JP4117274B2 - Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment - Google Patents

Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment Download PDF

Info

Publication number
JP4117274B2
JP4117274B2 JP2004236983A JP2004236983A JP4117274B2 JP 4117274 B2 JP4117274 B2 JP 4117274B2 JP 2004236983 A JP2004236983 A JP 2004236983A JP 2004236983 A JP2004236983 A JP 2004236983A JP 4117274 B2 JP4117274 B2 JP 4117274B2
Authority
JP
Japan
Prior art keywords
value
wastewater treatment
control signal
activated sludge
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004236983A
Other languages
Japanese (ja)
Other versions
JP2006055683A (en
Inventor
克明 河野
隆浩 向井
Original Assignee
サーンエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サーンエンジニアリング株式会社 filed Critical サーンエンジニアリング株式会社
Priority to JP2004236983A priority Critical patent/JP4117274B2/en
Publication of JP2006055683A publication Critical patent/JP2006055683A/en
Application granted granted Critical
Publication of JP4117274B2 publication Critical patent/JP4117274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、活性汚泥方式の排水処理装置の曝気装置の制御方法に関し、更に詳細には、窒素及びリン除去プロセスで用いられる曝気装置の設定を自動最適化する方法に関する。   The present invention relates to a method for controlling an aeration apparatus of an activated sludge wastewater treatment apparatus, and more particularly to a method for automatically optimizing settings of an aeration apparatus used in a nitrogen and phosphorus removal process.

有機性排水を対象とする活性汚泥方式排水処理方法には、標準活性汚泥法、長時間曝気法、接触曝気法及びオキシデーションディッチ法等があるが、近年、法的のみならず自主的な排水規制の強化が望まれており、有機物のみならず排水中に残存している湖沼や河川の富栄養化物質である窒素化合物除去を目的として硝化・脱窒素工程を有する活性汚泥方式排水処理装置の設置が増加している。この
処理方法は微生物の代謝機能を活用して有機物と窒素化合物の浄化を行うものであり、処理装置が浄化能力を発揮するためには、微生物の生息環境を良好に保持する必要がある。
Activated sludge wastewater treatment methods for organic wastewater include standard activated sludge method, long-time aeration method, contact aeration method, and oxidation ditch method. It is hoped that regulations will be tightened, and the activated sludge wastewater treatment system has a nitrification / denitrification process for the purpose of removing nitrogen compounds that are eutrophication substances in lakes and rivers remaining in wastewater as well as organic matter. Installation is increasing. This treatment method purifies organic matter and nitrogen compounds by utilizing the metabolic function of microorganisms, and it is necessary to maintain a good habitat for microorganisms in order for the treatment apparatus to exert its purification ability.

微生物処理による排水中の窒素化合物を除去する工程は、硝化工程や脱窒素工程などから構成される。前記硝化工程においては、排水中のアンモニア性窒素(NH )等を硝化菌によって大部分を硝酸性窒素(NO )に硝化する。その際にpHが低下するため硝化槽(無終端水路であるオキシデーションディッチにおいては硝化ゾーン)内にアルカリ剤(NaOH等)を投入しpHを中性近く(pH6.5〜6.9)に保持する必要がある。前記脱窒素工程においては、硝化工程で変換された硝酸性窒素成分が脱窒菌によって、Nに還元されて排水中より大気に放散される。その際に脱窒素促進のために脱窒素槽(無終端水路であるオキシデーションディッチにおいては脱窒素ゾーン)内を無酸素に保持し、脱窒菌の栄養源として有機物(前段の好気性BOD処理工程部分の有機含有水を利用できる)を供給する必要がある。 The process of removing nitrogen compounds in wastewater by microbial treatment includes a nitrification process and a denitrification process. In the nitrification step, ammonia nitrogen (NH 4 + ) or the like in the waste water is mostly nitrified to nitrate nitrogen (NO 3 ) by nitrifying bacteria. At that time, since the pH is lowered, an alkaline agent (NaOH or the like) is introduced into the nitrification tank (nitrification zone in the oxidation ditch which is an endless water channel) to bring the pH close to neutral (pH 6.5 to 6.9). Need to hold. In the denitrification step, the nitrate nitrogen component converted in the nitrification step is reduced to N 2 by denitrifying bacteria and diffused from the waste water to the atmosphere. At that time, in order to promote denitrification, the inside of the denitrification tank (denitrification zone in the oxidation ditch, which is an endless water channel) is kept oxygen-free, and organic matter (pre-aerobic BOD treatment process) as a nutrient source for denitrifying bacteria A portion of the organic water can be used).

前記処理装置内を好適条件に保持するためには、溶存酸素(DO)、水素イオン濃度(PH)、酸化還元電位(OPR)、活性汚泥濃度(MLSS)及び化学的酸素要求量(COD)等を管理指標とし、処理装置内の曝気装置、ポンプ等を適正に運転管理する高度な専門知識が現場管理者に要求される。前述のような困難性を解消するために、DO濃度計又はOPR計からの信号に基づいてPID(P:比例、I:積分、D:微分)制御装置により曝気装置の動作を自動制御して前記排水処理装置を管理する方法が、特開2002−219481号公報(特許文献1)に記載されており、次に図8を参照してPID制御の概略を説明する。   In order to maintain the inside of the processing apparatus under suitable conditions, dissolved oxygen (DO), hydrogen ion concentration (PH), oxidation-reduction potential (OPR), activated sludge concentration (MLSS), chemical oxygen demand (COD), etc. Is a management index, and the field manager is required to have a high level of expertise to properly manage the operation of the aeration apparatus and pump in the processing apparatus. In order to eliminate the above-mentioned difficulty, the operation of the aeration apparatus is automatically controlled by a PID (P: proportional, I: integral, D: derivative) controller based on a signal from the DO concentration meter or OPR meter. A method for managing the waste water treatment apparatus is described in Japanese Patent Laid-Open No. 2002-219481 (Patent Document 1). Next, an outline of PID control will be described with reference to FIG.

図8は、従来のPID制御による曝気槽の制御装置を示す概略図である。特許文献1に記載される溶存酸素濃度制御方法では、ニューラル・ネット・オプティマイザー113において、予め記憶されている各プラントの運転条件、各プラントの排水量及び活性汚泥プロセスデータと、それらのラボ分析データからなるデータ群115が取り込まれ、これらのデータ群115に基づいて運転中のプロセスデータから酸素消費量、排水処理量、排水水質に関連するコスト関数を最適化して溶存酸素濃度の目標値が算出される。   FIG. 8 is a schematic diagram showing a conventional aeration tank control device based on PID control. In the dissolved oxygen concentration control method described in Patent Document 1, in the neural network optimizer 113, the operation conditions of each plant, the effluent amount of each plant and the activated sludge process data, and the laboratory analysis data thereof are stored in advance. A data group 115 consisting of the above data is taken in, and based on these data groups 115, a cost function related to oxygen consumption, wastewater treatment amount, and wastewater quality is optimized from the operating process data, and a target value of dissolved oxygen concentration is calculated. Is done.

この目標値は、短期予測機能付きPID制御装置111に出力され、前記目標値との差を比較して目標溶存酸素濃度に漸近するような酸素供給量が計算される。より具体的には、過去の溶存酸素濃度とその目標値との関係を示す運転データ及び酸素供給量の設定値を用いて、制御対象の線形モデルを使って溶存酸素濃度の将来の推移が計算される。前記制御対象の線形モデルとしては、酸素供給量に対する溶存酸素濃度の動特性とノイズを考慮に入れた離散線形モデル(ARIMAXモデル)が用いられている。   This target value is output to the PID control device 111 with a short-term prediction function, and the oxygen supply amount that approaches the target dissolved oxygen concentration is calculated by comparing the difference with the target value. More specifically, using the operation data indicating the relationship between the past dissolved oxygen concentration and its target value and the set value of the oxygen supply amount, the future transition of the dissolved oxygen concentration is calculated using a linear model to be controlled. Is done. As the linear model to be controlled, a discrete linear model (ARIMAX model) taking into account the dynamic characteristics of dissolved oxygen concentration with respect to the oxygen supply amount and noise is used.

前記酸素供給量の計算結果が酸素供給量調節計110に出力され、酸素供給量測定器108の計測結果と比較して酸素供給量調節弁109が操作される。更に、酸素供給量を制御するとともに、引き続いて曝気槽の圧力調節計112により圧力調節弁107を操作し、曝気槽104内のガスを所定圧力まで排出することにより溶存酸素濃度を調節して前記曝気槽の制御が行われる。   The calculation result of the oxygen supply amount is output to the oxygen supply amount controller 110, and the oxygen supply amount adjustment valve 109 is operated in comparison with the measurement result of the oxygen supply amount measuring device 108. Further, the oxygen supply amount is controlled, and subsequently, the pressure control valve 107 is operated by the pressure regulator 112 of the aeration tank, and the dissolved oxygen concentration is adjusted by discharging the gas in the aeration tank 104 to a predetermined pressure to adjust the dissolved oxygen concentration. The aeration tank is controlled.

前記排水処理装置は、一般的に、好気運転(硝化工程)を行う曝気槽と無酸素運転(脱膣素工程)を行う曝気槽などからなる複数の曝気槽から構成されている。しかし、前記オキシデーションディッチ法では、単一の処理槽により硝化・脱膣素工程を行うことができ、前記排水処理装置を小型化することが可能である。   The waste water treatment apparatus generally includes a plurality of aeration tanks including an aeration tank that performs an aerobic operation (nitrification process) and an aeration tank that performs an oxygen-free operation (devaginating process). However, in the oxidation ditch method, the nitrification and devagination process can be performed by a single treatment tank, and the waste water treatment apparatus can be downsized.

図9は、従来の制御装置を有するオキシデーションディッチ槽の概略図である。オキシデーションディッチの反応槽201は、左右中央部に前後方向に延びる隔壁210により無終端循環水路211が形成されている。反応槽201の周壁適所には、無終端循環水路211に開口する流入出口212、213が設けられ、給水路214から無終端循環水路211に汚水が供給される。   FIG. 9 is a schematic view of an oxidation ditch tank having a conventional control device. In the oxidation ditch reaction tank 201, an endless circulation channel 211 is formed by a partition wall 210 extending in the front-rear direction at the left and right central portions. Inflow tanks 212 and 213 that open to the endless circulation channel 211 are provided at appropriate positions on the peripheral wall of the reaction tank 201, and sewage is supplied from the water supply channel 214 to the endless circulation channel 211.

前記曝気攪拌翼220を一定方向(矢印方向)に回転させる好気性運転では、無終端循環水路211において汚水206と活性汚泥260bとの混合液206Aを循環流動させると共に曝気攪拌する。従って、前記無終端水路211の全域が好気状態に保持され、好気性菌により汚水206中のアンモニア性窒素が硝酸性窒素へと硝化される。前記攪拌装置220を停止して前記水中プロペラ装置203が駆動される無酸素運転では、好気性運転時に生成された硝酸性窒素が脱膣菌により還元されて窒素ガスとなり、大気中へと放出される。また、混合液206Aは前記水中プロペラ装置203により曝気されず、この混合液206A中の汚泥を沈降させない流速で循環流動させる。   In the aerobic operation in which the aeration stirring blade 220 is rotated in a certain direction (arrow direction), the mixed liquid 206A of the sewage 206 and the activated sludge 260b is circulated in the endless circulation channel 211 and aerated and stirred. Therefore, the entire region of the endless water channel 211 is maintained in an aerobic state, and the ammonia nitrogen in the sewage 206 is nitrified to nitrate nitrogen by the aerobic bacteria. In the oxygen-free operation in which the agitator 220 is stopped and the underwater propeller device 203 is driven, nitrate nitrogen generated during aerobic operation is reduced by devaginating bacteria into nitrogen gas and released into the atmosphere. The Further, the liquid mixture 206A is not aerated by the underwater propeller device 203, and is circulated and flowed at a flow rate at which the sludge in the liquid mixture 206A does not settle.

硝化脱窒素処理された処理混合液260を沈殿池215において処理水260aと汚泥(活性汚泥)260bとに分離される。沈殿池215で汚泥260bを沈降分離した処理水260aは排出される。一方、沈降汚泥260bは、沈殿池215の底部から返送路217を介して無終端循環水路211に返送される。余剰汚泥引き抜き装置204は、余剰汚泥261を余剰汚泥引抜ポンプ242により反応槽201から引き抜いて固液分離機241において固液分離し、固形分たる脱水汚泥261aを脱水汚泥排出路244から汚泥処理装置に排出させると共に液分たる分離液261bを分離液返送路243から無終端循環水路211に返送させる。制御装置205は、制御器250と、この制御器250へのデータ入力等を行うためのタッチパネル251から構成される。
特開2002−219481号公報 特開2003−334593号公報
The treated liquid mixture 260 that has been subjected to nitrification and denitrification is separated into treated water 260a and sludge (activated sludge) 260b in a sedimentation basin 215. The treated water 260a obtained by settling and separating the sludge 260b in the settling tank 215 is discharged. On the other hand, the sedimentation sludge 260 b is returned from the bottom of the sedimentation basin 215 to the endless circulation water channel 211 via the return channel 217. The excess sludge extraction device 204 extracts the excess sludge 261 from the reaction tank 201 by the excess sludge extraction pump 242 and separates it into a solid-liquid separator 241, and the dewatered sludge 261 a that is a solid content from the dewatered sludge discharge path 244 to the sludge treatment device. The separation liquid 261b, which is a liquid component, is returned to the endless circulation water path 211 from the separation liquid return path 243. The control device 205 includes a controller 250 and a touch panel 251 for inputting data to the controller 250.
JP 2002-219482 A JP 2003-334593 A

図8に示すPID制御装置は、前記曝気装置内の溶存酸素濃度を測定しながらこの溶存酸素濃度を前記目標値に近づけるように制御信号を出力している。従って、前記PID制御装置は、溶存酸素濃度だけによる曝気装置の制御方法である。しかし、前記曝気装置を効率的に制御するためには、溶存酸素濃度と共にアンモニア性窒素濃度及び硝酸性窒素濃度を測定し、これらの測定量を基づいて前記曝気装置の制御を行う必要性がある。特に、上記のオキシデーションディッチ法では、硝化・脱膣素工程を同一の処理槽で行うから、前記各測定値に基づいて曝気装置の制御を行うことが要求される。   The PID control device shown in FIG. 8 outputs a control signal so as to bring the dissolved oxygen concentration closer to the target value while measuring the dissolved oxygen concentration in the aeration device. Therefore, the PID control device is a control method of the aeration device based only on the dissolved oxygen concentration. However, in order to efficiently control the aeration apparatus, it is necessary to measure the ammonia nitrogen concentration and the nitrate nitrogen concentration together with the dissolved oxygen concentration, and to control the aeration apparatus based on these measured amounts. . In particular, in the above oxidation ditch method, since the nitrification / vaginosis process is performed in the same processing tank, it is required to control the aeration apparatus based on the respective measured values.

しかし、PID制御法はその演算速度が遅いために曝気装置内における溶存酸素濃度を測定してから制御信号を出力するまでに時間が掛かる。従って、前述のような演算速度の遅れにより最適な制御信号と実際に出力される制御信号との誤差が大きくなり、時間差を考慮して制御信号を計算した場合においても演算時間の増加に伴う誤差の増大を避けることができなかった。即ち、活性汚泥方式排水処理装置のアンモニア性窒素濃度、硝酸性窒素濃度及び溶存酸素濃度に基づいたPID制御は、目標値の予測モデルや制御信号の演算回路が複雑になって演算時間が長くなり過ぎるという問題を有していた。   However, since the calculation speed of the PID control method is slow, it takes time until the control signal is output after measuring the dissolved oxygen concentration in the aeration apparatus. Therefore, the error between the optimal control signal and the control signal that is actually output increases due to the delay in the calculation speed as described above. Even when the control signal is calculated in consideration of the time difference, the error accompanying the increase in the calculation time. An increase in the amount could not be avoided. In other words, the PID control based on the ammonia nitrogen concentration, nitrate nitrogen concentration and dissolved oxygen concentration of the activated sludge wastewater treatment device complicates the target value prediction model and the control signal calculation circuit, which increases the calculation time. Had too much problem.

微生物による複雑な反応を含む下水処理プロセスにおいて、IAWQ(InternationalAssociation on Water Quality )のワーキンググループにより開発された、IAWQの標準活性汚泥モデルNo.1〜3と呼ばれる微生物反応による有機物分解プロセスのモデルが確立されつつある。しかし、複雑なプロセスに対応するモデルは、そのモデル自体が複雑になるという傾向があり、このような複雑なモデルを直接用いて前記曝気装置の駆動制御をしようとすると、その制御信号を決定するための演算式の導出が複雑になったり、導出した演算式に基づく計算に莫大な計算時間を必要としたり、又は計算式の解が求まらない等の問題が生じる。極端な場合には、計算式の導出自体が不可能となったり、計算時間が逐次制御の周期を大きく越えてしまい、実際の制御系として機能しなくなるという場合も生じていた。   IAWQ standard activated sludge model No. developed by the working group of IAWQ (International Association on Water Quality) in the sewage treatment process including complex reactions by microorganisms. A model of an organic matter decomposition process by a microbial reaction called 1-3 is being established. However, a model corresponding to a complicated process tends to be complicated, and when the driving control of the aeration apparatus is directly used using such a complicated model, the control signal is determined. Therefore, there are problems such as complicated derivation of an arithmetic expression for the calculation, enormous calculation time for calculation based on the derived arithmetic expression, or a solution of the calculation expression not being obtained. In extreme cases, it may be impossible to derive the calculation formula itself, or the calculation time may greatly exceed the cycle of sequential control, and the actual control system may not function.

本発明は、上記課題を解決するために提案されたものであり、本発明の第1の形態は、曝気装置を用いて硝化・脱窒素工程が行われる活性汚泥方式排水処理装置において、前記排水処理装置内で少なくともアンモニア性窒素濃度及び硝酸性窒素濃度を測定し、前記各測定量の最適動作値を設定し、これらの最適動作値を目標にして前記各測定値を演算処理して制御信号を出力し、この制御信号により前記曝気装置を駆動制御する活性汚泥方式排水処理方法である。   The present invention has been proposed to solve the above problems, and a first aspect of the present invention is an activated sludge wastewater treatment apparatus in which a nitrification / denitrification process is performed using an aeration apparatus. Measure at least the ammonia nitrogen concentration and nitrate nitrogen concentration in the processing device, set the optimum operating values for each measured quantity, calculate the measured values with these optimum operating values as targets, and control signals Is activated sludge wastewater treatment method in which the aeration apparatus is driven and controlled by this control signal.

本発明の第2の形態は、前記排水処理装置内の溶存酸素濃度を測定する活性汚泥方式排水処理方法である。   The second aspect of the present invention is an activated sludge wastewater treatment method for measuring the dissolved oxygen concentration in the wastewater treatment apparatus.

本発明の第3の形態は、前記排水処理装置に供給される排水の流量及び/又は排水濃度が測定され、これらの測定量が前記演算処理に組込まれる活性汚泥方式排水処理方法である。   The third aspect of the present invention is an activated sludge wastewater treatment method in which the flow rate and / or wastewater concentration of wastewater supplied to the wastewater treatment device is measured, and these measured amounts are incorporated into the arithmetic processing.

本発明の第4の形態は、前記演算処理が、前記各測定量の測定値から各測定量の予測値を演算するカルマンフィルタ演算処理と、これらの予測値から前記制御信号を演算出力する線型演算処理からなる活性汚泥方式排水処理方法である。   According to a fourth aspect of the present invention, the calculation process includes a Kalman filter calculation process that calculates a predicted value of each measured quantity from the measured value of each measured quantity, and a linear calculation that calculates and outputs the control signal from these predicted values. This is an activated sludge wastewater treatment method comprising treatment.

本発明の第5の形態は、前記演算処理では逐次演算処理が行われ、前記カルマンフィルタ演算処理では、各測定量の現在測定値と直前の制御信号と直前の予測値から次の予測値を演算し、前記線型演算処理では前記次の予測値と前記排水流量及び/又は排水濃度の現在測定値から次の制御信号を演算する活性汚泥方式排水処理方法である。   In the fifth aspect of the present invention, sequential calculation processing is performed in the calculation processing, and in the Kalman filter calculation processing, the next predicted value is calculated from the current measured value of each measured quantity, the immediately preceding control signal, and the immediately preceding predicted value. In the linear arithmetic processing, the activated sludge wastewater treatment method calculates the next control signal from the next predicted value and the current measured value of the wastewater flow rate and / or wastewater concentration.

本発明の第6の形態は、前記線型演算処理により出力された制御信号が、次の制御信号が出力されるまで一定値に保持され、この一定の制御信号により前記曝気装置を逐次的に駆動制御する活性汚泥方式排水処理方法である。   In the sixth aspect of the present invention, the control signal output by the linear arithmetic processing is held at a constant value until the next control signal is output, and the aeration apparatus is sequentially driven by the constant control signal. This is an activated sludge wastewater treatment method to be controlled.

本発明の第7の形態は、前記各測定量の基準値が設定され、前記各測定量の各測定値が基準値以下のときに前記演算処理が実行される活性汚泥方式排水処理方法である。   A seventh aspect of the present invention is an activated sludge wastewater treatment method in which a reference value for each measurement amount is set and the calculation process is executed when each measurement value for each measurement amount is equal to or less than a reference value. .

本発明の第8の形態は、前記排水処理装置がオキシデーションディッチである活性汚泥方式排水処理方法である。   An eighth aspect of the present invention is an activated sludge wastewater treatment method in which the wastewater treatment apparatus is an oxidation ditch.

本発明の第9の形態は、曝気装置を用いて硝化・脱窒素工程が行われる活性汚泥方式排水処理装置において、前記排水処理装置内に配置された少なくともアンモニア性窒素濃度計及び硝酸窒素濃度計と、これらの濃度計による測定値の記憶手段と、前記各測定量の最適動作値の記憶手段と、これらの最適動作値を目標にして前記各測定値を演算処理する演算制御部が配設され、この演算制御部により出力される制御信号により前記曝気装置を駆動制御する活性汚泥方式排水処理装置である。   According to a ninth aspect of the present invention, there is provided an activated sludge wastewater treatment apparatus in which a nitrification / denitrogenation process is performed using an aeration apparatus, and at least an ammonia nitrogen concentration meter and a nitrogen nitrate concentration meter disposed in the wastewater treatment device. And means for storing measured values by these densitometers, means for storing optimum operating values of the respective measured amounts, and an arithmetic control unit for calculating and processing each measured value with these optimum operating values as targets. And an activated sludge wastewater treatment apparatus that drives and controls the aeration apparatus according to a control signal output from the arithmetic control unit.

本発明の第10の形態は、前記排水処理装置内に溶存酸素濃度計が配置された活性汚泥方式排水処理装置である。   A tenth aspect of the present invention is an activated sludge wastewater treatment apparatus in which a dissolved oxygen concentration meter is disposed in the wastewater treatment apparatus.

本発明の第11の形態は、前記排水処理装置内に供給される排水の流量計及び/又は排水濃度計と、これらの測定器により測定された測定値の記憶手段が配置され、これらの測定値が前記演算制御部に出力される記載の活性汚泥方式排水処理装置である。   In an eleventh aspect of the present invention, a flow meter and / or a waste water concentration meter for waste water supplied into the waste water treatment apparatus, and a storage means for measurement values measured by these measuring devices are arranged, and these measurements are performed. It is the activated sludge type waste water treatment apparatus of the description whose value is output to the said calculation control part.

本発明の第12の形態は、前記演算制御部が、前記各測定量の測定値から各測定量の予測値を演算するカルマンフィルタ制御部と、これらの予測値から前記制御信号を演算出力する線型演算制御部とから構成される活性汚泥方式排水処理装置である。   In a twelfth aspect of the present invention, the calculation control unit calculates a predicted value of each measurement amount from the measurement value of each measurement amount, and a linear type that calculates and outputs the control signal from these prediction values This is an activated sludge wastewater treatment apparatus composed of an arithmetic control unit.

本発明の第13の形態は、前記演算制御部が、逐次演算処理を行うように構成され、前記カルマンフィルタ制御部が、各測定量の現在測定値と直前の制御信号と直前の予測値を記憶する記憶手段と、これらの値から次の予測値を演算手段から構成され、前記線型演算制御部は、前記次の予測値と前記排水流量及び/又は排水濃度の現在測定値を記憶する記憶手段と、これらの値から次の制御信号を演算する演算手段から構成される活性汚泥方式排水処理装置である。   In a thirteenth aspect of the present invention, the calculation control unit is configured to perform sequential calculation processing, and the Kalman filter control unit stores a current measurement value, a previous control signal, and a previous predicted value of each measurement amount. And storage means for storing the next predicted value and the current measured value of the drainage flow rate and / or drainage concentration. And an activated sludge wastewater treatment apparatus constituted by computing means for computing the next control signal from these values.

本発明の第14の形態は、前記演算制御部に前記線型演算処理により出力された制御信号を次の制御信号が出力されるまで一定値に保持する信号保持回路が設置され、この一定の制御信号により前記曝気装置を逐次的に駆動制御する活性汚泥方式排水処理装置である。   In a fourteenth aspect of the present invention, a signal holding circuit that holds a control signal output by the linear arithmetic processing at a constant value until a next control signal is output is installed in the arithmetic control unit. It is an activated sludge wastewater treatment apparatus that sequentially drives and controls the aeration apparatus according to a signal.

本発明の第15の形態は、前記各測定量の基準値が設定されたローパスフィルタが配設され、このローパスフィルタに入力される前記各測定量の各測定値が基準値以下のときに前記演算処理が実行される活性汚泥方式排水処理装置である。   In a fifteenth aspect of the present invention, a low-pass filter in which a reference value of each measurement amount is set is provided, and each measurement value input to the low-pass filter is equal to or less than a reference value. This is an activated sludge wastewater treatment apparatus in which arithmetic processing is executed.

本発明の第16の形態は、硝化・脱窒素工程を有する活性汚泥方式排水処理装置において、処理工程中にアンモニア性窒素濃度計、硝酸性窒素濃度計及び/又は溶存酸素濃度計及び排水流量計を配置して、それらの測定値を第1シーケンス制御コントローラに取り込み、当該データをコンピュータに入力し、内蔵している全データの最適化処理を行うデータベースソフトウェアによってオンラインで演算処理し、その最適値を第2のシーケンス制御コントローラを介して、最適運転条件のアンモニア性窒素濃度、硝酸性窒素濃度及び/又は溶存酸素濃度を保持するように曝気装置を自動制御する活性汚泥方式排水処理装置である。   According to a sixteenth aspect of the present invention, there is provided an activated sludge wastewater treatment apparatus having a nitrification / denitrogenation step, an ammonia nitrogen concentration meter, a nitrate nitrogen concentration meter and / or a dissolved oxygen concentration meter and a waste water flow meter during the treatment step. The measured values are taken into the first sequence controller, the relevant data is input to the computer, and calculation processing is performed online by database software that performs optimization processing of all the built-in data. Is an activated sludge wastewater treatment apparatus that automatically controls the aeration apparatus so as to maintain the ammonia nitrogen concentration, nitrate nitrogen concentration and / or dissolved oxygen concentration of the optimum operating conditions via the second sequence controller.

本発明の第17の形態は、前記活性汚泥方式排水処理装置がオキシデーションディッチである活性汚泥方式排水処理装置である。   A seventeenth aspect of the present invention is an activated sludge wastewater treatment apparatus in which the activated sludge wastewater treatment apparatus is an oxidation ditch.

本発明の第1の形態によれば、前記排水処理装置内の少なくともアンモニア性窒素濃度及び硝酸性窒素濃度を測定し、前記各測定量の最適動作値を設定するから、前記曝気装置の高精度な最適動作値を設定することができる。更に、この最適動作値を目標にして前記各測定値を演算処理し、前記曝気装置の制御信号を出力するから、この曝気装置により排水処理装置内のアンモニア性窒素濃度及び硝酸性窒素濃度を好適な濃度に保持することができ、排水の硝化・脱窒素効率を向上させることができる。更に、アンモニア性窒素濃度及び硝酸性窒素濃度に基づいた演算処理により出力された制御信号により前記曝気装置を駆動制御するから、高効率で安定な硝化・脱窒素工程を行うことができ、運用コストを格段に低減することができる。前記測定量は、アンモニア性窒素濃度及び硝酸性窒素濃度に限定されるものではなく、演算速度が遅くなり過ぎなければ、活性汚泥方式排水処理装置の要求される精度に応じて前記測定量を増やすことが可能であり、COD(化学的酸素要求量)、BOD(生物化学的酸素要求量)、SS(浮遊物質濃度)、SV(活性汚泥沈殿率)、MLSS(活性汚泥浮遊物質)、MLVSS(活性汚泥有機性浮遊物質)、ORP(酸化還元電位)及び放散される窒素量などから測定量を選択し、前記最適動作値を設定することができる。   According to the first aspect of the present invention, at least the ammonia nitrogen concentration and the nitrate nitrogen concentration in the waste water treatment apparatus are measured, and the optimum operation value of each measurement amount is set, so that the high accuracy of the aeration apparatus Optimal operating values can be set. Further, the measurement values are calculated and processed with the optimum operating value as a target, and the control signal of the aeration apparatus is output. Therefore, the ammonia nitrogen concentration and the nitrate nitrogen concentration in the waste water treatment apparatus are preferably used by the aeration apparatus. It can be kept at a high concentration, and the nitrification / denitrogenation efficiency of the wastewater can be improved. Furthermore, since the aeration apparatus is driven and controlled by the control signal output by the arithmetic processing based on the ammonia nitrogen concentration and the nitrate nitrogen concentration, a highly efficient and stable nitrification / denitrification process can be performed. Can be significantly reduced. The measurement amount is not limited to ammonia nitrogen concentration and nitrate nitrogen concentration. If the calculation speed is not too slow, the measurement amount is increased according to the required accuracy of the activated sludge wastewater treatment device. COD (chemical oxygen demand), BOD (biochemical oxygen demand), SS (suspended substance concentration), SV (activated sludge sedimentation rate), MLSS (activated sludge suspended matter), MLVSS ( The optimum operating value can be set by selecting a measurement amount from activated sludge organic suspended substance), ORP (oxidation-reduction potential), and the amount of nitrogen released.

本発明の第2の形態によれば、前記排水処理装置内の溶存酸素濃度を測定し、前記各測定量の最適動作値を設定するから、前記曝気装置の格段に高精度な最適動作値を設定することができる。前記活性汚泥方式排水処理方法における微生物処理では、曝気槽内の溶存酸素濃度が所定値以上又は所定の範囲にある場合に好気性微生物による硝化が行われ、所定値以上又は所定の範囲内にある場合に嫌気性微生物による脱窒素が行われる。従って、アンモニア性窒素濃度及び硝酸性窒素濃度と共に曝気槽内の溶存酸素濃度は、活性汚泥方式排水処理方法において重要な測定指標である。しかし、測定量が増加すると、前記最適動作値の導出過程が複雑化し、円滑な前記曝気装置の制御が困難になる。本発明者等は、鋭意研究の結果、アンモニア性窒素濃度、硝酸性窒素濃度及び溶存酸素濃度から前記最適動作値の好適な演算速度を保持する演算モデルを採用することにより、本発明を完成するに到った。本発明に係る排水処理方法では、前記最適動作値を目標にして前記各測定値を演算処理し、前記曝気装置の制御信号を出力するから、この曝気装置により排水処理装置内の溶存酸素濃度を好適な濃度に保持することができ、排水の硝化・脱窒素効率を格段に格段に向上させることができる。更に、前記制御信号により前記曝気装置を駆動制御するから、格段に高効率で安定な硝化・脱窒素工程を行うことができ、運用コストを格段に低減することができる。   According to the second aspect of the present invention, the dissolved oxygen concentration in the waste water treatment device is measured, and the optimum operation value of each measurement amount is set. Can be set. In the microorganism treatment in the activated sludge wastewater treatment method, nitrification with aerobic microorganisms is performed when the dissolved oxygen concentration in the aeration tank is not less than a predetermined value or in a predetermined range, and is not less than the predetermined value or in a predetermined range. In some cases, denitrification by anaerobic microorganisms is performed. Therefore, the dissolved oxygen concentration in the aeration tank together with the ammonia nitrogen concentration and nitrate nitrogen concentration is an important measurement index in the activated sludge wastewater treatment method. However, when the amount of measurement increases, the process of deriving the optimum operating value becomes complicated, and smooth control of the aeration apparatus becomes difficult. As a result of diligent research, the present inventors have completed the present invention by adopting a calculation model that maintains a suitable calculation speed of the optimum operating value from the ammonia nitrogen concentration, nitrate nitrogen concentration, and dissolved oxygen concentration. It reached. In the wastewater treatment method according to the present invention, the measurement values are calculated and processed with the optimum operating value as a target, and the control signal of the aeration apparatus is output. Therefore, the dissolved oxygen concentration in the wastewater treatment apparatus is determined by the aeration apparatus. It can be kept at a suitable concentration, and the nitrification / denitrification efficiency of the waste water can be remarkably improved. Furthermore, since the aeration apparatus is driven and controlled by the control signal, a highly efficient and stable nitrification / denitrification process can be performed, and the operation cost can be significantly reduced.

本発明の第3の形態によれば、前記排水処理装置に供給される排水の流量及び/又は排水濃度を測定して前記演算処理に組込まれるから、最適動作値の精度が格段に向上し、好適な制御信号を出力することができる。前記排水の流量のみを測定して前記最適動作値を設定しても良く、排水の流量と排水濃度を測定して最適動作値を設定すれば、より好適な最適動作値を設定することができる。更に、前記排水濃度として、アンモニア性窒素濃度、硝酸性窒素濃度及び浮遊物質濃度などから所望の測定量を選択し、前記最適動作値を設定することができる。   According to the third aspect of the present invention, since the flow rate and / or drainage concentration of the wastewater supplied to the wastewater treatment device is measured and incorporated in the calculation process, the accuracy of the optimum operation value is significantly improved, A suitable control signal can be output. The optimal operation value may be set by measuring only the flow rate of the waste water. If the optimal operation value is set by measuring the flow rate and waste water concentration of the waste water, a more preferable optimal operation value can be set. . Furthermore, as the drainage concentration, a desired measurement amount can be selected from ammonia nitrogen concentration, nitrate nitrogen concentration, suspended solid concentration, and the like, and the optimum operation value can be set.

本発明の第4の形態によれば、カルマンフィルタ演算処理を用いてアンモニア性窒素濃度、硝酸性窒素濃度及び/又は溶存酸素濃度などの測定値から各測定量の予測値を演算するから、正確性の高い予測値を算出することができる。カルマンフィルタは、予測値が出力される毎に前記各測定値と比較され、線型演算処理が修正されるから、現象追随性が良く、正確性の高い予測を行うことができる。従って、これらの予測値から前記線型演算処理により制御信号を演算出力するから、この制御信号は曝気装置を好適に動作させることができ、高効率で低コストな活性汚泥方式の排水処理を実現することができる。   According to the fourth aspect of the present invention, the predicted value of each measured quantity is calculated from the measured values such as the ammonia nitrogen concentration, the nitrate nitrogen concentration and / or the dissolved oxygen concentration using the Kalman filter calculation process. A high predicted value can be calculated. The Kalman filter is compared with each measurement value every time a predicted value is output, and the linear arithmetic processing is corrected. Therefore, the Kalman filter has good phenomenon tracking and can perform highly accurate prediction. Therefore, since the control signal is calculated and output from the predicted values by the linear calculation process, the control signal can suitably operate the aeration apparatus, and realizes a highly efficient and low cost activated sludge drainage process. be able to.

本発明の第5の形態によれば、前記演算処理において、カルマンフィルタ演算処理と線型演算処理からなる演算方法により逐次演算処理が行われるから、正確性の高い次の制御信号を導出することができる。前記カルマンフィルタ演算処理では、先ず次の予測値Xk+1が直前の予測値X、直前の制御信号U、前記各測定量の現在測定値Y(アンモニア性窒素濃度、硝酸性窒素濃度及び/又は溶存酸素濃度など)及びD(排水流量・濃度など)を用いてカルマンフィルタ演算式:Xk+1=K・X+K・U+K・Y+K・Dから演算される。ここで、K、K、K、Kは行列であり、Xk+1、X、U、Y及びDは、列ベクトルである。前記カルマンフィルタ演算式は、国際水質学会(IAWQ:International Association on Water Quality)が窒素やリンの除去プロセスを非線形微分方程式を用いて表したIAWQの標準活性汚泥モデルNo.1〜3に基づいて導出することができる。次に前記線型演算処理において、直前の制御信号Uが次の予測値Xk+1及び排水流量・濃度Dから線型演算式:Uk+1=−F・Xk+1−F・Dにより演算される。即ち、前記直前の予測値、現在測定値及び直前の制御信号から線型演算式の修正が逐次行われるから、前記活性汚泥方式排水処理装置に対する状態予測の正確性が格段に向上し、安定で高効率な排水処理を行うことができる。 According to the fifth aspect of the present invention, since the sequential calculation process is performed by the calculation method including the Kalman filter calculation process and the linear calculation process in the calculation process, the next control signal with high accuracy can be derived. . In the Kalman filter calculation process, first, the next predicted value X k + 1 is the immediately preceding predicted value X k , the immediately preceding control signal U k , the current measured value Y k of each measured quantity (ammonia nitrogen concentration, nitrate nitrogen concentration and / or Or dissolved oxygen concentration etc.) and D k (drainage flow rate / concentration etc.), Kalman filter calculation formula: X k + 1 = K X · X k + K U · U k + K Y · Y k + K D · D k . Here, K X , K U , K Y , and K D are matrices, and X k + 1 , X k , U k , Y k, and D k are column vectors. The Kalman filter arithmetic expression is an IAWQ standard activated sludge model No. expressed by the International Association on Water Quality (IAWQ) using a non-linear differential equation representing the removal process of nitrogen and phosphorus. 1 to 3 can be derived. Next, in the linear calculation process, the immediately preceding control signal U k is calculated from the next predicted value X k + 1 and the drainage flow rate / concentration D k by the linear calculation formula: U k + 1 = −F X · X k + 1 −F D · D k Is done. That is, since the linear calculation formula is sequentially corrected from the immediately preceding predicted value, the current measured value, and the immediately preceding control signal, the accuracy of state prediction for the activated sludge wastewater treatment apparatus is remarkably improved, and is stable and high. Efficient wastewater treatment can be performed.

本発明の第6の形態によれば、前記線型演算処理により出力された制御信号が、次の制御信号が出力されるまで一定値に保持されるから、前記曝気装置の動作の揺らぎを抑制することができる。前記各測定値がリアルタイムで変動するから、前記各測定値が大きく又は小刻みに揺らいだ場合、この揺らぎを全て抑制信号に反映させることにより前記曝気装置の安定動作を妨げる場合がある。従って、前記逐次演算処理より次の制御信号が出力されるまで前記制御信号を一定に保持することにより、安定に前記曝気措置を動作することができる。   According to the sixth aspect of the present invention, since the control signal output by the linear arithmetic processing is held at a constant value until the next control signal is output, the fluctuation of the operation of the aeration apparatus is suppressed. be able to. Since each measurement value fluctuates in real time, when each measurement value fluctuates large or small, the stable operation of the aeration apparatus may be hindered by reflecting all the fluctuations in the suppression signal. Therefore, the aeration measure can be stably operated by holding the control signal constant until the next control signal is output from the sequential calculation processing.

本発明の第7の形態によれば、前記各測定量の基準値が設定され、前記各測定量の各測定値が基準値以下のときに前記演算処理が実行されるから、急激な各測定値の変化に対する前記演算処理の安定性を確保することができる。即ち、前記各測定量の各測定値が前記排水処理装置内における各測定量の極端な濃度斑、前記測定器からのノイズ信号又は測定器の誤作動などにより基準値以上の信号が前記演算処理に取り込まれることを防止することができる。従って、この演算処理に前記基準値以上の値が入力され、前記演算処理により導出される値が収束せずに異常な制御信号が出力されることを未然に防止することができる。   According to the seventh aspect of the present invention, since the reference value of each measurement amount is set, and the calculation process is executed when each measurement value of each measurement amount is equal to or less than the reference value, each rapid measurement It is possible to ensure the stability of the arithmetic processing with respect to a change in value. In other words, each measured value of each measured quantity is converted to an arithmetic processing signal that exceeds the reference value due to extreme concentration spots of each measured quantity in the wastewater treatment apparatus, a noise signal from the measuring instrument, or a malfunction of the measuring instrument. Can be prevented from being taken in. Therefore, it is possible to prevent an abnormal control signal from being output without a value derived from the calculation process being input and a value derived from the calculation process being converged.

本発明の第8の形態によれば、前記排水処理装置がオキシデーションディッチから構成され、前記最適動作値がアンモニア性窒素濃度、硝酸性窒素濃度及び/又は溶存酸素濃度から設定されるから、前記オキシデーションディッチ槽に配設された曝気装置により硝化工程からなる好気運転と脱膣素工程からなる無酸素運転を好適に切替制御することができる。前記オキシデーションディッチは、硝化工程において、排水中のアンモニア性窒素(NH )等を硝化菌によって硝酸性窒素に硝化し、脱窒素工程において、前記硝化工程で変換された前記硝酸性窒素成分を脱窒菌によってNに還元するから、前記アンモニア性窒素濃度及び硝酸性窒素濃度を測定して前記最適動作値を設定することにより、前記曝気装置の好気運転と無酸素運転を適宜に切替制御することができる。 According to the eighth aspect of the present invention, the waste water treatment apparatus is configured by an oxidation ditch, and the optimum operating value is set from ammonia nitrogen concentration, nitrate nitrogen concentration and / or dissolved oxygen concentration, An aerobic operation consisting of a nitrification step and an anaerobic operation consisting of a devaginating step can be suitably switched and controlled by an aeration apparatus disposed in the oxidation ditch tank. In the nitrification process, the oxidation ditch nitrifies ammoniacal nitrogen (NH 4 + ) or the like in waste water to nitrate nitrogen by nitrifying bacteria, and in the denitrification process, the nitrate nitrogen component converted in the nitrification process Is reduced to N 2 by denitrifying bacteria, and the aerobic operation and anoxic operation of the aeration apparatus are appropriately switched by measuring the ammoniacal nitrogen concentration and nitrate nitrogen concentration and setting the optimum operating value. Can be controlled.

本発明の第9の形態によれば、前記排水処理装置内にアンモニア性窒素濃度計及び硝酸性窒素濃度計を配置して、これらの濃度計による測定値に基づいて最適動作値を設定するから、高精度な最適動作値を設定することができる。また、この最適動作値を目標にして前記各測定値を演算処理し、前記曝気装置の好適な制御信号を出力するから、この曝気装置に必要以上の負荷(高速回転など)が加えられることがなく、長寿命の活性汚泥方式排水処理装置を提供することができる。更に、複雑な演算過程を必要とする最適動作値の設定を大型コンピューターや並列演算コンピューターなどの高速演算回路を用いて演算することができる。この最適動作値を目標に前記各測定値から前記曝気装置又は循環制御装置の制御信号を導出する演算制御部として、パーソナルコンピューター(PC)の中央処理装置(CPU)などを用いることができ、前記記憶手段としてPCのメモリーを用いることができる。従って、前記高速演算回路が設置された中央管理装置により遠隔地から複数の排水処理装置を制御することができ、各装置の管理コストを格段に低減することができる。また、アンモニア性窒素濃度計及び硝酸性窒素濃度計としては、既成のレーザー式濃度計、マイクロ波濃度計、赤外線濃度計及び超音波濃度計などから測定対象に応じて適宜選択することができる。更に、配置される濃度計は、アンモニア性窒素濃度計及び硝酸性窒素濃度計に限定されるものではなく、活性汚泥方式排水処理装置の要求される精度に応じて前記測定量を増やすことが可能であり、COD(化学的酸素要求量)、BOD(生物化学的酸素要求量)、SS(浮遊物質濃度)、SV(活性汚泥沈殿率)、MLSS(活性汚泥浮遊物質)、MLVSS(活性汚泥有機性浮遊物質)、ORP(酸化還元電位)及び放散される窒素量などを計測する測定装置を配設し、これらの測定量から前記最適動作値を導出することができる。   According to the ninth aspect of the present invention, an ammonia nitrogen concentration meter and a nitrate nitrogen concentration meter are arranged in the waste water treatment apparatus, and the optimum operation value is set based on the measurement values by these concentration meters. It is possible to set a highly accurate optimum operation value. In addition, each measured value is calculated and processed with the optimum operating value as a target, and a suitable control signal for the aeration apparatus is output. Therefore, an excessive load (high-speed rotation, etc.) may be applied to the aeration apparatus. In addition, a long-life activated sludge wastewater treatment apparatus can be provided. Furthermore, the setting of the optimum operation value that requires a complicated calculation process can be calculated using a high-speed calculation circuit such as a large computer or a parallel calculation computer. A central processing unit (CPU) of a personal computer (PC) or the like can be used as an arithmetic control unit for deriving a control signal of the aeration apparatus or the circulation control apparatus from each measured value with the optimum operation value as a target. A PC memory can be used as the storage means. Therefore, a plurality of wastewater treatment devices can be controlled from a remote location by the central management device in which the high-speed arithmetic circuit is installed, and the management cost of each device can be significantly reduced. In addition, the ammonia nitrogen concentration meter and the nitrate nitrogen concentration meter can be appropriately selected from existing laser concentration meters, microwave concentration meters, infrared concentration meters, ultrasonic concentration meters, and the like according to the measurement target. Furthermore, the concentration meter to be arranged is not limited to the ammonia nitrogen concentration meter and the nitrate nitrogen concentration meter, and the measurement amount can be increased according to the required accuracy of the activated sludge wastewater treatment device. COD (chemical oxygen demand), BOD (biochemical oxygen demand), SS (floating matter concentration), SV (activated sludge sedimentation rate), MLSS (activated sludge suspended matter), MLVSS (activated sludge organics) A measuring device for measuring the amount of volatile suspended matter), ORP (oxidation-reduction potential), and the amount of nitrogen released, and the optimum operating value can be derived from these measured amounts.

本発明の第10の形態によれば、前記排水処理装置内に溶存酸素濃度計を配置して、この測定値に基づいて最適動作値を設定するから、格段に高精度な最適動作値を設定することができる。前記活性汚泥方式排水処理方法における微生物処理では、曝気槽内の溶存酸素濃度が所定値以上又は所定の範囲にある場合に好気性微生物による硝化が行われ、所定値以上又は所定の範囲内にある場合に嫌気性微生物による脱窒素が行われる。従って、アンモニア性窒素濃度及び硝酸性窒素濃度と共に曝気槽内の溶存酸素濃度は、活性汚泥方式排水処理方法において重要な測定指標である。また、前記アンモニア性窒素濃度及び硝酸性窒素濃度から導出された最適動作値を前記溶存酸素濃度に基づいて修正して新たな最適動作値を設定する修正回路を付設することもでき、簡易に前記最適動作値を設定することができる。   According to the tenth aspect of the present invention, the dissolved oxygen concentration meter is arranged in the waste water treatment apparatus, and the optimum operation value is set based on the measured value. Therefore, the optimum operation value with extremely high accuracy is set. can do. In the microorganism treatment in the activated sludge wastewater treatment method, nitrification with aerobic microorganisms is performed when the dissolved oxygen concentration in the aeration tank is not less than a predetermined value or in a predetermined range, and is not less than the predetermined value or in a predetermined range. In some cases, denitrification by anaerobic microorganisms is performed. Therefore, the dissolved oxygen concentration in the aeration tank together with the ammonia nitrogen concentration and nitrate nitrogen concentration is an important measurement index in the activated sludge wastewater treatment method. Further, a correction circuit for correcting the optimum operation value derived from the ammonia nitrogen concentration and the nitrate nitrogen concentration based on the dissolved oxygen concentration and setting a new optimum operation value can be attached, and the above can be simply described. An optimum operating value can be set.

本発明の第11の形態によれば、前記排水処理装置に設置された排水流量計及び/又は排水濃度計により、排水流量及び/又は排水濃度を測定してこれらの測定値を前記演算処理に組込まれるから、設定される最適動作値の精度が格段に向上し、好適な制御信号を演算出力することができる。更に、前記排水流量計として、電磁流量計及び超音波流量計などの高精度な流量計を用いることができ、より正確性の高い制御信号を出力することができる。また、前記排水濃度計としては、アンモニア性窒素濃度計、硝酸性窒素濃度計及び浮遊物質濃度計などから適宜選択して設置することができる。前記排水流量計のみを配置して前記最適動作値を設定することができ、より好ましくは排水流量計と排水濃度計を配置して、前記最適動作値を設定及び演算処理をするための各測定値を測定することができる。   According to the eleventh aspect of the present invention, the drainage flow meter and / or drainage concentration meter installed in the wastewater treatment device is used to measure the drainage flow rate and / or drainage concentration, and these measured values are used for the arithmetic processing. Since it is incorporated, the accuracy of the set optimum operation value is remarkably improved, and a suitable control signal can be calculated and output. Furthermore, a highly accurate flow meter such as an electromagnetic flow meter and an ultrasonic flow meter can be used as the drainage flow meter, and a more accurate control signal can be output. Further, the waste water concentration meter can be appropriately selected and installed from an ammonia nitrogen concentration meter, a nitrate nitrogen concentration meter, a suspended matter concentration meter, and the like. The optimum operating value can be set by arranging only the drainage flow meter, and more preferably, each measurement for setting and calculating the optimum operating value by arranging a drainage flow meter and a drainage concentration meter. The value can be measured.

本発明の第12の形態によれば、カルマンフィルタ演算制御部でアンモニア性窒素濃度、硝酸性窒素濃度及び/又は溶存酸素濃度などの各測定値から各測定量の予測値を演算するから、正確性の高い予測値を算出することができる。前記カルマンフィルタ制御部や線型演算制御部では、生物反応モデルとしては簡単な行列方程式を用いて演算が行われるから、これらの制御部はパーソナルコンピューターの中央処理装置(CPU)などを用いて好適な速度で演算することができ、前記記憶手段としてパーソナルコンピューターのメモリー部を用いることができる。更に、前記予測値が出力される毎に前記各測定値と比較され、前記線型演算制御部の線型演算処理が修正されるから、現象追随性が良く、正確性の高い予測を行うことができる。従って、これらの予測値から前記線型演算処理により制御信号を演算出力するから、この制御信号は曝気装置を好適に動作させることができ、高効率で低コストな活性汚泥方式排水処理装置を提供することができる。   According to the twelfth aspect of the present invention, since the Kalman filter calculation control unit calculates the predicted value of each measured quantity from each measured value such as ammonia nitrogen concentration, nitrate nitrogen concentration and / or dissolved oxygen concentration, it is accurate. A high predicted value can be calculated. In the Kalman filter control unit and the linear calculation control unit, calculations are performed using simple matrix equations as biological reaction models. Therefore, these control units use a central processing unit (CPU) of a personal computer, etc. And a memory portion of a personal computer can be used as the storage means. Furthermore, each time the predicted value is output, it is compared with each measured value, and the linear calculation processing of the linear calculation control unit is corrected. Therefore, it is possible to perform prediction with good phenomenon tracking and high accuracy. . Therefore, since a control signal is calculated and output from these predicted values by the linear calculation process, this control signal can operate the aeration apparatus suitably, and provides an activated sludge wastewater treatment apparatus with high efficiency and low cost. be able to.

本発明の第13の形態によれば、カルマンフィルタ演算制御部と線型演算制御部により逐次演算処理が行われるから、正確性の高い制御信号を導出することができる。前記カルマンフィルタ演算制御部は、上述のように、比較的簡単なカルマンフィルタ演算式:Xk+1=K・X+K・U+K・Y+K・Dから構成され、前記線型演算制御部は線型演算式:Uk+1=−F・Xk+1−F・Dから構成されている。従って、複雑な生物化学反応モデルに基づいた曝気装置の制御をパーソナルコンピューターなどにより実行することができ、本発明に係る活性汚泥方式排水処理方法及び装置を既設の排水処理装置に低コストで導入することができる。 According to the thirteenth aspect of the present invention, since the sequential calculation process is performed by the Kalman filter calculation control unit and the linear calculation control unit, a highly accurate control signal can be derived. As described above, the Kalman filter calculation control unit is composed of a relatively simple Kalman filter calculation formula: X k + 1 = K X · X k + K U · U k + K Y · Y k + K D · D k The control unit is configured by a linear arithmetic expression: U k + 1 = −F X · X k + 1 −F D · D k . Therefore, the control of the aeration apparatus based on a complicated biochemical reaction model can be executed by a personal computer or the like, and the activated sludge wastewater treatment method and apparatus according to the present invention are introduced into an existing wastewater treatment apparatus at a low cost. be able to.

本発明の第14の形態によれば、前記線型演算処理により出力された制御信号が、次の制御信号が出力されるまで一定値に保持されるから、前記曝気装置の動作の揺らぎを抑制することができる。従って、本発明に係る曝気装置は、回転速度が常時安定しており、誤作動や破損を引起す確率が格段に低減されるから、超寿命で安定動作する活性汚泥方式排水処理装置を提供することができる。   According to the fourteenth aspect of the present invention, since the control signal output by the linear arithmetic processing is held at a constant value until the next control signal is output, the fluctuation of the operation of the aeration apparatus is suppressed. be able to. Therefore, the aeration apparatus according to the present invention provides an activated sludge wastewater treatment apparatus that operates stably with a long service life because the rotation speed is always stable and the probability of causing malfunction or breakage is greatly reduced. be able to.

本発明の第15の形態によれば、前記ローパスフィルタに各測定量の基準値が設定され、前記各測定値が基準値以下のときにのみ演算処理が実行されるから、急激な各測定値の変化に対する前記演算処理の安定性を確保することができる。即ち、前記各測定量の各測定値が前記排水処理装置内における各測定量の極端な濃度斑、前記測定器からのノイズ信号又は測定器の誤作動などにより基準値以上の信号が前記演算処理に取り込まれることを防止することができる。従って、本発明に係る曝気装置は、回転速度が常時安定しており、誤作動や破損を引起す確率が格段に低減されるから、長寿命で安定動作する活性汚泥方式排水処理装置を提供することができる。   According to the fifteenth aspect of the present invention, since the reference value of each measurement amount is set in the low-pass filter, and the calculation process is executed only when each measurement value is equal to or less than the reference value, each rapid measurement value It is possible to ensure the stability of the arithmetic processing with respect to the change of. In other words, each measured value of each measured quantity is converted to an arithmetic processing signal that exceeds the reference value due to extreme concentration spots of each measured quantity in the wastewater treatment apparatus, a noise signal from the measuring instrument, or a malfunction of the measuring instrument. Can be prevented from being taken in. Therefore, the aeration apparatus according to the present invention provides an activated sludge wastewater treatment apparatus that has a long life and operates stably because the rotation speed is always stable and the probability of causing malfunction or breakage is greatly reduced. be able to.

本発明の第16の形態によれば、処理工程中にアンモニア性窒素濃度計、硝酸性窒素濃度計及び/又は溶存酸素濃度計を設置して、その測定値を前記パーソナルコンピュータ制御システムに入力することによって、曝気装置を最適に制御することができる。従って、熟練の現場管理者が常駐せずとも、特に窒素化合物の除去を安定して且つ省エネルギーで実施することができる。   According to the sixteenth aspect of the present invention, an ammonia nitrogen concentration meter, a nitrate nitrogen concentration meter and / or a dissolved oxygen concentration meter are installed during the processing step, and the measured value is input to the personal computer control system. Thus, the aeration apparatus can be optimally controlled. Therefore, it is possible to stably remove nitrogen compounds in a stable and energy saving manner even without having a skilled site manager resident.

本発明の第17の形態によれば、アンモニア性窒素濃度計、硝酸性窒素濃度計及び/又は溶存酸素濃度計を設けて、これらの各測定値から最適動作値を設定するから、前記オキシデーションディッチ槽に配設された曝気装置により、アンモニア性窒素を分解する好気性運転と硝酸性窒素を分解する無酸素運転を適宜に切替えることができる。   According to the seventeenth aspect of the present invention, an ammoniacal nitrogen concentration meter, a nitrate nitrogen concentration meter and / or a dissolved oxygen concentration meter are provided, and an optimum operating value is set from these measured values. An aerobic operation for decomposing ammonia nitrogen and an oxygen-free operation for decomposing nitrate nitrogen can be appropriately switched by the aeration apparatus disposed in the ditch tank.

以下、図面を参照して本発明の実施の形態について説明する。図1は、本発明に係るオキシデーションディッチ槽2を用いた活性汚泥方式排水処理装置を示す概略図である。前記オキシデーションディッチ槽2には、循環制御装置3と曝気装置4が設置され、嫌気状態では前記循環制御装置3を駆動し、好気状態では前記曝気装置4を駆動制御する演算制御部1が前記オキシデーションディッチ槽2に接続されている。前記オキシデーションディッチ槽2には、前記アンモニア性窒素濃度計、硝酸性窒素濃度計及び溶存酸素濃度計が設置され、アンモニア性窒素濃度信号10、硝酸性窒素濃度信号8及び溶存酸素濃度信号12が前記演算制御部に入力される。また、前記排水処理装置に供給される排水(原水)は、排水流量信号14と排水濃度信号16から構成される。前記排水流量信号14は、途中で分岐して一方が測定値としてカルマンフィルタ演算制御部(KF)6に入力される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing an activated sludge wastewater treatment apparatus using an oxidation ditch tank 2 according to the present invention. In the oxidation ditch tank 2, a circulation control device 3 and an aeration device 4 are installed. An arithmetic control unit 1 that drives the circulation control device 3 in an anaerobic state and drives and controls the aeration device 4 in an aerobic state. It is connected to the oxidation ditch tank 2. The oxidation ditch tank 2 is provided with the ammonia nitrogen concentration meter, nitrate nitrogen concentration meter, and dissolved oxygen concentration meter. The ammonia nitrogen concentration signal 10, the nitrate nitrogen concentration signal 8, and the dissolved oxygen concentration signal 12 are provided. Input to the arithmetic control unit. The waste water (raw water) supplied to the waste water treatment apparatus is composed of a waste water flow rate signal 14 and a waste water concentration signal 16. The drainage flow rate signal 14 branches in the middle, and one is input to the Kalman filter arithmetic control unit (KF) 6 as a measured value.

前記演算制御部は、前記カルマンフィルタ制御部6、線型演算制御部24及び分配部29から構成される。このカルマンフィルタ制御部6には、前記アンモニア性窒素濃度信号、硝酸性窒素濃度信号及び溶存酸素濃度信号が接続され、前記各測定量の各測定値が信号として前記カルマンフィルタ制御部6に取り込まれる。更に、前記線型演算制御部から出力される制御信号28が前記カルマンフィルタ制御部に戻され、これと共に前記各信号8、10、12は、カルマンフィルタ制御部6において、次のカルマンフィルタ演算式:Xk+1=K・X+K・U+K・Y+K・Dによって演算される。ここで、Xk+1は次の予測値、Xは直前の予測値、Uは直前の制御信号、Y及びD(排水の流量信号18・濃度信号16)は前記各測定量の現在測定値であり、列ベクトルを形成している。また、K、K、K、Kは行列である。次に前記線型演算処理において、直前の制御信号Uが次の予測値Xk+1及び排水の流量信号20・濃度信号16Dから次の線型演算式:Uk+1=−F・Xk+1−F・Dにより演算される。従って、前記直前の予測値、現在測定値及び直前の制御信号から線型演算式の修正が逐次行われるから、優れた現象追随性を有する演算制御を行うことができる。 The calculation control unit includes the Kalman filter control unit 6, a linear calculation control unit 24, and a distribution unit 29. The Kalman filter control unit 6 is connected to the ammonia nitrogen concentration signal, the nitrate nitrogen concentration signal, and the dissolved oxygen concentration signal, and each measurement value of each measurement amount is taken into the Kalman filter control unit 6 as a signal. Further, the control signal 28 output from the linear arithmetic control unit is returned to the Kalman filter control unit, and the signals 8, 10 and 12 are also transmitted to the Kalman filter control unit 6 by the following Kalman filter arithmetic expression: X k + 1 = It is calculated by K X · X k + K U · U k + K Y · Y k + K D · D k . Here, X k + 1 is the next predicted value, X k is the immediately preceding predicted value, U k is the immediately preceding control signal, and Y k and D k (drainage flow rate signal 18 / concentration signal 16) are the current values of the respective measured quantities. Measurement values, forming a column vector. K X , K U , K Y , and K D are matrices. Next, in the linear calculation process, the immediately preceding control signal U k is calculated from the next predicted value X k + 1 and the drainage flow signal 20 / concentration signal 16D k by the following linear calculation formula: U k + 1 = −F X · X k + 1 −F Calculated by D · Dk . Accordingly, since the linear arithmetic equation is corrected sequentially from the immediately preceding predicted value, the current measured value, and the immediately preceding control signal, it is possible to perform arithmetic control having excellent phenomenon tracking.

上記の演算式は、国際水質学会(IAWQ:International Association on Water Quality)が、窒素やリンの除去プロセスを非線形微分方程式を用いて表したIAWQの標準活性汚泥モデルNo.1〜3のいずれかに基づいて導出される。   The above equation is calculated by the International Association on Water Quality (IAWQ), which is a standard activated sludge model No. of IAWQ that represents the removal process of nitrogen and phosphorus using a nonlinear differential equation. It is derived based on any one of 1-3.

更に、前記線型演算制御部24から出力される制御信号26は、分配部29において、デジタル信号からアナログ信号へ変換され、この分配部29に内蔵される増幅器により信号を増幅して制御アナログ信号32を出力する。   Further, the control signal 26 output from the linear arithmetic control unit 24 is converted from a digital signal to an analog signal in the distribution unit 29, and the control analog signal 32 is amplified by an amplifier built in the distribution unit 29. Is output.

図2は、本発明に係る信号保持回路及びローパスフィルタが配設された活性汚泥方式排水処理装置の概略図である。図2の活性汚泥方式排水処理装置は、図1の排水処理装置に信号保持回路25、これに接続されたトリガー発信器27、ローパスフィルタ38、39及びこれに接続されたスイッチ42、43が設置されている。図2における線型演算制御部24は、流量回路24a、予測値回路24b、ミキシング回路24e、信号保持回路25及びトリガー発信器27から構成される。前記線型演算制御部24では、流量回路24aにより流量信号20から演算出力された流量演算信号24cと、予測値回路24bにより予測値信号22から演算出力された予測値演算信号24dとをミキシング回路24eによりミキシングして前記制御信号26が前記信号保持回路25に出力される。この信号保持回路25では、前記トリガー発信器27からのパルス入力に伴って前記制御信号26が一定値に保持される。   FIG. 2 is a schematic view of an activated sludge wastewater treatment apparatus provided with a signal holding circuit and a low-pass filter according to the present invention. The activated sludge wastewater treatment apparatus of FIG. 2 is provided with a signal holding circuit 25, a trigger transmitter 27 connected thereto, low-pass filters 38 and 39, and switches 42 and 43 connected thereto, in the wastewater treatment apparatus of FIG. Has been. 2 includes a flow rate circuit 24a, a predicted value circuit 24b, a mixing circuit 24e, a signal holding circuit 25, and a trigger transmitter 27. The linear calculation control unit 24 mixes the flow rate calculation signal 24c calculated and output from the flow rate signal 20 by the flow rate circuit 24a and the predicted value calculation signal 24d calculated and output from the predicted value signal 22 by the predicted value circuit 24b. And the control signal 26 is output to the signal holding circuit 25. In the signal holding circuit 25, the control signal 26 is held at a constant value in accordance with the pulse input from the trigger transmitter 27.

図3は、本発明に係る制御信号38とトリガー信号34の時間変化の関係を示す関係図である。前記トリガー発信器27から周期Tでトリガー信号34が発信される。このトリガー信号34のパルスが前記信号保持回路25に入力されると、この入力時間の制御点t1における制御信号26が信号保持回25により保持されて一定値の制御信号26aとして出力される。更に、前記トリガー信号34の次のパルスが入力されると制御信号26の制御点t2での値が保持され、一定値の制御信号26aとして出力される。図3の制御信号26は、連続的に変化するように図示されているが、実際は前記演算処理毎に出力される不連続な数値である。   FIG. 3 is a relational diagram showing the temporal change relationship between the control signal 38 and the trigger signal 34 according to the present invention. A trigger signal 34 is transmitted from the trigger transmitter 27 at a period T. When the pulse of the trigger signal 34 is input to the signal holding circuit 25, the control signal 26 at the control point t1 of this input time is held by the signal holding circuit 25 and is output as a constant control signal 26a. Further, when the next pulse of the trigger signal 34 is input, the value of the control signal 26 at the control point t2 is held and output as a constant control signal 26a. Although the control signal 26 in FIG. 3 is shown to change continuously, the control signal 26 is actually a discontinuous numerical value output for each arithmetic processing.

前記制御信号32が、次の制御信号が出力されるまで一定値に保持されるから、前記曝気装置4の動作の揺らぎを防止される。前記各測定値は、連続的に変動するから、前記各測定値が大きく又は小刻みに揺らいだ場合、この揺らぎを全て抑制信号に反映させる場合、前記曝気装置の安定動作が妨げられる。従って、前記逐次演算処理より次の制御信号が出力されるまで前記制御信号を一定に保持することにより、安定に前記曝気措置を動作することができる。   Since the control signal 32 is held at a constant value until the next control signal is output, fluctuations in the operation of the aeration apparatus 4 are prevented. Since each measured value fluctuates continuously, when each measured value fluctuates largely or in small increments, when all the fluctuations are reflected in the suppression signal, the stable operation of the aeration apparatus is hindered. Therefore, the aeration measure can be stably operated by holding the control signal constant until the next control signal is output from the sequential calculation processing.

図2の排水流量信号14には前記ローパスフィルタ38が接続され、基準値以下のときには、スイッチ42をON状態にして排水流量信号14を前記流量回路24a及びカルマンフィルタ演算制御部6に出力して演算処理を実行する。瞬間的な排水流量の過度な増加が引起された場合や流量測定器の誤差動を起こした場合などにおいて、異常な排水流量信号14がそのまま前記流量回路24a及びカルマンフィルタ演算制御部6に出力されると、前記最適動作値近傍から大きく逸脱した異常な制御信号26を出力する。従って、前記基準値以上の流量信号は、ノイズ又はエラーとして取り扱うことによって、安定した曝気装置4の制御を行うことができる。   The low-pass filter 38 is connected to the drainage flow rate signal 14 in FIG. 2, and when it is below the reference value, the switch 42 is turned on and the drainage flow rate signal 14 is output to the flow rate circuit 24a and the Kalman filter calculation control unit 6 for calculation. Execute the process. When an excessive increase in the instantaneous drainage flow rate is caused or when an error of the flow rate measuring device occurs, an abnormal drainage flow rate signal 14 is output as it is to the flow rate circuit 24a and the Kalman filter arithmetic control unit 6. Then, an abnormal control signal 26 deviating greatly from the vicinity of the optimum operating value is output. Accordingly, the aeration apparatus 4 can be stably controlled by treating a flow rate signal equal to or higher than the reference value as noise or error.

ローパスフィルタ39では、前記曝気装置2において測定されたアンモニア性窒素濃度、硝酸性窒素濃度及び溶存酸素濃度による各測定値信号44aが基準値以下のとき第1シーケンス制御コントローラ(PLC1)30に出力され、このPLC1によりD/A変換された測定値信号44がカルマンフィルタ演算制御部に出力される。また、図2の排水処理装置には、第1シーケンス制御コントローラ(PLC1)30及び第2シーケンス制御コントローラ(PLC2)31が設置されている。これらのコントローラ30、31には、D/A変換器及び増幅器が配設されておいる。   In the low-pass filter 39, when each measured value signal 44a based on the ammonia nitrogen concentration, nitrate nitrogen concentration, and dissolved oxygen concentration measured in the aeration apparatus 2 is below a reference value, it is output to the first sequence controller (PLC1) 30. The measured value signal 44 D / A converted by the PLC 1 is output to the Kalman filter calculation control unit. In addition, a first sequence controller (PLC1) 30 and a second sequence controller (PLC2) 31 are installed in the wastewater treatment apparatus of FIG. These controllers 30 and 31 are provided with D / A converters and amplifiers.

図4は、本発明に係るオンライン部52及びオフライン部56によるオキシデーションディッチ槽2の制御方法示す概略図である。前記オキシデーションディッチ槽2内に設置された前記循環制御装置3及び曝気装置4を制御することにより、前記好気性運転と無酸素運転の切替えが適宜に自動制御で行われる。前記曝気装置4を駆動する好気性運転では、活性汚泥を循環流動させると共に曝気攪拌する。従って、前記オキシデーションディッチ槽の全域が好気状態に保持され、好気性菌により排水中のアンモニア性窒素が硝酸性窒素へと硝化される。前記曝気装置4を停止して前記循環制御装置3が駆動され、前記好気性運転時に生成された硝酸性窒素が脱膣菌により還元されて窒素ガスとなり、大気中へと放出される。前記活性汚泥は、循環制御装置3により曝気されずに汚泥を沈降させない流速で循環流動する。   FIG. 4 is a schematic diagram showing a control method of the oxidation ditch tank 2 by the online unit 52 and the offline unit 56 according to the present invention. By controlling the circulation control device 3 and the aeration device 4 installed in the oxidation ditch tank 2, the aerobic operation and the anaerobic operation are appropriately automatically controlled. In the aerobic operation for driving the aeration apparatus 4, the activated sludge is circulated and aerated and agitated. Accordingly, the entire area of the oxidation ditch tank is maintained in an aerobic state, and ammonia nitrogen in the waste water is nitrified to nitrate nitrogen by the aerobic bacteria. The aeration apparatus 4 is stopped, the circulation control apparatus 3 is driven, and nitrate nitrogen generated during the aerobic operation is reduced by the vaginal bacteria to become nitrogen gas and released into the atmosphere. The activated sludge circulates and flows at a flow rate that does not cause the sludge to settle without being aerated by the circulation control device 3.

従って、前記オキシデーションディッチ槽2では、アンモニア性窒素濃度、硝酸性窒素濃度及び溶存酸素濃度が有機排水の浄化において最も重要な管理指標である。前記オキシデーションディッチ2には、硝化溶存酸素濃度計8a、アンモニア性窒素濃度計10a、溶存酸素濃度計12aが設置され、これらの測定値8、10、12が前記PLC1:30に出力され、D/A変換及び増幅されてオンライン部52内のCPU53aに入力されて演算される。前記オンライン部52には、前記オフライン部56が接続されており、このオフライン部56により本システムの設計、前記オンライン部52の設定条件の画面表示、生物反応モデルの設定値の変更及び変更後の計算が行われる。これら変更された設定値や計算結果は、オンライン部のメモリー(ME)52bに出力される。   Therefore, in the oxidation ditch tank 2, the ammonia nitrogen concentration, the nitrate nitrogen concentration, and the dissolved oxygen concentration are the most important management indexes in the purification of organic waste water. In the oxidation ditch 2, a nitrified dissolved oxygen concentration meter 8a, an ammonia nitrogen concentration meter 10a, and a dissolved oxygen concentration meter 12a are installed, and these measured values 8, 10, and 12 are output to the PLC 1:30, and D / A conversion and amplification, and input to the CPU 53a in the online unit 52 for calculation. The off-line unit 56 is connected to the on-line unit 52, and the off-line unit 56 designs the system, displays the setting conditions of the on-line unit 52, changes the set values of the biological reaction model, and the changed values. Calculation is performed. These changed setting values and calculation results are output to the memory (ME) 52b in the online part.

図5は、本発明に係るカルマンフィルタ制御と従来のPID制御による処理水質のアンモニア性窒素濃度の比較図である。実験に用いられた活性汚泥方式排水処理装置は、処理能力120,000m/hを有し、2系列のオキシデーションディッチ槽の各々に5基の曝気装置が備えられている。上記の1系列は、アンモニア性窒素濃度計、硝酸性窒素濃度計、溶存酸素濃度計及び流量計からの信号に基づいて曝気装置が上記のカルマンフィルタ法により自動最適化制御される排水処理装置である。図5には。この排水処理装置による浄化水のアンモニア性窒素濃度が四角印(□)でプロットされている。もう一方の1系列は、溶存酸素濃度計からの信号に基づいてPID制御により曝気装置を制御する排水処理装置であり、この排水処理装置によって処理された浄化水のアンモニア性窒素濃度が比較例として、丸印(○)でプロットされている。 FIG. 5 is a comparison diagram of ammonia nitrogen concentration in the quality of treated water by the Kalman filter control according to the present invention and the conventional PID control. The activated sludge wastewater treatment device used in the experiment has a treatment capacity of 120,000 m 2 / h, and five aeration devices are provided in each of two series of oxidation ditch tanks. The above-mentioned one series is a wastewater treatment apparatus in which an aeration apparatus is automatically optimized and controlled by the Kalman filter method based on signals from an ammonia nitrogen concentration meter, a nitrate nitrogen concentration meter, a dissolved oxygen concentration meter, and a flow meter. . In FIG. The ammonia nitrogen concentration of the purified water from this waste water treatment device is plotted with square marks (□). The other one series is a waste water treatment device that controls the aeration device by PID control based on the signal from the dissolved oxygen concentration meter, and the ammonia nitrogen concentration of the purified water treated by this waste water treatment device is a comparative example. Plotted with circles (◯).

図に示すように、本発明に係る自動最適化制御によるアンモニア性窒素濃度(□)は、従来のPID制御に比べ、測定期間中の濃度が一定し、その濃度も低く抑えられている。特に、3月3日〜4日及び3月17日〜18日において、PID制御による排水処理では、急激なアンモニア性窒素濃度の増加が見られるが、前記自動最適化制御によるアンモニア性窒素濃度は、測定期間中、略同程度の値を保持している。従って、本発明に係る自動最適化制御による排水処理方法は、良好な浄化処理を安定で高効率に行えることが実証された。   As shown in the figure, the ammonia nitrogen concentration (□) by the automatic optimization control according to the present invention has a constant concentration during the measurement period and is kept low compared to the conventional PID control. In particular, on March 3 to 4 and March 17 to 18, in the wastewater treatment by PID control, an abrupt increase in ammonia nitrogen concentration is seen, but the ammonia nitrogen concentration by the automatic optimization control is During the measurement period, approximately the same value is maintained. Therefore, it was proved that the wastewater treatment method by the automatic optimization control according to the present invention can perform good purification treatment stably and with high efficiency.

図6は、本発明に係る自動最適化制御と従来のPID制御による処理水質の硝酸性窒素濃度の比較図である。図6では、図5の結果を得た同じ排水処理装置を用いて、前記自動最適化制御とPID制御による排水処理から得られた各浄化水の硝酸性窒素濃度が比較されている。前記自動最適化制御による浄化水の硝酸性窒素濃度(□)は、前記PID制御(○)に比べ、急激な変化が少なく、その硝酸性窒素濃度も低く抑えられている。従って、アンモニア性窒素濃度の場合と同様に硝酸性窒素濃度の比較した場合においても、本発明に係る自動最適化制御の排水処理方法により良好な浄化処理を安定で高効率に行えることが実証された。   FIG. 6 is a comparison diagram of nitrate nitrogen concentration of the treated water quality by the automatic optimization control according to the present invention and the conventional PID control. In FIG. 6, the nitrate nitrogen concentration of each purified water obtained from the waste water treatment by the automatic optimization control and the PID control is compared using the same waste water treatment apparatus that obtained the result of FIG. The nitrate nitrogen concentration (□) of the purified water by the automatic optimization control is less rapidly changed than the PID control (○), and the nitrate nitrogen concentration is also kept low. Therefore, even in the case of comparing the nitrate nitrogen concentration as in the case of the ammonia nitrogen concentration, it has been demonstrated that the waste water treatment method of the automatic optimization control according to the present invention can perform a good purification process stably and with high efficiency. It was.

図7は、本発明に係る自動最適化制御と従来のPID制御による排水処理の消費電力量の比較図である。図のプロットは、前記自動最適化制御の場合(□印)とPID制御の場合(○印)における各排水処理装置の消費電力量である。図より明らかなように、前記PID制御の場合に比べて前記自動最適化制御の場合の消費電力は低く抑えられている。また、測定期間中の平均消費電力量を比較すると、前記PID制御における平均消費電力量が7246kWdであるのに対して、前記自動最適化制御における平均消費電力量は6521kWdであり、約10%の電力量削減が実現されている。従って、本発明に係る自動最適化制御の排水処理方法により、排水処理の飛躍的な省エネルギー化を実現できることが実証された。   FIG. 7 is a comparison diagram of the power consumption of the wastewater treatment by the automatic optimization control according to the present invention and the conventional PID control. The plots in the figure are the power consumption of each waste water treatment apparatus in the case of the automatic optimization control (marked with □) and the case of PID control (marked with ◯). As is apparent from the figure, the power consumption in the automatic optimization control is suppressed to be lower than that in the PID control. Further, when comparing the average power consumption during the measurement period, the average power consumption in the PID control is 7246 kWd, whereas the average power consumption in the automatic optimization control is 6521 kWd, which is about 10%. Electricity reduction has been realized. Therefore, it has been demonstrated that the wastewater treatment method of the automatic optimization control according to the present invention can realize dramatic energy saving of wastewater treatment.

本発明に係る活性汚泥方式排水処理方法及び装置は、既設の排水処理装置に最小限の装置投資で導入することができる。更に、各地に設けられた排水処理装置を遠隔地にある1つの中央管理施設などからコンピューターを用いて自動制御することができる。更に、本発明の前記活性汚泥方式排水処理方法は、低コストで高効率な排水処理を実現することができ、河川及び湖沼などの水質の維持に寄与することができる   The activated sludge wastewater treatment method and apparatus according to the present invention can be introduced into an existing wastewater treatment apparatus with a minimum equipment investment. Furthermore, the wastewater treatment apparatus provided in each place can be automatically controlled using a computer from one central management facility in a remote place. Furthermore, the activated sludge wastewater treatment method of the present invention can realize low-cost and high-efficiency wastewater treatment, and can contribute to the maintenance of water quality such as rivers and lakes.

本発明に係るオキシデーションディッチ槽2を用いた活性汚泥方式排水処理装置を示す概略図である。It is the schematic which shows the activated sludge system waste water treatment apparatus using the oxidation ditch tank 2 which concerns on this invention. 本発明に係る信号保持回路及びローパスフィルタが配設された活性汚泥方式排水処理装置の概略図である。1 is a schematic view of an activated sludge wastewater treatment apparatus provided with a signal holding circuit and a low-pass filter according to the present invention. 本発明に係る制御信号38とトリガー信号34の時間変化の関係を示す関係図である。It is a relationship figure which shows the relationship of the time change of the control signal 38 and the trigger signal 34 which concerns on this invention. 本発明に係るオンライン部52及びオフライン部56によるオキシデーションディッチ槽2の制御方法示す概略図である。It is the schematic which shows the control method of the oxidation ditch tank 2 by the online part 52 and the offline part 56 which concern on this invention. 本発明に係るカルマンフィルタ制御と従来のPID制御による処理水質のアンモニア性窒素濃度の比較図である。It is a comparison figure of ammonia nitrogen concentration of the quality of treated water by Kalman filter control concerning the present invention, and conventional PID control. 本発明に係る自動最適化制御と従来のPID制御による処理水質の硝酸性窒素濃度の比較図である。It is a comparison figure of nitrate nitrogen concentration of the quality of treated water by automatic optimization control concerning the present invention, and conventional PID control. 本発明に係る自動最適化制御と従来のPID制御による排水処理の平均消費電力量の比較図である。It is a comparison figure of the average power consumption of the waste water treatment by the automatic optimization control which concerns on this invention, and the conventional PID control. 従来のPID制御による曝気槽の制御装置を示す概略図である。It is the schematic which shows the control apparatus of the aeration tank by the conventional PID control. 従来の制御装置を有するオキシデーションディッチ槽の概略図である。It is the schematic of the oxidation ditch tank which has the conventional control apparatus.

符号の説明Explanation of symbols

1 演算制御部
2 オキシデーションディッチ槽
3 循環制御装置
4 曝気装置
6 カルマンフィルタ制御部
8 硝酸性窒素濃度信号
8a 硝酸性窒素濃度計
10 アンモニア性窒素濃度信号
10a アンモニア性窒素濃度計
12 溶存酸素濃度信号
12a 溶存酸素濃度計
14 排水流量信号
16 排水濃度信号
18 流量信号
20 流量信号
22 予測信号
24 線型演算制御部
24a 流量回路
24b 予測値回路
24c 流量演算信号
24d 予測値演算信号
24e ミキシング回路
25 信号保持回路
26 制御信号
26a 制御信号
28 制御信号
27 トリガー発信器
29 分配部
30 第1シーケンス制御コントローラ
30a D/A変換器
30b 増幅器
31 第2シーケンス制御コントローラ
32 制御信号
34 トリガー信号
38 ローパスフィルタ
39 ローパスフィルタ
44 測定値信号
44a 測定値信号
52 オンライン部
52b メモリー
52a CPU
56 オフライン部
101 原水流量計
102 原水流量調節弁
103 返送汚泥流量計
104 曝気槽
105 溶存酸素濃度計
106 圧力検出器
107 圧力調節器
108 酸素供給量測定器
109 酸素供給量調節弁
110 酸素供給量調節計
111 予測機能付きPID制御装置
112 圧力制御調節弁
201 反応槽
202 曝気攪拌装置
203 水中プロペラ装置
204 余剰汚泥引抜装置
205 制御装置
206 汚水
206a 活性汚泥
206A 混合液
211 無終端循環水路
215 沈殿池
220 曝気攪拌翼
221 曝気攪拌翼
230 プロペラ
241 固液分離機
242 余剰汚泥引抜ポンプ
250 制御器
251 タッチパネル
S1 汚水処理システム
DESCRIPTION OF SYMBOLS 1 Computation control part 2 Oxidation ditch tank 3 Circulation control apparatus 4 Aeration apparatus 6 Kalman filter control part 8 Nitrate nitrogen concentration signal 8a Nitrate nitrogen concentration meter 10 Ammonia nitrogen concentration signal 10a Ammonia nitrogen concentration meter 12 Dissolved oxygen concentration signal 12a Dissolved oxygen concentration meter 14 Drainage flow signal 16 Drainage concentration signal 18 Flow rate signal 20 Flow rate signal 22 Prediction signal 24 Linear calculation control unit 24a Flow rate circuit 24b Prediction value circuit 24c Flow rate calculation signal 24d Prediction value calculation signal 24e Mixing circuit 25 Signal holding circuit 26 Control signal 26a Control signal 28 Control signal 27 Trigger transmitter 29 Distributor 30 First sequence controller 30a D / A converter 30b Amplifier 31 Second sequence controller 32 Control signal 34 Trigger signal 38 Low-pass filter Filter 39 low-pass filter 44 measured value signal 44a measured value signal 52 line section 52b memory 52a CPU
56 Offline section 101 Raw water flow meter 102 Raw water flow control valve 103 Return sludge flow meter 104 Aeration tank 105 Dissolved oxygen concentration meter 106 Pressure detector 107 Pressure controller 108 Oxygen supply meter 109 Oxygen supply control valve 110 Oxygen supply control Total 111 PID control device with prediction function 112 Pressure control control valve 201 Reaction tank 202 Aeration and stirring device 203 Underwater propeller device 204 Excess sludge extraction device 205 Control device 206 Sewage 206a Activated sludge 206A Mixed solution 211 Endless circulation channel 215 Sedimentation basin 220 Aeration Stirring blade 221 Aeration stirring blade 230 Propeller 241 Solid-liquid separator 242 Excess sludge extraction pump 250 Controller 251 Touch panel S1 Sewage treatment system

Claims (14)

曝気装置を用いて硝化・脱窒素工程が行われる活性汚泥方式排水処理装置において、前記排水処理装置内で少なくともアンモニア性窒素濃度、硝酸性窒素濃度及び溶存酸素濃度を測定し、前記各測定量の最適動作値を設定しこれらの最適動作値を目標にして前記各測定値を演算処理して制御信号を出力し、また前記排水処理装置に供給される排水の流量及び/又は排水濃度を測定しておき、前記演算処理は、前記各測定量の測定値から各測定量の予測値を演算するカルマンフィルタ演算処理と、この後段に直列された前記予測値から前記制御信号を演算出力する線型演算処理からなり、出力される前記制御信号を前記カルマンフィルタ演算処理に帰還させる演算処理であり、前記演算処理では逐次演算処理が行われ、前記カルマンフィルタ演算処理では、各測定量の現在測定値と直前の制御信号と直前の予測値から次の予測値を演算し、前記線型演算処理では前記次の予測値と前記排水流量及び/又は排水濃度の現在測定値から次の制御信号を演算し、前記制御信号により前記曝気装置を駆動制御することを特徴とする活性汚泥方式排水処理方法。 In an activated sludge type wastewater treatment device in which a nitrification / denitrogenation process is performed using an aeration device, at least ammonia nitrogen concentration, nitrate nitrogen concentration and dissolved oxygen concentration are measured in the wastewater treatment device, and set the optimum operating value, said by these optimum operating values target each measurement processing and outputs a control signal, also measure the flow and / or waste water the concentration of waste water supplied to the wastewater treatment device The calculation process includes a Kalman filter calculation process that calculates a predicted value of each measurement quantity from the measurement value of each measurement quantity, and a linear calculation that calculates and outputs the control signal from the prediction value serially connected to the subsequent stage. made from the process, an arithmetic processing for feeding back the control signal output to the Kalman filter processing, sequential processing is performed by the arithmetic processing, the Kalman filter In the calculation process, the next predicted value is calculated from the current measured value of each measured quantity, the immediately preceding control signal, and the immediately preceding predicted value. In the linear calculation process, the next predicted value and the drainage flow rate and / or drainage concentration are calculated. An activated sludge wastewater treatment method characterized in that a next control signal is calculated from a current measurement value, and the aeration apparatus is driven and controlled by the control signal. アンモニア性窒素濃度、硝酸性窒素濃度及び溶存酸素濃度の前記測定値をY、排水の流量及び/又は排水濃度の前記測定値をD、前記予測値をX、前記制御信号をU、添字kを直前の値、添字k+1を次の値とするとき、カルマンフィルタ演算式はXY is the measured value of ammonia nitrogen concentration, nitrate nitrogen concentration and dissolved oxygen concentration, D is the measured value of drainage flow rate and / or drainage concentration, X is the predicted value, U is the control signal, and k is the suffix k. When the immediately preceding value, subscript k + 1, is the next value, the Kalman filter arithmetic expression is X k+1k + 1 =K= K X ・X・ X k +K+ K U ・U・ U k +K+ K Y ・Y・ Y k +K+ K D ・D・ D k で表され、線型演算式はUThe linear arithmetic expression is U k+1k + 1 =−F= -F X ・X・ X k+1k + 1 −F-F D ・D・ D k により表される請求項1に記載の活性汚泥方式排水処理方法。The activated sludge method waste water treatment method of Claim 1 represented by these. 前記測定量として、COD(化学的酸素要求量)、BOD(生物化学的酸素要求量)、SS(浮遊物質濃度)、SV(活性汚泥沈殿率)、MLSS(活性汚泥浮遊物質)、MLVSS(活性汚泥有機性浮遊物質)、ORP(酸化還元電位)又は放散される窒素量を追加選択できる請求項1又は2に記載の活性汚泥方式排水処理方法。As the measurement amount, COD (chemical oxygen demand), BOD (biochemical oxygen demand), SS (floating matter concentration), SV (active sludge sedimentation rate), MLSS (active sludge suspended matter), MLVSS (active) 3. The activated sludge wastewater treatment method according to claim 1, wherein the sludge organic suspended substance), ORP (oxidation reduction potential), or the amount of nitrogen to be diffused can be additionally selected. 前記制御信号はデジタル信号からアナログ信号へ変換され、増幅されて制御アナログ信号となり、前記曝気装置を駆動制御する請求項1、2又は3に記載の活性汚泥方式排水処理方法。The activated sludge wastewater treatment method according to claim 1, wherein the control signal is converted from a digital signal to an analog signal, amplified to be a control analog signal, and the aeration apparatus is driven and controlled. 前記線型演算処理により出力された制御信号は、次の制御信号が出力されるまで一定値に保持され、この一定の制御信号により前記曝気装置を逐次的に駆動制御する請求項1〜4のいずれかに記載の活性汚泥方式排水処理方法。 The control signal output by the linear processing is held at a constant value until the next control signal is output, one of the claims 1 to 4 sequentially driving and controlling the aeration device by the predetermined control signal The activated sludge method waste water treatment method of crab . 前記各測定量の基準値が設定され、前記各測定量の各測定値が基準値以下のときに前記演算処理が実行される請求項1〜5のいずれかに記載の活性汚泥方式排水処理方法。   The activated sludge wastewater treatment method according to any one of claims 1 to 5, wherein a reference value for each measurement amount is set, and the calculation process is executed when each measurement value for each measurement amount is equal to or less than a reference value. . 前記排水処理装置がオキシデーションディッチである請求項1〜6のいずれかに記載の活性汚泥方式排水処理方法。   The said waste water treatment apparatus is an oxidation ditch, The activated sludge system waste water treatment method in any one of Claims 1-6. 曝気装置を用いて硝化・脱窒素工程が行われる活性汚泥方式排水処理装置において、前記排水処理装置内に配置された少なくともアンモニア性窒素濃度計、硝酸窒素濃度計及び溶存酸素濃度計と、これらの濃度計による測定値の記憶手段と、前記各測定量の最適動作値の記憶手段と、これらの最適動作値を目標にして前記各測定値を演算処理する演算制御部とを配設され、また前記排水処理装置に供給される排水の排水流量信号と排水濃度信号が生成され、前記演算制御部は、前記各測定量の測定値から各測定量の予測値を演算するカルマンフィルタ制御部と、この後段に直列された前記予測値から前記制御信号を演算出力する線型演算制御部とから構成され、前記制御信号は前記カルマンフィルタ制御部に帰還させる演算制御であり、前記演算制御部では逐次演算処理が行われ、前記カルマンフィルタ制御部では、各測定量の現在測定値と直前の制御信号と直前の予測値から次の予測値を演算し、前記線型演算制御部では前記次の予測値と前記排水流量及び/又は排水濃度の現在測定値から次の制御信号を演算し、前記演算制御部により出力される制御信号により前記曝気装置を駆動制御することを特徴とする活性汚泥方式排水処理装置。 In an activated sludge wastewater treatment apparatus in which a nitrification / denitrogenation process is performed using an aeration apparatus, at least an ammonia nitrogen concentration meter, a nitrogen nitrate concentration meter, and a dissolved oxygen concentration meter disposed in the wastewater treatment device, and these A means for storing measured values by a densitometer, a means for storing optimum operating values for the respective measured amounts, and a calculation control unit for calculating and processing each measured value with these optimum operating values as targets ; A drainage flow rate signal and a drainage concentration signal of the wastewater supplied to the wastewater treatment device are generated, and the calculation control unit calculates a predicted value of each measurement amount from the measurement value of each measurement amount, and this constructed from the predicted value in series downstream from the linear arithmetic control unit for calculating outputting the control signal, said control signal is an arithmetic control for feeding back to the Kalman filter controller, wherein The arithmetic control unit performs sequential calculation processing, the Kalman filter control unit calculates the next predicted value from the current measurement value of each measurement quantity, the immediately preceding control signal, and the immediately preceding predicted value, and the linear calculation control unit An activity characterized in that a next control signal is calculated from a next predicted value and a current measurement value of the drainage flow rate and / or drainage concentration, and the aeration apparatus is driven and controlled by a control signal output by the calculation control unit. Sludge wastewater treatment equipment. 前記濃度計により測定されたアンモニア性窒素濃度、硝酸性窒素濃度及び溶存酸素濃度の測定値をY、前記排水流量信号及び/又は前記排水濃度信号をD、前記予測値をX、前記制御信号をU、添字kを直前(現在)の値、添字k+1を次の値とするとき、前記カルマンフィルタ制御部による演算式はX k+1 =K ・X +K ・U +K ・Y +K ・D で表され、前記線型演算制御部による演算式はU k+1 =−F ・X k+1 −F ・D により表される請求項8に記載の活性汚泥方式排水処理装置。 The measured values of ammonia nitrogen concentration, nitrate nitrogen concentration and dissolved oxygen concentration measured by the densitometer are Y, the drainage flow signal and / or the drainage concentration signal is D, the predicted value is X, and the control signal is When U and subscript k are the immediately preceding (current) value and subscript k + 1 is the next value, the arithmetic expression by the Kalman filter control unit is X k + 1 = K X · X k + K U · U k + K Y · Y k + K D - represented by D k, the linear arithmetic expression by the arithmetic control unit U k + 1 = -F X · X k + 1 -F activated sludge method the waste water treatment apparatus according to claim 8 which is represented by D-D k. 前記測定量として、COD(化学的酸素要求量)、BOD(生物化学的酸素要求量)、SS(浮遊物質濃度)、SV(活性汚泥沈殿率)、MLSS(活性汚泥浮遊物質)、MLVSS(活性汚泥有機性浮遊物質)、ORP(酸化還元電位)又は放散される窒素量を追加選択できる請求項8又は9に記載の活性汚泥方式排水処理装置。 As the measurement amount, COD (chemical oxygen demand), BOD (biochemical oxygen demand), SS (floating matter concentration), SV (active sludge sedimentation rate), MLSS (active sludge suspended matter), MLVSS (active) The activated sludge wastewater treatment device according to claim 8 or 9, wherein an additional amount of sludge organic suspended solids), ORP (oxidation-reduction potential), or the amount of nitrogen released can be selected . 前記線型演算制御部の後段に分配部が設けられ、前記分配部により前記制御信号はデジタル信号からアナログ信号へ変換され、増幅されて制御アナログ信号となり、前記曝気装置を駆動制御する請求項8、9又は10に記載の活性汚泥方式排水処理装置。 9. A distribution unit is provided at a subsequent stage of the linear arithmetic control unit, and the control unit converts the control signal from a digital signal to an analog signal by the distribution unit and amplifies the control signal to drive and control the aeration apparatus. The activated sludge wastewater treatment apparatus according to 9 or 10 . 前記演算制御部に前記線型演算処理により出力された制御信号を次の制御信号が出力されるまで一定値に保持する信号保持回路が設置され、この一定の制御信号により前記曝気装置を逐次的に駆動制御する請求項8〜11のいずれかに記載の活性汚泥方式排水処理装置。 A signal holding circuit that holds the control signal output by the linear calculation processing at a constant value until the next control signal is output is installed in the arithmetic control unit, and the aeration apparatus is sequentially controlled by the constant control signal. The activated sludge wastewater treatment apparatus according to any one of claims 8 to 11, which is driven and controlled. 前記各測定量の基準値が設定されたローパスフィルタを配設し、このローパスフィルタに入力される前記各測定量の各測定値が基準値以下のときに前記演算処理を実行する請求項8〜12のいずれかに記載の活性汚泥方式排水処理装置。 9. A low-pass filter in which a reference value of each measurement amount is set is provided, and the calculation process is executed when each measurement value of each measurement amount input to the low-pass filter is equal to or less than a reference value. The activated sludge wastewater treatment apparatus according to any one of 12. 前記活性汚泥方式排水処理装置がオキシデーションディッチである請求項8〜13のいずれかに記載の活性汚泥方式排水処理装置。 The activated sludge wastewater treatment apparatus according to any one of claims 8 to 13, wherein the activated sludge wastewater treatment apparatus is an oxidation ditch.
JP2004236983A 2004-08-17 2004-08-17 Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment Active JP4117274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236983A JP4117274B2 (en) 2004-08-17 2004-08-17 Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236983A JP4117274B2 (en) 2004-08-17 2004-08-17 Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2006055683A JP2006055683A (en) 2006-03-02
JP4117274B2 true JP4117274B2 (en) 2008-07-16

Family

ID=36103607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236983A Active JP4117274B2 (en) 2004-08-17 2004-08-17 Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4117274B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871153B1 (en) * 2004-06-02 2006-08-11 Otv Sa PROCESS FOR TREATING WATER USING A BIOLOGICAL REACTOR IN WHICH AIR SPEED INJECTED IN THE REACTOR IS REGULATED AND DEVICE THEREFOR
WO2007038843A1 (en) * 2005-10-06 2007-04-12 Siemens Water Technologies Corp. Dynamic control of membrane bioreactor system
FR2943335B1 (en) * 2009-03-17 2011-07-22 Degremont METHOD OF CONTROLLING OXYGEN CONTRIBUTION FOR THE TREATMENT OF RESIDUAL WATER, AND INSTALLATION FOR ITS IMPLEMENTATION
JP5725869B2 (en) * 2011-01-11 2015-05-27 日本下水道事業団 Waste water treatment apparatus and operation method thereof
CN102502962A (en) * 2011-11-03 2012-06-20 安徽国祯环保节能科技股份有限公司 Method and device for controlling synchronous nitration and denitrification in surface aeration oxidation ditch process
JP5863409B2 (en) * 2011-11-15 2016-02-16 日本下水道事業団 Wastewater treatment equipment
EP2824081B1 (en) * 2012-03-09 2022-02-23 Metawater Co., Ltd. Wastewater treatment method
JP6022536B2 (en) * 2012-03-09 2016-11-09 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JP6022537B2 (en) * 2012-03-09 2016-11-09 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
WO2013183087A1 (en) * 2012-06-06 2013-12-12 川崎重工業株式会社 Water treatment system
MX360501B (en) 2012-09-13 2018-11-05 D C Water & Sewer Authority Method and apparatus for nitrogen removal in wastewater treatment.
KR20230037696A (en) * 2013-03-14 2023-03-16 디.시. 워터 앤 수어 오쏘러티 Method and apparatus for maximizing nitrogen removal from wastewater
JP6334897B2 (en) * 2013-11-20 2018-05-30 住友重機械エンバイロメント株式会社 Aeration and stirring system
SE538527C2 (en) 2014-06-17 2016-09-06 Xylem Ip Man S À R L Plant for the treatment of liquid and method for controlling such a plant
JP6802197B2 (en) * 2018-01-16 2020-12-16 住友重機械エンバイロメント株式会社 Aeration agitation system
CN108828170B (en) * 2018-04-26 2021-05-28 青岛黄海学院 Mariculture dissolved oxygen concentration acquisition device and method with multi-protocol output

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643478B2 (en) * 1989-09-29 1997-08-20 住友重機械工業株式会社 Biological denitrification control method
JP2835341B2 (en) * 1991-07-26 1998-12-14 住友重機械工業株式会社 Biological denitrification control method
JPH0724492A (en) * 1993-07-09 1995-01-27 Meidensha Corp Method for controlling operation of activated sludge circulation change method
JP3983825B2 (en) * 1994-06-21 2007-09-26 三菱電機株式会社 Control device for oxidation ditch water treatment system
JP4229999B2 (en) * 1998-02-27 2009-02-25 三菱電機株式会社 Biological nitrogen removal equipment
JP2000107744A (en) * 1998-10-05 2000-04-18 Toshiba Corp Client server system of water supply and drainage plant
JP2001252691A (en) * 2000-03-10 2001-09-18 Toshiba Corp Water quality controlling device for sewage treatment plant
JP2001259689A (en) * 2000-03-23 2001-09-25 Sumitomo Heavy Ind Ltd Device and method for treating waste water
JP4365512B2 (en) * 2000-06-12 2009-11-18 株式会社東芝 Sewage treatment system and measurement system
JP2003088889A (en) * 2001-09-18 2003-03-25 Mitsubishi Heavy Ind Ltd Method for treating sewage
JP4088075B2 (en) * 2002-02-01 2008-05-21 株式会社東芝 Water treatment process hybrid water quality measuring device and water treatment system having the same

Also Published As

Publication number Publication date
JP2006055683A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4117274B2 (en) Activated sludge wastewater treatment method and activated sludge wastewater treatment equipment
JP5775296B2 (en) Operation support apparatus and operation support method for sewage treatment plant
US20070075017A1 (en) Method and apparatus for treating wastewater
JP5608027B2 (en) Water treatment system and aeration air volume control method thereof
EP2740713A1 (en) Method for starting up and controlling a biological process for ammonium removal by the action of autotrophic bacteria in wastewater
US20060113243A1 (en) Wastewater treatment control
JP4334317B2 (en) Sewage treatment system
Morgenroth et al. Sequencing batch reactor technology: concepts, design and experiences (Abridged)
JP5606513B2 (en) Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus
Zhao et al. A novel control strategy for improved nitrogen removal in an alternating activated sludge process—Part I. Process analysis
US20240059594A1 (en) Simultaneous Nitrification/Denitrification (SNDN) in Sequencing Batch Reactor Applications
KR20220024245A (en) Integrated control system for sewage treatment plant
JP3823863B2 (en) Operation support system and control system for water treatment process
JP2017113725A (en) Operation support system and operation support method of sewage treatment plant
KR100661455B1 (en) Apparatus for treating waste water and method of using
Montecchio et al. Mathematical modelling of an intermittent anoxic/aerobic MBBR: Estimation of nitrification rates and energy savings
JP4617787B2 (en) Sewage treatment system
KR100519694B1 (en) Small-scale Sewage Disposal Facility
KR100434639B1 (en) inner flow control system of apparatus for treating water
SG190528A1 (en) Nitrogen and phosphorus removal method and nitrogen and phosphorus removal apparatus
Demey et al. Validation and implementation of model based control strategies at an industrial wastewater treatment plant
JP2001009497A (en) Biological water treatment and equipment therefor
JPH0938682A (en) Biological water treatment
JP4146491B2 (en) Water treatment using activated sludge
JPH06126293A (en) Method for controlling dissolved oxygen in aeration tank

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070729

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4117274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250