006075749A (en
Inventor
池  英昭
和也 平林
一成 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004263437A priority Critical patent/JP4617787B2/en
Priority to CNB2005101027407A priority patent/CN100475715C/en
Publication of JP2006075749A publication Critical patent/JP2006075749A/en
Application granted granted Critical
Publication of JP4617787B2 publication Critical patent/JP4617787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、公共下水や産業排水等の汚水処理において、処理水水質を向上し、あるいは低下させることなく、余剰汚泥の減量化を実現することができるとともに、システムの運用を最適化し、処理経費ひいては二酸化炭素排出量の低減に寄与することができる汚水処理システムに関する。   The present invention can reduce the amount of surplus sludge without improving or reducing the quality of treated water in sewage treatment such as public sewage and industrial wastewater, and optimizes system operation and treatment costs. As a result, the present invention relates to a sewage treatment system that can contribute to the reduction of carbon dioxide emissions.

汚水の処理法として活性汚泥法は処理性能が高いため下水処理等の各分野で広く利用されている。この浄化原理は微生物が汚水中の有機物を餌として分解・除去する作用によるため、微生物が増殖し、処理の結果として余剰汚泥が発生していた。この汚泥の最終処分量は全産業廃棄物最終処分量に対する割合が高く、国内においては最終処分場の残余容量が極めて少ないこともあり多大なコスト負担になっている。このような状況から余剰汚泥をできるだけ少なくすることが望まれており、各種手段を用いた汚泥減量法の導入が検討されつつある。
従来の汚泥処理システムにおける汚泥減量化法については、返送汚泥の一部をオゾン処理等を利用した汚泥改質装置で汚泥を改質することにより生物分解性を高め、それを再び生物反応槽に戻すことによって汚泥中の有機物を生物酸化し、余剰汚泥量を減量させている(例えば、特許文献1参照)。
図3は従来の汚水処理システムを示す説明図である。
図3において、1は汚水、2は生物反応槽、3は酸素供給ブロワ、4は最終沈殿池、5は処理水、6は汚泥、7は汚泥改質装置、8は水質シミュレータ、9は制御装置、10はデータ蓄積装置である。Sは、生物反応槽2の各種の水質を検出するセンサである。
有機物を含む汚水1は、生物反応槽2で酸素供給ブロワ3から酸素が供給されることにより微生物処理された後、最終沈殿池4で固液分離され処理水5が得られる。沈降した汚泥6は引き抜かれて再度、生物反応槽2に返送されるが、このとき返送汚泥の一部をオゾンによる汚泥改質装置7で処理した後、生物反応槽2に戻すといった操作を行う。この折、活性汚泥中のMLSS成分は大部分が生物由来の有機物であることから、酸化力の強いオゾンにより生物体を構成する細胞壁や細胞膜が破壊され、細胞中から有機酸や糖などが放出される。こうした作用により汚泥は易生物分解性となり、生物反応槽2に戻ると無機物にまで分解され汚泥がなくなるといったものである。
このときのオゾン発生量あるいは処理汚泥量などの汚泥改質装置における運転操作量は、経験的なデータのみに基づいて設定されている。
このように、従来の汚水処理システムにおける汚泥減量化法は、オゾンなどを利用した汚泥改質装置の導入により返送汚泥の一部を易生物分解性に改質して余剰汚泥量を減量化するものである。
また、生物反応槽における処理効率を向上し、安定した処理水質を得るために、槽の設計値や酸素供給ブロワの運転条件を最適に設定するためのツールとして水質シミュレータを活用したシステムも考案されている。
(例えば、特許文献2参照)。
特許第2973761号 特開2002―336889号
The activated sludge method as a method for treating sewage is widely used in various fields such as sewage treatment because of its high treatment performance. Since this purification principle is based on the action of microorganisms decomposing and removing organic matter in the sewage as a feed, the microorganisms grew and surplus sludge was generated as a result of the treatment. The final disposal amount of this sludge has a high ratio with respect to the final disposal amount of all industrial waste. In Japan, the residual capacity of the final disposal site is extremely small, which is a great cost burden. Under such circumstances, it is desired to reduce surplus sludge as much as possible, and introduction of a sludge reduction method using various means is being studied.
Regarding the sludge reduction method in the conventional sludge treatment system, a part of the returned sludge is improved with biodegradability by reforming the sludge with a sludge reformer using ozone treatment, etc. By returning, the organic matter in the sludge is biologically oxidized, and the amount of excess sludge is reduced (for example, refer to Patent Document 1).
FIG. 3 is an explanatory view showing a conventional sewage treatment system.
In FIG. 3, 1 is sewage, 2 is a biological reaction tank, 3 is an oxygen supply blower, 4 is a final sedimentation basin, 5 is treated water, 6 is sludge, 7 is a sludge reformer, 8 is a water quality simulator, and 9 is control. A device 10 is a data storage device. S 1 is a sensor that detects various water qualities in the biological reaction tank 2.
The sewage 1 containing organic matter is subjected to microbial treatment by supplying oxygen from the oxygen supply blower 3 in the biological reaction tank 2, and then subjected to solid-liquid separation in the final sedimentation tank 4 to obtain treated water 5. The settled sludge 6 is withdrawn and returned to the biological reaction tank 2 again. At this time, a part of the returned sludge is treated with the sludge reformer 7 using ozone and then returned to the biological reaction tank 2. . At this time, most of the MLSS components in activated sludge are biologically derived organic matter, so the cell walls and cell membranes that make up the organism are destroyed by ozone, which has strong oxidizing power, and organic acids and sugars are released from the cells. Is done. By such an action, the sludge becomes readily biodegradable, and when it returns to the biological reaction tank 2, it is decomposed into inorganic substances and the sludge disappears.
The operation amount in the sludge reforming apparatus such as the ozone generation amount or the treated sludge amount at this time is set based only on empirical data.
As described above, the sludge reduction method in the conventional sewage treatment system reduces the amount of excess sludge by reforming a part of the returned sludge to be easily biodegradable by introducing a sludge reformer using ozone or the like. Is.
In addition, in order to improve the treatment efficiency in the biological reaction tank and to obtain a stable treated water quality, a system utilizing a water quality simulator was devised as a tool for optimally setting the tank design value and the operating condition of the oxygen supply blower. ing.
(For example, refer to Patent Document 2).
Japanese Patent No. 2973761 JP 2002-336889 A

ところが、水質や水量、水温、生物反応槽の溶存酸素濃度の変動、あるいは汚泥改質装置の運転操作量などにより生物反応槽内微生物の挙動には変化が生じる。
汚泥減量操作を行わない汚水処理システムにおいて、一般には、生物反応槽における酸素供給ブロワから供給される酸素量は過剰に設定されているため、処理水質は比較的良好に安定しているものの、エネルギー消費量の無駄が生じていることが多い。
一方、汚泥改質装置を導入し、余剰汚泥量を大幅に減量する操作条件とした場合は、必要酸素消費量の増加により酸素量が不足し、処理水のCODやリン濃度の上昇、あるいは硝化反応に障害が生じて処理水質が低下するといった状況を招く場合がある。この場合、
・汚泥改質装置の運転操作量を適正値に制御する
・酸素供給運転操作量を適正値に制御する
・酸素供給ブロワの性能を向上させる
などの操作を行う必要がある。
このように状況の変化に応じて、汚泥改質装置や酸素供給ブロワの運転操作量を適切に制御する必要があるが、従来の汚水処理システムでは、経時変化や汚泥改質装置と酸素供給ブロワの運転操作量により生じる生物反応槽内での微生物の挙動が把握されていない。このため、いずれかの運転操作量を主体とした制御しか行われておらず、前述したように、余剰汚泥量を大幅に減量する操作により処理水質が低下したり、逆に酸素供給ブロワの運転量が過剰になるような事態を招くという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、処理水水質を向上し、あるいは低下させることなく、水質や水量、水温等の状況変化に応じて余剰汚泥の減量化の運転条件を適切に設定するとともに、そのときの酸素供給ブロワの運転操作量をも最適化して自動運転できる汚水処理システムを提供するものである。
However, the behavior of microorganisms in the bioreactor changes depending on the quality of water, the amount of water, the water temperature, the fluctuation of dissolved oxygen concentration in the bioreactor, or the operation amount of the sludge reformer.
In sewage treatment systems that do not perform sludge reduction operation, the amount of oxygen supplied from the oxygen supply blower in the biological reaction tank is generally set excessively, so that the treated water quality is relatively good and stable. There is often a waste of consumption.
On the other hand, if the sludge reformer is introduced and the operating conditions are such that the amount of excess sludge is significantly reduced, the amount of oxygen is insufficient due to an increase in the required oxygen consumption, and the COD or phosphorus concentration of the treated water is increased, or nitrification In some cases, the reaction is hindered and the quality of the treated water is lowered. in this case,
・ Control operation amount of sludge reformer to appropriate value ・ Control oxygen supply operation amount to appropriate value ・ Improve the performance of oxygen supply blower.
As described above, it is necessary to appropriately control the operation amount of the sludge reforming apparatus and the oxygen supply blower according to the change of the situation. However, in the conventional sewage treatment system, the change with time, the sludge reforming apparatus and the oxygen supply blower are required. The behavior of microorganisms in the biological reaction tank caused by the amount of operation is not grasped. For this reason, only the operation operation amount is mainly controlled, and as described above, the treatment water quality is lowered by the operation of greatly reducing the excess sludge amount, or the operation of the oxygen supply blower is conversely performed. There was a problem of causing an excessive amount.
The present invention has been made in view of such problems, and the operating conditions for reducing excess sludge according to changes in water quality, water volume, water temperature, etc. without improving or reducing the quality of treated water. Is appropriately set, and the sewage treatment system capable of automatically operating by optimizing the operation amount of the oxygen supply blower at that time is provided.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、沈降などの簡単な物理操作で固形物を分離する最初沈殿池から構成される一次処理工程と、溶解性の汚濁物質を微生物によって吸着・分離する生物反応槽、活性汚泥を沈降分離する最終沈殿池、沈降分離された沈殿汚泥の一部を再度生物反応槽に返送する返送汚泥ラインから構成される二次処理工程と、前記生物反応槽に酸素を供給する酸素供給ブロワと、返送汚泥の一部を物理・化学的手段により改質する汚泥改質装置と、前記酸素供給ブロワと前記汚泥改質装置の運転量を制御する制御装置と、前記生物反応槽の生物反応プロセスの挙動を定量的に表現する活性汚泥モデルを用いて水質を計算する水質シミュレータと、少なくとも前記一次処理工程および前記二次処理工程から汚水処理の制御パラメータに必要な水質データをサンプリングして蓄積するデータ蓄積装置とからなる汚水処理システムにおいて、前記汚泥改質装置により易生物分解性化処理されて前記生物反応槽に返送される汚泥について、前記活性汚泥モデルに定義される有機物分画に基づく易生物分解性有機物データを前記水質シミュレータに取込み、前記水質シミュレータによって処理水の水質シミュレーションを行い、易生物分解性汚泥量の増大によって前記処理水の水質が低下しないように、前記汚泥改質装置の運転操作量の制御を行なうものである。
また、請求項2に記載の発明は、沈降などの簡単な物理操作で固形物を分離する最初沈殿池から構成される一次処理工程と、溶解性の汚濁物質を微生物によって吸着・分離する生物反応槽、活性汚泥を沈降分離する最終沈殿池、沈降分離された沈殿汚泥の一部を再度生物反応槽に返送する返送汚泥ラインから構成される二次処理工程と、前記生物反応槽に酸素を供給する酸素供給ブロワと、 返送汚泥の一部を物理・化学的手段により改質する汚泥改質装置と、前記酸素供給ブロワと前記汚泥改質装置の運転量を制御する制御装置と、前記生物反応槽の生物反応プロセスの挙動を定量的に表現する活性汚泥モデルを用いて水質を計算する水質シミュレータと、少なくとも前記一次処理工程および前記二次処理工程から汚水処理の制御パラメータに必要な水質データをサンプリングして蓄積するデータ蓄積装置とからなる汚水処理システムにおいて、前記汚泥改質装置で易生物分解性化処理されて前記生物反応槽に返送される汚泥について、前記活性汚泥モデルに定義される有機物分画に基づく易生物分解性有機物データを、前記水質シミュレータに取込み、前記水質シミュレータによって処理水の水質シミュレーションを行い、易生物分解性汚泥量の増大または水中の酸素量の低下によって前記処理水の水質が低下しないように、前記酸素供給ブロワと前記汚泥改質装置の相互の運転電力あるいは汚泥排出量から最少汚水処理コストを算出し、その算出結果に基づいて、前記酸素供給ブロワの送風量及び前記汚泥改質装置の運転操作量の制御を行なうものである。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 is a primary treatment step composed of an initial sedimentation basin that separates solids by a simple physical operation such as sedimentation, a biological reaction tank that adsorbs and separates soluble pollutants by microorganisms, settling tank for settling activated sludge, oxygen supply and a secondary processing step consists of return sludge line for returning a part again bioreactor sedimentation separated settled sludge, the oxygen to the bioreactor a supply blower, and sludge reformer for reforming by physical and chemical means a part of the return sludge, and a control device for controlling the operation of said oxygen supply blower and said sludge reformer, the bioreactor and water quality simulator to calculate the quality using the activated sludge models to quantify the behavior of the biological reaction process, must at least the primary processing step and the second step the control parameter of the sewage treatment In wastewater treatment system including a data storage device for storing sampling the water quality data, the sludge is returned to the bioreactor is treated easily biodegradable by the sludge reformer, defined the activated sludge model The readily biodegradable organic matter data based on the organic matter fraction is taken into the water quality simulator, and the water quality simulation is performed by the water quality simulator so that the quality of the treated water does not deteriorate due to the increase in the amount of easily biodegradable sludge. In addition, the amount of operation of the sludge reformer is controlled .
Further, the invention described in claim 2 is a primary treatment process comprising an initial sedimentation basin that separates solids by simple physical operations such as sedimentation, and a biological reaction in which soluble pollutants are adsorbed and separated by microorganisms. A secondary treatment process consisting of a tank, a final sedimentation tank that settles and separates activated sludge, a return sludge line that returns a portion of the sedimented sludge to the biological reaction tank, and supplies oxygen to the biological reaction tank An oxygen supply blower, a sludge reforming device for reforming a part of the returned sludge by physical / chemical means, a control device for controlling the operation amount of the oxygen supply blower and the sludge reforming device, and the biological reaction Water quality simulator that calculates water quality using an activated sludge model that quantitatively expresses the behavior of the biological reaction process in the tank , and at least control parameters for sewage treatment from the primary treatment step and the secondary treatment step In the sewage treatment system comprising a data storage device that samples and accumulates the water quality data necessary for the sludge, the activated sludge that is easily biodegradable by the sludge reformer and returned to the biological reaction tank Easy biodegradable organic matter data based on the organic matter fraction defined in the model is taken into the water quality simulator, and the water quality simulation is performed by the water quality simulator to increase the amount of easily biodegradable sludge or the amount of oxygen in the water. as the quality of the treated water by a reduction does not decrease, and calculates the minimum sewage treatment cost from each of the driving power or sludge emissions and the oxygen supply blower the sludge reformer, and based on the calculation result, the oxygen It controls the amount of air blown from the supply blower and the amount of operation of the sludge reformer.

請求項1および2に記載の発明によれば、データ蓄積装置の取得データを基に水質シミュレータで計算することにより、経時変化に伴う汚水の流入水質や水量、水温、生物反応槽の溶存酸素濃度の変動や、汚泥改質装置の運転操作量などにより生じる生物反応槽内微生物の挙動を把握、あるいは予測することができる。これを汚泥改質装置あるいは酸素供給ブロワの操作量に反映させることにより、処理水水質を向上し、あるいは低下させることなく、余剰汚泥の減量化の最適な運用を実現することができる。さらには最小運転コストの運転操作条件を導き出し制御することも可能である。
また、請求項3に記載の発明によれば、汚泥を改質するために最も効率的な手法を、化
学的、物理的あるいは物理化学的な手法から選択または組み合わせることによって、さらに効率的に汚水処理システムを運用することが可能となる。
According to the first and second aspects of the present invention, by calculating with the water quality simulator based on the data acquired by the data storage device, the inflow water quality and amount of sewage, the water temperature, and the dissolved oxygen concentration in the biological reaction tank with time change It is possible to grasp or predict the behavior of the microorganisms in the biological reaction tank caused by fluctuations in the flow rate, the operation amount of the sludge reformer, and the like. By reflecting this in the amount of operation of the sludge reforming device or oxygen supply blower, it is possible to realize the optimum operation of reducing excess sludge without improving or reducing the quality of the treated water. Furthermore, it is possible to derive and control the operation condition with the minimum operation cost.
According to the invention described in claim 3, the most efficient method for reforming sludge is selected or combined from chemical, physical, or physicochemical methods, so that sewage can be more efficiently produced. It becomes possible to operate the processing system.

以下、本発明の実施の形態について図に基づいて説明する。
図1は、本発明の汚水処理システムを示す説明図である。Sは易生物分解性有機物検出センサである。その他の符号は従来技術と同じであるため、説明を省略する。図2は、図1における汚泥改質装置7の詳細を示す説明図である。図2において、71は汚泥改質槽、72はオゾン発生手段、73は超音波発生手段である。
本発明が特許文献1と異なる部分は、データ蓄積装置10による取得データと水質シミュレータ8の水質計算結果に基づき、制御装置9を介して汚泥改質装置7と酸素供給ブロワ3の運転量を制御するように構成した点である。
水質シミュレータ8は活性汚泥モデルを利用して水質を計算するソフトウェアであり、活性汚泥モデルとは生物反応槽2での微生物反応をモデルを使って表現したモデルである。本実施例における水質シミュレータ8には国際水学会 (IWA) から提示されている活性汚泥モデル No.2d を採用している。本活性汚泥モデルは、定性的に理解されている生物反応プロセスの挙動を定量的に表現できる上に、複数の事象が同時に進行する場においても、その事象の原理に基づいた生物反応プロセス全体の挙動を予測できるようになっている。
その予測計算に用いる式は10数個あり、その一つを例示すると、例えば硝酸態窒素濃度の計算はつぎの式を用いて行われる。

ここで、
NO3(i):i時点の対象タンクの硝酸態窒素濃度(gN/m3)
NO3(i)R:i時点の対象タンクの化学反応による変化量を考慮に入れた硝酸態窒素濃度(gN/m3)
NO3(i)in:i時点の対象タンクに流入する硝酸態窒素濃度(gN/m3)
NO3(i)out:i時点の対象タンクから流出する硝酸態窒素濃度(gN/m3)
V:対象タンクの体積(m3)
Qin:対象タンクへ流入する量(m3/h)
Qout:対象タンクから流出する量(m3/h)
T:対象タンクから流入・流出するステップ時間(h)
i:シミュレーションステップ(h)
但し各変数は次のように計算される。





但し、
ΔNO3(i):i時点の対象タンクで増殖・減少した硝酸態窒素(gN/m3)
SDF:易分解性有機物を利用した脱窒量(gCOD/(m3d))
SDA:発酵生成物を利用した脱窒量(gCOD/(m3d))
Growth:硝化菌の増殖量(gCOD/m3d )
SF:易分解性有機物濃度(gCOD/m3)
SA:発酵生成物濃度(gCOD/m3)
XAUT:硝化菌濃度(gCOD/m3)
uH:基質の最大増殖速度(1/d)
ηNO3:硝酸性窒素濃度の無酸素状態の加水分解による減少係数(-)
uAUT:硝化菌の最大増殖速度(1/d)
KA:発酵生成物濃度飽和係数(gO2/m3)
KO2:酸素飽和係数(gO2/m3)
KF:易分解性基質増殖飽和係数(gCOD/m3)
KNO3:硝酸性窒素飽和係数(gN/m3) 注)このシミュレーションでは亜硝酸性窒素と硝酸性窒素を同じ物質として扱う。
KNH4:アンモニア飽和係数(gN/m3)
KP:リン酸性リン酸飽和係数(gP/m3)
KALK:アルカリ度飽和係数(mole HCO3/m3)
XH:非リン除去従属栄養微生物(gCOD/m3)
データ蓄積装置から入力される分析データ
SO2:溶存酸素濃度(gO2/m3)
SNH4:溶解性のアンモニア濃度(gN/m3)
SNO3:溶解性の硝酸性窒素濃度(gN/m3)
SPO4:無機溶解性リン酸性リン濃度(gP/m3)
SALK:アルカリ度(mole HCO3/m3)
を含む反応速度式から構成されている。また生物反応槽2に入ってくる有機物を微生物による反応のしやすさで分類した水質成分に振り分けることを分画といい、本反応速度式は、下表に示す6つの有機物分画で定義されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing a sewage treatment system of the present invention. S 2 is readily biodegradable organic matter detection sensor. Since other reference numerals are the same as those in the prior art, description thereof is omitted. FIG. 2 is an explanatory diagram showing details of the sludge reforming apparatus 7 in FIG. In FIG. 2, 71 is a sludge reforming tank, 72 is an ozone generating means, and 73 is an ultrasonic generating means.
The present invention is different from Patent Document 1 in that the operation amount of the sludge reforming device 7 and the oxygen supply blower 3 is controlled via the control device 9 based on the data acquired by the data storage device 10 and the water quality calculation result of the water quality simulator 8. It is the point which constituted so as to.
The water quality simulator 8 is software that calculates water quality using an activated sludge model. The activated sludge model is a model that expresses a microbial reaction in the biological reaction tank 2 using a model. The activated water sludge model No. 2d presented by the International Water Society (IWA) is adopted as the water quality simulator 8 in this embodiment. This activated sludge model can quantitatively represent the behavior of biological reaction processes that are qualitatively understood, and in the case where multiple events proceed at the same time, The behavior can be predicted.
There are a dozen formulas used for the prediction calculation. For example, the nitrate nitrogen concentration is calculated using the following formula.

here,
NO 3 (i): Nitrate nitrogen concentration (gN / m 3 ) in the target tank at time i
NO 3 (i) R : Nitrate nitrogen concentration (gN / m 3 ) taking into account the amount of change due to chemical reaction in the target tank at time i
NO 3 (i) in : Nitrate nitrogen concentration (gN / m 3 ) flowing into the target tank at time i
NO 3 (i) out : Nitrate nitrogen concentration (gN / m 3 ) flowing out from the target tank at time i
V: Volume of target tank (m 3 )
Q in : Volume flowing into the target tank (m 3 / h)
Q out : Amount flowing out from the target tank (m 3 / h)
T: Step time to flow in / out from the target tank (h)
i: Simulation step (h)
However, each variable is calculated as follows.





However,
ΔNO 3 (i): Nitrate nitrogen (gN / m 3 ) grown and reduced in the target tank at time i
S DF : Denitrification amount using readily decomposable organic matter (gCOD / (m 3 d))
S DA : Denitrification amount using fermentation products (gCOD / (m 3 d))
Growth: Growth amount of nitrifying bacteria (gCOD / m 3 d)
S F : Easily degradable organic matter concentration (gCOD / m 3 )
S A : Fermentation product concentration (gCOD / m 3 )
X AUT : Nitrifying bacteria concentration (gCOD / m 3 )
u H : Maximum growth rate of substrate (1 / d)
η NO3 : Decrease coefficient due to hydrolysis of nitrate nitrogen concentration in anoxic state (-)
u AUT : Maximum growth rate of nitrifying bacteria (1 / d)
KA: Fermentation product concentration saturation coefficient (gO 2 / m 3 )
K O2 : Oxygen saturation coefficient (gO 2 / m 3 )
K F : readily degradable substrate growth saturation coefficient (gCOD / m 3 )
K NO3 : Nitrate nitrogen saturation coefficient (gN / m 3 ) Note) In this simulation, nitrite nitrogen and nitrate nitrogen are treated as the same substance.
K NH4 : Ammonia saturation coefficient (gN / m 3 )
K P : Phosphoric acid phosphoric acid saturation coefficient (gP / m 3 )
K ALK : Saturation coefficient of alkalinity (mole HCO3 / m 3 )
X H : Non-phosphorus-removing heterotrophic microorganism (gCOD / m 3 )
Analysis data input from the data storage device
S O2 : Dissolved oxygen concentration (gO 2 / m 3 )
S NH4 : Soluble ammonia concentration (gN / m 3 )
S NO3 : Dissolvable nitrate nitrogen concentration (gN / m 3 )
S PO4 : Inorganic soluble phosphorus acid phosphorus concentration (gP / m 3 )
S ALK : Alkalinity (mole HCO3 / m 3 )
It is comprised from the reaction rate formula containing. Distributing organic substances entering the biological reaction tank 2 into water quality components classified according to the ease of reaction by microorganisms is called fractionation. This reaction rate equation is defined by the six organic substance fractions shown in the table below. ing.

また、本水質シミュレータ8は、前記反応速度式のモデルパラメータを自動的に設定できる機能や、CODMn、BOD、TOCの計測値を前記有機物分画と相関性の高いCODcrに換算し、水質シミュレーションを行う機能を備えている。
本水質シミュレータ8を用いて、生物反応槽2や汚泥の返送ラインに設置したデータ蓄積装置10で得られたCODMnやDO(溶存酸素濃度)値などをもとに計算することにより、窒素やりん成分等の除去率を高い精度で予測することができる。また、生物反応槽2での酸素収支から必要酸素量を求めることができるため、これらの計算値に基づいて、汚泥改質装置7と酸素供給ブロワ3の最適な運転操作量を求め、制御装置9を介してフィードバック制御を行うことができる。
つぎに、動作について説明する。
最終沈殿池から引き抜かれて生物反応槽2に返送する汚泥の一部を汚泥改質装置7に導入し、化学的手法、物理的手法あるいは物理化学的手法により汚泥を易生物分解性化する。このとき化学的手法としてはオゾン、アルカリ、酸化剤など、物理的手法としては好熱細菌、超音波、高回転ディスク、ミル破砕、高圧ホモジナイザーなど、生物的手法としては酵素など、物理化学的手法では超臨界化などがある。また、それぞれの手法を組み合わせることにより汚泥改質の高効率化を図ることができる。例えば、オゾンと超音波を組み合わせることによりオゾンの強い酸化力と、超音波キャビテーションによる汚泥の粉砕やオゾンガス気泡の微細化との相乗効果が生じ、オゾンと汚泥の反応効率の向上が実現できる。このときの汚泥改質装置7における運転操作因子は汚泥改質装置7に導入する処理汚泥量に起因するポンプの出力や、オゾン発生量や超音波出力量に起因する電源の電圧、電流、周波数などである。易生物分解性となった汚泥は返送汚泥とともに再度生物反応槽2に戻されて生物分解されて無機化される。
生物反応槽2では酸素供給ブロワ3により水中に酸素が供給されて好気性処理が行われている。水中の酸素量が微生物の活動における酸素要求量に対して満たされている場合は良好な処理水水質が安定して得られる傾向にあるが、酸素供給ブロワ3の運転量が過剰となり、エネルギー消費の無駄が生じることが多い。一方、汚泥改質装置7の運転操作量を過大にした場合、易生物分解性汚泥量の増大により水中の酸素量が低下して生物反応に障害が生じ、処理水水質は悪化傾向となる。この他にも生物反応槽2では様々な状況の変化により複雑な生物反応が生じているため、汚泥改質装置7と酸素供給ブロワ3の運転操作量を適切に調整することが困難である。
そこで、生物反応槽2のCOD、BOD、TOC、DO、MLSS、りん、窒素、水温、水量の中から状況に応じて必要な水質データをデータ蓄積装置10により取得して水質シミュレータ8に入力し、水質が低下せず汚泥を最大限減量化するための最適な運転値を算出する。算出した結果は制御装置9を介して汚泥改質装置7の運転操作因子と酸素供給ブロワ3の電動機の一方あるいは双方に必要な運転操作量が指令され、以上のようなフィードバック制御系が構築される。
このように、データ蓄積装置10の取得データを基に水質シミュレータ8で生物反応槽2内微生物の挙動に基づく反応速度を計算し、制御装置9を介して汚泥改質装置7あるいは酸素供給ブロワ3の運転操作量に反映させることにより、処理水水質を向上し、あるいは低下させることなく、余剰汚泥の減量化の最適な運用を実現することができる。さらには最小運転コストの運転操作条件を導き出し制御することも可能である。
すなわち、省エネによるCO排出量の削減、ならびに汚泥排出量の削減に貢献することができる。
The water quality simulator 8 is also capable of automatically setting the model parameters of the reaction rate equation, and converts COD Mn , BOD, and TOC measurement values to CODcr highly correlated with the organic matter fraction, and performs water quality simulation. The function to perform.
This water quality simulator 8 is used to calculate nitrogen based on COD Mn and DO (dissolved oxygen concentration) values obtained by the data storage device 10 installed in the biological reaction tank 2 and sludge return line. It is possible to predict the removal rate of components and the like with high accuracy. Further, since the required oxygen amount can be obtained from the oxygen balance in the biological reaction tank 2, the optimum operation amount of the sludge reforming device 7 and the oxygen supply blower 3 is obtained based on these calculated values, and the control device. 9 can be used to perform feedback control.
Next, the operation will be described.
A part of the sludge drawn out from the final sedimentation basin and returned to the biological reaction tank 2 is introduced into the sludge reforming device 7 to make the sludge readily biodegradable by a chemical method, a physical method or a physicochemical method. At this time, chemical methods such as ozone, alkali, oxidant, etc., physical methods such as thermophilic bacteria, ultrasound, high-rotation disk, mill crushing, high-pressure homogenizer, etc. Then there is supercriticality. Moreover, high efficiency of sludge reforming can be achieved by combining these methods. For example, by combining ozone and ultrasonic waves, there is a synergistic effect between ozone's strong oxidizing power and sludge pulverization and ozone gas bubble refining by ultrasonic cavitation, so that the reaction efficiency of ozone and sludge can be improved. The operating factors in the sludge reforming device 7 at this time are the output of the pump due to the amount of treated sludge introduced into the sludge reforming device 7, the voltage, current, and frequency of the power source due to the ozone generation amount and the ultrasonic output amount. Etc. The sludge that has become readily biodegradable is returned to the bioreactor 2 together with the returned sludge, biodegraded and mineralized.
In the biological reaction tank 2, oxygen is supplied into water by the oxygen supply blower 3 to perform aerobic treatment. When the amount of oxygen in the water satisfies the oxygen demand in the activity of the microorganism, good quality of treated water tends to be obtained stably, but the operation amount of the oxygen supply blower 3 becomes excessive, resulting in energy consumption. Often waste occurs. On the other hand, when the amount of operation of the sludge reforming device 7 is excessive, the amount of oxygen in the water decreases due to an increase in the amount of readily biodegradable sludge, resulting in a failure in the biological reaction, and the quality of the treated water tends to deteriorate. In addition to this, in the biological reaction tank 2, complicated biological reactions occur due to changes in various situations, so that it is difficult to appropriately adjust the operation amounts of the sludge reformer 7 and the oxygen supply blower 3.
Therefore, necessary water quality data is acquired from the COD, BOD, TOC, DO, MLSS, phosphorus, nitrogen, water temperature, and water volume of the biological reaction tank 2 according to the situation by the data storage device 10 and input to the water quality simulator 8. Calculate the optimum operating value to reduce the sludge to the maximum without reducing the water quality. As a result of the calculation, an operation factor necessary for one or both of the operation factor of the sludge reforming device 7 and the electric motor of the oxygen supply blower 3 is instructed via the control device 9, and the feedback control system as described above is constructed. The
Thus, the reaction rate based on the behavior of the microorganisms in the biological reaction tank 2 is calculated by the water quality simulator 8 based on the acquired data of the data storage device 10, and the sludge reforming device 7 or the oxygen supply blower 3 is connected via the control device 9. By reflecting this amount in the operation amount, it is possible to realize the optimum operation of reducing excess sludge without improving or reducing the quality of treated water. Furthermore, it is possible to derive and control the operation condition with the minimum operation cost.
That is, it can contribute to the reduction of CO 2 emission amount by energy saving and the reduction of sludge emission amount.

本発明の汚水処理システムは、公共下水や、化学工場や食品工場など産業排水等の有機物除去のための微生物を利用した汚水処理全般において、処理水水質を向上し、あるいは低下させることなく余剰汚泥の減量化を実現することができる。
すなわち、好気性処理を行う酸素供給ブロワの電力量の低減や、微生物処理に伴い発生する汚泥最終処分量の減量化により、低環境負荷あるいは最小コストで運転管理するシステムとして適用することができる。
The sewage treatment system of the present invention is used to treat surplus sludge without improving or reducing the quality of treated water in general sewage treatment using microorganisms for removing organic matter such as industrial sewage such as public sewage, chemical factories and food factories. Can be reduced.
That is, it can be applied as a system for operation management with low environmental load or minimum cost by reducing the amount of electric power of the oxygen supply blower that performs aerobic treatment and reducing the amount of sludge final disposal generated with microbial treatment.

本発明の汚水処理システムを示す説明図Explanatory drawing which shows the sewage treatment system of this invention 図1の汚泥改質装置の詳細を示す説明図Explanatory drawing which shows the detail of the sludge reforming apparatus of FIG. 従来の汚水処理システムを示す説明図Explanatory drawing which shows the conventional sewage treatment system

符号の説明Explanation of symbols

1 汚水
2 生物反応槽
3 酸素供給ブロワ
4 最終沈殿池
5 処理水
6 汚泥
7 汚泥改質装置
71 汚泥改質槽
72 オゾン発生手段
73 超音波発生手段
8 水質シミュレータ
9 制御装置
10 データ蓄積装置
1 各種水質センサ
2 易生物分解性有機物検出センサ
DESCRIPTION OF SYMBOLS 1 Sewage 2 Biological reaction tank 3 Oxygen supply blower 4 Final sedimentation tank 5 Treated water 6 Sludge 7 Sludge reformer
71 Sludge reforming tank
72 Ozone generating means
73 Ultrasonic wave generation means 8 Water quality simulator 9 Control device
10 Data storage device S 1 Water quality sensor S 2 Biodegradable organic matter detection sensor

Claims (2)

沈降などの簡単な物理操作で固形物を分離する最初沈殿池から構成される一次処理工程と、溶解性の汚濁物質を微生物によって吸着・分離する生物反応槽、活性汚泥を沈降分離する最終沈殿池、沈降分離された沈殿汚泥の一部を再度生物反応槽に返送する返送汚泥ラインから構成される二次処理工程と、前記生物反応槽に酸素を供給する酸素供給ブロワと、返送汚泥の一部を物理・化学的手段により改質する汚泥改質装置と、前記酸素供給ブロワと前記汚泥改質装置の運転量を制御する制御装置と、前記生物反応槽の生物反応プロセスの挙動を定量的に表現する活性汚泥モデルを用いて水質を計算する水質シミュレータと、少なくとも前記一次処理工程および前記二次処理工程から汚水処理の制御パラメータに必要な水質データをサンプリングして蓄積するデータ蓄積装置とからなる汚水処理システムにおいて、
前記汚泥改質装置により易生物分解性化処理されて前記生物反応槽に返送される汚泥について、前記活性汚泥モデルに定義される有機物分画に基づく易生物分解性有機物データを前記水質シミュレータに取込み、前記水質シミュレータによって処理水の水質シミュレーションを行い、易生物分解性汚泥量の増大によって前記処理水の水質が低下しないように、前記汚泥改質装置の運転操作量の制御を行なうことを特徴とする汚水処理システム。
A primary treatment process consisting of an initial sedimentation tank that separates solids by simple physical operations such as sedimentation, a biological reaction tank that adsorbs and separates soluble pollutants by microorganisms, and a final sedimentation tank that settles and separates activated sludge. a secondary treatment step consists of return sludge line for returning again bioreactor part of sedimentation separated settled sludge, and the oxygen supply blower for supplying oxygen to the bioreactor, a portion of the return sludge Quantitatively the behavior of the biological reaction process in the biological reaction tank , the sludge reforming device that reforms the plant by physical and chemical means, the control device that controls the operation amount of the oxygen supply blower and the sludge reforming device sampling and water quality simulator to calculate the water using activated sludge model representing the water quality data necessary for the control parameters of the sewage treatment from at least the primary processing step and the second step In wastewater treatment system including a data storage device which is accumulated,
For the sludge that is easily biodegradable by the sludge reformer and returned to the biological reaction tank, easily biodegradable organic matter data based on the organic matter fraction defined in the activated sludge model is taken into the water quality simulator. The water quality simulation is performed by the water quality simulator , and the operation amount of the sludge reformer is controlled so that the quality of the treated water does not deteriorate due to an increase in the amount of biodegradable sludge. Wastewater treatment system.
沈降などの簡単な物理操作で固形物を分離する最初沈殿池から構成される一次処理工程と、溶解性の汚濁物質を微生物によって吸着・分離する生物反応槽、活性汚泥を沈降分離する最終沈殿池、沈降分離された沈殿汚泥の一部を再度生物反応槽に返送する返送汚泥ラインから構成される二次処理工程と、前記生物反応槽に酸素を供給する酸素供給ブロワと、 返送汚泥の一部を物理・化学的手段により改質する汚泥改質装置と、前記酸素供給ブロワと前記汚泥改質装置の運転量を制御する制御装置と、前記生物反応槽の生物反応プロセスの挙動を定量的に表現する活性汚泥モデルを用いて水質を計算する水質シミュレータと、少なくとも前記一次処理工程および前記二次処理工程から汚水処理の制御パラメータに必要な水質データをサンプリングして蓄積するデータ蓄積装置とからなる汚水処理システムにおいて、
前記汚泥改質装置で易生物分解性化処理されて前記生物反応槽に返送される汚泥について、前記活性汚泥モデルに定義される有機物分画に基づく易生物分解性有機物データを、前記水質シミュレータに取込み、前記水質シミュレータによって処理水の水質シミュレーションを行い、易生物分解性汚泥量の増大または水中の酸素量の低下によって前記処理水の水質が低下しないように、前記酸素供給ブロワと前記汚泥改質装置の相互の運転電力あるいは汚泥排出量から最少汚水処理コストを算出し、その算出結果に基づいて、前記酸素供給ブロワの送風量及び前記汚泥改質装置の運転操作量の制御を行なうことを特徴とする汚水処理システム。
A primary treatment process consisting of an initial sedimentation tank that separates solids by simple physical operations such as sedimentation, a biological reaction tank that adsorbs and separates soluble pollutants by microorganisms, and a final sedimentation tank that settles and separates activated sludge. a secondary treatment step consists of return sludge line for returning again bioreactor part of sedimentation separated settled sludge, and the oxygen supply blower for supplying oxygen to the bioreactor, a portion of the return sludge Quantitatively the behavior of the biological reaction process in the biological reaction tank , the sludge reforming device that reforms the plant by physical and chemical means, the control device that controls the operation amount of the oxygen supply blower and the sludge reforming device A water quality simulator for calculating water quality using an activated sludge model to be expressed , and at least sampling water quality data necessary for control parameters of sewage treatment from the primary treatment step and the secondary treatment step. In a sewage treatment system consisting of a data storage device
For the sludge that is easily biodegradable by the sludge reformer and returned to the biological reaction tank, easily biodegradable organic matter data based on the organic matter fraction defined in the activated sludge model is stored in the water quality simulator. Incorporation, water quality simulation of the treated water by the water quality simulator , the oxygen supply blower and the sludge reforming so that the quality of the treated water does not deteriorate due to an increase in the amount of readily biodegradable sludge or a decrease in the amount of oxygen in the water It calculates the minimum sewage treatment cost from each of the driving power or sludge emissions device, based on the calculation result, characterized in that for controlling the air volume and the driving operation of the sludge reformer of the oxygen supply blower Sewage treatment system.
JP2004263437A 2004-09-10 2004-09-10 Sewage treatment system Expired - Fee Related JP4617787B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004263437A JP4617787B2 (en) 2004-09-10 2004-09-10 Sewage treatment system
CNB2005101027407A CN100475715C (en) 2004-09-10 2005-09-09 Sewage treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263437A JP4617787B2 (en) 2004-09-10 2004-09-10 Sewage treatment system

Publications (2)

Publication Number Publication Date
JP2006075749A JP2006075749A (en) 2006-03-23
JP4617787B2 true JP4617787B2 (en) 2011-01-26

Family

ID=36155649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263437A Expired - Fee Related JP4617787B2 (en) 2004-09-10 2004-09-10 Sewage treatment system

Country Status (2)

Country Link
JP (1) JP4617787B2 (en)
CN (1) CN100475715C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630244B2 (en) * 2006-03-31 2011-02-09 荏原エンジニアリングサービス株式会社 Method and apparatus for treating organic waste by anaerobic microorganisms
US8043094B2 (en) 2006-07-10 2011-10-25 Jt & A, Inc. Model and method for simulating water treatment
KR100912021B1 (en) 2008-05-19 2009-08-12 효성에바라엔지니어링 주식회사 Waterwaste treatment system and method thereof
KR100912032B1 (en) 2008-05-19 2009-08-12 효성에바라엔지니어링 주식회사 Apparatus and method for controlling activated sludge process
CN101863560B (en) * 2010-04-08 2013-07-31 章子三 Method for digesting activated sludge of strains storage tank
CN102880794B (en) * 2012-09-17 2015-11-11 广州中国科学院沈阳自动化研究所分所 A kind of sewage disposal process corrected model parameter method
CN105621822B (en) * 2014-10-27 2019-04-12 中国石油天然气股份有限公司 One kind being directed to A2The mud decrement system and method of/O process system
CN104496028B (en) * 2014-12-26 2016-06-01 广州市净水有限公司 A kind of lateral flow type mud modifying process
JP7241608B2 (en) * 2019-06-04 2023-03-17 三菱電機株式会社 Wastewater treatment system and wastewater treatment method
CN113979541B (en) * 2021-11-26 2023-11-03 昆明理工大学 A, A 2 Intelligent control method for O biological pool process
CN115259413B (en) * 2022-07-25 2023-07-25 苏州水星环保工业***有限公司 Air quantity control method for accurate aeration system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047080A (en) * 1999-08-10 2001-02-20 Yaskawa Electric Corp Sewage treatment control device
JP2002018470A (en) * 2000-07-07 2002-01-22 Matsushita Environment Airconditioning Eng Co Ltd Method and apparatus for treating organic wastewater
JP2002086183A (en) * 2000-07-12 2002-03-26 Nippon Sanso Corp Waste water treating device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047080A (en) * 1999-08-10 2001-02-20 Yaskawa Electric Corp Sewage treatment control device
JP2002018470A (en) * 2000-07-07 2002-01-22 Matsushita Environment Airconditioning Eng Co Ltd Method and apparatus for treating organic wastewater
JP2002086183A (en) * 2000-07-12 2002-03-26 Nippon Sanso Corp Waste water treating device and method

Also Published As

Publication number Publication date
CN100475715C (en) 2009-04-08
JP2006075749A (en) 2006-03-23
CN1746117A (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US8623213B2 (en) Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
CN100475715C (en) Sewage treatment system
CN104556573A (en) Method for treating wastewater containing diethyldithiocarbamic acid zinc
US11827550B2 (en) Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications
US10556816B2 (en) Wastewater treatment apparatus
JP4117274B2 (en) Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment
JP4017657B1 (en) Treatment method of wastewater containing organic matter
JP5321475B2 (en) Nitrogen-containing wastewater treatment method
JP2006297205A (en) Processing method of organic waste and its apparatus
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
CN1528685A (en) House refuse percolate treating method
JP2012066186A (en) Water treatment apparatus
JP4622958B2 (en) Nitrogen-containing waste liquid treatment method
US20120048802A1 (en) Non-aerated biodestruction of biochemical oxygen demand
JP2005131478A (en) Apparatus and method for treating nitrogen-containing organic waste
Choi et al. Strategy for nitrogen removal from piggery waste
JP2006239625A (en) Method and equipment for treating organic waste
Simon-Varhelyi et al. Optimization and control of aeration distribution in the wwtp nitrification reactor
US20020043486A1 (en) Processes and systems for treating wastewater
CN110526401A (en) A kind of landfill leachate short-cut nitrification and denitrification biological denitrification method
JP2004025051A (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP2004188281A (en) Method and apparatus for wastewater treatment
JP2001259679A (en) Biological treating method
Serón et al. Sludge production based on organic matter and nitrogen removal performances
JP2001259675A (en) Sludge amount reducing method and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141105

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees