JP4616079B2 - Sample analyzer - Google Patents

Sample analyzer Download PDF

Info

Publication number
JP4616079B2
JP4616079B2 JP2005156950A JP2005156950A JP4616079B2 JP 4616079 B2 JP4616079 B2 JP 4616079B2 JP 2005156950 A JP2005156950 A JP 2005156950A JP 2005156950 A JP2005156950 A JP 2005156950A JP 4616079 B2 JP4616079 B2 JP 4616079B2
Authority
JP
Japan
Prior art keywords
light
light source
sample
wavelength
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005156950A
Other languages
Japanese (ja)
Other versions
JP2006329920A (en
JP2006329920A5 (en
Inventor
麻衣子 田邉
邦男 原田
作一郎 足立
隆 穴沢
功夫 山崎
英雄 榎
寛展 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005156950A priority Critical patent/JP4616079B2/en
Publication of JP2006329920A publication Critical patent/JP2006329920A/en
Publication of JP2006329920A5 publication Critical patent/JP2006329920A5/ja
Application granted granted Critical
Publication of JP4616079B2 publication Critical patent/JP4616079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,複数の測定位置で複数の試料を分析する試料分析装置に関し,試料測定信号間のクロストークを低減することのできる試料分析装置に関する。   The present invention relates to a sample analyzer that analyzes a plurality of samples at a plurality of measurement positions, and relates to a sample analyzer that can reduce crosstalk between sample measurement signals.

近年,試料中に含まれる成分量を検出する分析装置においては,試薬コストの削減や,環境への負荷低減のため,分析に用いる試料の微少量化が求められている。従来,このような検査に用いる分析装置には,ハロゲンランプ等からの白色光を試料に照射し,試料を透過してきた光を回折格子で分光して必要な波長成分を取り出し,その吸光度を割り出すことで目的の成分量を測定する分光分析装置が広く用いられてきた。しかし,ハロゲンランプ等から出射される光では,液量を減らすことにより細くなった試料に見合うだけの強度の光を得るための絞込みができず,試料の量を減らすことには限界があった。   In recent years, analyzers that detect the amount of components contained in a sample have been required to reduce the amount of the sample used for analysis in order to reduce reagent costs and reduce environmental burden. Conventionally, analyzers used for such inspections irradiate a sample with white light from a halogen lamp, etc., split the light transmitted through the sample with a diffraction grating, extract the necessary wavelength components, and determine the absorbance. Thus, spectroscopic analyzers that measure the amount of the target component have been widely used. However, with light emitted from halogen lamps, etc., there was a limit to reducing the amount of the sample because it was not possible to narrow down the light intensity to match the thinned sample by reducing the liquid volume. .

そこで,この問題を解決するために,液量を減らし,細くなった試料に十分な強度の光を絞り込むことが可能な,光源を使用することが考えられている。例えば,特開平8-122247号公報には,光源としてレーザ素子又はLED素子を備え,試料容器に複数波長の光を照射し,複数の波長域で吸光度を測定する分析装置が記載されている。また,特開2002-340676号公報には,複数のLEDそれぞれから,各々周波数fnで変調された発光波長λnの光が試料容器に照射され,透過光をAD変換して積算し,周波数分析することが記載されている。更に,光源として,発光ダイオード又はレーザダイオードのような複数の光源を用い,プリズムやハーフミラーなどの光学機器を用いずに,複数の光の光軸を一つに揃えるように構成し,試料容器に光を照射する方法が考えられている。   In order to solve this problem, it is considered to use a light source capable of reducing the amount of liquid and narrowing down the light with sufficient intensity to the thinned sample. For example, Japanese Patent Application Laid-Open No. 8-122247 describes an analyzer that includes a laser element or an LED element as a light source, irradiates a sample container with light of a plurality of wavelengths, and measures absorbance in a plurality of wavelength regions. Japanese Patent Laid-Open No. 2002-340676 discloses that each of a plurality of LEDs is irradiated with light having a light emission wavelength λn modulated at a frequency fn, and the transmitted light is AD-converted and integrated for frequency analysis. It is described. In addition, a plurality of light sources such as light emitting diodes or laser diodes are used as light sources, and the optical axes of a plurality of lights are aligned to one without using an optical device such as a prism or a half mirror. A method of irradiating light on the surface is considered.

また,試料の微少量化によるもう一つの問題は,従来の分析装置では微少量の液の取り扱いが困難であり,分注,混合時に発生する気泡等により正確な測定ができなくなるということである。   Another problem due to the small amount of sample is that it is difficult to handle a small amount of liquid with conventional analyzers, and accurate measurement cannot be performed due to bubbles generated during dispensing and mixing.

この問題を解決する方法としては,基板に形成された電極上の液体を電気的な制御により搬送する方法を用いることが有効である(特開昭60-216324号公報,特開2004-935号公報,特開平10-267801号公報)。このように電極を形成した基板上で電圧印加する電極を切り替えることで微量液体を搬送し(このような搬送の駆動力を,以下,静電力という),分析するシステムの利点は,単一もしくは二枚の基板を利用するため,周囲が壁に囲まれた容器に比べ気泡の影響を受けにくいことや,電極に電圧を印加するだけで基板内の自由な場所で多数の液体を独立して駆動できること,また電圧を印加することにより液体の置かれる場所を指定できるため,試料や反応液がいつ測定部に到達するのかタイミングを計りやすいことなどが挙げられる。R. B. Fair, et al. Electron Devices Meeting., 2003. Vijay Srinivasan, et al. μTAS., 2003には,基板上に試料導入部,混合部,測定部,排出部を,多数の電極から形成される液体流通路で結んで分析システムを構築し,試料導入部から導入した試料を,液体流通路によって搬送し,混合部において試薬と混合して反応液とし,測定部で成分を測定後,再び同じ液体流通路を搬送し,排出部にて排出するシステムが報告されている。
特開平8-122247号公報 特開2002-340676号公報 特開昭60-216324号公報 特開2004-935号公報 特開平10-267801号公報 R. B. Fair, et al. Electron Devices Meeting., 2003. Vijay Srinivasan, et al. μTAS., 2003.
As a method for solving this problem, it is effective to use a method of transporting the liquid on the electrode formed on the substrate by electrical control (Japanese Patent Laid-Open Nos. 60-216324 and 2004-935). Publication, JP-A-10-267801). The advantage of a system that analyzes and analyzes a minute amount of liquid by switching the electrode to which a voltage is applied on the substrate on which the electrode is formed in this way (the driving force of such conveyance is hereinafter referred to as electrostatic force) is that it is single or Because it uses two substrates, it is less susceptible to air bubbles than a container surrounded by a wall, and by applying a voltage to the electrodes, a large number of liquids can be separated independently at free locations within the substrate. It can be driven, and the place where the liquid is placed can be specified by applying a voltage, so that it is easy to measure when the sample or reaction solution reaches the measurement unit. RB Fair, et al. Electron Devices Meeting., 2003. In Vijay Srinivasan, et al. ΜTAS., 2003, a sample introduction part, a mixing part, a measurement part, and a discharge part are formed on a substrate from a number of electrodes. The analysis system is constructed by connecting with the liquid flow path, the sample introduced from the sample introduction section is transported by the liquid flow path, mixed with the reagent in the mixing section to make the reaction solution, the components are measured in the measurement section, and then the same again A system that transports the liquid flow path and discharges it at the discharge section has been reported.
JP-A-8-122247 JP 2002-340676 JP-A-60-216324 Japanese Patent Laid-Open No. 2004-935 Japanese Patent Laid-Open No. 10-267801 RB Fair, et al. Electron Devices Meeting., 2003. Vijay Srinivasan, et al. ΜTAS., 2003.

スループットの向上を計るために,光源,試料保持部,検出器からなる測定部を複数並べて設置し測定すると,出射した光が試料を通過する際に生じる散乱によって,迷光が両隣の検出器へ入射する現象(以下,クロストークという)が起こる。迷光を検出すると測定誤差が生じるため,迷光の検出は避けなければならない。   In order to improve throughput, when multiple measurement units consisting of a light source, sample holder, and detector are installed side by side, stray light is incident on both adjacent detectors due to scattering that occurs when the emitted light passes through the sample. Occurs (hereinafter referred to as crosstalk). Detection of stray light causes measurement errors, so detection of stray light should be avoided.

本発明は,測定部を複数並べて設置しながら,隣の試料で散乱された迷光,すなわちクロストークの影響を受けずに,個々の測定部の試料を高精度に分析することのできる試料分析装置を提供することを目的とする。   The present invention provides a sample analyzer capable of analyzing a sample of each measurement unit with high accuracy without being affected by stray light scattered by an adjacent sample, that is, crosstalk, while installing a plurality of measurement units side by side. The purpose is to provide.

本発明では,上記問題を解決するために,大きく分けて以下の2方式を採用した。
(1) 測定部は,発光波長の異なる少なくとも2種類の光源,試料保持部,検出器を備え,光源からの光は試料の光の透過方向の長さの概略1/2の位置で,その出力光軸が交差するように設置され,かつ,それぞれ異なる変調周波数で変調された光を出射する。更に,測定部は複数近接して設けられており,クロストークが発生する範囲内に位置する光源はそれぞれ異なる変調周波数で変調された光を出射する。この構成により,少なくとも2種類の波長の光が同じ濃度の経路を通過するため,測定精度が安定し,それぞれの波長の光が異なる変調周波数で変調されているため,測定部が複数近接して設けられていても,周波数分離回路によりクロストークを分離し除去することが可能である。
(2) 上記構成において,近接して設けられた複数の測定部において,それぞれの光源ごとに異なる変調周波数で変調された光を出射する代わりに,それぞれの測定部ごとに順次時間差をおいて光を出射する。この構成により,測定精度を安定したうえで,それぞれの測定部が順次時間差をおいて光を出射するため,測定部が複数近接して設けられていても,時間差によりクロストークを分離し除去することが可能である。
In the present invention, in order to solve the above problems, the following two methods are roughly adopted.
(1) The measurement unit is equipped with at least two types of light sources with different emission wavelengths, a sample holder, and a detector. The light from the light source is approximately half the length of the sample in the light transmission direction. It is installed so that the output optical axes intersect and emits light modulated at different modulation frequencies. Further, a plurality of measurement units are provided close to each other, and light sources located within a range where crosstalk occurs emit light modulated at different modulation frequencies. With this configuration, light of at least two wavelengths passes through the same concentration path, so the measurement accuracy is stable, and light of each wavelength is modulated at different modulation frequencies. Even if it is provided, the crosstalk can be separated and removed by the frequency separation circuit.
(2) In the above configuration, instead of emitting light modulated at a different modulation frequency for each light source in a plurality of measurement units provided in close proximity, the light is sequentially shifted in time for each measurement unit. Is emitted. With this configuration, the measurement accuracy is stabilized, and each measurement unit emits light sequentially with a time difference. Therefore, even if multiple measurement units are provided close to each other, crosstalk is separated and removed by the time difference. It is possible.

本発明によれば,微少量の試料を,高スループットにクロストークの影響なく測定することが可能である。   According to the present invention, a very small amount of sample can be measured with high throughput without the influence of crosstalk.

以下,図面を参照して本発明の実施の形態について説明する。以下の説明で,パッケージ内に納められている光源は,好ましくはレーザダイオードやLED等の半導体光源である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the light source housed in the package is preferably a semiconductor light source such as a laser diode or LED.

異なる変調周波数で変調された光を試料に照射して,周波数分離回路よりにクロストークを分離し除去する試料分析装置の例について説明する。本実施例では,試料として血清を用い,複数の測定部の試料保持部にそれぞれ保持されている試料に対し,各々の測定部の光源より光を水平方向に出射し,各々の測定部の検出器において透過光量を測定し,各々の測定部において試料の濁度を測定した。   An example of a sample analyzer that irradiates a sample with light modulated at different modulation frequencies and separates and removes crosstalk by a frequency separation circuit will be described. In this embodiment, serum is used as a sample, and light is emitted in the horizontal direction from the light source of each measurement unit to each sample held in the sample holding unit of the plurality of measurement units, and detection of each measurement unit is performed. The amount of transmitted light was measured in a vessel, and the turbidity of the sample was measured in each measuring section.

はじめに光学系について説明する。図1は,本実施例の試料分析装置を上部から見た構成を示す図である。図1には測定部が3個図示されているが,測定部の数に制限があるわけではない。本実施例では,測定部の数透明な樹脂等から成るパッケージ25の内部に,波長λ1の光線19を発する光源13と,波長λ2の光線20を出射する光源14が納められている。ここでパッケージ25内における光源13,14は,便宜上,水平方向に並べて図示されているが,実際は垂直方向に並んで配置されている。   First, the optical system will be described. FIG. 1 is a diagram showing a configuration of the sample analyzer of this embodiment as viewed from above. Although three measuring units are shown in FIG. 1, the number of measuring units is not limited. In the present embodiment, a light source 13 that emits a light beam 19 having a wavelength λ1 and a light source 14 that emits a light beam 20 having a wavelength λ2 are housed in a package 25 made of several transparent resins or the like of a measurement unit. Here, the light sources 13 and 14 in the package 25 are shown side by side in the horizontal direction for convenience, but are actually arranged side by side in the vertical direction.

光源13は駆動回路7によって変調周波数f1で駆動され,光源14は駆動回路8によって変調周波数f2で駆動される。光源13から出射された変調周波数f1,波長λ1の光線19と,光源14から出射された変調周波数f2,波長λ2の光線20は,試料保持部28中に保持されている試料31に水平方向に出射し,検出器パッケージ34に収められた検出器37に照射され,検出される。この時,光源13と光源14の位置は,光線19と光線20が,試料31の,光の透過方向長さの概略1/2の位置で交差し,検出器37に照射されるように調整され,パッケージ25に収められている。ここで,概略1/2とは,完全な中心点ではなく,中心から設計誤差の範囲でずれた位置で交差しても良いことを表している。   The light source 13 is driven by the drive circuit 7 at the modulation frequency f1, and the light source 14 is driven by the drive circuit 8 at the modulation frequency f2. A light beam 19 having a modulation frequency f1 and a wavelength λ1 emitted from the light source 13 and a light beam 20 having a modulation frequency f2 and a wavelength λ2 emitted from the light source 14 are horizontally directed to the sample 31 held in the sample holder 28. The light is emitted, irradiated to a detector 37 housed in a detector package 34, and detected. At this time, the positions of the light source 13 and the light source 14 are adjusted so that the light beam 19 and the light beam 20 intersect with each other at approximately half the length of the light transmission direction of the sample 31 and irradiate the detector 37. And is contained in a package 25. Here, approximately 1/2 means that the intersection may occur at a position shifted from the center within the range of the design error, not the complete center point.

透明な樹脂等から成るパッケージ26の内部には,波長λ1の光線21を発する光源15と,波長λ2の光線22を出射する光源16が納められている。光源15は駆動回路9によって変調周波数f3で駆動され,光源16は駆動回路10によって変調周波数f4で駆動される。また,透明な樹脂等から成るパッケージ27の内部には,波長λ1の光線23を発する光源17と,波長λ2の光線24を出射する光源18が納められている。光源17は駆動回路11によって変調周波数f5で駆動され,光源18は駆動回路12によって変調周波数f6で駆動される。   A light source 15 that emits a light beam 21 having a wavelength λ1 and a light source 16 that emits a light beam 22 having a wavelength λ2 are housed inside a package 26 made of transparent resin or the like. The light source 15 is driven by the drive circuit 9 at the modulation frequency f3, and the light source 16 is driven by the drive circuit 10 at the modulation frequency f4. Further, inside a package 27 made of transparent resin or the like, a light source 17 that emits a light beam 23 having a wavelength λ1 and a light source 18 that emits a light beam 24 having a wavelength λ2 are housed. The light source 17 is driven by the drive circuit 11 at the modulation frequency f5, and the light source 18 is driven by the drive circuit 12 at the modulation frequency f6.

パッケージ26内の光源15から出射された変調周波数f3,波長λ1の光線21と,光源16から出射された変調周波数f4,波長λ2の光線22は,試料保持部29中に保持されている試料32を透過した後,検出器パッケージ35に収められた検出器38で検出される。また,パッケージ27内の光源17から出射された変調周波数f5,波長λ1の光線23と,光源18から出射された変調周波数f6,波長λ2の光線24は,試料保持部30中に保持されている試料33に照射され,検出器パッケージ36に収められた検出器39で検出される。光線21と光線22は,試料32の,光の透過方向長さの概略1/2の位置で交差するように設定されており,光線23と光線24は,試料33の,光の透過方向長さの概略1/2の位置で交差するように設定されている。   A light beam 21 having a modulation frequency f3 and a wavelength λ1 emitted from the light source 15 in the package 26 and a light beam 22 having a modulation frequency f4 and a wavelength λ2 emitted from the light source 16 are held in a sample holding unit 29. Is detected by the detector 38 contained in the detector package 35. A light beam 23 having a modulation frequency f5 and a wavelength λ1 emitted from the light source 17 in the package 27 and a light beam 24 having a modulation frequency f6 and a wavelength λ2 emitted from the light source 18 are held in the sample holder 30. The sample 33 is irradiated and detected by a detector 39 housed in a detector package 36. The light beam 21 and the light beam 22 are set so as to intersect at a position approximately half of the light transmission direction length of the sample 32. The light beam 23 and the light beam 24 are the length of the sample 33 in the light transmission direction. It is set so that it intersects at roughly half the position.

通常,試料に光を照射して分析する場合,2種類の光が同じ濃度のところを通過しなければ測定精度に悪影響が現れる。図2は,試料保持部28の拡大図である。図2には,試料31を通過する波長λ1の光線19と波長λ2の光線20の,水平軸に対する角度αを誇張して示す。試料31の濃度は左右には対称(水平方向に対称)であり,比重の違いにより濃度の濃い部分が下方に移動し,濃度の薄い部分が上方に移動している。光源13から出射された波長λ1の光線19は左下から右上に,また光源14から出射された波長λ2の光線20は左上から右下に,つまり,光線19は試料の濃度の濃い部分から入射し,濃度の薄い方向に,光線20は,試料の濃度の薄い部分から入射し,濃度の濃い方向に,同じく水平軸に対してわずかな角度αをもって通過している。このため,2種類の光が,試料の,光の透過方向長さの概略1/2の位置で交差し,検出器に照射されるようにする事により,2種類の光が透過する経路が違っても,波長λ1の光線19と波長λ2の光線20は同じ濃度の部分を違う向きから透過することになり,濃度の影響を受けにくく,ばらつきの少ない測定が可能になる。   Normally, when analyzing a sample by irradiating it with light, the measurement accuracy will be adversely affected unless the two types of light pass through the same concentration. FIG. 2 is an enlarged view of the sample holder 28. In FIG. 2, the angle α of the light beam 19 having the wavelength λ1 and the light beam 20 having the wavelength λ2 passing through the sample 31 is exaggerated. The concentration of the sample 31 is symmetrical (symmetric in the horizontal direction) on the left and right, and a portion with a high concentration moves downward and a portion with a low concentration moves upward due to the difference in specific gravity. A light beam 19 having a wavelength λ1 emitted from the light source 13 is incident from the lower left to the upper right, and a light beam 20 having a wavelength λ2 emitted from the light source 14 is incident from the upper left to the lower right, that is, the light beam 19 is incident from a dark portion of the sample. In the direction where the density is low, the light beam 20 enters from the portion where the density of the sample is low, and passes through the direction where the density is high with a slight angle α with respect to the horizontal axis. For this reason, two types of light intersect each other at approximately half the length of the light transmission direction of the sample and irradiate the detector so that a path through which the two types of light pass can be obtained. Even if they are different from each other, the light beam 19 having the wavelength λ1 and the light beam 20 having the wavelength λ2 pass through the same density portion from different directions, and are hardly affected by the density, so that measurement with little variation is possible.

次に,検出系について説明する。図1に示すように,検出器37は,試料31等で減衰されかつ合成された,波長λ1,変調周波数f1の光線19,及び,波長λ2,変調周波数f2の光線20を電気信号に変換して出力する。検出器37から出力された信号は,周波数f1と周波数f2が合成されており,いったんアンプ40で増幅された後,FFT若しくはBPF等から構成される周波数分離回路45により,周波数f1と周波数f2の各周波数成分に分離される。周波数分離回路45により分離された周波数f1の信号と周波数f2の信号はアナログ信号であるため,周波数f1の信号をA/Dコンバータ48で,周波数f2の信号をA/Dコンバータ49でデジタル信号に変換し,データ処理装置54に送る。   Next, the detection system will be described. As shown in FIG. 1, the detector 37 converts the light beam 19 having the wavelength λ1 and the modulation frequency f1 and the light beam 20 having the wavelength λ2 and the modulation frequency f2 attenuated and synthesized by the sample 31 and the like into electrical signals. Output. The signal output from the detector 37 is synthesized with the frequency f1 and the frequency f2. After being amplified by the amplifier 40, the frequency separation circuit 45 composed of FFT or BPF or the like is used to generate the frequency f1 and the frequency f2. Separated into frequency components. Since the frequency f1 signal and the frequency f2 signal separated by the frequency separation circuit 45 are analog signals, the frequency f1 signal is converted to a digital signal by the A / D converter 48, and the frequency f2 signal is converted to a digital signal by the A / D converter 49. The data is converted and sent to the data processor 54.

周波数分離回路45により分離された信号のうち,周波数f1の信号には波長λ1の情報が含まれており,波長λ1の光線19が試料31等でどれ位減衰されたかを比較することができる。同様に,周波数分離回路45により分離された周波数f2の信号には,波長λ2の情報が含まれており,波長λ2の光線20が試料31等でどれ位減衰されたかを比較することができる。この時,減衰量の比較対照は,試料保持部28中に試料31が入っていない場合での測定データ若しくは純水等の基準となる試料での測定データである。また,光源15から出射した波長λ1,変調周波数f3の光線21,光源16から出射した波長λ2,変調周波数f4の光線22,光源17から出射した波長λ1,変調周波数f5の光線23,あるいは光源18から出射した波長λ2,変調周波数f6の光線24が,試料に照射された際に生じた散乱の影響によって,検出器37に迷光として入射したとしても,周波数分離回路45によって信号を分離することが可能である。   Of the signals separated by the frequency separation circuit 45, the signal of the frequency f1 contains the information of the wavelength λ1, and it is possible to compare how much the light beam 19 of the wavelength λ1 is attenuated by the sample 31 or the like. Similarly, the signal of the frequency f2 separated by the frequency separation circuit 45 includes information on the wavelength λ2, and it is possible to compare how much the light beam 20 having the wavelength λ2 is attenuated by the sample 31 or the like. At this time, the comparison of the attenuation amount is measurement data when the sample 31 is not contained in the sample holder 28 or measurement data of a reference sample such as pure water. Also, the light beam 21 emitted from the light source 15 and the light beam 21 having the modulation frequency f3, the light beam 22 emitted from the light source 16 and the light beam 22 having the modulation frequency f4, the light beam 23 emitted from the light source 17 and the light beam 23 having the modulation frequency f5, or the light source 18. Even if the light beam 24 having the wavelength λ2 and the modulation frequency f6 emitted from the laser beam is incident on the detector 37 as stray light due to the influence of scattering generated when the sample is irradiated, the signal can be separated by the frequency separation circuit 45. Is possible.

以上の処理をデータ処理装置54で行い,波長λ1の光線19の減衰量と波長λ2の光線20の減衰量を比較することで,試料31に含まれる目的の成分量を検出することができる。   The above processing is performed by the data processor 54, and the target component amount contained in the sample 31 can be detected by comparing the attenuation amount of the light beam 19 having the wavelength λ1 and the attenuation amount of the light beam 20 having the wavelength λ2.

同様に,検出器38の出力は,アンプ41で増幅された後,周波数分離回路46により周波数f3と周波数f4の各周波数成分に分離され,それぞれA/Dコンバータ50,51でデジタル信号に変換され,データ処理装置55に送られる。データ処理装置55は,波長λ1の光線21の減衰量と波長λ2の光線22の減衰量とを比較することで,試料32に含まれる目的の成分量を検出する。また,検出器39の出力は,アンプ42で増幅された後,周波数分離回路47により周波数f5と周波数f6の各周波数成分に分離され,それぞれA/Dコンバータ52,53でデジタル信号に変換され,データ処理装置56に送られる。データ処理装置56は,波長λ1の光線23の減衰量と波長λ2の光線24の減衰量を比較することで,試料33に含まれる目的の成分量を検出する。   Similarly, the output of the detector 38 is amplified by the amplifier 41 and then separated into frequency components of the frequency f3 and the frequency f4 by the frequency separation circuit 46 and converted into digital signals by the A / D converters 50 and 51, respectively. , Sent to the data processor 55. The data processor 55 detects the target component amount contained in the sample 32 by comparing the attenuation amount of the light beam 21 having the wavelength λ1 with the attenuation amount of the light beam 22 having the wavelength λ2. The output of the detector 39 is amplified by an amplifier 42 and then separated into frequency components of frequency f5 and frequency f6 by a frequency separation circuit 47, and converted into digital signals by A / D converters 52 and 53, respectively. The data is sent to the data processor 56. The data processor 56 detects the target component amount contained in the sample 33 by comparing the attenuation amount of the light beam 23 having the wavelength λ1 and the attenuation amount of the light beam 24 having the wavelength λ2.

このように,2つ以上の光源を格納したパッケージ,試料保持部,検出器からなる測定部が複数並べられて,各測定部で試料保持部に光を水平方向に照射し,検出器で測定する場合,光源ごとに全て異なる変調周波数を印加して検出器に受けた光の情報を,周波数分離回路を用いて分離して必要な波長成分を取り出し,その吸光度を割り出すことで目的の成分量を測定することが可能な分析装置を構成できる。   In this way, multiple measurement units consisting of a package containing two or more light sources, a sample holding unit, and a detector are arranged, and each sample unit irradiates the sample holding unit with light in the horizontal direction and measures with the detector. In this case, the light component received at the detector by applying a different modulation frequency for each light source is separated using a frequency separation circuit to extract the necessary wavelength component, and the absorbance is calculated to obtain the target component amount. Can be configured.

なお,並べられた測定部の各パッケージ内部に納められている光源の発光波長の組合せは全て同一である。   It should be noted that the combinations of the emission wavelengths of the light sources housed in the respective packages of the measurement units arranged are the same.

また,このときに,例えばパッケージ25の内部に納められている光源13,14の光線19,20による迷光が受光される範囲の測定部の光源には,光源ごとに全て異なる変調周波数を印加し,それ以遠のパッケージの光源には,パッケージ25からその範囲までの変調周波数の組合せを繰り返し適用しても良い。試料容器内の光路は,試料表面の表面張力のある箇所や容器の底部など,検出に悪影響を及ぼす箇所を避けて設定する。   At this time, for example, different modulation frequencies are applied to the light sources of the measurement unit in the range where stray light from the light beams 19 and 20 of the light sources 13 and 14 contained in the package 25 is received. , A combination of modulation frequencies from the package 25 to the range may be repeatedly applied to the light source of the farther package. The optical path in the sample container should be set to avoid locations that adversely affect detection, such as locations where the sample surface has surface tension or the bottom of the vessel.

別の測定部に属する波長の同じ光源を同一の変調周波数で変調し,隣接する測定部の光源から時間差で光を出射することによりクロストークの影響を低減する試料分析装置の例について説明する。本実施例では,試料として血清を用い,複数の試料保持部に保持されている試料に対し,各々の光源より光を水平方向に照射し,各々の検出器において透過光量を測定し,試料の濁度を測定した。   An example of a sample analyzer that reduces the influence of crosstalk by modulating a light source having the same wavelength belonging to another measurement unit with the same modulation frequency and emitting light from a light source of an adjacent measurement unit with a time difference will be described. In this example, serum is used as a sample, light is irradiated in a horizontal direction from each light source to the sample held in a plurality of sample holders, and the amount of transmitted light is measured by each detector. Turbidity was measured.

図3は,本実施例の試料分析装置を部から見た構成を示す図である。パッケージ内の光源は,図1と同様に便宜上,水平方向に並べて図示しているが,実際は垂直方向に並んで配置されている。また,図3には3個の測定部が図示されているが,測定部の数に制限があるわけではない。透明な樹脂等から成るパッケージ25の内部には,波長λ1の光線19を発生する光源13と,波長λ2の光線20を発生する光源14が納められている。同様に,透明な樹脂等から成るパッケージ76の内部には,波長λ1の光線72を発生する光源68と,波長λ2の光線73を発生する光源69が納められ,透明な樹脂等から成るパッケージ77の内部には,波長λ1の光線74を発生する光源70と,波長λ2の光線75を発生する光源71が納められている。波長λ1の光を発生する光源13,68,70は,それぞれ駆動回路7,64,66によって変調周波数f1で駆動され,波長λ2の光を発生する光源14,69,71は,それぞれ駆動回路8,65,67によって変調周波数f2で駆動される。   FIG. 3 is a diagram showing the configuration of the sample analyzer of this embodiment as viewed from the section. The light sources in the package are shown side by side in the horizontal direction for convenience as in FIG. 1, but they are actually arranged in the vertical direction. In addition, although three measuring units are shown in FIG. 3, the number of measuring units is not limited. Inside a package 25 made of transparent resin or the like, a light source 13 that generates a light beam 19 having a wavelength λ1 and a light source 14 that generates a light beam 20 having a wavelength λ2 are housed. Similarly, a light source 68 for generating a light beam 72 having a wavelength λ1 and a light source 69 for generating a light beam 73 having a wavelength λ2 are housed in a package 76 made of transparent resin or the like, and a package 77 made of transparent resin or the like. Are housed in a light source 70 for generating a light beam 74 having a wavelength λ1 and a light source 71 for generating a light beam 75 having a wavelength λ2. The light sources 13, 68, and 70 that generate the light of wavelength λ1 are driven by the drive circuits 7, 64, and 66, respectively, at the modulation frequency f1, and the light sources 14, 69, and 71 that generate the light of wavelength λ2 are the drive circuit 8 respectively. , 65, 67 are driven at the modulation frequency f2.

パッケージ25内の光源13,14の組,パッケージ76内の光源68,69の組,及びパッケージ77内の光源70,71の組は,それぞれの組が同時に発光することなく,図4のLED出射のタイミングチャートに示すように,相互に時間的なずれをもって発光する。光線19と光線20は,試料31の,光の透過方向長さの概略1/2の位置で交差するように設定されており,光線72と光線73は,試料32の,光の透過方向長さの概略1/2の位置で交差するように設定されており,光線74と光線75は,試料33の,光の透過方向長さの概略1/2の位置で交差するように設定されている。   The group of the light sources 13 and 14 in the package 25, the group of the light sources 68 and 69 in the package 76, and the group of the light sources 70 and 71 in the package 77 do not emit light simultaneously. As shown in the timing chart of FIG. The light beam 19 and the light beam 20 are set so as to intersect at a position approximately half of the light transmission direction length of the sample 31, and the light beam 72 and the light beam 73 are the length of the sample 32 in the light transmission direction. The light beam 74 and the light beam 75 are set so as to intersect at a position approximately half the length of the light transmission direction of the sample 33. Yes.

信号処理回路の構成は,実施例1と同じである。ただし,本実施例では,図5のデータ検出のタイミングチャートに示すように,データ処理装置54は,光源13,14が発光した時間に得られたデジタル信号のみを測定データとして採用する。同様に,データ処理装置55は,光源68,69が発光した時間に得られたデジタル信号のみを測定データとして採用し,データ処理装置56は,光源70,71が発光した時間に得られたデジタル信号のみを各々測定データとして採用することにより,クロストークの影響を低減することが可能となる。   The configuration of the signal processing circuit is the same as that of the first embodiment. However, in this embodiment, as shown in the timing chart of data detection in FIG. 5, the data processing device 54 employs only the digital signal obtained at the time when the light sources 13 and 14 emit light as measurement data. Similarly, the data processing device 55 employs only the digital signal obtained at the time when the light sources 68 and 69 emit light as measurement data, and the data processing device 56 uses the digital signal obtained at the time when the light sources 70 and 71 emit light. By adopting only signals as measurement data, the influence of crosstalk can be reduced.

また,例えばパッケージ25の内部に納められている光源13,14の光線19,20による迷光が受光される範囲の測定部の光源は,パッケージ単位で順次時間差で光を出射し,それ以遠の測定部の光源には,パッケージ25からのその範囲までの,各測定部での光源の出射時間のパターンを繰り返しても良い。なお,本実施例における時間差による光の出射方法は,実施例1においても適応が可能である。   Further, for example, the light source of the measuring unit within the range in which stray light from the light beams 19 and 20 of the light sources 13 and 14 contained in the package 25 is received emits light sequentially with a time difference in units of packages, and further measurement is performed. For the light source of the part, the pattern of the emission time of the light source in each measurement part up to the range from the package 25 may be repeated. Note that the light emission method based on the time difference in this embodiment can also be applied to the first embodiment.

基板に形成された電極上で試料が保持及び搬送される機構を用いて,異なる変調周波数で変調された光を試料に垂直方向に照射して,周波数分離回路よりクロストークを分離し除去する試料分析装置の例について説明する。本実施例では,試料として血清を用い,基板上で電気的な制御により複数の試料の保持と搬送を行って,測定部において透過光量を測定し,試料の濁度を測定した。   Using a mechanism that holds and transports the sample on the electrode formed on the substrate, the sample is irradiated with light modulated at different modulation frequencies in the vertical direction to separate and remove crosstalk from the frequency separation circuit. An example of the analyzer will be described. In this example, serum was used as a sample, a plurality of samples were held and transported on a substrate by electrical control, the amount of transmitted light was measured at the measurement unit, and the turbidity of the sample was measured.

図6を用いて,本実施例における試料や試薬などの液体の搬送方法を説明する。図6では第1の電極の数を6個にしているが,電極の数が制限されているわけではない。図6(1)〜図6(12)は,液体の搬送手順を時系列で示している。複数存在する第1の電極80〜85は,それぞれ複数のスイッチ88〜93を介して電源94に接続されており,電源94の対極側は第2の電極86に接続されている。   A method for transporting a liquid such as a sample or a reagent in this embodiment will be described with reference to FIG. In FIG. 6, the number of first electrodes is six, but the number of electrodes is not limited. FIGS. 6 (1) to 6 (12) show the liquid transport procedure in time series. The plurality of first electrodes 80 to 85 are connected to a power source 94 via a plurality of switches 88 to 93, respectively, and the counter electrode side of the power source 94 is connected to the second electrode 86.

図6(1)において,導入口87の上部には,試料や試薬などの液体95を吸引したディスペンサ96が待機している。図6(2)において,ディスペンサ96の先端部分が導入口87から上部基板100と下部基板101の間の空間104内に入り,導入口87の下に配置されている第1の電極80のわずかに上で停止する。具体的には,ディスペンサ96の先端部分が第1の電極80の上部に位置する撥水膜の近傍に位置し,かつ撥水膜に接しない程度の位置で停止する。同時に第1の電極80に接続されたスイッチ88が閉になり,第1の電極80と第2の電極86との間に電圧が印加される。   In FIG. 6 (1), a dispenser 96 that sucks a liquid 95 such as a sample or a reagent is waiting at the upper part of the introduction port 87. In FIG. 6 (2), the tip of the dispenser 96 enters the space 104 between the upper substrate 100 and the lower substrate 101 from the introduction port 87, and a small amount of the first electrode 80 disposed under the introduction port 87. Stop on to. Specifically, the tip end portion of the dispenser 96 is located in the vicinity of the water repellent film located above the first electrode 80 and stops at a position where it does not contact the water repellent film. At the same time, the switch 88 connected to the first electrode 80 is closed, and a voltage is applied between the first electrode 80 and the second electrode 86.

図6(3)において,ディスペンサ96内の液体95を吐出すると,液体95は第1の電極80と第2の電極86との間に静電力で保持され,粒状の液体105となる。粒状の液体105は,上部基板100と下部基板101の間に挟まれた状態で保持されているため,つぶされた形状になっている。図6(4)において,ディスペンサ96を退避する。図6(5)〜図6(9)において,スイッチ88〜93を左から右方向に順次開閉を切り替えることによって,電圧が印加される第1の電極80〜85が,左から右方向に順次切り替わり,粒状の液体105は第1の電極80の位置から排出口106の下に配置されている第1の電極85の位置まで搬送される。電圧の印加のタイミングチャートを図23に示す。   In FIG. 6 (3), when the liquid 95 in the dispenser 96 is ejected, the liquid 95 is held by the electrostatic force between the first electrode 80 and the second electrode 86 and becomes a granular liquid 105. Since the granular liquid 105 is held between the upper substrate 100 and the lower substrate 101, the granular liquid 105 has a crushed shape. In FIG. 6 (4), the dispenser 96 is retracted. 6 (5) to 6 (9), the first electrodes 80 to 85 to which a voltage is applied are sequentially switched from left to right by sequentially switching the switches 88 to 93 from left to right. The granular liquid 105 is switched from the position of the first electrode 80 to the position of the first electrode 85 disposed below the discharge port 106. FIG. 23 shows a timing chart of voltage application.

図6(10)において,待機していた,粒状の液体105を吸引するためのディスペンサ107の先端部分が,排出口106から上部基盤100と下部基板101の間の空間104に入り,排出口104の下に配置されている第1の電極85のわずかに上で停止する。具体的には,ディスペンサ107の先端部分が第1の電極85の上部に位置する撥水膜の近傍に位置し,かつ撥水膜に接しない程度の位置で停止する。同時に,第1の電極85に接続されたスイッチ93が開になり,第1の電極85と第2の電極86との間に印加されていた電圧が解除される。図6(11)において,第1の電極85上の粒状の液体105がディスペンサ107により廃液108として吸引される。図6(12)において,ディスペンサ107が退避し,液体搬送が終了する。   In FIG. 6 (10), the front end portion of the dispenser 107 for sucking the granular liquid 105 that has been waiting enters the space 104 between the upper substrate 100 and the lower substrate 101 from the discharge port 106, and the discharge port 104. Stop slightly above the first electrode 85 that is located below. Specifically, the tip of the dispenser 107 stops near the water repellent film located above the first electrode 85 and does not contact the water repellent film. At the same time, the switch 93 connected to the first electrode 85 is opened, and the voltage applied between the first electrode 85 and the second electrode 86 is released. In FIG. 6 (11), the granular liquid 105 on the first electrode 85 is sucked as the waste liquid 108 by the dispenser 107. In FIG. 6 (12), the dispenser 107 is retracted, and the liquid conveyance is completed.

次に,前述の液体搬送基板に保持されている試料中に含まれる成分量を検出する方法を,図7を用いて説明する。図7は,図6に示した複数の第1の電極80〜83を含む液体搬送基板と電極82上に形成された測定部110の周辺を示す図である。測定部110の第1の電極82上には,前述の液体搬送手順により,試料である粒状の液体105が導入されている状態を示している。液体搬送基板外部には,波長λ1の光線19を出射する光源13と,波長λ2の光線20を出射する光源14と,測定部110の電極を介して透過してきた光を受光して電気信号に変換する検出器37が配置されている。前述のように,波長λ1の光線19の減衰量と波長λ2の光線20の減衰量を比較することで,粒状の液体105内の目的成分の量を検出することができる。尚,粒状の液体に照射する光の波長の種類はλ1及びλ2に限定されているわけではない。   Next, a method for detecting the amount of components contained in the sample held on the liquid transfer substrate will be described with reference to FIG. FIG. 7 is a view showing the periphery of the liquid transport substrate including the plurality of first electrodes 80 to 83 shown in FIG. 6 and the measurement unit 110 formed on the electrode 82. As shown in FIG. On the first electrode 82 of the measurement unit 110, a state where a granular liquid 105 as a sample is introduced by the above-described liquid transport procedure is shown. Outside the liquid carrier substrate, the light source 13 that emits the light beam 19 having the wavelength λ1, the light source 14 that emits the light beam 20 having the wavelength λ2, and the light transmitted through the electrodes of the measuring unit 110 are received and converted into an electrical signal. A detector 37 for conversion is arranged. As described above, the amount of the target component in the granular liquid 105 can be detected by comparing the attenuation amount of the light beam 19 having the wavelength λ1 and the attenuation amount of the light beam 20 having the wavelength λ2. It should be noted that the type of wavelength of light irradiated onto the granular liquid is not limited to λ1 and λ2.

図8は,図7に示した検出方法を用いた本実施例の試料分析装置の断面構成を示す図である。   FIG. 8 is a diagram showing a cross-sectional configuration of the sample analyzer of the present embodiment using the detection method shown in FIG.

光学系及び検出系は実施例1と同じである。本実施例では,試料と試薬とを混合した液体が測定開始部より導入口87より30秒おきに供給されて,10秒おきにとなりの電極へ移動している。このため,各測定部には30秒ごとに液体が搬送される。本実施例では,連続して順次分析処理することによって短時間で多数の測定を終えることが可能なレート検出を用いている。そのため,測定部では液体が搬送される30秒ごとに,光源より光を液体に照射し,検出した。本実施例では検出にレート検出を用いたが,エンドポイント検出等他の検出方法を用いることも可能である。また,図8には測定部が3箇所図示されているが,測定部の数に制限があるわけではない。   The optical system and the detection system are the same as those in the first embodiment. In the present embodiment, a liquid in which a sample and a reagent are mixed is supplied from the measurement start portion through the introduction port 87 every 30 seconds and moves to the electrode every 10 seconds. For this reason, the liquid is transported to each measuring unit every 30 seconds. In the present embodiment, rate detection is used which can finish a large number of measurements in a short time by continuously analyzing sequentially. For this reason, every 30 seconds during which the liquid was transported, the measurement unit detected light by irradiating it with light from the light source. In this embodiment, rate detection is used for detection, but other detection methods such as endpoint detection can also be used. In addition, FIG. 8 shows three measurement units, but the number of measurement units is not limited.

測定開始点にある透明な樹脂等から成るパッケージ25の内部には,波長λ1の光線19を発する光源13と,波長λ2の光線20を出射する光源14が納められている。光源13は駆動回路7によって変調周波数f1で駆動され,光源14は駆動回路8によって変調周波数f2で駆動される。光源13から出射された変調周波数f1,波長λ1の光線19と,光源14から出射された変調周波数f2,波長λ2の光線20は,第2の電極86を形成した上部基板100と第1の電極80〜85,190を形成した下部基板101に対して垂直方向に出射し,その間に収められた試料31を透過し,検出器パッケージ34に収められた検出37に照射され,検出される。この時,光源13と光源14の位置は,光線19と光線20が,試料31の,光の透過方向長さの概略1/2の位置で交差し,検出器37に照射されるように調整され,パッケージ25に収められている。概略1/2とは,完全な中心点ではなく,中心から設計誤差の範囲でずれた位置で交差しても良い。   A light source 13 that emits a light beam 19 having a wavelength λ1 and a light source 14 that emits a light beam 20 having a wavelength λ2 are housed inside a package 25 made of transparent resin or the like at the measurement start point. The light source 13 is driven by the drive circuit 7 at the modulation frequency f1, and the light source 14 is driven by the drive circuit 8 at the modulation frequency f2. A light beam 19 having a modulation frequency f1 and a wavelength λ1 emitted from the light source 13 and a light beam 20 having a modulation frequency f2 and a wavelength λ2 emitted from the light source 14 are the upper substrate 100 and the first electrode on which the second electrode 86 is formed. The light is emitted in the vertical direction with respect to the lower substrate 101 on which 80 to 85 and 190 are formed, passes through the sample 31 accommodated therebetween, and is irradiated to and detected by the detection 37 accommodated in the detector package 34. At this time, the positions of the light source 13 and the light source 14 are adjusted so that the light beam 19 and the light beam 20 intersect with each other at approximately half the length of the light transmission direction of the sample 31 and irradiate the detector 37. And is contained in a package 25. The approximate 1/2 may cross at a position that is not a complete center point but is shifted from the center within the range of the design error.

透明な樹脂等から成るパッケージ26の内部には,波長λ1の光線21を発する光源15と,波長λ2の光線22を出射する光源16が納められている。光源15は駆動回路9によって変調周波数f3で駆動され,光源16は駆動回路10によって変調周波数f4で駆動される。光源15から出射された変調周波数f3,波長λ1の光線21と,光源16から出射された変調周波数f4,波長λ2の光線22は,電極を形成した上部基板100と下部基板101に対して垂直方向に出射し,その間に収められた試料32を透過し,検出器パッケージ35に収められた検出器38に照射され,検出される。光源15と光源16の位置は,光線21と光線22が,試料32の,光の透過方向長さの概略1/2の位置で交差し,検出器38に照射されるように調整され,パッケージ26に収められている。   A light source 15 that emits a light beam 21 having a wavelength λ1 and a light source 16 that emits a light beam 22 having a wavelength λ2 are housed inside a package 26 made of transparent resin or the like. The light source 15 is driven by the drive circuit 9 at the modulation frequency f3, and the light source 16 is driven by the drive circuit 10 at the modulation frequency f4. A light beam 21 having a modulation frequency f3 and a wavelength λ1 emitted from the light source 15 and a light beam 22 having a modulation frequency f4 and a wavelength λ2 emitted from the light source 16 are perpendicular to the upper substrate 100 and the lower substrate 101 on which electrodes are formed. , And passes through the sample 32 stored in the meantime, and is irradiated to the detector 38 housed in the detector package 35 to be detected. The positions of the light source 15 and the light source 16 are adjusted so that the light beam 21 and the light beam 22 intersect with each other at approximately half the length of the light transmission direction of the sample 32 and irradiate the detector 38. 26.

透明な樹脂等から成るパッケージ27の内部には,波長λ1の光線23を発する光源17と,波長λ2の光線24を出射する光源18が納められている。光源17は駆動回路11によって変調周波数f5で駆動され,光源18は駆動回路12によって変調周波数f6で駆動される。光源17から出射された変調周波数f5,波長λ1の光線23と,光源18から出射された変調周波数f6,波長λ2の光線24は,電極を形成した上部基板100と下部基板101に対して垂直方向に出射し,その間に収められた試料33を透過し,検出器パッケージ36に収められた検出器39に照射され,検出される。光源17と光源18の位置は,光線23と光線24が,試料33の,光の透過方向長さの概略1/2の位置で交差し,検出器39に照射されるように調整され,パッケージ27に収められている。   A light source 17 that emits a light beam 23 having a wavelength λ1 and a light source 18 that emits a light beam 24 having a wavelength λ2 are housed inside a package 27 made of transparent resin or the like. The light source 17 is driven by the drive circuit 11 at the modulation frequency f5, and the light source 18 is driven by the drive circuit 12 at the modulation frequency f6. A light beam 23 having a modulation frequency f5 and a wavelength λ1 emitted from the light source 17 and a light beam 24 having a modulation frequency f6 and a wavelength λ2 emitted from the light source 18 are perpendicular to the upper substrate 100 and the lower substrate 101 on which electrodes are formed. , And passes through the sample 33 accommodated therebetween, and is irradiated to the detector 39 accommodated in the detector package 36 to be detected. The positions of the light source 17 and the light source 18 are adjusted so that the light beam 23 and the light beam 24 intersect each other at approximately half the length of the light transmission direction of the sample 33 and irradiate the detector 39. 27.

図9,図10は本実施例による試料保持部を用いた場合の液体の形状を示す説明図である。図9は平面方向から見た液体の形状を示す模式図であり,図10は図9のaa断面を示す模式図である。通常,本実施例の液体の搬送方法を用いると,図9に示した試料31のように,試料搬送方向に試料が移動するときの衝撃から溶液が撹拌されると,例えば,白い領域は試料,点の領域は試薬といったような濃度勾配が生じる。このような試料に対して図10に示すように光を垂直方向に照射して分析する場合,2種類の波長の光が同じ濃度のところを通過しなければ測定精度に悪影響が現れる。しかし,前述のように,波長λ1の光線19と波長λ2の光20が,試料の,光の透過方向長さの概略1/2の位置で交差し検出器に照射されるようにする事により,2種類の波長の光が透過する経路が違っても,濃度の影響を受けにくく,ばらつきの少ない計測が可能になる。   9 and 10 are explanatory views showing the shape of the liquid when the sample holder according to the present embodiment is used. FIG. 9 is a schematic diagram showing the shape of the liquid viewed from the plane direction, and FIG. 10 is a schematic diagram showing the aa cross section of FIG. Normally, when the liquid transport method of the present embodiment is used, when the solution is stirred from the impact when the sample moves in the sample transport direction as in the sample 31 shown in FIG. , A concentration gradient such as a reagent is generated in the dot region. When such a sample is analyzed by irradiating light in the vertical direction as shown in FIG. 10, the measurement accuracy will be adversely affected unless light of two different wavelengths passes through the same concentration. However, as described above, the light beam 19 having the wavelength λ1 and the light beam 20 having the wavelength λ2 intersect each other at approximately half the length of the light transmission direction of the sample and irradiate the detector. Even if the paths through which the two wavelengths of light are transmitted are different, the measurement is less affected by the concentration and with less variation.

図8に示すように,検出器37から出力された信号は,周波数f1と周波数f2が合成されており,いったんアンプ40で増幅された後,FFT若しくはBPF等から構成される周波数分離回路45により,周波数f1と周波数f2の各周波数成分に分離される。周波数分離回路45により分離された周波数f1の信号と周波数f2の信号は,それぞれA/Dコンバータ48,49でデジタル信号に変換し,データ処理装置54に送る。   As shown in FIG. 8, the signal output from the detector 37 is synthesized with the frequency f1 and the frequency f2, and once amplified by the amplifier 40, the signal is output by the frequency separation circuit 45 composed of FFT or BPF. , Frequency components f1 and f2 are separated. The signal of frequency f1 and the signal of frequency f2 separated by the frequency separation circuit 45 are converted into digital signals by A / D converters 48 and 49, respectively, and sent to the data processor 54.

周波数分離回路45により分離された信号のうち,周波数f1の信号には波長λ1の情報が含まれており,波長λ1の光線19が前記試料31等でどれ位減衰されたかを比較することができる。同様に,周波数分離回路45により分離された周波数f2の信号には,波長λ2の情報が含まれており,波長λ2の光線20が試料31等でどれ位減衰されたかを比較することができる。この時,減衰量の比較対照は,上部基板100と下部基板101の間に試料31が入っていない場合での測定データ若しくは純水等の基準となる試料での測定データである。また,光源15から出射した波長λ1,変調周波数f3の光線21,光源16から出射した波長λ2,変調周波数f4の光線22,光源17から出射した波長λ1,変調周波数f5の光線23,光源18から出射した波長λ2,変調周波数f6の光線24が,試料に照射された際に生じた散乱の影響によって,検出器37に迷光として入射したとしても,周波数分離回路45によって信号を分離することが可能である。   Of the signals separated by the frequency separation circuit 45, the signal of the frequency f1 contains the information of the wavelength λ1, and it is possible to compare how much the light beam 19 of the wavelength λ1 is attenuated by the sample 31 or the like. . Similarly, the signal of the frequency f2 separated by the frequency separation circuit 45 includes information on the wavelength λ2, and it is possible to compare how much the light beam 20 having the wavelength λ2 is attenuated by the sample 31 or the like. At this time, the comparison of attenuation is measurement data when the sample 31 is not included between the upper substrate 100 and the lower substrate 101 or measurement data of a reference sample such as pure water. Also, from a light beam 21 emitted from the light source 15 and a light beam 21 having a modulation frequency f3, a light beam having a wavelength λ2 emitted from the light source 16, a light beam 22 having a modulation frequency f4, a light beam 17 having a wavelength λ1 emitted from the light source 17, and a light beam 23 having a modulation frequency f5. Even if the emitted light beam 24 having the wavelength λ2 and the modulation frequency f6 is incident on the detector 37 as stray light due to the influence of scattering generated when the sample is irradiated, the signal can be separated by the frequency separation circuit 45. It is.

以上の処理をデータ処理装置54で行い,波長λ1の光線19の減衰量と波長λ2の光線20の減衰量を比較することで,試料31に含まれる目的の成分量を検出することができる。   The above processing is performed by the data processor 54, and the target component amount contained in the sample 31 can be detected by comparing the attenuation amount of the light beam 19 having the wavelength λ1 and the attenuation amount of the light beam 20 having the wavelength λ2.

検出器38から出力された信号は,アンプ41で増幅された後,周波数分離回路46により,周波数f3と周波数f4の各周波数成分に分離され,A/Dコンバータ50,51でデジタル信号に変換し,データ処理装置55に送られる。周波数分離回路46により分離された信号のうち,周波数f3の信号には波長λ1の情報が入っており,周波数f4の信号には波長λ2の情報が入っている。データ処理装置55で,波長λ1の光線21の減衰量と波長λ2の光線22の減衰量を比較することで,試料32に含まれる目的の成分量を検出することができる。   The signal output from the detector 38 is amplified by the amplifier 41 and then separated into frequency components of the frequency f3 and the frequency f4 by the frequency separation circuit 46 and converted into digital signals by the A / D converters 50 and 51. , Sent to the data processor 55. Of the signals separated by the frequency separation circuit 46, the signal of the frequency f3 contains the information of the wavelength λ1, and the signal of the frequency f4 contains the information of the wavelength λ2. By comparing the attenuation amount of the light beam 21 having the wavelength λ1 with the attenuation amount of the light beam 22 having the wavelength λ2 by the data processing device 55, the target component amount contained in the sample 32 can be detected.

検出器39から出力された信号は,アンプ42で増幅された後,周波数分離回路47により,周波数f5と周波数f6の各周波数成分に分離され,A/Dコンバータ52,53でデジタル信号に変換し,データ処理装置56に送られる。周波数分離回路47により分離された信号のうち,周波数f5の信号には波長λ1の情報が入っており,周波数f6の信号には波長λ2の情報が入っている。データ処理装置56で,波長λ1の光線23の減衰量と波長λ2の光線24の減衰量を比較することで,試料33に含まれる目的の成分量を検出することができる。   The signal output from the detector 39 is amplified by the amplifier 42 and then separated into frequency components of the frequency f5 and the frequency f6 by the frequency separation circuit 47 and converted into digital signals by the A / D converters 52 and 53. , Sent to the data processor 56. Of the signals separated by the frequency separation circuit 47, the signal of the frequency f5 contains the information of the wavelength λ1, and the signal of the frequency f6 contains the information of the wavelength λ2. By comparing the attenuation amount of the light beam 23 having the wavelength λ1 and the attenuation amount of the light beam 24 having the wavelength λ2 by the data processor 56, the target component amount contained in the sample 33 can be detected.

図11に,例として試料31を各測定部で検出したときの,データ処理装置54,55,56に入力される信号を吸光度に変換した図を示す。データ処理装置55,56では,測定開始部に配置されたデータ処理装置54から時間の遅れをもって検出しているために,吸光度の値がデータ処理装置ごとに変化しており,試料ごとに経時変化を検出することが可能となる。   FIG. 11 shows, as an example, a diagram in which signals input to the data processing devices 54, 55, and 56 are converted into absorbance when the sample 31 is detected by each measurement unit. In the data processing devices 55 and 56, since the detection is performed with a time lag from the data processing device 54 arranged at the measurement start section, the absorbance value changes for each data processing device and changes with time for each sample. Can be detected.

このように,2つ以上の光源を所有したパッケージ,基板上に形成された電極上の試料保持部,検出器からなる測定部が複数並べられて,各々で試料保持部に垂直方向に光を照射して検出器で測定する場合でも,光源ごとに全て異なる変調周波数を印加して,検出器に受けた光の情報を周波数分離回路を用いて分離して必要な波長成分を取り出し,その吸光度を割り出すことで目的の成分量を測定することが可能な分析装置を構成できる。   In this way, a plurality of measurement units consisting of a package that owns two or more light sources, a sample holding unit on an electrode formed on a substrate, and a detector are arranged, and light is directed vertically to the sample holding unit. Even when irradiating and measuring with a detector, different modulation frequencies are applied to each light source, the information on the light received by the detector is separated using a frequency separation circuit, and the necessary wavelength components are extracted, and the absorbance is obtained. Thus, an analyzer that can measure the amount of the target component can be configured.

なお,並べられた測定部の各パッケージ内部に納められている光源の発光波長の組合せは全て同一である。   It should be noted that the combinations of the emission wavelengths of the light sources housed in the respective packages of the measurement units arranged are the same.

また,このときに測定開始点であるパッケージ25の内部に納められている光源13,14の光線19,20による迷光が受光される範囲の測定部の光源には,光源ごとに全て異なる変調周波数を印加し,それ以遠の測定部の光源には,測定開始点のからその範囲までの変調周波数の組合せを繰り返し適用しても良い。試料内の光路について,試料表面の表面張力のある箇所など,検出に悪影響を及ぼす箇所を避けると良い。   Further, at this time, the light sources of the measuring unit within the range where the stray light from the light beams 19 and 20 of the light sources 13 and 14 stored in the package 25 as the measurement start point are received are all modulated frequencies different for each light source. A combination of modulation frequencies from the measurement start point to the range may be repeatedly applied to the light source of the measurement unit beyond that. For the optical path in the sample, it is recommended to avoid locations that adversely affect detection, such as locations with surface tension on the sample surface.

各パッケージ内部に納められている光源の組合せが同一である複数の測定部の光源を1つの光源群と定義し,光源群が複数存在する場合,異なる変調周波数で変調された光を試料に照射して,周波数分離回路によりクロストークを分離し除去する試料分析装置の例について説明する。図12は,3つの光源群1,2,3を有する試料分析装置を上部から見た構成を示している。本実施例は,基板上で電気的な制御により複数の試料を保持,及び搬送が可能な試料保持部を用い,光源より試料及び検出器に垂直方向へ光を照射する実施例3記載の測定部を用いたが,構成はこの限りではない。   The light sources of multiple measurement units with the same combination of light sources contained in each package are defined as one light source group. When there are multiple light source groups, the sample is irradiated with light modulated at different modulation frequencies. An example of a sample analyzer that separates and removes crosstalk using a frequency separation circuit will be described. FIG. 12 shows a configuration of a sample analyzer having three light source groups 1, 2, and 3 as viewed from above. This example uses the sample holder that can hold and transport multiple samples by electrical control on the substrate, and irradiates the sample and detector with light in the vertical direction from the light source. However, the configuration is not limited to this.

光源群1は,測定開始部から順に,波長λ1で変調周波数f1の光を発する光源13と,波長λ2で変調周波数f2の光を出射する光源14を内部に納めた透明な樹脂等から成るパッケージ25,波長λ1で変調周波数f3の光を発する光源15と,波長λ2で変調周波数f4の光を出射する光源16を内部に納めたパッケージ26,波長λ1で変調周波数f5の光を発する光源17と,波長λ2で変調周波数f6の光を出射する光源18を内部に納めたパッケージ27,波長λ1で変調周波数f7の光を発する光源120と,波長λ2で変調周波数f8の光を出射する光源121を内部に納めたパッケージ138が,下部基板101上に形成された電極147,148,149,150上に順に設置されている。   The light source group 1 is a package made of a transparent resin or the like in which a light source 13 that emits light of a modulation frequency f1 at a wavelength λ1 and a light source 14 that emits light of a modulation frequency f2 at a wavelength λ2 are housed. 25, a light source 15 that emits light of a modulation frequency f3 at a wavelength λ1, a package 26 in which a light source 16 that emits light of a modulation frequency f4 at a wavelength λ2 is housed, and a light source 17 that emits light of a modulation frequency f5 at a wavelength λ1 A package 27 in which a light source 18 that emits light having a modulation frequency f6 at a wavelength λ2 is housed, a light source 120 that emits light at a modulation frequency f7 at a wavelength λ1, and a light source 121 that emits light at a modulation frequency f8 at a wavelength λ2. A package 138 housed inside is sequentially installed on electrodes 147, 148, 149, and 150 formed on the lower substrate 101.

光源群2は,光源群1,3と異なる波長の光源を使用している。測定開始部から順に,波長λ3で変調周波数f9の光を発する光源122と,波長λ4で変調周波数f10の光を出射する光源123を内部に納めた透明な樹脂等から成るパッケージ139,波長λ3で変調周波数f11の光を発する光源124と,波長λ4で変調周波数f12の光を出射する光源125を内部に納めたパッケージ140,波長λ3で変調周波数f13の光を発する光源126と,波長λ4で変調周波数f14の光を出射する光源127を内部に納めたパッケージ141,波長λ3で変調周波数f15の光を発する光源128と,波長λ4で変調周波数f16の光を出射する光源129を内部に納めたパッケージ142が,下部基板101上に形成された電極151,152,153,154上に順に設置されている。   The light source group 2 uses a light source having a wavelength different from that of the light source groups 1 and 3. In order from the measurement start unit, a light source 122 that emits light of a modulation frequency f9 at a wavelength λ3 and a light source 123 that emits light of a modulation frequency f10 at a wavelength λ4 and a package 139 made of a transparent resin or the like, and a wavelength λ3 A light source 124 that emits light having a modulation frequency f11, a package 140 in which a light source 125 that emits light having a modulation frequency f12 at a wavelength λ4 is housed, a light source 126 that emits light having a modulation frequency f13 at a wavelength λ3, and a light source 126 that modulates at a wavelength λ4 A package 141 containing a light source 127 that emits light of frequency f14, a light source 128 that emits light of modulation frequency f15 at a wavelength λ3, and a light source 129 that emits light of modulation frequency f16 at a wavelength λ4. 142 is disposed on the electrodes 151, 152, 153, and 154 formed on the lower substrate 101 in this order.

同様に光源群3は,光源群1,2と異なる波長の光源を使用している。測定開始部から順に,波長λ5で変調周波数f17の光を発する光源130と,波長λ6で変調周波数f18の光を出射する光源131を内部に納めた透明な樹脂等から成るパッケージ143,波長λ5で変調周波数f19の光を発する光源132と,波長λ6で変調周波数f20の光を出射する光源133を内部に納めたパッケージ144,波長λ5で変調周波数f21の光を発する光源134と,波長λ6で変調周波数f22の光を出射する光源135を内部に納めたパッケージ145,波長λ5で変調周波数f23の光を発する光源136と,波長λ6で変調周波数f24の光を出射する光源137を内部に納めたパッケージ146が,下部基板101上に形成された電極155,156,157,158上に順に設置されている。   Similarly, the light source group 3 uses a light source having a wavelength different from that of the light source groups 1 and 2. In order from the measurement start section, a light source 130 that emits light of a modulation frequency f17 at a wavelength λ5 and a light source 131 that emits light of a modulation frequency f18 at a wavelength λ6 and a package 143 made of a transparent resin or the like, and a wavelength λ5 A light source 132 that emits light having a modulation frequency f19, a package 144 in which a light source 133 that emits light having a modulation frequency f20 at a wavelength λ6 is housed, a light source 134 that emits light having a modulation frequency f21 at a wavelength λ5, and a light having a modulation frequency f21 A package 145 containing a light source 135 that emits light having a frequency f22, a light source 136 that emits light having a modulation frequency f23 at a wavelength λ5, and a light source 137 that emits light having a modulation frequency f24 at a wavelength λ6. 146 is installed on the electrodes 155, 156, 157, 158 formed on the lower substrate 101 in order.

各光源群において,試料は,上部基板100と下部基板101の間を各電極に順次電圧が印加されて生じる静電力により搬送又は保持される。本実施例では,各電極上で保持された試料にそれぞれ変調周波数の異なる光を出射しているため,光源群内及び光源群間でのクロストークの影響を回避して,それぞれの測定部で目的の成分量を測定することができる。すなわち,各測定部では,必要な波長成分の情報を,周波数分離回路を用いて検出器の出力から分離して取り出し,その吸光度を割り出すことで目的の成分量を測定する。   In each light source group, the sample is transported or held between the upper substrate 100 and the lower substrate 101 by electrostatic force generated by sequentially applying a voltage to each electrode. In this embodiment, since light having different modulation frequencies is emitted to the samples held on the electrodes, the influence of crosstalk within the light source group and between the light source groups is avoided, and each measurement unit The target component amount can be measured. In other words, each measuring unit separates and extracts the necessary wavelength component information from the output of the detector using a frequency separation circuit, and measures the target component amount by calculating the absorbance.

本実施例で用いた光源群各々の波長は全て異なるが,同一波長の組合せの光源群を複数用いることも可能である。   Although the wavelengths of the light source groups used in this embodiment are all different, a plurality of light source groups having the same wavelength combination can be used.

また,光源群内で,測定開始部である前記パッケージ25の内部に納められている光源13の光線19及び光源14の光線20による迷光が受光される範囲の測定部の光源には,波長の異なる光源ごとに全て異なる変調周波数を印加し,それ以遠の測定部の光源には,パッケージ25からその範囲までの変調周波数の組合せを繰り返し適用してもよい。更に,各光源群間でもクロストークの影響が見られない場合,光源群間で変調周波数の組合せ及び繰り返し範囲を同一にすることも可能である。   Further, in the light source group, the light source of the measurement unit in the range where stray light due to the light beam 19 of the light source 13 and the light beam 20 of the light source 14 housed in the package 25 which is a measurement start unit is received is included in the light source group. Different modulation frequencies may be applied to different light sources, and a combination of modulation frequencies from the package 25 to the range may be repeatedly applied to the light source of the measurement unit beyond that. Further, when the influence of crosstalk is not observed between the light source groups, it is possible to make the combination of the modulation frequencies and the repetition range the same between the light source groups.

基板上で電気的な制御により複数の試料を保持,及び搬送が可能な試料保持部を用い,光源より試料及び検出器に垂直方向へ光を照射する試料分析装置において,実施例2に示したように,各測定部の同じ波長の光源を同一の変調周波数で変調し,測定部間に時間差を持たせて光を出射することにより,クロストークの影響を低減する例について説明する。本実施例は,基板上で電気的な制御により複数の試料を保持,及び搬送が可能な試料保持部を用い,光源より試料及び検出器に垂直方向へ光を照射する実施例3記載の測定部を用いたが,測定部の構成はこの限りではない。   Example 2 shows a sample analyzer that irradiates light from a light source to a sample and a detector in a vertical direction using a sample holder that can hold and transport multiple samples by electrical control on a substrate. As described above, an example will be described in which the influence of crosstalk is reduced by modulating light sources having the same wavelength of each measurement unit with the same modulation frequency and emitting light with a time difference between the measurement units. This example uses the sample holder that can hold and transport multiple samples by electrical control on the substrate, and irradiates the sample and detector with light in the vertical direction from the light source. The measurement unit is not limited to this.

図13は,本実施例の試料分析装置を上部から見た構成図である。測定開始点にある透明な樹脂等から成るパッケージ25の内部には,波長λ1の光線19を発生する光源13と,波長λ2の光線20を発生する光源14が納められている。光源13は駆動回路7によって変調周波数f1で駆動され,光源14は駆動回路8によって変調周波数f2で駆動される。透明な樹脂等から成るパッケージ76の内部には,波長λ1の光線72を発する光源68と,波長λ2の光線73を出射する光源69が納められている。光源68は駆動回路64によって変調周波数f1で駆動され,光源69は駆動回路65によって変調周波数f2で駆動される。透明な樹脂等から成るパッケージ77の内部には,波長λ1の光線74を発する光源70と,波長λ2の光線75を出射する光源71が納められている。光源70は駆動回路66によって変調周波数f1で駆動され,光源71は駆動回路67によって変調周波数f2で駆動される。   FIG. 13 is a configuration diagram of the sample analyzer of this embodiment as viewed from above. A light source 13 for generating a light beam 19 having a wavelength λ1 and a light source 14 for generating a light beam 20 having a wavelength λ2 are housed inside a package 25 made of a transparent resin or the like at a measurement start point. The light source 13 is driven by the drive circuit 7 at the modulation frequency f1, and the light source 14 is driven by the drive circuit 8 at the modulation frequency f2. A light source 68 that emits a light beam 72 having a wavelength λ1 and a light source 69 that emits a light beam 73 having a wavelength λ2 are housed inside a package 76 made of transparent resin or the like. The light source 68 is driven by the drive circuit 64 at the modulation frequency f1, and the light source 69 is driven by the drive circuit 65 at the modulation frequency f2. Inside a package 77 made of transparent resin or the like, a light source 70 that emits a light beam 74 having a wavelength λ1 and a light source 71 that emits a light beam 75 having a wavelength λ2 are housed. The light source 70 is driven by the drive circuit 66 at the modulation frequency f1, and the light source 71 is driven by the drive circuit 67 at the modulation frequency f2.

各試料は,測定開始部より30秒おきに供給されて,10秒かけてとなりの電極へ移動している。図14に試料移送のタイミングチャートを示す。実際に試料が隣の電極へ移動するのにかかる時間は1秒程度であるため,測定にかけることが可能な時間は約9秒ほどである。この約9秒の間に,パッケージ25,76,77内の光源13,68,70から出射された波長λ1で変調周波数f1の光線19,72,74と,光源14,69,71から出射された波長λ2で変調周波数f2の光線20,73,75が,電極86が形成された上部基板100と電極80〜85,190が形成された下部基板101の間に保持されている試料31,32,33に対して順次時間差をおいて垂直方向に照射される。測定部に液体が保持されている約9秒での出射及びデータ検出のタイミングチャートを図15に示す。電極80が形成された測定部のデータ処理装置54では,図15に示すように光源13,14から波長λ1と波長λ2の光を出射し,データ検出時間に得られたデジタル信号のみを測定データとして採用する。同様に,電極82が形成された測定部のデータ処理装置55では,光源68,69から波長λ1と波長λ2の光を出射し,データ検出時間に得られたデジタル信号のみを測定データとして採用し,電極190に形成された測定部のデータ処理装置56では,光源70,71から波長λ1と波長λ2の光を出射し,データ検出時間に得られたデジタル信号のみを各々測定データとして採用することにより,クロストークの影響を低減して測定を行うことが可能となる。   Each sample is supplied from the measurement start section every 30 seconds and moves to the next electrode over 10 seconds. FIG. 14 shows a timing chart of sample transfer. Actually, the time required for the sample to move to the next electrode is about 1 second, so the time available for measurement is about 9 seconds. In about 9 seconds, the light beams 19, 72, and 74 having the wavelength λ1 and the modulation frequency f1 emitted from the light sources 13, 68, and 70 in the packages 25, 76, and 77 and the light sources 14, 69, and 71 are emitted. Samples 31, 32 in which light beams 20, 73, 75 having a wavelength λ2 and a modulation frequency f2 are held between the upper substrate 100 on which the electrode 86 is formed and the lower substrate 101 on which the electrodes 80 to 85, 190 are formed. , 33 are irradiated in the vertical direction with a time difference sequentially. FIG. 15 shows a timing chart of emission and data detection in about 9 seconds when the liquid is held in the measurement unit. In the data processing device 54 of the measurement unit in which the electrode 80 is formed, as shown in FIG. 15, light of wavelengths λ1 and λ2 is emitted from the light sources 13 and 14, and only the digital signal obtained at the data detection time is measured data. Adopt as. Similarly, in the data processing device 55 of the measurement unit in which the electrode 82 is formed, light of wavelengths λ1 and λ2 is emitted from the light sources 68 and 69, and only the digital signal obtained at the data detection time is used as measurement data. In the data processing device 56 of the measurement unit formed on the electrode 190, light of wavelengths λ1 and λ2 is emitted from the light sources 70 and 71, and only digital signals obtained during the data detection time are employed as measurement data. This makes it possible to perform measurement while reducing the influence of crosstalk.

本実施例は,実施例4に示したように複数の光源群が存在する場合にも,パッケージごとに光源の出射時間をずらすことによって適応することが可能である。   The present embodiment can be adapted by shifting the emission time of the light source for each package even when there are a plurality of light source groups as shown in the fourth embodiment.

また,光源群内において,パッケージ25の内部に納められている光源13,14の光線19,20による迷光が受光される範囲内の測定部の光源は,パッケージ単位で順次時間差で光を出射し,それ以遠の測定部の光源には,パッケージ25からのその範囲までの,各測定部での光源の出射時間のパターンを繰り返しても良い。光源群間でも,光源群間で繰り返し範囲を同一にすることも可能である。更に,各光源群間で光源の波長が異なる場合には,光源群間で出射時間及び繰り返し範囲を同一にしてもよい。   In the light source group, the light source of the measurement unit within the range in which the stray light due to the light rays 19 and 20 of the light sources 13 and 14 contained in the package 25 is received emits light sequentially with a time difference for each package. The pattern of the emission time of the light source at each measurement unit up to the range from the package 25 may be repeated for the light source of the measurement unit farther. It is also possible to make the repetition range the same between the light source groups. Further, when the wavelength of the light source is different between the light source groups, the emission time and the repetition range may be the same between the light source groups.

実施例1から5は,出射した光がほとんど広がらない,例えば半導体レーザ等を光源にした場合の例である。しかし,光源が例えば発光ダイオード等の場合,素子から出射された光は広がってしまうため,試料が少ない場合には絞り込むことが必要となる。   Examples 1 to 5 are examples in which emitted light hardly spreads, for example, when a semiconductor laser or the like is used as a light source. However, when the light source is, for example, a light emitting diode, the light emitted from the element spreads, and therefore it is necessary to narrow down when there are few samples.

図16は,光源として発光ダイオードを用いた場合の実施例を示す図である。波長λ1の光19を発する光源13と波長λ2の光20を発する光源14は,透明な樹脂等から成るパッケージ25の内部に納められている。パッケージ25の,光が出射する先端部分は,内部光源から照射される光が概略平行光になるように凸型のレンズ形状に成型されているため,パッケージ25内の光源13と光源14から出射された波長λ1の光19と波長λ2の光20は,パッケージ25内から太く広げられた概略平行光に成形されて出射する。   FIG. 16 is a diagram showing an embodiment in which a light emitting diode is used as a light source. A light source 13 that emits light 19 having a wavelength λ1 and a light source 14 that emits light 20 having a wavelength λ2 are housed in a package 25 made of a transparent resin or the like. The front end portion of the package 25 from which light is emitted is formed in a convex lens shape so that the light emitted from the internal light source becomes substantially parallel light, and thus is emitted from the light source 13 and the light source 14 in the package 25. The light 19 having the wavelength λ1 and the light 20 having the wavelength λ2 are formed into substantially parallel light that is broadly spread from the package 25 and emitted.

太く広げられて概略平行光に成形された波長λ1の光19と波長λ2の光20は,レンズ159により試料31の,光の透過方向長さの概略1/2の位置に絞り込まれ,再度広がりながら試料31内部を透過し,検出器37に照射される。この時,波長λ1の光線19と波長λ2の光線20は,実施例1から6と同様に,2種類の光が透過する経路の違いによる濃度の影響を受けることは無い。   The light 19 having the wavelength λ1 and the light 20 having the wavelength λ2, which are broadly spread and formed into substantially parallel light, are narrowed down by the lens 159 to a position approximately half the length of the light transmission direction of the sample 31, and spread again. While passing through the sample 31, the detector 37 is irradiated. At this time, the light beam 19 having the wavelength λ1 and the light beam 20 having the wavelength λ2 are not affected by the density due to the difference in the path through which the two types of light are transmitted, as in the first to sixth embodiments.

本発明では,例えば図1に示す光源13,15,17と光源14,16,18から出射される光の中心波長,あるいは,最も成分量の多い波長は,概略340,405,415,450,480,505,546,570,600,660,700,750,800 (単位はnm) の13種類から選択した2種類の異なる波長を組合せて用いる。これらの波長の組合せを用いることで,生化学自動分析装置に於いては,使用する試薬のプロトコルを変えることなく,現在測定可能な検査項目を網羅することが可能である。また,それらの組合せの中でも,一方の波長が340nmの紫外線である組合せが一番多い。その理由は,340nmともう一種類の波長を用いるのに適した検査項目や,検査用の試薬が多いためであり,一方の波長に紫外線を選択することは非常に重要である。   In the present invention, for example, the center wavelengths of the light emitted from the light sources 13, 15, 17 and the light sources 14, 16, 18 shown in FIG. 1 or the wavelengths with the largest component amounts are approximately 340, 405, 415, 450, Two different wavelengths selected from 13 types of 480, 505, 546, 570, 600, 660, 700, 750, 800 (unit: nm) are used in combination. By using combinations of these wavelengths, the biochemical automatic analyzer can cover the currently measurable test items without changing the protocol of the reagent used. Moreover, among these combinations, there are most combinations in which one wavelength is ultraviolet light having a wavelength of 340 nm. The reason is that there are many inspection items and reagents for inspection suitable for using another wavelength of 340 nm, and it is very important to select ultraviolet rays for one wavelength.

実施例3,4,5で示した試料保持部の構成を変更した種々の実施例について説明する。本実施例では,試料をオイル滴で取り囲んで試料の保持及び搬送を行った。液体の搬送方法は実施例3と同様である。尚,本実施例に用いた第1の電極及び第2の電極への印加電圧は数ボルト程度である。   Various examples in which the configuration of the sample holder shown in Examples 3, 4, and 5 is changed will be described. In the present example, the sample was held and transported by surrounding the sample with oil droplets. The liquid transport method is the same as in the third embodiment. Note that the voltage applied to the first electrode and the second electrode used in this example is about several volts.

図17に,一実施例における試料保持部184の断面構成図を示す。試料保持部184は下部基板182及び上部基板183から構成されている。下部基板182では絶縁性基板165の上表面に,試料160,161の搬送方向に沿って第1の電極167〜170が形成され,更にその表面は絶縁膜180で覆われている。上部基板183では絶縁性基板166の下表面に1つの第2の電極171が形成され,更にその表面は絶縁膜181で覆われている。更にそれぞれの絶縁膜181の表面には液体が搬送しやすいよう,撥水性を付与するため表面に撥水膜185,186が塗布されている。これらの二つの基板間に,搬送する試料160,161を配置し,その周囲をオイル滴162,163で取り囲む。オイル滴162,163の周囲には空気164が存在する。   FIG. 17 shows a cross-sectional configuration diagram of the sample holder 184 in one embodiment. The sample holder 184 includes a lower substrate 182 and an upper substrate 183. In the lower substrate 182, first electrodes 167 to 170 are formed on the upper surface of the insulating substrate 165 along the transport direction of the samples 160 and 161, and the surface is covered with an insulating film 180. In the upper substrate 183, one second electrode 171 is formed on the lower surface of the insulating substrate 166, and the surface is covered with the insulating film 181. Further, water repellent films 185 and 186 are applied to the surfaces of the respective insulating films 181 so as to impart water repellency so that the liquid can be easily conveyed. Samples 160 and 161 to be transported are arranged between these two substrates, and the periphery is surrounded by oil droplets 162 and 163. Air 164 exists around the oil droplets 162 and 163.

本実施例では絶縁性基板165,166に石英を,第1の電極167〜170及び第2の電極171〜175にITO(Indium-Tin Oxide)を,絶縁膜180,181にCVD(Chemical Vapor Deposition)で成膜したSiO2を用い,撥水膜として旭硝子社製CYTOP(登録商標)を用いた。ITOの厚みは70nmとし,CVDで成膜した絶縁膜180の厚みは200nmとした。また下部基板182と上部基板183の間の距離は0.5mmとした。また試料160,161として試料として血清を,オイル滴162,163としてシリコーンオイルを用い,液量はそれぞれ5μLとした。下部基板182と上部基板183の間にオイル滴162,163で取り囲まれた液体を設置することにより,オイルの蒸発防止効果が高まり,また,オイルが重力で引かれて液体から分離することを回避することができる。なお,本実施例では試料をオイル滴で取り囲み,オイル滴の周囲には空気が存在する構成としたが,図22に示すように,上部基板183と下部基板182との間をオイル162で満たし,当該オイルの中に試料の液滴が配置されるようにしてもよい。この場合にはオイルの配置制御が容易に行なうことができる。 In this embodiment, the insulating substrates 165 and 166 are made of quartz, the first electrodes 167 to 170 and the second electrodes 171 to 175 are made of ITO (Indium-Tin Oxide), and the insulating films 180 and 181 are made of CVD (Chemical Vapor Deposition). ) using the SiO 2 was deposited with, was used as the water-repellent film manufactured by Asahi Glass Company, CYTOP (registered trademark). The thickness of ITO was 70 nm, and the thickness of the insulating film 180 formed by CVD was 200 nm. The distance between the lower substrate 182 and the upper substrate 183 was 0.5 mm. In addition, serum was used as samples 160 and 161, silicone oil was used as oil drops 162 and 163, and the liquid volume was 5 μL. By installing the liquid surrounded by the oil droplets 162 and 163 between the lower substrate 182 and the upper substrate 183, the effect of preventing the evaporation of the oil is enhanced, and it is avoided that the oil is pulled by gravity and separated from the liquid. can do. In this embodiment, the sample is surrounded by oil droplets and air is present around the oil droplets. However, the oil 162 is filled between the upper substrate 183 and the lower substrate 182 as shown in FIG. , Sample droplets may be placed in the oil. In this case, the oil arrangement can be easily controlled.

また本実施例では第2の電極171は1つとしたが,図18のように上部基板183に複数の第2の電極172〜175を配置してもよい。この場合には,搬送の際に液体の位置精度を高める効果がある。また本実施例では第1の電極167〜170及び,第2の電極171〜175をそれぞれ絶縁膜180,181で覆ったが,図19のように第1の電極167〜170の表面を絶縁膜180で覆い,第2の電極171表面に絶縁膜181がなくともよい。この場合には,簡単な構成とすることができる。更に第2の電極171表面に撥水膜186がコーティングされていなくともよい。この場合には,より簡単な構成とすることができる。   In this embodiment, the number of the second electrodes 171 is one, but a plurality of second electrodes 172 to 175 may be arranged on the upper substrate 183 as shown in FIG. In this case, there is an effect of increasing the positional accuracy of the liquid during the conveyance. In this embodiment, the first electrodes 167 to 170 and the second electrodes 171 to 175 are covered with the insulating films 180 and 181, respectively. However, as shown in FIG. 19, the surfaces of the first electrodes 167 to 170 are covered with the insulating film. The insulating film 181 may not be provided on the surface of the second electrode 171. In this case, a simple configuration can be obtained. Further, the surface of the second electrode 171 may not be coated with the water repellent film 186. In this case, a simpler configuration can be obtained.

また,図20のように,下部基板182の第1の電極167〜170の間に第2の電極172〜174を形成するなど,上部基板183表面に第2の電極171を形成せず,下部基板182に複数の電極を設けておき,この複数の電極のいずれかを第1の電極167〜170とし,別のいずれかを第2の電極172〜174とすることもできる。この場合には,上部基板に電極を成膜する必要がないので,より簡単な構成となる。更に上部基板183の絶縁性基板166表面に撥水膜がコーティングされていなくともよい。この場合には,より簡単な構成にできる。また図21のように上部基板183を設けず,下部基板182のみの構成でも試料の保持及び搬送が可能となる。この場合は更に簡易な構成となる。   Further, as shown in FIG. 20, the second electrode 172 to 174 is formed between the first electrodes 167 to 170 of the lower substrate 182, and the second electrode 171 is not formed on the surface of the upper substrate 183. A plurality of electrodes may be provided on the substrate 182, and any one of the plurality of electrodes may be used as the first electrodes 167 to 170, and another one may be used as the second electrodes 172 to 174. In this case, since it is not necessary to form an electrode on the upper substrate, the configuration is simpler. Further, the surface of the insulating substrate 166 of the upper substrate 183 may not be coated with a water repellent film. In this case, a simpler configuration can be achieved. Further, as shown in FIG. 21, the sample can be held and transported even in a configuration in which the upper substrate 183 is not provided and only the lower substrate 182 is provided. In this case, the configuration is further simplified.

以下に,本発明の態様を列挙する。
(1)出力波長の異なる少なくとも2種類の半導体光源、資料保持部、検出器からなる測定部であり、少なくとも2種類の半導体光源はそれぞれ異なる変調周波数で強弱を与えられた光を出射する測定部であり、複数近接して設けられた測定部の光源は、測定部ごとに異なる変調周波数で強弱を与えられた光を出射することを特徴とする試料分析装置。
(2)前記複数近接して設けられた測定部は,はじめから一定数までの範囲において測定部ごとに異なる変調周波数で強弱を与えられた光を出射する光源を持つ直列方向のグループ配列とし、そのグループ配列を直列方向に複数配列したことを特徴とする(1)に記載の試料分析装置。
(3)前記グループ配列を並列方向に複数配列し、最初のグループ配列から一定数のグループ配列までの範囲において測定部ごとに異なる変調周波数で強弱を与えられた光を出射する光源を持つマトリクス配列とし、そのマトリクス配列を直列方向及び若しくは並列方向に複数配列したことを特徴とする(1)に記載の試料分析装置。
(4)前記グループ配列の前記光源は、波長の組み合わせが同一であり、グループ配列毎に波長の組合せが同一か若しくは異なることを特徴とする(1)に記載の試料分析装置。
(5)出力波長の異なる少なくとも2種類の半導体光源、資料保持部、検出器からなる測定部であり、少なくとも2種類の半導体光源はそれぞれ異なる変調周波数で強弱を与えられた光を出射する測定部であり、複数近接して設けられた測定部の光源は、測定部ごとに順次時間差をおいて特定の時間光を出射することを特徴とする試料分析装置。
The embodiments of the present invention are listed below.
(1) A measuring unit comprising at least two types of semiconductor light sources having different output wavelengths, a data holding unit, and a detector, and each of the at least two types of semiconductor light sources emits light that is given strength at different modulation frequencies. The sample analyzer is characterized in that a plurality of light sources of the measurement units provided in close proximity emit light that is given intensity at different modulation frequencies for each measurement unit.
(2) The plurality of measurement units provided close to each other are arranged in a group group in a series direction having a light source that emits light with a different modulation frequency for each measurement unit in a range from the beginning to a certain number, The sample analyzer according to (1), wherein a plurality of the group arrays are arranged in series.
(3) A matrix array having a light source that emits light having a different modulation frequency for each measurement unit in a range from the first group array to a certain number of group arrays in a plurality of the group arrays in a parallel direction. The sample analyzer according to (1), wherein a plurality of matrix arrays are arranged in a series direction and / or a parallel direction.
(4) The sample analyzer according to (1), wherein the light sources of the group arrangement have the same wavelength combination, and the wavelength combinations are the same or different for each group arrangement.
(5) A measuring unit comprising at least two types of semiconductor light sources, data holding units, and detectors having different output wavelengths, and at least two types of semiconductor light sources each emitting light that is given strength at different modulation frequencies. The sample analyzer is characterized in that a plurality of light sources of measuring units provided close to each other emit light at a specific time sequentially with a time difference for each measuring unit.

(6)前記複数近接して設けられた測定部は,はじめから一定数までの範囲において測定部ごとに順次時間差をおいて特定の時間光を出射する光源を持つ直列方向のグループ配列とし、そのグループ配列を直列方向に複数配列したことを特徴とする(5)に記載の試料分析装置。
(7)前記グループ配列の前記光源は、波長の組み合わせが同一であり、グループ配列毎に波長の組合せが同一か若しくは異なることを特徴とする(5)に記載の試料分析装置。
(8)前記光源は,前記少なくとも2つの波長の光が,前記試料の光の透過方向における長さの概略1/2の位置で交差するように構成されたことを特徴とする(1)又は(5)に記載の試料分析装置。
(9)前記光源は1つのパッケージ内に収められていることを特徴とする(1)又は(5)に記載の試料分析装置。
(10)前記光源は,半導体レーザ及び発光ダイオード若しくはその組合せであることを特徴とする(1)又は(5)に記載の試料分析装置。
(6) The plurality of measurement units provided close to each other are arranged in a group group in a series direction having a light source that emits a specific time light sequentially with a time difference for each measurement unit in a range from the beginning to a certain number, The sample analyzer according to (5), wherein a plurality of group arrays are arranged in a series direction.
(7) The sample analysis apparatus according to (5), wherein the light sources of the group arrangement have the same wavelength combination, and the wavelength combinations are the same or different for each group arrangement.
(8) The light source is configured such that the light of the at least two wavelengths intersects at a position that is approximately a half of the length in the light transmission direction of the sample (1) or The sample analyzer according to (5).
(9) The sample analyzer according to (1) or (5), wherein the light source is housed in one package.
(10) The sample analyzer according to (1) or (5), wherein the light source is a semiconductor laser and a light emitting diode or a combination thereof.

(11)前記光源は,発光ダイオードであり,1つの透明な樹脂等のパッケージ内に収められ,前記パッケージの前記光源から出射される光の出射部位の形状を,前記光源から出射された光が概略並行光に成型されるように凸型のレンズ形状に成型され,前記パッケージと前記試料収容部の間に集光レンズが設けられていることを特徴とする(1)又は(5)に記載の試料分析装置。
(12)前記光源各々に対して異なる周波数に変調する複数の発信回路と,前記検出器で検出した信号を,前記光源のそれぞれの周波数成分に分離する,周波数分離回路とを有することを特徴とする(1)又は(5)に記載の試料分析装置。
(13)前記(12)記載の試料分析装置において、測定部ごとに順次時間差をおいて計測が可能な周波数分離回路を有することを特徴とする(5)に記載の試料分析装置。
(14)前記光源から出射される光の中心波長,あるいは,最も成分量の多い波長が,概略340,404,415,450,480,505,546,570,600,660,700,750,800(単位はnm)の中の異なる波長であることを特徴とする(1)又は(5)に記載の試料分析装置。
(15)前記光源のうち1つが紫外線であることを特徴とする(1)又は(5)に記載の試料分析装置。
(11) The light source is a light emitting diode, and is housed in a single transparent resin package. The shape of the light emission part of the package emitted from the light source is the same as the light emitted from the light source. (1) or (5), wherein the lens is molded into a convex lens shape so as to be molded into substantially parallel light, and a condensing lens is provided between the package and the sample container. Sample analyzer.
(12) A plurality of transmission circuits that modulate each of the light sources to different frequencies, and a frequency separation circuit that separates a signal detected by the detector into each frequency component of the light source. The sample analyzer according to (1) or (5).
(13) The sample analyzer according to (5), wherein the sample analyzer according to (12) includes a frequency separation circuit capable of performing measurement with a time difference sequentially for each measurement unit.
(14) The center wavelength of the light emitted from the light source or the wavelength with the largest component amount is approximately 340, 404, 415, 450, 480, 505, 546, 570, 600, 660, 700, 750, 800. The sample analyzer according to (1) or (5), wherein the wavelengths are different wavelengths (unit: nm).
(15) The sample analyzer according to (1) or (5), wherein one of the light sources is ultraviolet light.

(16)前記複数の光源より出射される光は,前記試料保持部及びその上に保持される前記試料に対して垂直方向に出射されることを特徴とする(1)又は(5)に記載の試料分析装置。
(17)前記試料保持部は,第1の基板と,前記第1の基板に設けられた複数の電極が前記試料を保持,及び搬送する搬送路に沿って設置されており,前記複数の電極の任意の電極に電圧を印加するための電圧印加手段をさらに有し,複数の電極の少なくとも1つが配置される領域からなることを特徴とする(1)又は(5)に記載の試料分析装置。
(18)前記試料保持部は,前記複数の電極を覆う第1の絶縁膜と,前記絶縁膜と覆う第1の膜とを有することを特徴とする(17)に記載の液体搬送基板。
(19)前記試料保持部は,第2の基板と,前記第2の基板に設けられた電極層とをさらに有し,前記複数の電極と前記電極層とは対面することを特徴とする(17)に記載の液体搬送基板。
(20)前記試料保持部は,前記電極層を覆う第2の絶縁膜と,前記第2の絶縁膜を覆う第2の膜とをさらに有することを特徴とする(19)に記載の液体搬送基板。
(16) The light emitted from the plurality of light sources is emitted in a direction perpendicular to the sample holder and the sample held thereon, (1) or (5) Sample analyzer.
(17) The sample holder includes a first substrate and a plurality of electrodes provided on the first substrate, which are installed along a transport path for holding and transporting the sample. The sample analyzer according to (1) or (5), further comprising a voltage applying means for applying a voltage to any of the electrodes, and comprising a region in which at least one of the plurality of electrodes is disposed. .
(18) The liquid transport substrate according to (17), wherein the sample holder includes a first insulating film that covers the plurality of electrodes, and a first film that covers the insulating film.
(19) The sample holder further includes a second substrate and an electrode layer provided on the second substrate, and the plurality of electrodes and the electrode layer face each other ( 17) The liquid carrying substrate according to 17).
(20) The liquid transport according to (19), wherein the sample holder further includes a second insulating film covering the electrode layer and a second film covering the second insulating film. substrate.

(21)前記試料保持部は,前記複数の電極と前記電極層とが概略平行に配置されることを特徴とする(19)に記載の液体搬送基板。
(22)前記試料保持部は,前記第1の基板と前記第2の基板とは,前記複数の電極と前記電極層とが一定の距離を保つように配置されることを特徴とする(19)に記載の液体搬送基板。
(21) The liquid transport substrate according to (19), wherein the sample holder includes the plurality of electrodes and the electrode layer arranged substantially in parallel.
(22) The sample holding unit is characterized in that the first substrate and the second substrate are arranged such that the plurality of electrodes and the electrode layer maintain a constant distance (19 ).

本発明による試料分析装置の構成例を示す図。The figure which shows the structural example of the sample analyzer by this invention. 試料保持部の拡大図。The enlarged view of a sample holding part. 本発明による試料分析装置の他の構成例を示す図。The figure which shows the other structural example of the sample analyzer by this invention. LED出射のタイミングを示す図。The figure which shows the timing of LED emission. データ検出のタイミングを示す図。The figure which shows the timing of data detection. 液体試料の搬送方法を示す図。The figure which shows the conveyance method of a liquid sample. 液体搬送基板に保持されている試料の測定方法を示す図。The figure which shows the measuring method of the sample currently hold | maintained at the liquid conveyance board | substrate. 本発明による試料分析装置の他の構成例を示す図。The figure which shows the other structural example of the sample analyzer by this invention. 試料の水平方向の形状を示す図。The figure which shows the shape of the horizontal direction of a sample. 試料の断面模式図。The cross-sectional schematic diagram of a sample. 各測定部のデータ処理装置より得られた吸光度を比較して示した図。The figure which compared and showed the light absorbency obtained from the data processor of each measurement part. 複数の光源群を有する試料分析装置の構成例を示す図。The figure which shows the structural example of the sample analyzer which has a some light source group. 本発明による試料分析装置の他の構成例を示す図。The figure which shows the other structural example of the sample analyzer by this invention. 試料移送のタイミングチャート。Sample transfer timing chart. 測定部でのLED出射及びデータ検出のタイミングチャート。Timing chart of LED emission and data detection at the measurement unit. 光源に発光ダイオードを用いたときの測定部の構成例を示す略図。Schematic which shows the structural example of the measurement part when a light emitting diode is used for a light source. 試料搬送・保持部の断面構成例を示す図。The figure which shows the cross-sectional structural example of a sample conveyance and holding | maintenance part. 試料搬送・保持部の断面構成例を示す図。The figure which shows the cross-sectional structural example of a sample conveyance and holding | maintenance part. 試料搬送・保持部の断面構成例を示す図。The figure which shows the cross-sectional structural example of a sample conveyance and holding | maintenance part. 試料搬送・保持部の断面構成例を示す図。The figure which shows the cross-sectional structural example of a sample conveyance and holding | maintenance part. 試料搬送・保持部の断面構成例を示す図。The figure which shows the cross-sectional structural example of a sample conveyance and holding | maintenance part. 試料搬送・保持部の断面構成例を示す図。The figure which shows the cross-sectional structural example of a sample conveyance and holding | maintenance part. 試料搬送・保持部の電極に電圧を印加するタイミングを示す図。The figure which shows the timing which applies a voltage to the electrode of a sample conveyance and holding | maintenance part.

符号の説明Explanation of symbols

7,8,9,10,11,12,64,65,66,67…駆動回路
13,15,17,68,70,120…波長λ1の光源
14,16,18,69,71,121…波長λ2の光源
19,21,23,72,74…波長λ1の光
20,22,24,73,75…波長λ2の光
25,26,27,76,77,138,139,140,141,142,143,144,145,146…パッケージ
28,29,30,184…試料保持部
31,32,33,160,161…試料
34,35,36…検出器パッケージ
37,38,39…検出器
40,41,42…アンプ
45,46,47…周波数分離回路
48,49,50,51,52,53…A/Dコンバータ
54,55,56…データ処理装置
80,81,82,83,84,85,167,168,169,170,190…第1の電極
171,172,173,174,175…第2の電極
87…導入口
88,89,90,91,92,93…スイッチ
94…電源
95,105…液体
96,107…ディスペンサ
100,183…上部基板
101,182…下部基板
104…上部基板と下部基板の間の空間
106…排出口
108…廃液
110…測定部
122,124,126,128…波長λ3の光源
123,125,127,129…波長λ4の光源
130,132,134,136…波長λ5の光源
131,133,135,137…波長λ6の光源
147,148,149,150,151,152,153,154,155,156,157,158…電極
159…レンズ
160,161…試料
162,163…オイル滴
164…空気
165,166…絶縁性基板
180,181…絶縁膜
184…試料保持部
185,186…撥水膜
7, 8, 9, 10, 11, 12, 64, 65, 66, 67 ... drive circuit
13, 15, 17, 68, 70, 120 ... light source with wavelength λ1
14, 16, 18, 69, 71, 121 ... Light source with wavelength λ2
19, 21, 23, 72, 74 ... light of wavelength λ1
20, 22, 24, 73, 75 ... light of wavelength λ2
25, 26, 27, 76, 77, 138, 139, 140, 141, 142, 143, 144, 145, 146 ... package
28, 29, 30, 184 ... Sample holder
31, 32, 33, 160, 161 ... Sample
34, 35, 36 ... Detector package
37, 38, 39 ... Detector
40, 41, 42 ... amplifier
45, 46, 47 ... Frequency separation circuit
48, 49, 50, 51, 52, 53 ... A / D converter
54, 55, 56 ... Data processing equipment
80, 81, 82, 83, 84, 85, 167, 168, 169, 170, 190 ... first electrode
171 172 173 174 175 second electrode
87… Introduction port
88, 89, 90, 91, 92, 93 ... switch
94 ... Power supply
95,105 ... Liquid
96, 107 ... dispenser
100, 183 ... Upper substrate
101, 182 ... Lower substrate
104… Space between the upper and lower substrates
106 ... Discharge port
108 ... Waste liquid
110… Measurement part
122, 124, 126, 128 ... light source of wavelength λ3
123, 125, 127, 129 ... Light source with wavelength λ4
130, 132, 134, 136 ... Light source with wavelength λ5
131, 133, 135, 137 ... light source with wavelength λ6
147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158 ... electrodes
159 ... Lens
160,161 ... Sample
162,163 ... oil drop
164 ... Air
165,166 ... Insulating substrate
180,181 ... insulating film
184 ... Sample holder
185,186 ... Water repellent film

Claims (12)

パッケージに納められそれぞれ異なる波長の光を発生する第1の光源及び第2の光源と,試料を保持する試料保持部と,前記第1の光源及び前記第2の光源から出射して前記試料保持部に保持された試料を透過した光を検出する光検出器とを有する測定部が複数並置され,
同じ測定部に属する前記第1の光源及び前記第2の光源は,それぞれ異なる変調周波数で変調された光を同じタイミングで出射し,
少なくとも隣接する測定部に属する光源は,それぞれ異なるタイミングで発光し,
各測定部に属する前記第1の光源と前記第2の光源は垂直方向に並んで配置され,前記第1の光源からの光と前記第2の光源からの光は前記試料に対して水平方向に照射され,前記試料の,光の透過方向における長さの1/2の位置で,前記第1の光源からの光と前記第2の光源からの光が交差し前記光検出器に照射される,又は,各測定部に属する前記第1の光源と前記第2の光源は水平方向に並んで配置され,前記第1の光源からの光と前記第2の光源からの光は前記試料に対して垂直方向に照射され,前記試料の,光の透過方向における長さの1/2の位置で,前記第1の光源からの光と前記第2の光源からの光が交差し前記光検出器に照射される,ことを特徴とする試料分析装置。
A first and second light sources for generating light of different wavelengths housed in a package, a sample holding portion for holding a sample, the sample holding is emitted from the first light source and the second light source A plurality of measuring units having a photodetector for detecting light transmitted through the sample held in the unit,
The first light source and the second light source belonging to the same measurement unit emit light modulated with different modulation frequencies at the same timing,
At least light sources belonging to adjacent measuring units emit light at different timings ,
The first light source and the second light source belonging to each measurement unit are arranged side by side in the vertical direction, and the light from the first light source and the light from the second light source are horizontal with respect to the sample. The light from the first light source intersects with the light from the second light source at the position of half the length of the sample in the light transmission direction, and is irradiated to the photodetector. Alternatively, the first light source and the second light source belonging to each measurement unit are arranged in a horizontal direction, and the light from the first light source and the light from the second light source are applied to the sample. The light from the first light source intersects with the light from the second light source at a position half the length of the sample in the light transmission direction. A sample analyzer characterized in that it is irradiated to a vessel .
請求項1記載の試料分析装置において,各測定部に属する2つの光源が発生する波長の組み合わせが同一であることを特徴とする試料分析装置。 2. The sample analyzer according to claim 1, wherein the combination of wavelengths generated by the two light sources belonging to each measurement unit is the same. 請求項1記載の試料分析装置において,異なる測定部に属する光源は,それぞれ異なるタイミングで発光することを特徴とする試料分析装置。   2. The sample analyzer according to claim 1, wherein light sources belonging to different measurement units emit light at different timings. 請求項1記載の試料分析装置において,相互に隣接する所定数の測定部に属する光源は,それぞれ異なるタイミングで発光することを特徴とする試料分析装置。   2. The sample analyzer according to claim 1, wherein light sources belonging to a predetermined number of measurement units adjacent to each other emit light at different timings. 請求項1記載の試料分析装置において,複数の電極が設置された基板と,前記複数の電極に選択的に電圧を印加する電圧印加手段とを備える試料搬送路を有し,前記各測定部の試料保持部は,前記搬送路上に設定されることを特徴とする試料分析装置。   The sample analyzer according to claim 1, further comprising: a sample transport path including a substrate on which a plurality of electrodes are installed, and a voltage applying unit that selectively applies a voltage to the plurality of electrodes. A sample analyzer, wherein the sample holder is set on the transport path. パッケージに納められそれぞれ異なる波長の光を発生する第1の光源及び第2の光源と,試料を保持する試料保持部と,前記試料保持部に保持された試料を透過した前記第1の光源及び前記第2の光源からの光を検出する光検出器とを備える測定部が複数並置され,
一つの測定部に属する前記第1の光源及び前記第2の光源及び少なくとも当該測定部に隣接する測定部に属する複数の光源は,それぞれ異なる変調周波数で変調された光を出射し,
各測定部に属する前記第1の光源と前記第2の光源は垂直方向に並んで配置され,前記第1の光源からの光と前記第2の光源からの光は前記試料に対して水平方向に照射され,前記試料の,光の透過方向における長さの1/2の位置で,前記第1の光源からの光と前記第2の光源からの光が交差し前記光検出器に照射される,又は,各測定部に属する前記第1の光源と前記第2の光源は水平方向に並んで配置され,前記第1の光源からの光と前記第2の光源からの光は前記試料に対して垂直方向に照射され,前記試料の,光の透過方向における長さの1/2の位置で,前記第1の光源からの光と前記第2の光源からの光が交差し前記光検出器に照射される,ことを特徴とする試料分析装置。
A first light source and a second light source that are housed in a package and generate light of different wavelengths, a sample holder that holds a sample, the first light source that transmits the sample held in the sample holder, and A plurality of measuring units including a photodetector for detecting light from the second light source;
The first light source and the second light source belonging to one measurement unit and a plurality of light sources belonging to at least the measurement unit adjacent to the measurement unit emit light modulated at different modulation frequencies, respectively .
The first light source and the second light source belonging to each measurement unit are arranged side by side in the vertical direction, and the light from the first light source and the light from the second light source are horizontal with respect to the sample. The light from the first light source intersects with the light from the second light source at the position of half the length of the sample in the light transmission direction, and is irradiated to the photodetector. Alternatively, the first light source and the second light source belonging to each measurement unit are arranged in a horizontal direction, and the light from the first light source and the light from the second light source are applied to the sample. The light from the first light source intersects with the light from the second light source at a position half the length of the sample in the light transmission direction. A sample analyzer characterized in that it is irradiated to a vessel .
請求項記載の試料分析装置において,前記複数の測定部が備える複数の光源は,それぞれ異なる変調周波数で変調された光を出射することを特徴とする試料分析装置。 7. The sample analyzer according to claim 6 , wherein the plurality of light sources provided in the plurality of measuring units emit light modulated at different modulation frequencies. 請求項記載の試料分析装置において,相互に隣接する所定数の測定部に属する複数の光源は,それぞれ異なる変調周波数で変調された光を出射することを特徴とする試料分析装置。 7. The sample analyzer according to claim 6 , wherein a plurality of light sources belonging to a predetermined number of measurement units adjacent to each other emit light modulated at different modulation frequencies. 請求項記載の試料分析装置において,複数の電極が設置された基板と,前記複数の電極に選択的に電圧を印加する電圧印加手段とを備える試料搬送路を有し,前記各測定部の試料保持部は,前記搬送路上に設定されることを特徴とする試料分析装置。 7. The sample analyzer according to claim 6 , further comprising a sample transport path including a substrate on which a plurality of electrodes are installed, and a voltage applying unit that selectively applies a voltage to the plurality of electrodes. A sample analyzer, wherein the sample holder is set on the transport path. 請求項記載の試料分析装置において,前記測定部は二次元的にマトリックス配列されていることを特徴とする試料分析装置。 7. The sample analyzer according to claim 6 , wherein the measurement units are two-dimensionally arranged in a matrix. 請求項記載の試料分析装置において,各測定部に属する2つの光源が発生する波長の組み合わせが同一であることを特徴とする試料分析装置。 7. The sample analyzer according to claim 6 , wherein a combination of wavelengths generated by two light sources belonging to each measurement unit is the same. 請求項記載の試料分析装置において,前記複数の測定部が備える複数の光源は同期して発光することを特徴とする試料分析装置。 The sample analyzer according to claim 6 , wherein the plurality of light sources provided in the plurality of measurement units emit light in synchronization.
JP2005156950A 2005-05-30 2005-05-30 Sample analyzer Expired - Fee Related JP4616079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005156950A JP4616079B2 (en) 2005-05-30 2005-05-30 Sample analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005156950A JP4616079B2 (en) 2005-05-30 2005-05-30 Sample analyzer

Publications (3)

Publication Number Publication Date
JP2006329920A JP2006329920A (en) 2006-12-07
JP2006329920A5 JP2006329920A5 (en) 2008-01-24
JP4616079B2 true JP4616079B2 (en) 2011-01-19

Family

ID=37551742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156950A Expired - Fee Related JP4616079B2 (en) 2005-05-30 2005-05-30 Sample analyzer

Country Status (1)

Country Link
JP (1) JP4616079B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097257A1 (en) * 2006-02-23 2007-08-30 Konica Minolta Medical & Graphic, Inc. Inspection equipment using microchip
JP2008020380A (en) * 2006-07-14 2008-01-31 Aloka Co Ltd Absorbance measuring instrument
JP4910949B2 (en) * 2007-08-29 2012-04-04 株式会社島津製作所 Method for analyzing samples in liquid
KR101202648B1 (en) * 2011-07-22 2012-11-19 (주)대경산업 Digital reader for urin detection
JP2014092485A (en) * 2012-11-05 2014-05-19 Sharp Corp Component detector
US9395346B2 (en) * 2013-11-18 2016-07-19 Zoetis Services Llc Non-contact egg identification system for determining egg viability, and associated method
JP6920887B2 (en) * 2017-06-02 2021-08-18 浜松ホトニクス株式会社 Optical measuring device and optical measuring method
EP4279926A1 (en) 2021-01-13 2023-11-22 Hitachi High-Tech Corporation Automatic analysis device and automatic analysis method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216324A (en) * 1984-03-16 1985-10-29 トムソン‐セ‐エスエフ Apparatus for electrically controlling displacement of fluid
JPS6222066A (en) * 1985-07-23 1987-01-30 Wako Pure Chem Ind Ltd Latex agglutination reaction measuring instrument
JPH0980021A (en) * 1995-09-18 1997-03-28 Otsuka Pharmaceut Co Ltd Multicapillary electrophoretic apparatus
JPH10267801A (en) * 1997-03-24 1998-10-09 Advance Co Ltd Handling apparatus for liqiud fine particle
JPH1137931A (en) * 1997-07-14 1999-02-12 Tokimec Inc Absorptiometer
JP2004000935A (en) * 2002-04-01 2004-01-08 Xerox Corp Apparatus for moving fluid by using electrostatic force
JP2005127980A (en) * 2003-10-27 2005-05-19 Jfe Advantech Co Ltd Liquid concentration measuring instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216324A (en) * 1984-03-16 1985-10-29 トムソン‐セ‐エスエフ Apparatus for electrically controlling displacement of fluid
JPS6222066A (en) * 1985-07-23 1987-01-30 Wako Pure Chem Ind Ltd Latex agglutination reaction measuring instrument
JPH0980021A (en) * 1995-09-18 1997-03-28 Otsuka Pharmaceut Co Ltd Multicapillary electrophoretic apparatus
JPH10267801A (en) * 1997-03-24 1998-10-09 Advance Co Ltd Handling apparatus for liqiud fine particle
JPH1137931A (en) * 1997-07-14 1999-02-12 Tokimec Inc Absorptiometer
JP2004000935A (en) * 2002-04-01 2004-01-08 Xerox Corp Apparatus for moving fluid by using electrostatic force
JP2005127980A (en) * 2003-10-27 2005-05-19 Jfe Advantech Co Ltd Liquid concentration measuring instrument

Also Published As

Publication number Publication date
JP2006329920A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4616079B2 (en) Sample analyzer
US20210340616A1 (en) Illumination of integrated analytical systems
JP2006125900A (en) Liquid carrying substrate, analysis system, and analysis method
US7342662B2 (en) Sample analyzer
JP6258353B2 (en) Optical measurement apparatus and method for analyzing samples contained in droplets
EP3158317B1 (en) A microfluidic detection system
JP2006329904A (en) Liquid transfer device and analysis system
WO2005054826A1 (en) Optical analyzing unit and optical analyzing device
EP2056090A2 (en) Fine particle measuring method, substrate for measurement, and measuring apparatus
KR20090009654A (en) Optical detection apparatus, optical detection method, and microfluidic system including the apparatus
BR112020000403A2 (en) automatic analyzer, and methods for chemical, biochemical and / or automatic immunobiochemistry analysis of liquid samples and to determine an antigen by means of a heterogeneous immunoassay
WO2014010706A1 (en) Flow cell for biomaterial analysis and biomaterial analysis device
US9557260B2 (en) Measuring arrangement for optically evaluating a chemical reaction quantitatively
CA2622162A1 (en) Laboratory apparatus for simultaneously carrying out reactions in a plurality of samples
US10871433B2 (en) Optical device for quantitative determination of the concentration of an analyte in a liquid sample comprising a mask member between first and second chambers
US9618455B2 (en) Clam-shell luminometer
KR20140096060A (en) Chemical sensor, chemical sensor module, chemical substance detector, and chemical substance detection method
US20180080871A1 (en) Sample liquid measuring device and measuring method
TWI815235B (en) An optical absorbance spectrometer, optical device and method of optical absorbance spectrometry
JPH06281568A (en) Analyzer for liquid component
KR102227405B1 (en) Total Organic Carbon analysis element, Total Organic Carbon analysis apparatus and Total Organic Carbon analysis method
US7629166B2 (en) Measuring apparatus for interaction of biomolecule
JP2010048834A (en) Sample analyzing apparatus
JP2006084210A (en) Analyzer
CN112004604B (en) Optical measuring unit and optical measuring method for obtaining a measuring signal of a fluid medium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees