JP4609156B2 - Power storage device control device - Google Patents

Power storage device control device Download PDF

Info

Publication number
JP4609156B2
JP4609156B2 JP2005100833A JP2005100833A JP4609156B2 JP 4609156 B2 JP4609156 B2 JP 4609156B2 JP 2005100833 A JP2005100833 A JP 2005100833A JP 2005100833 A JP2005100833 A JP 2005100833A JP 4609156 B2 JP4609156 B2 JP 4609156B2
Authority
JP
Japan
Prior art keywords
power
storage device
power storage
fluctuation
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005100833A
Other languages
Japanese (ja)
Other versions
JP2006287998A (en
Inventor
隆之 田邊
洋 宍道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2005100833A priority Critical patent/JP4609156B2/en
Publication of JP2006287998A publication Critical patent/JP2006287998A/en
Application granted granted Critical
Publication of JP4609156B2 publication Critical patent/JP4609156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電力貯蔵装置を用いて、ある任意の箇所の電力潮流を一定に保つ負荷追従運転を行うための電力貯蔵装置の制御装置に関するものである。 The present invention relates to a control device for a power storage device for performing a load following operation that keeps a power flow in a certain arbitrary place constant using the power storage device .

二次電池などからなる電力貯蔵装置は、主に昼夜の負荷電力を平準化する目的で設置されている。その他、風力発電などの変動が大きな自然エネルギー発電と組み合わせて発電出力の変動を吸収する目的などで使用されている。   A power storage device including a secondary battery is installed mainly for the purpose of leveling load power during the day and night. In addition, it is used for the purpose of absorbing fluctuations in power generation output in combination with natural energy power generation with large fluctuations such as wind power generation.

また、二次電池であるNaS電池(ナトリウム−硫黄電池)を用いて、風力発電の発電出力を一定に保つ制御手段の技術が開発されている。この制御手段とは、電力潮流を検出し、これを一定に保つようNaS電池を充放電する技術である。(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照。)。
特開2000−73931 特開2000−73932 特開2000−73933 特開2001−298872
In addition, a technique of a control means has been developed that uses a NaS battery (sodium-sulfur battery), which is a secondary battery, to keep the power generation output of wind power generation constant. This control means is a technique for detecting the power flow and charging / discharging the NaS battery so as to keep it constant. (For example, see Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4.)
JP 2000-73931 A JP 2000-73932 A JP 2000-73933 A JP 2001-298772 A

上述した電力貯蔵装置は、夜間の負荷が軽い時間帯に電力を充電し、昼間の負荷が重い時間帯に電力を放電して、負荷の平準化を図ることが可能であるという特徴を有している。また、直流電源である蓄電池(電力貯蔵装置)を電力系統に接続するためには、一般的に自励式インバータが用いられることから比較的高速な応答特性を持ち、短時間の電力変動を平滑化する目的でも使用される。   The power storage device described above is characterized in that it is possible to charge the power when the nighttime load is light and discharge the power during the daytime when the load is heavy, thereby leveling the load. ing. In addition, since a self-excited inverter is generally used to connect a storage battery (power storage device), which is a DC power supply, to the power system, it has a relatively fast response characteristic and smoothes out short-term power fluctuations. Also used for the purpose.

しかし、電力貯蔵装置は、1日サイクルの負荷平準化運転と短時間の電力変動を、平滑化するという二つの機能を両立する装置として利用されていないのが現状である。また、短時間の電力変動を平滑化する目的で電力貯蔵装置を用いた場合には、短時間に充放電を繰り返すこととなり、電力貯蔵装置の耐久性の観点から望ましい運転方法であるとは言えない問題がある。   However, at present, the power storage device is not used as a device that has both functions of smoothing the load leveling operation of the daily cycle and the short-time power fluctuation. In addition, when the power storage device is used for the purpose of smoothing fluctuations of power for a short time, charging and discharging are repeated in a short time, and it can be said that this is a desirable operation method from the viewpoint of durability of the power storage device. There is no problem.

本発明は、上記の事情に鑑みてなされたもので、蓄電池(二次電池)を用いた電力貯蔵装置により、昼夜の負荷平準化運転の機能と短時間の電力変動を平滑化する機能の両立を図ると共に、充放電サイクル数を減らし、電力貯蔵装置の耐久性を向上させ、さらに短時間の電力変動を平滑化する機能のみで使用した場合も電力貯蔵装置の貯蔵容量の時間定格(Ah)を低く抑えることを可能にした電力貯蔵装置の制御装置を提供することを課題とする。 The present invention has been made in view of the above circumstances, and by using a power storage device using a storage battery (secondary battery), it is possible to achieve both a function of day-night load leveling operation and a function of smoothing a short-time power fluctuation. In addition to reducing the number of charge / discharge cycles, improving the durability of the power storage device, and using only the function of smoothing short-term power fluctuations, the time rating (Ah) of the storage capacity of the power storage device It is an object of the present invention to provide a control device for a power storage device that makes it possible to keep low.

本発明は、上記の課題を達成するために、第1発明は、電力系統からの電力が供給される電力負荷と、電力を貯蔵する少なくとも2台の電力貯蔵装置と、これらの電力貯蔵装置と前記電力系統とを結ぶ電路に介挿され、交流電力を直流電力に変換して前記電力貯蔵装置に貯蔵したり、その電力貯蔵装置から直流電力を取り出して交流電力に変換して前記電力系統に送出する少なくとも2台の電力変換装置と、前記電力負荷の電力変動を検出し、平均値が零となる変動成分のみを抽出する負荷変動検出手段と、この負荷変動検出手段で抽出した変動成分が入力され、出力に前記電力貯蔵装置の入出力電力制御の目標値が出力される入出力電力制御手段と、この入出力電力制御手段から出力された目標値を正の成分と負の成分に分離する上下限リミッタ手段と、この上下限リミッタ手段で分離された正の成分と負の成分の目標値を充放電モード切替信号により切り替えてそれぞれ供給し、前記2台の電力貯蔵装置により負荷平準化運転と短時間の電力変動を平滑化運転となるようにそれぞれの電力変換装置を制御するそれぞれの電力変換制御手段とを有することを特徴とする。 To achieve the above object, the present invention provides a power load to which power from a power system is supplied, at least two power storage devices that store power, and these power storage devices. It is inserted into an electric path connecting the power system, converts AC power into DC power and stores it in the power storage device, or takes DC power from the power storage device and converts it into AC power to the power system. At least two power conversion devices to be transmitted, load fluctuation detecting means for detecting power fluctuation of the power load and extracting only fluctuation components whose average value is zero, and fluctuation components extracted by the load fluctuation detecting means are Input / output power control means for inputting and outputting a target value for input / output power control of the power storage device to the output, and separating the target value output from the input / output power control means into a positive component and a negative component Upper and lower limit And the target value of the positive component and the negative component separated by the upper / lower limiter unit are switched by a charge / discharge mode switching signal, respectively, and load leveling operation is performed by the two power storage devices. It has each power conversion control means which controls each power converter so that a short-time power fluctuation may become smoothing operation.

第2発明は、前記入出力電力制御手段は、積分器と充電量制御部を有し、入出力電力制御手段から出力される目標値を積分器により積算し、この積算値を零に保つように電力変換制御手段を制御して、前記電力貯蔵装置が放電過多となり積算値が正方向にずれたときには充電量を増加し、それが充電過多となり積算値が負方向にずれたときには放電量を増加させるようにすることを特徴とする。 According to a second aspect of the present invention , the input / output power control means includes an integrator and a charge amount control unit, integrates the target value output from the input / output power control means by the integrator, and maintains the integrated value at zero. The power conversion control means is controlled to increase the amount of charge when the power storage device is overdischarged and the integrated value is shifted in the positive direction, and when it is overcharged and the integrated value is shifted in the negative direction, the amount of discharge is increased. It is characterized by increasing.

第3発明は、前記電力変換制御手段が電力貯蔵装置の内、一方を電力変動平滑化運転を行って充放電動作させているとき、他方の電力貯蔵装置を回復充電手段により回復充電動作させることを特徴とする。 According to a third aspect of the present invention , when the power conversion control unit performs a charge fluctuation discharge operation by performing power fluctuation smoothing operation on one of the power storage devices, the other power storage device is subjected to a recovery charge operation by the recovery charge unit. It is characterized by.

第4発明は、電力系統からの電力が供給される電力負荷と、電力を貯蔵する少なくとも2台の電力貯蔵装置と、前記電力系統に交流端が接続されるとともに、直流電圧が一定に保つように制御され、交流電力が直流電力に、直流電力が交流電力に変換される第1の電力変換装置と、この第1の電力変換装置の直流端に接続され、直流電力を直流電力に変換して前記電力貯蔵装置に貯蔵したり、その電力貯蔵装置から直流電力を取り出して直流電力に変換して前記第1の電力変換装置に送出する少なくとも2台の第2の電力変換装置と、前記電力負荷の電力変動を検出し、平均値が零となる変動成分のみを抽出する負荷変動検出手段と、この負荷変動検出手段で抽出した変動成分が入力され、出力に前記電力貯蔵装置の入出力電力制御の目標値が出力される入出力電力制御手段と、この入出力電力制御手段から出力された目標値を正の成分と負の成分に分離する上下限リミッタ手段と、この上下限リミッタ手段で分離された正の成分と負の成分の目標値を充放電モード切替信号により切り替えてそれぞれ供給し、前記2台の電力貯蔵装置により負荷平準化運転と短時間の電力変動を平滑化運転となるようにそれぞれ第2の電力変換装置を制御するそれぞれ第2の電力変換制御手段と、を有することを特徴とする。
第5発明は、前記負荷変動検出手段は、高域フィルタ(HPF)からなることを特徴とする。
According to a fourth aspect of the present invention , there is provided a power load to which power from the power system is supplied, at least two power storage devices for storing power, an AC terminal is connected to the power system, and a DC voltage is kept constant. Connected to the first power converter that is controlled by the AC power to convert DC power to DC power and DC power to AC power, and to the DC terminal of the first power converter, and converts DC power to DC power. At least two second power conversion devices that store in the power storage device, take out DC power from the power storage device, convert the DC power into DC power, and send the DC power to the first power conversion device; Load fluctuation detecting means for detecting the power fluctuation of the load and extracting only the fluctuation component for which the average value is zero; the fluctuation component extracted by the load fluctuation detecting means is input; and the input / output power of the power storage device is output Target value of control Output I / O power control means, upper / lower limiter means for separating the target value output from the I / O power control means into a positive component and a negative component, and a positive value separated by the upper / lower limiter means The target value of the component and the negative component are switched and supplied by the charge / discharge mode switching signal, respectively, and the two power storage devices are respectively set so that the load leveling operation and the short-time power fluctuation become the smoothing operation. And a second power conversion control means for controlling each of the power converters.
The fifth invention is characterized in that the load fluctuation detecting means comprises a high-pass filter (HPF) .

以上述べたように、本発明によれば、昼夜の負荷平準化運転と短時間の電力変動平滑化運転の両立を図ると共に、短時間の電力変動平滑化運転と充放電サイクルの低減の両立を図り、しかも電力貯蔵装置の貯蔵容量の時間定格を低く抑えることができるようにした。   As described above, according to the present invention, both day-and-night load leveling operation and short-time power fluctuation smoothing operation are achieved, and both short-time power fluctuation smoothing operation and charge / discharge cycle reduction are achieved. In addition, the time rating of the storage capacity of the power storage device can be kept low.

以下本発明の実施の形態を図面に基づいて説明する。
[実施の形態1]
まず、実施の形態1を述べる前に、電力貯蔵装置の一般的なことについて述べる。通常、電力貯蔵装置は、図1に示すように、負荷消費量の大きな時間帯に蓄積した電力を放電し、負荷消費量の小さな時間帯に電力を貯蔵することにより、昼夜の消費電力の差を平準化する目的で設置される。この場合、放電電力及び充電電力は、予め決められたスケジュールに従って一定に保持される。
Embodiments of the present invention will be described below with reference to the drawings.
[Embodiment 1]
First, before describing Embodiment 1, the general thing of a power storage device will be described. Normally, as shown in FIG. 1, the power storage device discharges the power accumulated in a time zone with a large load consumption and stores the power in a time zone with a small load consumption, whereby the difference in power consumption between day and night. It is installed for the purpose of leveling. In this case, the discharge power and the charge power are held constant according to a predetermined schedule.

一方、風力発電や太陽光発電のような自然エネルギー型発電機や工場などにおける生産ラインの特殊な負荷用途では、発電電力や消費電力が短時間で変動するため、このような電力変動を抑制する目的で電力貯蔵装置が用いられる場合がある。この場合には、電力貯蔵装置は電力変動に追従して充電と放電が短時間で繰り返されることとなる。電力貯蔵装置として蓄電池が用いられる場合、蓄電池の寿命は、充放電サイクル数に左右されるため、図2に示すような運用は望ましくない。   On the other hand, in natural load generators such as wind power generation and solar power generation, and special load applications on production lines in factories, etc., the generated power and power consumption fluctuate in a short time, so such power fluctuations are suppressed. A power storage device may be used for the purpose. In this case, the power storage device is repeatedly charged and discharged in a short time following the power fluctuation. When a storage battery is used as the power storage device, the life of the storage battery depends on the number of charge / discharge cycles, and therefore operation as shown in FIG. 2 is not desirable.

このため、本発明では、図3に示すように、昼夜の負荷平準化を行うとともに、短時間の電力変動成分を吸収可能とする電力貯蔵装置の運用方法を行う。   For this reason, in this invention, as shown in FIG. 3, while performing the load leveling of day and night, the operation method of the electric power storage apparatus which can absorb a short time electric power fluctuation component is performed.

図3に示すように、放電の時間帯と充電の時間帯を区切り、放電の時間帯では放電方向のみで放電電力を増減し、充電の時間帯では充電方向のみで充電電力を増減する。これにより、短時間の電力変動成分を吸収する運転を行っても充放電の繰り返しサイクル数は増加せず、昼夜の負荷平準化運転と電力平滑化運転の両立が可能となる。   As shown in FIG. 3, the discharge time zone and the charge time zone are separated, and in the discharge time zone, the discharge power is increased or decreased only in the discharge direction, and in the charge time zone, the charge power is increased or decreased only in the charge direction. As a result, even when an operation that absorbs the power fluctuation component for a short time is performed, the number of repeated charge / discharge cycles does not increase, and both day-night load leveling operation and power smoothing operation can be achieved.

