JP2008072774A - Natural energy generated output equalization arrangement - Google Patents

Natural energy generated output equalization arrangement Download PDF

Info

Publication number
JP2008072774A
JP2008072774A JP2006246229A JP2006246229A JP2008072774A JP 2008072774 A JP2008072774 A JP 2008072774A JP 2006246229 A JP2006246229 A JP 2006246229A JP 2006246229 A JP2006246229 A JP 2006246229A JP 2008072774 A JP2008072774 A JP 2008072774A
Authority
JP
Japan
Prior art keywords
power
natural energy
power generation
control
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006246229A
Other languages
Japanese (ja)
Inventor
Seiji Harada
誠司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006246229A priority Critical patent/JP2008072774A/en
Publication of JP2008072774A publication Critical patent/JP2008072774A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a natural energy generated output equalization arrangement in which full charging can be performed periodically one by one while sustaining power equalization of required capacity as a system, and soundness of lead battery can be sustained for a long period. <P>SOLUTION: For the number n of installed PCS required in a system, m redundant PCS are arranged. A central controller operates I/O power of the system. Assuming the total capacity of the system is E, the operating section of the controller operates the power set value E/n and creates the control signal for each of n PCS. A full charge control command is given to the redundant PCS through a full charge command section. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自然エネルギー発電電力平準化装置に関するものである。   The present invention relates to a natural energy generated power leveling apparatus.

パワーコンディショナPCS(Power Conversion System)を用いて、電力負荷の少ない深夜電力を貯蔵し、その貯蔵した電力を昼間のピーク時に放電して負荷の平準化を図ることが行われている。また、自然エネルギーを利用した発電設備の自然変動による出力変動を吸収することも、特許文献1、2によって公知となっている。   A power conditioner PCS (Power Conversion System) is used to store midnight power with a small power load, and discharge the stored power at the peak of the daytime to level the load. It is also known from Patent Documents 1 and 2 to absorb output fluctuations due to natural fluctuations of power generation equipment using natural energy.

図4は自然エネルギー発電設備の場合の電力平準化装置を示したものである。
自然エネルギー発電設備として、ここでは風力発電設備6と太陽光発電設備7を例示している。1は双方向のDC/ACコンバータからなるPCSで、その直流側に電力貯蔵用の蓄電池2が接続されている。3は発電設備の出力電流を入力して高調波成分を出力するハイパスフィルタ、4は加算器で、PCS1の出力とハイパスフィルタ3の出力とが逆極性に加算されて偏差信号が求められる。電流制御部5では偏差信号に基づいた電流制御値が演算され、制御回路を介してPCS1の出力制御が実行されて電力平準化などの制御が実施される。
特開2001−327083号公報 特開2003−9418号公報
FIG. 4 shows a power leveling device in the case of a natural energy power generation facility.
Here, wind power generation equipment 6 and solar power generation equipment 7 are illustrated as natural energy power generation equipment. Reference numeral 1 denotes a PCS composed of a bidirectional DC / AC converter, and a power storage battery 2 is connected to the DC side thereof. Reference numeral 3 denotes a high-pass filter that inputs an output current of the power generation facility and outputs a harmonic component, and reference numeral 4 denotes an adder. The output of the PCS 1 and the output of the high-pass filter 3 are added to opposite polarities to obtain a deviation signal. The current control unit 5 calculates a current control value based on the deviation signal, executes output control of the PCS 1 via the control circuit, and performs control such as power leveling.
JP 2001-327083 A JP 2003-9418 A

自然エネルギー発電設備のうちでも、特に風力発電においては、出力変動を吸収する蓄電機能付きのシステムによる系統の安定と自然エネルギー活用の両立が模索されている。
また、マイクログリッドに代表される複数の自然エネルギーとその他の電源を、その地域の中で効率的に運用していく試みの中でも、既存の電力会社に対する同時同量制御の中から、需要供給のバランス調整用としての蓄電が求められている。
Among the natural energy power generation facilities, particularly in wind power generation, both the stability of the system and the utilization of natural energy are being sought by a system with a power storage function that absorbs output fluctuations.
In addition, among the attempts to efficiently operate multiple natural energy and other power sources typified by microgrids in the region, demand supply and demand can be controlled from the same amount control for existing power companies. There is a need for power storage for balance adjustment.

このような要望に基づき、電力平準化対策用の蓄電装置としては、2次電池や電気二重層キャパシタが用いられている。現在では、電気二重層キャパシタはエネルギー密度が低いため、その特性を利用して数秒の短時間対応に使用されようとしている。   Based on such demands, secondary batteries and electric double layer capacitors are used as power storage devices for power leveling. At present, since the electric double layer capacitor has a low energy density, it is being used for a short time of several seconds by utilizing its characteristics.

一方、数十秒から数時間に対応できる2次電池としては、鉛蓄電池、Li−ion電池、NAS電池等が挙げられている。これらの2次電池のうち、価格的に安く、Naなど反応の激しい物質を使用していないため安全性から見た場合の設置制限も少ないことから、鉛蓄電池がもっとも普及している。この反面、鉛蓄電池はきちんと満充電状態(100%)にしておかないと、容量低下を起こしてしまう特性を有しており、また、100%の充電状態にするためには、最後の3%程度を充電するために長時間を要するマイナス面を有している。
したがって、自然エネルギーによる発電電力平準化を行う場合、鉛蓄電池を健全状態に維持して長期運転することは困難となっている。
On the other hand, examples of secondary batteries that can handle several tens of seconds to several hours include lead storage batteries, Li-ion batteries, and NAS batteries. Among these secondary batteries, lead-acid batteries are the most popular because they are inexpensive and do not use a highly reactive substance such as Na. On the other hand, lead-acid batteries have the characteristic of causing a capacity drop if not fully charged (100%). In order to achieve 100% charge, the last 3% It has the downside that it takes a long time to charge the degree.
Therefore, when leveling the generated power by natural energy, it is difficult to operate the lead storage battery for a long time while maintaining a healthy state.

本発明は、かかる点に鑑みてなされたもので、その目的とするところは、自然エネルギー発電電力の平準化装置を提供することにある。   This invention is made | formed in view of this point, The place made into the objective is to provide the leveling apparatus of natural energy generated electric power.

本発明の請求項1は、自然エネルギー発電設備の電力系統にそれぞれ鉛蓄電池を有する複数のパワーコンディショナを接続し、制御装置からの制御指令にてパワーコンディショナを制御することで発電電力の平準化を行うシステムにおいて、
前記システムで必要とするパワーコンディショナの設置台数nに対してm台のパワーコンディショナを冗長配置し、前記制御装置はシステムの設定電力値と電力検出値との差信号を求め、制御装置の演算部で前記システムの全体容量をEとしたときE/nの電力設定値を演算してn台各パワーコンディショナの制御信号を生成すると共に、冗長配置したパワーコンディショナに対して満充電指令部を介して満充電制御を行うことを特徴としたものである。
Claim 1 of the present invention connects a plurality of power conditioners each having a lead storage battery to the power system of the natural energy power generation facility, and controls the power conditioner by a control command from the control device, thereby leveling the generated power. In the system that performs
M power conditioners are redundantly arranged with respect to the number n of power conditioners installed in the system, and the control device obtains a difference signal between the set power value of the system and the detected power value, and When the total capacity of the system is E, the calculation unit calculates an E / n power setting value to generate a control signal for each of the n power conditioners, and a full charge command for redundantly arranged power conditioners The full charge control is performed via the unit.

本発明の請求項2は、満充電指令部に満充電判別手段と選択制御手段を備え、満充電判別手段は満充電完了後に一定時間休止後に他の鉛蓄電池と略同容量となるよう放電指令を出力する機能を有し、選択制御手段は満充電対象の鉛蓄電池に対する選択切換えを行う機能を有することを特徴としたものである。   According to a second aspect of the present invention, the full charge command section includes a full charge determination means and a selection control means, and the full charge determination means has a discharge command so as to have substantially the same capacity as other lead storage batteries after a certain period of rest after completion of full charge. And the selection control means has a function of performing selective switching with respect to a fully charged lead storage battery.

本発明の請求項3は、地域内に前記自然エネルギー発電設備の他に分散された発電システムを備え、これら発電設備、発電システム及び負荷の電力を個別に検出して前記制御装置で和の電力検出値を求め、この電力検出値を基に発電システム個別の電力設定値を演算して当該発電システムの制御指令とすることを特徴としたものである。   According to a third aspect of the present invention, a power generation system distributed in addition to the natural energy power generation facility is provided in an area. The power of the power generation facility, the power generation system, and the load is individually detected, and the power is summed by the control device. A detection value is obtained, and a power setting value for each power generation system is calculated based on the power detection value to obtain a control command for the power generation system.

以上のとおり、本発明によれば、PCSを順次選択して鉛蓄電池を満充電とするため、システムとしての必要容量の電力平準化を保ちながら1台ずつ周期的に順次満充電とすることを可能とし、鉛蓄電池の健全性を長期間保つことができる。1セットで鉛蓄電池を設置する場合、平列数が組電池ごとの配線距離(線路インピーダンス)により制限されることがあるが、本発明ではPCS毎に分散するため、鉛蓄電池配置の自由度が増し、鉛蓄電池の分配配置が可能となる。   As described above, according to the present invention, since the lead storage battery is fully charged by sequentially selecting the PCS, it is possible to sequentially fully charge one by one while maintaining the power leveling of the required capacity as the system. It is possible to maintain the soundness of the lead-acid battery for a long time. When installing lead storage batteries in one set, the number of parallel rows may be limited by the wiring distance (line impedance) for each assembled battery. In addition, the distribution of lead-acid batteries becomes possible.

また、設置したPCSは1台分の冗長があるため、PCSもしくは鉛蓄電池の不具合発生時においても、満充電周期は若干長くなるが、システムとしての必要量は確保できる。また、鉛蓄電池の劣化により更新を迎えた場合でも、同様にシステムの必要量を確保しながら更新作業を行うことができる。
さらに、マイクログリッドのような地域分散電源のトータル需要バランスの短時間調整用としても利用できるものである。
In addition, since the installed PCS is redundant, even when a failure occurs in the PCS or the lead storage battery, the full charge cycle is slightly longer, but the necessary amount as a system can be secured. Moreover, even when renewal is reached due to deterioration of the lead-acid battery, it is possible to perform renewal work while ensuring the necessary amount of the system.
Furthermore, it can also be used for short-time adjustment of the total demand balance of regional distributed power sources such as microgrids.

図1は、本発明の第1の実施例を示したもので、図4で示したPCSNo.1のPCS1〜No.mのPCSmまでの複数で自然エネルギー発電電力の平準化システムが構成される。また、各PCS1〜PCSmの有する蓄電池2としては、それぞれ鉛蓄電池が用いられる。なお、システム構築するPCSの数(鉛蓄電池の数)はm台となっているが、そのうちのn台で必要とする電力量を常に充放電できる容量で構成し、m個目の1台は冗長構成となっている。すなわち、システム容量をまかなうためのものとしてn台、満充電用としてプラス1台のm=n+1の冗長構成としている。したがって、必要とされる全体の電力容量をEとした場合、1台あたりの容量E1はE1=E(m−1)となっている。   FIG. 1 shows a first embodiment of the present invention, and a natural energy generation power leveling system is configured by a plurality of PCS No. 1 PCS 1 to No. m PCS m shown in FIG. . Moreover, as the storage battery 2 which each PCS1-PCSm has, a lead storage battery is used, respectively. The number of PCS (number of lead-acid batteries) to construct the system is m units, but it is configured with a capacity that can always charge and discharge the electric energy required by n units, and the m-th unit is Redundant configuration. That is, a redundant configuration of m = n + 1, which is n units to cover the system capacity and one unit for full charge, is used. Therefore, when the required total power capacity is E, the capacity E1 per unit is E1 = E (m−1).

10は中央の制御装置で、この制御装置10には、図2で示すように自然エネルギー発電設備の出力電力を検出する電力検出部11と、電力設定部12、満充電指令部13、演算部14及び充電制御部15などを備えている。電力設定部12は蓄電池電力がE/nの電力となるような値に設定し、減算部16において設定電力と自然エネルギー発電設備の出力電力との減算を実行する。演算部14は、求められた差信号を導入してE/nの電力設定となるよう演算し、その演算値を制御信号としてn台の各PCSに出力する。   Reference numeral 10 denotes a central control device. The control device 10 includes a power detection unit 11 that detects the output power of the natural energy power generation facility, a power setting unit 12, a full charge command unit 13, and a calculation unit as shown in FIG. 14 and a charging control unit 15. The power setting unit 12 sets a value such that the storage battery power becomes E / n power, and the subtraction unit 16 performs subtraction between the set power and the output power of the natural energy power generation facility. The calculation unit 14 introduces the obtained difference signal and calculates the power setting to E / n, and outputs the calculated value as a control signal to each of the n PCSs.

満充電指令部13は、図示省略された満充電判別手段と選択制御手段13aを備えている。満充電判別手段としては、積算充電電流及び予め規定した充電電圧に到達後の経過時間のAND条件などで行う。また、満充電完了後は一定時間休止後に他の鉛蓄電池と同容量となるよう放電指令を出力して当該鉛蓄電池に対して放電制御を実行する。その後、選択制御手段13aは次の満充電対象の鉛蓄電池への選択切換えを行なうと共に、充電制御部15に対して充電開始指令を出力する。   The full charge command unit 13 includes a full charge determination unit and a selection control unit 13a (not shown). The full charge determination means is performed based on an AND condition of an elapsed time after reaching the integrated charging current and a predetermined charging voltage. In addition, after completion of full charge, a discharge command is output so that the capacity of the lead storage battery is the same as that of the other lead storage battery after a certain period of rest, and discharge control is performed on the lead storage battery. Thereafter, the selection control means 13a performs selective switching to the next fully charged lead storage battery and outputs a charge start command to the charge control unit 15.

したがって、m台のPCSのうちで満充電指令部13により選択された1台のPCSは電力系統から解列され、充電制御部15による充電制御パターンによって100%への充電モードとなる。選択されたPCSの鉛蓄電池2が満充電となると、選択制御手段13aは次のPCSを選択し、以下同様にして順次鉛蓄電池2を満充電とするため、システムとしての必要容量の電力を保ちながら1台ずつ周期的に順次満充電とすることを可能とし、鉛蓄電池の健全性を長期間保つことができる。   Accordingly, one PCS selected by the full charge command unit 13 among the m PCSs is disconnected from the power system, and is set to a charging mode of 100% by the charge control pattern by the charge control unit 15. When the selected lead storage battery 2 of the PCS is fully charged, the selection control means 13a selects the next PCS, and in the same manner, the lead storage battery 2 is sequentially fully charged. However, it is possible to sequentially fully charge one by one and maintain the soundness of the lead storage battery for a long period of time.

なお、充電モードになっていない他のPCSは、全体を監視・制御している中央制御装置10からの指令で従来と同様の手法で充放電制御が実施されている。
また、能動的単独運転の検出機能が必要とされる場合には、各PCS間を光ケーブルなどで連係して何れかのPCSをマスターとし、他のPCSをスレーブとして無効電力などの変化量に対する同期制御を行う。
The other PCS that are not in the charge mode are subjected to charge / discharge control in the same manner as in the past in accordance with a command from the central controller 10 that monitors and controls the entire PCS.
When an active islanding detection function is required, the PCSs are linked by an optical cable or the like, and one of the PCSs is set as a master, and the other PCS is set as a slave to synchronize with a change amount such as reactive power. Take control.

図3は第2の実施例を示したものである。この実施例はマイクログリッドに適用した場合で、風力発電設備6や太陽光発電7の他に、マイクロガスタービンによる廃棄物発電などの他の発電システム8と負荷9が地域内に存在する場合である。各発電設備の出力電力と負荷電力をそれぞれの電力検出部にて検出し、検出電力WaWb…Wzは加算器にて加算されて設定電力Eが求められる。演算部は検出電力Eを基にE/nの演算を実行して電力設定Aを求め、この信号を早期制御応答用の制御信号としてn台の各PCSに出力する。   FIG. 3 shows a second embodiment. This embodiment is applied to a microgrid. In addition to the wind power generation facility 6 and the solar power generation 7, other power generation systems 8 such as waste power generation using a micro gas turbine and a load 9 are present in the region. is there. The output power and load power of each power generation facility are detected by the respective power detection units, and the detected power WaWb... Wz is added by an adder to obtain the set power E. The calculation unit calculates E / n based on the detected power E to obtain the power setting A, and outputs this signal to each of the n PCSs as a control signal for early control response.

さらに演算部は、地域内に分散する発電システム8に対する応答用の制御信号生成のための電力設定B、C…を演算する。例えば、電力設定Bは発電システム8用の設定信号Ecと変化分ΔEcの和が電力設定Bとして発電システム8の制御用として出力される。分散電源として図示された発電システム8以外に存在する場合には、そのシステムに対応した電力設定C或いはDが演算されて当該発電システムの電力設定にされる。   Further, the calculation unit calculates power settings B, C,... For generating control signals for response to the power generation systems 8 dispersed in the area. For example, the power setting B is output as the power setting B for controlling the power generation system 8 as the sum of the setting signal Ec for the power generation system 8 and the change ΔEc. If the power generation system 8 other than the power generation system 8 illustrated as a distributed power source exists, the power setting C or D corresponding to that system is calculated and set to the power setting of the power generation system.

このように制御することにより、マイクログリッドのような地域分散電源のトータル需給バランスの短時間電力調整用として使用することが可能となる。   By controlling in this way, it can be used for short-time power adjustment of the total supply and demand balance of a regional distributed power source such as a microgrid.

本発明の実施形態を示すシステム構成図。1 is a system configuration diagram showing an embodiment of the present invention. 制御装置の機能構成図。The function block diagram of a control apparatus. マイクログリッドへの適用例図。Application example to microgrid. 従来のPCSの説明図。Explanatory drawing of conventional PCS.

符号の説明Explanation of symbols

10… 制御装置
11… 電力検出部
12… 電力設定部
13… 満充電指令部
13a… 選択制御手段
14… 演算部
15… 充電制御部
PCS… パワーコンディショナ
DESCRIPTION OF SYMBOLS 10 ... Control apparatus 11 ... Electric power detection part 12 ... Electric power setting part 13 ... Full charge command part 13a ... Selection control means 14 ... Calculation part 15 ... Charge control part PCS ... Power conditioner

Claims (3)

自然エネルギー発電設備の電力系統にそれぞれ鉛蓄電池を有する複数のパワーコンディショナを接続し、制御装置からの制御指令にてパワーコンディショナを制御することで発電電力の平準化を行うシステムにおいて、
前記システムで必要とするパワーコンディショナの設置台数nに対してm台のパワーコンディショナを冗長配置し、前記制御装置はシステムの設定電力値と電力検出値との差信号を求め、制御装置の演算部で前記システムの全体容量をEとしたときE/nの電力設定値を演算してn台各パワーコンディショナの制御信号を生成すると共に、冗長配置したパワーコンディショナに対して満充電指令部を介して満充電制御を行うことを特徴とした自然エネルギー発電電力平準化装置。
In a system that equalizes generated power by connecting a plurality of power conditioners each having a lead storage battery to the power system of a natural energy power generation facility and controlling the power conditioner with a control command from the control device,
M power conditioners are redundantly arranged with respect to the number n of power conditioners installed in the system, and the control device obtains a difference signal between the set power value of the system and the detected power value, and When the total capacity of the system is E, the calculation unit calculates an E / n power setting value to generate a control signal for each of the n power conditioners, and a full charge command for redundantly arranged power conditioners A natural energy generated power leveling device characterized in that full charge control is performed via a unit.
前記満充電指令部は、満充電判別手段と選択制御手段を備え、満充電判別手段は満充電完了後に一定時間休止後に他の鉛蓄電池と略同容量となるよう放電指令を出力する機能を有し、選択制御手段は満充電対象の鉛蓄電池に対する選択切換えを行う機能を有することを特徴とした請求項1記載の自然エネルギー発電電力平準化装置。 The full-charge command unit includes a full-charge determination unit and a selection control unit, and the full-charge determination unit has a function of outputting a discharge command so that the capacity becomes substantially the same as that of other lead storage batteries after a certain period of pause after completion of full charge. 2. The natural energy generated power leveling apparatus according to claim 1, wherein the selection control means has a function of performing selective switching for a lead-acid battery to be fully charged. 地域内に前記自然エネルギー発電設備の他に分散された発電システムを備え、これら発電設備、発電システム及び負荷の電力を個別に検出して前記制御装置で和の電力検出値を求め、この電力検出値を基に発電システム個別の電力設定値を演算して当該発電システムの制御指令とすることを特徴とした請求項1又は2記載の自然エネルギー発電電力平準化装置。 In addition to the natural energy power generation equipment in the area, the power generation system is distributed, and the power of the power generation equipment, the power generation system and the load is individually detected, and the power detection value is obtained by the control device. The natural energy generated power leveling apparatus according to claim 1 or 2, wherein a power set value for each power generation system is calculated based on the value and used as a control command for the power generation system.
JP2006246229A 2006-09-12 2006-09-12 Natural energy generated output equalization arrangement Pending JP2008072774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246229A JP2008072774A (en) 2006-09-12 2006-09-12 Natural energy generated output equalization arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246229A JP2008072774A (en) 2006-09-12 2006-09-12 Natural energy generated output equalization arrangement

Publications (1)

Publication Number Publication Date
JP2008072774A true JP2008072774A (en) 2008-03-27

Family

ID=39293878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246229A Pending JP2008072774A (en) 2006-09-12 2006-09-12 Natural energy generated output equalization arrangement

Country Status (1)

Country Link
JP (1) JP2008072774A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104284A (en) * 2006-10-18 2008-05-01 Hitachi Ltd Dispersed power system
WO2011051997A1 (en) 2009-10-26 2011-05-05 新神戸電機株式会社 Lead storage battery operating method and electrical storage device equipped with lead storage battery operated by this operating method
JP2015027158A (en) * 2013-07-25 2015-02-05 電源開発株式会社 Power storage device and charge/discharge method for power storage device
JP2015035898A (en) * 2013-08-09 2015-02-19 千代田化工建設株式会社 Equipment and method for power supply
CN106786763A (en) * 2017-01-13 2017-05-31 东北电力大学 A kind of wind power plant increases the collector system network optimized approach for building photovoltaic plant
JP2019110717A (en) * 2017-12-20 2019-07-04 田淵電機株式会社 Network connection device for power conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157383A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd Power storage device
JP2004064814A (en) * 2002-07-25 2004-02-26 Kawasaki Heavy Ind Ltd Method and system for power supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157383A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd Power storage device
JP2004064814A (en) * 2002-07-25 2004-02-26 Kawasaki Heavy Ind Ltd Method and system for power supply

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104284A (en) * 2006-10-18 2008-05-01 Hitachi Ltd Dispersed power system
WO2011051997A1 (en) 2009-10-26 2011-05-05 新神戸電機株式会社 Lead storage battery operating method and electrical storage device equipped with lead storage battery operated by this operating method
KR20120083211A (en) 2009-10-26 2012-07-25 신코베덴키 가부시키가이샤 Lead storage battery operating method ahd capacitor with lead storage battery operated by the method
US8441236B2 (en) 2009-10-26 2013-05-14 Shin-Kobe Electric Machinery Co., Ltd. Grid plate for lead acid storage battery, plate, and lead acid storage battery provided with same plate
JP2015027158A (en) * 2013-07-25 2015-02-05 電源開発株式会社 Power storage device and charge/discharge method for power storage device
JP2015035898A (en) * 2013-08-09 2015-02-19 千代田化工建設株式会社 Equipment and method for power supply
CN106786763A (en) * 2017-01-13 2017-05-31 东北电力大学 A kind of wind power plant increases the collector system network optimized approach for building photovoltaic plant
JP2019110717A (en) * 2017-12-20 2019-07-04 田淵電機株式会社 Network connection device for power conditioner

Similar Documents

Publication Publication Date Title
JP6156919B2 (en) Storage battery system, storage battery control device, and storage battery system control method
KR101206362B1 (en) Battery Energy Storage System
KR101754157B1 (en) Energy storage system and method to improve efficiency of energy by the system
JP5767873B2 (en) Power storage device and power storage system
JP4850019B2 (en) Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment
JP5113789B2 (en) Charge / discharge control device and charge / discharge control method
JP2011182503A (en) Energy storage system
JP2012095418A (en) Dc power supply system
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP2008072774A (en) Natural energy generated output equalization arrangement
JP7165953B2 (en) power conversion system
JP2008113500A (en) Power supply system at disaster time
US8574741B2 (en) Method for controlling sodium-sulfur battery
JP6089565B2 (en) Emergency power system
JPWO2015111144A1 (en) Power supply system and energy management system used therefor
KR20130003409A (en) Power stabilizing system for renewable energy generation
JP6145777B2 (en) Power converter
JP6355017B2 (en) Power supply control device and power supply control method
JP6479516B2 (en) Input control power storage system
JP3201595U (en) Power supply
JP6572057B2 (en) Power supply system
JP7473898B2 (en) Power supply device and power supply system including the same
JP2019154108A (en) Power storage system
JP2020014324A (en) Power storage system
JP6610419B2 (en) Power storage system, control program, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412