図4は、本発明の実施の形態1を示す電力貯蔵装置の制御ブロック図で、図4において、電力系統11からの電力が、母線12を介して電力負荷(自然エネルギー型発電機を含む)13と二次電池などからなる電力貯蔵装置14に供給される。なお、電力貯蔵装置14の電力は、負荷消費量の大きな時間帯に蓄積した電力を、後述する双方向コンバータを介して放電するように構成されている。   FIG. 4 is a control block diagram of the power storage device according to the first embodiment of the present invention. In FIG. 4, the power from the power system 11 is a power load (including a natural energy generator) via the bus 12. 13 and a power storage device 14 including a secondary battery. In addition, the electric power of the power storage device 14 is configured to discharge the electric power accumulated in a time zone with a large load consumption through a bidirectional converter described later.

母線12と電力負荷13は、遮断器15を介して接続され、また、母線12と電力貯蔵装置14は、遮断器16と双方向コンバータ17の直列回路を介して接続される。双方向コンバータ17は、後述する双方向コンバータ電流制御器により制御される。18,19は電力検出器で、この電力検出器18,19は、変圧器VT1,VT2と変流器CT1,CT2に接続されている。   The bus 12 and the power load 13 are connected via a circuit breaker 15, and the bus 12 and the power storage device 14 are connected via a series circuit of a circuit breaker 16 and a bidirectional converter 17. The bidirectional converter 17 is controlled by a bidirectional converter current controller which will be described later. 18 and 19 are power detectors, and these power detectors 18 and 19 are connected to transformers VT1 and VT2 and current transformers CT1 and CT2.

電力検出器18で検出された電力負荷13の短時間の電力変動は、例えば、高域フィルタ(HPF:ハイパスフィルタ)等からなる負荷変動検出装置20で検出され、この検出値は、負荷変動補償量上下限リミッタ21に供給される。この上下限リミッタ21には、インバータ(INV)容量(kVA)と基準充放電電力が供給される。基準充放電電力は、予め決められたスケジュールに従って生成される目標値である。 A short-time power fluctuation of the power load 13 detected by the power detector 18 is detected by, for example, a load fluctuation detection device 20 including a high-pass filter (HPF: high-pass filter) , and the detected value is a load fluctuation compensation. It is supplied to the quantity upper / lower limiter 21. The upper / lower limiter 21 is supplied with an inverter (INV) capacity (kVA) and reference charge / discharge power. The reference charge / discharge power is a target value generated according to a predetermined schedule.

負荷変動補償量上下限リミッタ21のリミッタ上下限値は、充電時間帯の放電および放電時間帯の充電を行わず、目標値を電力変換装置である双方向コンバータ(CNV)17の容量以内とするような値に設定する。具体的には、電力変動の検出値の消費を正[ここで、消費とは、電力負荷13に流れる電流の方向(電力検出器18を流れる図示矢印方向)を言う]、電力貯蔵装置14の入出力電力の放電を正とした場合、充電時間帯においては、「下限値=(−1)×((CNV容量)−(基準充電電力の絶対値))」、「上限値=(基準充電電力の絶対値)」とし、放電時間帯においては、「下限値=(−1)×(基準放電電力の絶対値)」、「((CNV容量)−(基準放電電力の絶対値))」とする。   The limit upper / lower limit value of the load fluctuation compensation amount upper / lower limit limiter 21 is set so that the target value is within the capacity of the bidirectional converter (CNV) 17 which is a power conversion device without discharging in the charging time zone and charging in the discharging time zone. Set to a value like this. Specifically, the consumption of the detected value of the power fluctuation is positive [here, the consumption means the direction of the current flowing through the power load 13 (the direction of the arrow shown in the figure flowing through the power detector 18)], the power storage device 14 When discharging of input / output power is positive, in the charging time zone, “lower limit value = (− 1) × ((CNV capacity) − (absolute value of reference charging power))”, “upper limit value = (reference charging) Absolute value of electric power) ”, and in the discharge time zone,“ lower limit value = (− 1) × (absolute value of reference discharge power) ”,“ ((CNV capacity) − (absolute value of reference discharge power)) ” And

上記(−1)は下記の式の導出過程で生じたものである。以下、充電時間帯の場合を例に述べる。蓄電池の放電を正、CNV容量をP(kW)とした場合、
a:充電時間帯の運転範囲を、−P(kW)〜0(kW)
b:基準充放電電力の設定値を、−P/3(kW)
と仮定する。
The above (-1) occurs in the process of deriving the following equation. Hereinafter, the case of the charging time zone will be described as an example. When the discharge of the storage battery is positive and the CNV capacity is P (kW),
a: The operating range of the charging time range is -P (kW) to 0 (kW)
b: Set the reference charge / discharge power to -P / 3 (kW)
Assume that

蓄電池への指令値(図4に示す加算器22の出力)は、上記aより−P(kW)〜0(kW)とすれば良い。よって、加算器22の出力は、(基準充放電電力+リミッタ21の出力)のため、リミッタ21の上下限範囲は、
(−P〜0)−(基準充放電電力)
=(−P−(−P/3)〜0−(−P/3))
=(−2P/3〜+p/3)
=(下限値〜上限値)
とすればよい。
The command value to the storage battery (the output of the adder 22 shown in FIG. 4) may be set to −P (kW) to 0 (kW) from the above a. Therefore, since the output of the adder 22 is (reference charge / discharge power + output of the limiter 21), the upper and lower limit range of the limiter 21 is
(-P to 0)-(reference charge / discharge power)
= (-P-(-P / 3) to 0-(-P / 3))
= (-2P / 3 to + p / 3)
= (Lower limit value to Upper limit value)
And it is sufficient.

よって、上下限リミッタ21は、
下限値:(−CNV容量)−(基準充放電電力)
=(−CNV容量)+(基準充放電電力の絶対値)
=−(CNV容量−基準充放電電力の絶対値)
上限値:(基準充放電電力の絶対値)となる。
Therefore, the upper and lower limiter 21 is
Lower limit: (-CNV capacity)-(reference charge / discharge power)
= (-CNV capacity) + (absolute value of reference charge / discharge power)
=-(CNV capacity-standard charge / discharge power absolute value)
Upper limit value: (absolute value of reference charge / discharge power).

なお、前記リミッタ21の上下限値は、加算器22により基準充放電電力と加算されて偏差器23に供給される。この偏差器23では、リミッタの上下限値が加算された基準充放電電力と電力検出器19で検出された値との偏差が取られ、その偏差が入出力電力制御器24を介して双方向コンバータ17を電流制御する目標値として双方向コンバータ電流制御器25に供給される。双方向コンバータ電流制御器(電力変換制御手段)25は、この目標値により双方向コンバータ17を制御する。   The upper and lower limit values of the limiter 21 are added to the reference charge / discharge power by the adder 22 and supplied to the deviation unit 23. The deviation unit 23 takes a deviation between the reference charge / discharge power to which the upper and lower limit values of the limiter are added and the value detected by the power detector 19, and the deviation is bidirectional via the input / output power controller 24. A bidirectional converter current controller 25 is supplied as a target value for current control of the converter 17. The bidirectional converter current controller (power conversion control means) 25 controls the bidirectional converter 17 based on this target value.

入出力電力制御器(APR:Auto Power Regulator)24は、例えば、PID制御器から構成され、蓄電池の入出力電力をある目標値と一致するように制御する装置である。   The input / output power controller (APR: Auto Power Regulator) 24 is, for example, a device configured to control the input / output power of the storage battery so as to coincide with a certain target value.

上記上下限リミッタ21、加算器22、偏差器23及び入出力電力制御器24とにより、前記電力貯蔵装置14の入出力電力制御の目標値として設定される入出力電力制御目標値設定手段が構成される。   The upper / lower limiter 21, the adder 22, the deviation unit 23, and the input / output power controller 24 constitute input / output power control target value setting means that is set as a target value for input / output power control of the power storage device 14. Is done.

上記のように構成した実施の形態1のように制御することにより、昼間の負荷消費量が大きな時間帯に電力貯蔵装置から電力を供給し、夜間の負荷消費量が小さい時間帯に電力貯蔵装置に電力を充電する負荷平準化運転と、短時間の電力変動を平滑化する運転が両立可能となる。すなわち、昼夜の負荷平準化運転と短時間の電力変動平滑化運転の両立を図ることができるようになる。また、電力貯蔵装置の充放電サイクルを1日に一回とすることによって、電力貯蔵装置である、例えば蓄電池の耐久性を向上させることができるようになる。   By controlling as in the first embodiment configured as described above, power is supplied from the power storage device during the daytime when the load consumption is large, and the power storage device during the nighttime when the load consumption is small. It is possible to achieve both load leveling operation for charging electric power and operation for smoothing short-time power fluctuations. That is, it becomes possible to achieve both day-and-night load leveling operation and short-time power fluctuation smoothing operation. In addition, by setting the charge / discharge cycle of the power storage device once a day, it is possible to improve the durability of the power storage device, for example, a storage battery.

なお、上述した負荷変動検出手段20は、高域フィルタ(HPF)で構成され、高域フィルタ(HPF)からは平均値が零で変動成分のみを含む波形が抽出される。
[実施の形態2]
電力貯蔵装置の用途を、図2に示した短時間の電力変動を吸収して平準化する電力変動平滑化運転の用途に限定した場合、従来の電力貯蔵装置では、充放電サイクル数が増加し、蓄電池の寿命の観点から望ましくない。
The load change detection means 20 described above is composed of a high-pass filter (HPF), is from the high-pass filter (HPF) is a waveform including only variation component average value zero is extracted.
[Embodiment 2]
When the use of the power storage device is limited to the use of the power fluctuation smoothing operation that absorbs and leveles the short-time power fluctuation shown in FIG. 2, the number of charge / discharge cycles increases in the conventional power storage device. From the viewpoint of the life of the storage battery, it is not desirable.

そこで、2台の電力貯蔵装置A,Bを用意し、一方を放電用、他方を充電用として両者を定期的に切り替えることにより、充放電サイクル数を低く抑えた上で電力変動平滑化運転を可能とする運転方法を実現するのが、次に述べる実施の形態2である。   Therefore, two power storage devices A and B are prepared, and one is used for discharging and the other is used for charging. By periodically switching both of them, the power fluctuation smoothing operation is performed while keeping the number of charge / discharge cycles low. The second embodiment described below realizes a possible driving method.

図5は2台の電力貯蔵装置A,Bの運転方法を説明する図で、始めに、平準化したい短時間の電力変動成分の内、負方向(図中破線で示す)のみを電力貯蔵装置Aへ充電し、正方向(図中実線で示す)のみを電力貯蔵装置Bへ充電する。   FIG. 5 is a diagram for explaining the operation method of the two power storage devices A and B. First, of the short-time power fluctuation components to be leveled, only the negative direction (indicated by a broken line in the figure) is the power storage device. A is charged to A, and the power storage device B is charged only in the positive direction (indicated by a solid line in the figure).

電力貯蔵装置Aは充電のみを行い、電力貯蔵装置Bは放電のみを行うため、電力貯蔵装置Aの充電量Ah(図中実線で示す)は次第に増加し、電力貯蔵装置Bの充電量Ah(図中破線で示す)は次第に減少する。両者の何れかが既定の充電量Ahに達した時点、または既定の時間で電力貯蔵装置Aを充電動作から放電動作に、電力貯蔵装置Bを放電動作から充電動作に切り替える。これにより、電力貯蔵装置A,Bの充放電サイクル数を低く抑えた上で電力変動平滑化運転が可能となる。   Since the power storage device A only charges and the power storage device B only discharges, the charge amount Ah (shown by a solid line in the figure) of the power storage device A gradually increases and the charge amount Ah ( (Indicated by broken lines in the figure) gradually decreases. When either of them reaches a predetermined charge amount Ah, or at a predetermined time, the power storage device A is switched from the charge operation to the discharge operation, and the power storage device B is switched from the discharge operation to the charge operation. Thereby, the power fluctuation smoothing operation can be performed while keeping the number of charge / discharge cycles of the power storage devices A and B low.

図6は上記のような動作を行う実施の形態2の制御ブロック図で、図4と同一部分には同一符号を付して説明する。図6において、電力負荷(または自然エネルギー型発電機を含む)の短時間の電力変動を負荷変動検出装置(HPF)20により検出し、平均値が零となる変動成分のみを抽出する。この変動成分と電力検出器19の出力との偏差を偏差器31で取り、その偏差を入出力電力制御器24の目標値として供給し入出力電力制御を行う。   FIG. 6 is a control block diagram of the second embodiment for performing the operation as described above, and the same parts as those in FIG. In FIG. 6, a short-time power fluctuation of an electric power load (or including a natural energy generator) is detected by a load fluctuation detecting device (HPF) 20, and only a fluctuation component whose average value is zero is extracted. The deviation between the fluctuation component and the output of the power detector 19 is taken by the deviation unit 31, and the deviation is supplied as the target value of the input / output power controller 24 to perform the input / output power control.

この入出力電力制御器24で行った制御出力は、双方向コンバータ電流制御器25A,25Bの電流制御目標値であり、この目標値は正の成分と負の成分の2つに分離する上下限リミッタ32A,32Bに供給される。このリミッタ32A、32Bは,一方が下限を零に、他方は上限を零とした上下限リミッタである。   The control output performed by the input / output power controller 24 is a current control target value of the bidirectional converter current controllers 25A and 25B. The target value is divided into upper and lower limits that are separated into a positive component and a negative component. It is supplied to the limiters 32A and 32B. The limiters 32A and 32B are upper and lower limiters, one of which has a lower limit of zero and the other of which has an upper limit of zero.

上下限リミッタ32A,32Bの出力は、充放電モード切り替え信号(この信号は図示しないが、全体のシステムを管理するコンピュータシステムの制御機能を利用している。この他、タイマーなどでこの信号を得るようにさせても良い)により切り替えられる切替器33A,33Bを介して双方向コンバータ電流制御器25A,25Bの電流制御目標値として供給される。   The output of the upper / lower limiters 32A and 32B is a charge / discharge mode switching signal (this signal is not shown, but uses a control function of a computer system that manages the entire system. In addition, this signal is obtained by a timer or the like. It is supplied as a current control target value of the bidirectional converter current controllers 25A and 25B via the switchers 33A and 33B that are switched by the above.

そして、切替器33Aが、正方向の上下限リミッタ32Aの出力を選択している際には、切替器33Bは、負方向の上下限リミッタ32Bの出力を選択し、また、切替器33Aが、負方向の上下限リミッタ32Bの出力を選択している際には、切替器33Bは、正方向の出力を選択する構成とする。   When the switch 33A selects the output of the upper / lower limiter 32A in the positive direction, the switch 33B selects the output of the upper / lower limiter 32B in the negative direction, and the switcher 33A When the output of the upper / lower limiter 32B in the negative direction is selected, the switch 33B is configured to select the output in the positive direction.

切替器33A,33Bを同時に切り替えることにより、電力貯蔵装置A,Bの双方向コンバータ電流制御器25A,25Bの電流制御目標値をそれぞれ充電方向のみ、または放電方向のみとすることが可能となる。   By simultaneously switching the switches 33A and 33B, the current control target values of the bidirectional converter current controllers 25A and 25B of the power storage devices A and B can be set only in the charging direction or only in the discharging direction, respectively.

上記のように制御することにより、実施の形態2では、電力変動平滑化運転と充放電サイクルの低減を両立する制御が可能となる。また、負荷変動検出装置に高域フィルタ(HPF)を用いて、負荷変動を検出することで、短時間の変動成分のみを抽出してこれを平滑化できる。さらに、電力貯蔵装置2台の内の1台を充電用、他の1台を放電用とすることで、短時間の電力変動の平滑化を可能とするとともに、電力貯蔵装置の充放電サイクルを低減して、電力貯蔵装置の耐久性を向上させることができる。 By controlling as described above, in the second embodiment, it is possible to perform control that achieves both power fluctuation smoothing operation and reduction of the charge / discharge cycle. Further, by detecting a load fluctuation using a high-pass filter (HPF) in the load fluctuation detecting device, only a short-time fluctuation component can be extracted and smoothed. Furthermore, by making one of the two power storage devices for charging and the other one for discharging, it is possible to smooth power fluctuations in a short time and to charge / discharge cycles of the power storage device. This can reduce the durability of the power storage device.

この他、電力貯蔵装置である蓄電池容量Ahは,平滑化したい電力変動の絶対値の積算値とすればよく、前記実施の形態1に比較して、電力貯蔵装置である蓄電池容量Ahを小さくできる。
[実施の形態3]
図7は実施の形態3を示す制御ブロック図で、図4、図6と同一部分には同一符号を付して説明する。この実施の形態3は、実施の形態2の変形例で、電力貯蔵装置A,Bの充放電電流制御をDC/DCコンバータ36A,36Bを用いて行い、双方向コンバータ17を1台とすることにある。
In addition, the storage battery capacity Ah that is the power storage device may be an integrated value of the absolute value of the power fluctuation to be smoothed, and the storage battery capacity Ah that is the power storage device can be reduced as compared with the first embodiment. .
[Embodiment 3]
FIG. 7 is a control block diagram showing the third embodiment, and the same parts as those in FIGS. The third embodiment is a modification of the second embodiment, and the charge / discharge current control of the power storage devices A and B is performed using the DC / DC converters 36A and 36B, and the two-way converter 17 is used as one unit. It is in.

この形態3では、双方向コンバータ17を制御する双方向コンバータ電流制御器25は、直流電圧を一定に保って双方向コンバータ17を制御するように構成される。   In the third embodiment, the bidirectional converter current controller 25 that controls the bidirectional converter 17 is configured to control the bidirectional converter 17 while keeping the DC voltage constant.

なお、DC/DCコンバータ36A,36Bを制御するDC/DC電流制御器35A,35Bの制御方法は実施の形態2と同様な方法により行われる。このように電力貯蔵装置をDC/DCコンバータで制御して直流回路を共有することで双方向コンバータを1台とすることが可能となり、初期コストの低減を図ることができ、また、前記実施の形態2と同様な短時間の電力変動平滑化運転と充放電サイクルの低減を両立することが可能となる。
[実施の形態4]
前記実施の形態2,3では、2台の電力貯蔵装置A,Bを充電用と放電用として両者を切り替えて運転することで、短時間の電力変動を吸収可能とし、充放電サイクル数の低減を両立可能な装置構成及び制御方法を実現した。
The control method of the DC / DC current controllers 35A and 35B for controlling the DC / DC converters 36A and 36B is performed in the same manner as in the second embodiment. Thus, by controlling the power storage device with the DC / DC converter and sharing the DC circuit, it becomes possible to make one bidirectional converter, and to reduce the initial cost. It is possible to achieve both a short-time power fluctuation smoothing operation and a reduction in the charge / discharge cycle as in the second mode.
[Embodiment 4]
In the second and third embodiments, the two power storage devices A and B are operated for switching between charging and discharging, thereby making it possible to absorb short-time power fluctuations and reducing the number of charge / discharge cycles. The device configuration and control method that can achieve both are realized.

前記実施の形態2,3の場合、負荷変動検出装置20に高域フィルタ(HPF)を用いることで、変動成分の平均値は常に零に収束するが、負荷が変動した際には、平均値が過渡的に正方向または負方向にずれるため、図8に示すように電力貯蔵装置A,Bの充電量Ahが、同図に示すように偏りが発生する不具合がある。 In the case of the second and third embodiments, by using a high-pass filter (HPF) in the load fluctuation detection device 20, the average value of the fluctuation component always converges to zero, but when the load fluctuates, the average value Is transiently shifted in the positive direction or the negative direction, there is a problem that the charge amount Ah of the power storage devices A and B is biased as shown in FIG.

そこで、実施の形態4では、上記不具合を解消するために、図9に示すような制御ブロック図に構成した。図9において、図4、図6と同一部分には同一符号を付して説明する。   Therefore, in the fourth embodiment, a control block diagram as shown in FIG. 9 is used in order to solve the above problems. In FIG. 9, the same parts as those in FIGS. 4 and 6 are denoted by the same reference numerals.

実施の形態4では、入出力電力制御器24の出力である充放電電流目標値(または充放電電流の検出値)を積分器41で積算し、これを零に保つように制御する。このために、積算値は充電量制御器42を介して偏差器43に供給して入出力電力目標値を補正する。   In the fourth embodiment, the charge / discharge current target value (or the detected value of charge / discharge current), which is the output of the input / output power controller 24, is integrated by the integrator 41 and controlled so as to be kept at zero. For this purpose, the integrated value is supplied to the deviation unit 43 via the charge amount controller 42 to correct the input / output power target value.

上記のように、充放電電流の積算値を零に保つように制御することで、入出力電力制御器24からの出力を上下限リミッタ32A,32Bに与え、前記実施の形態3のように動作させることにより、電力貯蔵装置A,Bの充電量の平均値が常に一定に保たれる。   As described above, by controlling the integrated value of the charge / discharge current to be zero, the output from the input / output power controller 24 is given to the upper and lower limiters 32A and 32B, and the operation as in the third embodiment is performed. By doing so, the average value of the charge amount of the power storage devices A and B is always kept constant.

すなわち、放電過多となると、積算値が正方向にずれて充電量を増加し、充電過多となって積算値が負方向にずれた場合は放電量を増加する。このような制御により、充電用と放電用の電力貯蔵装置の充電量Ahをバランスさせることができ、充電量が一方向に偏ることなく電力変動の平滑化が可能となる。なお、充電量制御は比例制御や進み遅れ補償により構成される。
[実施の形態5]
電力貯蔵装置として使用される鉛蓄電池やNaS電池など蓄電池の種類によっては、充電量Ahを計測値から判定することが困難な場合がある。この場合には、充電量Ahを演算によって求める必要がある。演算によって充電量Ahを求めた場合には、誤差の積算により正確な充電量Ahを把握することが困難であるため、充電末期時などに演算量をリセットする必要がある。
That is, when the discharge becomes excessive, the integrated value shifts in the positive direction to increase the amount of charge, and when the integrated value shifts in the negative direction due to excessive charge, the discharge amount is increased. Such control makes it possible to balance the charge amounts Ah of the power storage devices for charging and discharging, and it is possible to smooth power fluctuations without the charge amount being biased in one direction. The charge amount control is configured by proportional control or lead / lag compensation.
[Embodiment 5]
Depending on the type of storage battery such as a lead storage battery or NaS battery used as the power storage device, it may be difficult to determine the charge amount Ah from the measured value. In this case, it is necessary to calculate the charge amount Ah by calculation. When the amount of charge Ah is obtained by calculation, it is difficult to grasp the accurate amount of charge Ah by integrating the errors, so it is necessary to reset the amount of calculation at the end of charging.

また、蓄電池寿命の観点から、定期的に完全充電(蓄電池の種類によって完全放電)を行うことが望ましい場合がある。以下ではこれを回復充電と称することにする。   Moreover, it may be desirable to perform full charge regularly (complete discharge according to the kind of storage battery) from a viewpoint of a storage battery lifetime. Hereinafter, this will be referred to as recovery charging.

蓄電池の回復充電を行った場合、充電末期においては電流値が減少し、一定の充電電流を確保できなくなる。よって、回復充電中の蓄電池については所望の充電電力を得ることができず、電力変動平滑化運転に支障をきたすことになる。   When the recovery charge of the storage battery is performed, the current value decreases at the end of charging, and a constant charging current cannot be secured. Therefore, the desired charging power cannot be obtained for the storage battery during recovery charging, which hinders the power fluctuation smoothing operation.

前記実施の形態2,3で示した装置では、2台の電力貯蔵装置A,Bを用いて電力変動平滑化運転を行い通常の運転中は、一方の電力貯蔵装置Aを充電用として、他方の電力貯蔵装置Bを放電用とした運用を行う。   In the devices shown in the second and third embodiments, the power fluctuation smoothing operation is performed using the two power storage devices A and B, and during normal operation, one power storage device A is used for charging and the other The power storage device B is used for discharging.

この装置において蓄電池の回復充電を行う際に、一方の電力貯蔵装置Aを回復充電運転としている際に、他方の電力貯蔵装置Bで電力変動平滑化運転を行うことで、電力変動平滑化運転に支障を来すことなく蓄電池の回復充電が可能となる。その制御ブロック図を図10に示す。   When performing recovery charging of a storage battery in this device, when one power storage device A is in recovery charging operation, power variation smoothing operation is performed by the other power storage device B, thereby achieving power variation smoothing operation. The storage battery can be recovered and charged without any trouble. The control block diagram is shown in FIG.

図10は実施の形態5を述べるための制御ブロック図で、図10において、図6と同一部分には同一符号を付して説明する。図10に示す実施の形態5においては、正方向と負方向の上下限リミッタ32A,32Bの他に、上下限リミッタ32Cを設けるとともに、切替器33A,33Bに4つの状態を選択することができる接点a〜dを設ける。切替器33Aの接点dと切替器33Bの接点aには回復充電制御器44の出力が供給される。なお、切替器45は、電力貯蔵装置A,Bを切替えるものである。   FIG. 10 is a control block diagram for explaining the fifth embodiment. In FIG. 10, the same parts as those in FIG. In the fifth embodiment shown in FIG. 10, in addition to the upper and lower limiters 32A and 32B in the positive and negative directions, an upper and lower limiter 32C is provided, and four states can be selected for the switches 33A and 33B. Contacts a to d are provided. The output of the recovery charge controller 44 is supplied to the contact point d of the switch 33A and the contact point a of the switch 33B. The switch 45 switches the power storage devices A and B.

上記のように構成することにより、切替器33A,33Bが状態aの場合は、電力貯蔵装置Aを電力変動平滑化運転として充放電を行い、電力貯蔵装置Bを回復充電運転とする。   By configuring as described above, when the switches 33A and 33B are in the state a, the power storage device A is charged and discharged as the power fluctuation smoothing operation, and the power storage device B is set as the recovery charge operation.

また、切替器33A,33Bが状態dの場合は、電力貯蔵装置Bを電変動平滑化運転として充放電を行い、電力貯蔵装置Aを回復充電運転とする。同様に、状態bの場合は、電力貯蔵装置Aを放電運転、電力貯蔵装置Bを充電運転とし、状態cの場合は、電力貯蔵装置Aを充電運転、電力貯蔵装置Bを放電運転とする。   Further, when the switches 33A and 33B are in the state d, the power storage device B is charged and discharged as an electric fluctuation smoothing operation, and the power storage device A is set as a recovery charge operation. Similarly, in the case of the state b, the power storage device A is in the discharge operation and the power storage device B is in the charge operation, and in the state c, the power storage device A is in the charge operation and the power storage device B is in the discharge operation.

上記のように、2台の電力貯蔵装置の一方を回復充電中として運転している間に、他方を、電力変動平滑化運転の継続を行うことで電力変動平滑化運転を中断することなく回復充電を可能とする。   As described above, while one of the two power storage devices is operating as being in recovery charge, the other is recovered without interrupting the power fluctuation smoothing operation by continuing the power fluctuation smoothing operation. Enable charging.

電力貯蔵装置における放電と充電における充電量の変化を示す説明図。Explanatory drawing which shows the change of the charge amount in the discharge and charge in an electric power storage apparatus. 自然エネルギー型発電機における発電電力を電力貯蔵装置に充電するときの説明図。Explanatory drawing when charging the electric power storage apparatus with the generated electric power in a natural energy type generator. 昼夜の負荷平準化を行うと共に短時間の電力変動成分を吸収可能とする電力貯蔵装置の運用方法説明図。Explanatory drawing of the operation method of the electric power storage apparatus which can absorb a short-time electric power fluctuation component while performing load leveling of day and night. 本発明の実施の形態1を示す制御ブロック図。FIG. 2 is a control block diagram showing Embodiment 1 of the present invention. 2台の電力貯蔵装置の運用方法説明図。Explanatory drawing of the operation method of two power storage devices. 本発明の実施の形態2を示す制御ブロック図。The control block diagram which shows Embodiment 2 of this invention. 本発明の実施の形態3を示す制御ブロック図。The control block diagram which shows Embodiment 3 of this invention. 2台の電力貯蔵装置における偏り充電の説明図。Explanatory drawing of the bias charge in two power storage devices. 本発明の実施の形態4を示す制御ブロック図。The control block diagram which shows Embodiment 4 of this invention. 本発明の実施の形態5を示す制御ブロック図。The control block diagram which shows Embodiment 5 of this invention.

符号の説明Explanation of symbols

14、A、B…電力貯蔵装置
15,16…遮断器
17、17A,17B…双方向コンバータ
18,19…電力検出器
20…負荷変動検出装置
21…負荷変動補償量上下限リミッタ
22…加算器
23…偏差器
24…入出力電力制御器
25、25A、25B…双方向コンバータ電流制御器
32A,32B、32C…上下限リミッタ
33A,33B…切替器
35A,35B…DC/DCコンバータ電流制御器
36A,36B…DC/DCコンバータ
DESCRIPTION OF SYMBOLS 14, A, B ... Power storage device 15, 16 ... Circuit breaker 17, 17A, 17B ... Bidirectional converter 18, 19 ... Power detector 20 ... Load fluctuation detection device 21 ... Load fluctuation compensation amount upper / lower limiter 22 ... Adder 23 ... Deviation device 24 ... Input / output power controller 25, 25A, 25B ... Bidirectional converter current controller 32A, 32B, 32C ... Upper / lower limiter 33A, 33B ... Switch 35A, 35B ... DC / DC converter current controller 36A , 36B ... DC / DC converter

Claims (5)

電力系統からの電力が供給される電力負荷と、
電力を貯蔵する少なくとも2台の電力貯蔵装置と、
これらの電力貯蔵装置と前記電力系統とを結ぶ電路に介挿され、交流電力を直流電力に変換して前記電力貯蔵装置に貯蔵したり、その電力貯蔵装置から直流電力を取り出して交流電力に変換して前記電力系統に送出する少なくとも2台の電力変換装置と、
前記電力負荷の電力変動を検出し、平均値が零となる変動成分のみを抽出する負荷変動検出手段と、
この負荷変動検出手段で抽出した変動成分が入力され、出力に前記電力貯蔵装置の入出力電力制御の目標値が出力される入出力電力制御手段と、
この入出力電力制御手段から出力された目標値を正の成分と負の成分に分離する上下限リミッタ手段と、
この上下限リミッタ手段で分離された正の成分と負の成分の目標値を充放電モード切替信号により切り替えてそれぞれ供給し、前記2台の電力貯蔵装置により負荷平準化運転と短時間の電力変動を平滑化運転となるようにそれぞれの電力変換装置を制御するそれぞれの電力変換制御手段と、
を有することを特徴とする電力貯蔵装置の制御装置。
A power load supplied with power from the power grid; and
At least two power storage devices for storing power;
The power storage device and the power grid are inserted into an electric path, and AC power is converted into DC power and stored in the power storage device, or DC power is taken out from the power storage device and converted into AC power. And at least two power converters for sending to the power system,
A load fluctuation detecting means for detecting a power fluctuation of the power load and extracting only a fluctuation component having an average value of zero;
Input / output power control means for inputting the fluctuation component extracted by the load fluctuation detection means and outputting the target value for input / output power control of the power storage device to the output;
Upper / lower limiter means for separating the target value output from the input / output power control means into a positive component and a negative component;
The target values of the positive component and the negative component separated by the upper / lower limiter means are switched by a charge / discharge mode switching signal, respectively, and the load leveling operation and short-time power fluctuation are performed by the two power storage devices. Each power conversion control means for controlling each power converter so as to be a smoothing operation,
The control apparatus of the electric power storage apparatus characterized by having.
前記入出力電力制御手段は、積分器と充電量制御部を有し、入出力電力制御手段から出力される目標値を積分器により積算し、この積算値を零に保つように電力変換制御手段を制御して、前記電力貯蔵装置が放電過多となり積算値が正方向にずれたときには充電量を増加し、それが充電過多となり積算値が負方向にずれたときには放電量を増加させるようにすることを特徴とする請求項1記載の電力貯蔵装置の制御装置。 The input / output power control means includes an integrator and a charge amount control unit, integrates the target value output from the input / output power control means by the integrator, and maintains the integrated value at zero. The amount of charge is increased when the power storage device is excessively discharged and the integrated value is shifted in the positive direction, and when the amount is excessively charged and the integrated value is shifted in the negative direction, the amount of discharge is increased. The power storage device control device according to claim 1 . 前記電力変換制御手段が電力貯蔵装置の内、一方を電力変動平滑化運転を行って充放電動作させているとき、他方の電力貯蔵装置を回復充電手段により回復充電動作させることを特徴とする請求項1又は2記載の電力貯蔵装置の制御装置。 Of the electric power conversion control unit power storage device, when in one to charge and discharge operations performed power variation smoothing operation and claims, characterized in that to restore the charging operation by the recovery charge means the other power storage device Item 3. The power storage device control device according to Item 1 or 2 . 電力系統からの電力が供給される電力負荷と、
電力を貯蔵する少なくとも2台の電力貯蔵装置と、
前記電力系統に交流端が接続されるとともに、直流電圧が一定に保つように制御され、交流電力が直流電力に、直流電力が交流電力に変換される第1の電力変換装置と、
この第1の電力変換装置の直流端に接続され、直流電力を直流電力に変換して前記電力貯蔵装置に貯蔵したり、その電力貯蔵装置から直流電力を取り出して直流電力に変換して前記第1の電力変換装置に送出する少なくとも2台の第2の電力変換装置と、
前記電力負荷の電力変動を検出し、平均値が零となる変動成分のみを抽出する負荷変動検出手段と、
この負荷変動検出手段で抽出した変動成分が入力され、出力に前記電力貯蔵装置の入出力電力制御の目標値が出力される入出力電力制御手段と、
この入出力電力制御手段から出力された目標値を正の成分と負の成分に分離する上下限リミッタ手段と、
この上下限リミッタ手段で分離された正の成分と負の成分の目標値を充放電モード切替信号により切り替えてそれぞれ供給し、前記2台の電力貯蔵装置により負荷平準化運転と短時間の電力変動を平滑化運転となるようにそれぞれ第2の電力変換装置を制御するそれぞれ第2の電力変換制御手段と、
を有することを特徴とする電力貯蔵装置の制御装置。
A power load supplied with power from the power grid; and
At least two power storage devices for storing power;
A first power converter that is connected to the power system and connected to an AC terminal and controlled to keep a DC voltage constant, AC power is converted into DC power, and DC power is converted into AC power;
Connected to the DC terminal of the first power converter, the DC power is converted into DC power and stored in the power storage device, or the DC power is taken out from the power storage device and converted into DC power. At least two second power converters to be sent to one power converter;
A load fluctuation detecting means for detecting a power fluctuation of the power load and extracting only a fluctuation component having an average value of zero;
Input / output power control means for inputting the fluctuation component extracted by the load fluctuation detection means and outputting the target value for input / output power control of the power storage device to the output;
Upper / lower limiter means for separating the target value output from the input / output power control means into a positive component and a negative component;
The target values of the positive component and the negative component separated by the upper / lower limiter means are switched by a charge / discharge mode switching signal, respectively, and the load leveling operation and short-time power fluctuation are performed by the two power storage devices. Each of the second power conversion control means for controlling the second power converter so as to be a smoothing operation,
The control apparatus of the electric power storage apparatus characterized by having.
前記負荷変動検出手段は、高域フィルタ(HPF)からなることを特徴とする請求項1から4のいずれかに記載の電力貯蔵装置の制御装置。 The control device for a power storage device according to any one of claims 1 to 4, wherein the load fluctuation detection means comprises a high-pass filter (HPF) .
JP2005100833A 2005-03-31 2005-03-31 Power storage device control device Expired - Fee Related JP4609156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100833A JP4609156B2 (en) 2005-03-31 2005-03-31 Power storage device control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100833A JP4609156B2 (en) 2005-03-31 2005-03-31 Power storage device control device

Publications (2)

Publication Number Publication Date
JP2006287998A JP2006287998A (en) 2006-10-19
JP4609156B2 true JP4609156B2 (en) 2011-01-12

Family

ID=37409336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100833A Expired - Fee Related JP4609156B2 (en) 2005-03-31 2005-03-31 Power storage device control device

Country Status (1)

Country Link
JP (1) JP4609156B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967608B2 (en) * 2006-11-07 2012-07-04 株式会社明電舎 Distributed power system
JP2008148408A (en) * 2006-12-07 2008-06-26 West Japan Railway Co Heat insulation control method of accumulation device in power storage system, and power storage system
JP4969229B2 (en) 2006-12-18 2012-07-04 三菱重工業株式会社 Power storage device and hybrid distributed power supply system
JP4796974B2 (en) * 2007-01-26 2011-10-19 株式会社日立産機システム Hybrid system of wind power generator and power storage device, wind power generation system, power control device
JP4949902B2 (en) * 2007-03-16 2012-06-13 日本碍子株式会社 Secondary battery power control method
JP5013372B2 (en) * 2007-09-06 2012-08-29 国立大学法人 琉球大学 Manufacturing method of storage battery equipment for wind power generator
JP4759587B2 (en) * 2008-04-15 2011-08-31 株式会社日立エンジニアリング・アンド・サービス Wind farm
KR101185636B1 (en) * 2008-04-15 2012-09-24 가부시키가이샤 히다치 엔지니어링 서비스 Wind power plant
KR101442842B1 (en) * 2008-09-02 2014-09-23 엔지케이 인슐레이터 엘티디 Power control method for secondary batteries
JP5514729B2 (en) * 2008-09-30 2014-06-04 日本碍子株式会社 Control method of sodium-sulfur battery
JP5479182B2 (en) 2009-09-30 2014-04-23 三洋電機株式会社 Power generation system and charge / discharge control device
JP2011147211A (en) * 2010-01-12 2011-07-28 Kansai Electric Power Co Inc:The Power controlling apparatus
WO2011090096A1 (en) * 2010-01-20 2011-07-28 三洋電機株式会社 Charging and discharging system and charging and discharging control device
JP5556422B2 (en) * 2010-06-23 2014-07-23 東京電力株式会社 Battery system
JP5598914B2 (en) * 2010-08-05 2014-10-01 三洋電機株式会社 Power supply system
JP2012205462A (en) * 2011-03-28 2012-10-22 Tokyo Electric Power Co Inc:The Control device for power storage system
JP5809934B2 (en) * 2011-11-07 2015-11-11 三洋電機株式会社 Power storage device and power supply system
JP2013162686A (en) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology Power supply system
JP5766633B2 (en) * 2012-02-28 2015-08-19 三菱重工業株式会社 Output smoothing apparatus, output smoothing method and program
CA2831361C (en) * 2012-10-31 2016-10-04 Hitachi, Ltd. Power generation system, backup power supply, data center installation method, power generation system controller, power system, and power generation system operating method
JP6149275B2 (en) * 2013-08-07 2017-06-21 サンケン電気株式会社 Power fluctuation suppression device using multiple power storage devices
JP6318734B2 (en) * 2014-03-14 2018-05-09 オムロン株式会社 Distributed power system controller, power conditioner, distributed power system, and distributed power system control method
CN107005055B (en) 2014-10-21 2019-11-12 东芝三菱电机产业***株式会社 Management of charging and discharging device
WO2016063946A1 (en) * 2014-10-23 2016-04-28 日本電気株式会社 Distributed power storage system, power control method, and program
JP6493098B2 (en) * 2015-08-31 2019-04-03 住友電気工業株式会社 Power supply device and charge control method thereof
JP6596461B2 (en) * 2017-04-27 2019-10-23 株式会社日立パワーソリューションズ Storage battery system, control method thereof, and power stabilization system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122639A (en) * 1981-01-19 1982-07-30 Tokyo Shibaura Electric Co Power storage system
JPH01227636A (en) * 1988-03-03 1989-09-11 Kyocera Corp Operation control method for a plurality of batteries
JPH0965588A (en) * 1995-08-24 1997-03-07 Hitachi Ltd Electric power storage system
JP2000341860A (en) * 1999-05-24 2000-12-08 Nissin Electric Co Ltd Power storage apparatus
JP2001025169A (en) * 1999-07-06 2001-01-26 Nissin Electric Co Ltd Power storage method and power storage device
JP2001298872A (en) * 2000-04-13 2001-10-26 Sumitomo Electric Ind Ltd Power storage system
JP2002027679A (en) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling wind power generation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122639A (en) * 1981-01-19 1982-07-30 Tokyo Shibaura Electric Co Power storage system
JPH01227636A (en) * 1988-03-03 1989-09-11 Kyocera Corp Operation control method for a plurality of batteries
JPH0965588A (en) * 1995-08-24 1997-03-07 Hitachi Ltd Electric power storage system
JP2000341860A (en) * 1999-05-24 2000-12-08 Nissin Electric Co Ltd Power storage apparatus
JP2001025169A (en) * 1999-07-06 2001-01-26 Nissin Electric Co Ltd Power storage method and power storage device
JP2001298872A (en) * 2000-04-13 2001-10-26 Sumitomo Electric Ind Ltd Power storage system
JP2002027679A (en) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling wind power generation

Also Published As

Publication number Publication date
JP2006287998A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4609156B2 (en) Power storage device control device
JP4850019B2 (en) Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment
JP5028517B2 (en) DC power supply system
JP5451504B2 (en) Power distribution system
EP2339714A2 (en) Energy storage system and method of controlling the same
WO2013011758A1 (en) Storage battery system and method for controlling same
JPWO2011065375A1 (en) Power converter, power generation system, and charge / discharge control method
CN103262377B (en) Solar power system and electric power system
KR20110099499A (en) Energy storage system and controlling method of the same
JP2001005543A (en) Direct-current power output device and solar power generation system
JP6394652B2 (en) Solar power plant
JP2012175864A (en) Power storage system
WO2020170550A1 (en) Power conversion system
JPWO2012050195A1 (en) Power supply system
WO2012050180A1 (en) Preference circuit and electric power supply system
KR20180066682A (en) Power conversion device and uninterruptible power supply including same
JP2022163738A (en) Power supply system
JP6149275B2 (en) Power fluctuation suppression device using multiple power storage devices
JP2008072774A (en) Natural energy generated output equalization arrangement
JP4993972B2 (en) Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system
WO2019163008A1 (en) Dc feeding system
JP6519553B2 (en) Solar power system
KR101162221B1 (en) An apparatus of preventing over-charging/over-discharging for an energy storage and a method thereof
JP6361708B2 (en) Solar power system
JP6604275B2 (en) Power control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees