JP4604520B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP4604520B2
JP4604520B2 JP2004066875A JP2004066875A JP4604520B2 JP 4604520 B2 JP4604520 B2 JP 4604520B2 JP 2004066875 A JP2004066875 A JP 2004066875A JP 2004066875 A JP2004066875 A JP 2004066875A JP 4604520 B2 JP4604520 B2 JP 4604520B2
Authority
JP
Japan
Prior art keywords
flow
flow path
dividing means
channel
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004066875A
Other languages
Japanese (ja)
Other versions
JP2005257363A (en
Inventor
行夫 長岡
善紀 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004066875A priority Critical patent/JP4604520B2/en
Publication of JP2005257363A publication Critical patent/JP2005257363A/en
Application granted granted Critical
Publication of JP4604520B2 publication Critical patent/JP4604520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、ガスなどの流体の流速や流量を計測する流れ計測装置に関するものである。   The present invention relates to a flow measuring device that measures the flow velocity and flow rate of a fluid such as a gas.

従来、この種の流れ計測装置は、図7に示すように、矩形状の流体管路1の一部に送受信器2a、2bを備え、送受信器2aから2bまでの伝搬時間を計測し、その伝搬時間を基に流速や流量を算出している。その流体管路1の断面は図8に示すように仕切り板3a、3b、3c、3d、3e、3fによって複数の流路に仕切られて整流されていた(例えば、特許文献1参照)。
特開平9−43015号公報
Conventionally, as shown in FIG. 7, this type of flow measuring device includes transmitters / receivers 2 a, 2 b in a part of a rectangular fluid pipe 1, measures the propagation time from the transmitter / receiver 2 a to 2 b, The flow velocity and flow rate are calculated based on the propagation time. As shown in FIG. 8, the cross section of the fluid conduit 1 was partitioned into a plurality of flow paths by partition plates 3a, 3b, 3c, 3d, 3e, and 3f (see, for example, Patent Document 1).
JP-A-9-43015

しかしながら、前記従来の構成では、管内を流れる流量によって流体管路1内の流速分布が異なり、その影響を受けて仕切り板3a、3b、3c、3d、3e、3fで仕切られた複数の流路の流速比率が均等でなくなり、その結果流量計測値に誤差を生じていた。   However, in the conventional configuration, the flow velocity distribution in the fluid pipe line 1 varies depending on the flow rate flowing in the pipe, and a plurality of flow paths partitioned by the partition plates 3a, 3b, 3c, 3d, 3e, and 3f under the influence thereof. The flow rate ratio was not uniform, resulting in an error in the measured flow rate.

本発明は、前記従来の課題を解決するもので、複数の流路の流速比率を均一に保ち、高精度な流量計測を行わせる流速および流量計測装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a flow rate and flow rate measurement device that maintains a uniform flow rate ratio of a plurality of flow paths and performs highly accurate flow rate measurement.

前記従来の課題を解決するために、本発明の流れ計測装置は、送受信器間の音波が伝搬する区間を流れる流体を均等に分割する流路分割手段と、送受信器間の音波が伝搬する区間を流れる流体を、流路分割手段の上流側の端部において分割する流路区画手段とを備え、流路区画手段は、層流の流速分布を均一化するために送受信器間の音波が伝搬する区間のうち上流側の端部における断面の中央部をその周辺部より密に分割するように形成され、かつ、平面方向において中央が周辺より凸状に形成されたものである。 In order to solve the above-described conventional problems, the flow measuring device of the present invention includes a flow path dividing unit that equally divides a fluid flowing in a section in which sound waves between transmitters and receivers propagate, and a section in which sound waves between the transmitter and receiver propagates. The flow path dividing means divides the fluid flowing through the channel at the upstream end of the flow path dividing means, and the flow path dividing means propagates the sound wave between the transmitter and the receiver in order to make the flow velocity distribution of the laminar flow uniform. In the section, the central portion of the cross section at the end portion on the upstream side is formed so as to be divided more densely than the peripheral portion, and the center is formed in a convex shape from the periphery in the planar direction .

本発明の流れ計測装置は、分割流路の中央部と周辺部それぞれの流速の比率が流量の大きさや流体の種類に関係なく等しくなり、広い流量範囲にわたって流量を高精度に検出できる。   In the flow measuring device of the present invention, the ratio of the flow rates of the central part and the peripheral part of the divided flow path becomes equal regardless of the magnitude of the flow rate or the type of fluid, and the flow rate can be detected with high accuracy over a wide flow rate range.

第1の発明は、流路の上流と下流に配置された音波を送信または受信する送受信器の音波伝搬時間に応じて流体の流速または流量を算出する流体算出手段と、送受信器間の音波が伝搬する間の流路を分割する流路分割手段の上流または下流に流路を2分割する流路区画手段とを備え、流路区画手段の位置に送受信器の中心を配置したので、広範囲の流量の変化に対しても分割流路間の流量比率がほぼ等しくなり、高精度の流量計測が行える。   According to a first aspect of the present invention, there is provided a fluid calculation means for calculating a flow velocity or a flow rate of a fluid according to a sound wave propagation time of a transmitter / receiver that transmits or receives sound waves arranged upstream and downstream of a flow path, and a sound wave between the transmitter / receiver. A flow path dividing means for dividing the flow path into two upstream or downstream of the flow path dividing means for dividing the flow path during propagation, and the center of the transceiver is arranged at the position of the flow path dividing means. Even when the flow rate changes, the flow rate ratio between the divided flow paths becomes substantially equal, and high-precision flow rate measurement can be performed.

第2の発明は、流路の上流と下流に配置された音波を送信または受信する送受信器間の音波伝搬時間に応じて流体の流速または流量を算出する流体算出手段と、送受信器間の音波が伝搬する間の流路高さHを分割する流路分割手段の上流または下流に流路高さHの長さ以下の流路区画手段とを備えたので、小流量から大流量にわたって流れが安定し、高精度な流量計測を行うことができる。   According to a second aspect of the present invention, there is provided a fluid calculation means for calculating a flow velocity or a flow rate of a fluid in accordance with a sound wave propagation time between a transmitter and a receiver that transmits or receives a sound wave disposed upstream and downstream of a flow path, and a sound wave between the transmitter and the receiver. Since the flow path dividing means for dividing the flow path height H during the propagation of the flow path is provided upstream or downstream of the flow path dividing means with a length equal to or less than the length of the flow path height H, the flow from a small flow rate to a large flow rate is provided. Stable and highly accurate flow rate measurement can be performed.

第3の発明は、特に第1の発明の流路区画手段を、流路分割手段の一部を延長するようにしたもので、部品点数を低減させて寸法精度を向上させ、その結果高精度の流量計測ができる。   In the third invention, in particular, the flow path dividing means of the first invention is such that a part of the flow path dividing means is extended, and the number of parts is reduced to improve the dimensional accuracy. Can be measured.

第4の発明は、特に第1の発明の流路区画手段を、中央部が周辺部より密に分割させたもので、流路中央部と周辺部の流速の均一性がより高くなり、高精度の流量計測を行える。   In the fourth invention, in particular, the flow path dividing means of the first invention is divided more densely in the central part than in the peripheral part, the uniformity of the flow velocity in the central part and the peripheral part becomes higher, and the high Accurate flow measurement is possible.

第5の発明は、特に第1の発明の流路分割手段を、流路を均等に分割するようにしたもので、それぞれの分割流路の流速の均一性がよりいっそう高まり、高精度の流量計測を行える。   In the fifth aspect of the invention, in particular, the flow path dividing means of the first aspect of the invention is configured to divide the flow path evenly, and the uniformity of the flow velocity of each divided flow path is further increased, and the flow rate with high accuracy is obtained. Can measure.

第6の発明は、特に第1の発明の流路の、音波が通過する流路とほぼ同じ形状で分割手段のない助走流路部を有するもので、特に大流量域での流れの安定が増して、正確な流量計測が行える。   The sixth aspect of the invention has a run-up flow path portion that has substantially the same shape as the flow path through which sound waves pass, and has no dividing means, particularly the flow path of the first aspect of the invention. In addition, accurate flow measurement can be performed.

第7の発明は、特に第1の発明の、分割延長手段、流路区画手段あるいは助走流路部を送受信器からみて対象に構成したもので、逆流時にも正流時と同様な効果が得られ、正逆が交互に流れる脈動時にも正確な流量計測が行える。   In the seventh invention, the split extension means, the flow channel dividing means, or the run-up flow channel section of the first invention is particularly configured as viewed from the transmitter / receiver, and the same effect as in the normal flow can be obtained at the back flow. Therefore, accurate flow rate measurement can be performed even during pulsation in which forward and reverse flow alternately.

第8の発明は、特に第1の発明の流路区画手段を、平面方向においても中央が周辺より凸状に形成させたもので、平面方向においても中央部と周辺部の流速を均一にしたので、さらに流量精度が高い。   In the eighth invention, in particular, the flow path partitioning means of the first invention is formed such that the center is convex from the periphery in the plane direction, and the flow velocity in the center and the periphery is uniform in the plane direction. Therefore, the flow accuracy is higher.

第9の発明は、特に第1の発明の流路の、送受信器が送受信する流路の流体と接触する部分を同一の材質で構成したもので、温度変化に対しても高精度の計測が行える。   In the ninth aspect of the invention, the portion of the flow path of the first aspect of the invention that is in contact with the fluid in the flow path that is transmitted and received by the transceiver is made of the same material, and high-precision measurement is possible even with respect to temperature changes. Yes.

(実施の形態1)
以下、本発明の実施の形態1における流れ計測装置を図面に基づいて説明する。図1において、流路4の途中に、超音波を発信する送受信器5aと受信する送受信器5bとが、流体の流れ方向に配置されている。6は送受信器5aへの送信手段、7は送受信器5bで受信した信号の受信手段である。切換手段8は送受信器5a、5bの送受の方向を変えるもので、送信から受信までの時間差から、流体演算手段9で流速値と流量値を算出する。なお、本実施の形態では、流体演算手段9が、流速値と流量値とを算出する場合について説明するが、流量値を必要しない場合は流速値を算出するだけでもよく、流速値の変化を検出することにより、ガス、水道水等の流体の漏洩を検出することができる。
(Embodiment 1)
Hereinafter, a flow measuring apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings. In FIG. 1, a transmitter / receiver 5 a that transmits an ultrasonic wave and a transmitter / receiver 5 b that receives an ultrasonic wave are disposed in the flow path 4 in the fluid flow direction. Reference numeral 6 denotes transmission means to the transceiver 5a, and reference numeral 7 denotes reception means for signals received by the transceiver 5b. The switching means 8 changes the transmission / reception direction of the transceivers 5a and 5b, and the fluid calculation means 9 calculates the flow velocity value and the flow rate value from the time difference from transmission to reception. In the present embodiment, the case where the fluid calculation means 9 calculates the flow velocity value and the flow rate value will be described. However, when the flow rate value is not required, the flow velocity value may only be calculated, and the change in the flow velocity value may be changed. By detecting, leakage of fluids such as gas and tap water can be detected.

次に動作について説明する。まず送信手段6から送受信器5aへ信号が送られ、音波は送受信器5bに到達し、受信手段7で受信して、流体演算手段9で音波の伝搬時間を計測する。次に、切換手段8で送受信器5aと送受信器5bの発信受信を切り換えて、送受信器4bから送受信器4aへ音波信号を発信し、この発信を前述のように、その時間を計時する。そしてその時間差から管路の大きさや流れの状態を考慮して流体算出手段10で流速や流量値を求める。   Next, the operation will be described. First, a signal is sent from the transmitting means 6 to the transceiver 5a, and the sound wave reaches the transceiver 5b, is received by the receiving means 7, and the propagation time of the sound wave is measured by the fluid computing means 9. Next, the transmission / reception of the transmitter / receiver 5a and the transmitter / receiver 5b is switched by the switching means 8, a sound wave signal is transmitted from the transmitter / receiver 4b to the transmitter / receiver 4a, and this transmission is timed as described above. From the time difference, the flow rate and the flow rate value are obtained by the fluid calculation means 10 in consideration of the size of the pipeline and the flow state.

図2は上述の流れ計測装置の断面図で流体管路4の内部を3つの流路分割手段10、11、12で4つの分割された流路に分割する。それぞれの流路分割手段10、11、12は均等な間隔に配置され、その通過面積を等しくしている。中央にある流路分割手段11は他の流路分割手段10、12よりも長く構成され、流路分割手段11の上流側の端部を流体の流れに対しほぼ平行に延長させて形成した流路区画手段11aと、流路分割手段11の下流側の端部を流体の流れに対しほぼ平行に延長させて形成した流路区画手段11bとを有する。なお、本実施の形態では、流路分割手段11と流路区画手段11a、11bとを一体に形成した場合について説明したが、流路分割手段11と流路区画手段11a、11bとは、別体に形成してもよい。   FIG. 2 is a cross-sectional view of the above-described flow measuring device, and the inside of the fluid pipe 4 is divided into four divided flow paths by three flow path dividing means 10, 11, and 12. The respective flow path dividing means 10, 11, and 12 are arranged at equal intervals, and their passage areas are made equal. The flow path dividing means 11 in the center is configured to be longer than the other flow path dividing means 10 and 12, and is formed by extending the upstream end of the flow path dividing means 11 substantially parallel to the fluid flow. It has a channel partitioning means 11a and a channel partitioning means 11b formed by extending the downstream end of the channel splitting means 11 substantially parallel to the fluid flow. In the present embodiment, the case where the flow path dividing means 11 and the flow path dividing means 11a and 11b are integrally formed has been described. However, the flow path dividing means 11 and the flow path dividing means 11a and 11b are different from each other. It may be formed on the body.

さらにその上流と下流には、流路分割手段10、11、12を設けていない助走流路部13a、13bを有している。   Furthermore, on the upstream and downstream sides, there are running flow channel portions 13a and 13b in which the flow channel dividing means 10, 11, and 12 are not provided.

流体は図の左側から流入し助走流路部13aで流れの乱れを除去し、流路区画手段11aで2つに区画され、しかる後に流路分割手段10、11、12で4つに区画されて流れる。送受信器5a(5bは図示されない)は、音波の送信面の中心の高さが、流路区画手段11aの取り付け位置と同じ高さに設けられており、前述の区画された流れを送受信器5aによる音波が走査して伝搬時間を計測して流速や流量を算出する。ここで、高さ方向は、送受信器5a、5bを取り付けた流路4の側壁と略平行な方向を意味する。   The fluid flows in from the left side of the figure and removes the turbulence of the flow at the run-up flow channel portion 13a, and is divided into two by the flow channel dividing means 11a, and then divided into four by the flow channel dividing means 10, 11, and 12. Flowing. The transmitter / receiver 5a (5b is not shown) has the center of the sound wave transmission surface at the same height as the attachment position of the flow path dividing means 11a, and the transmitter / receiver 5a The sound wave is scanned and the propagation time is measured to calculate the flow velocity and flow rate. Here, the height direction means a direction substantially parallel to the side wall of the flow path 4 to which the transceivers 5a and 5b are attached.

図3流路内の流速分布を表したもので、それぞれ平均流量で正規化してある。図3(A)は流路分割手段がない場合の流速分布を表しており、図3(A)aは流速が小さい(層流域)ときの流速分布で、図3(A)bは流速が大きい(乱流域)のときの流速分布である。このように層流域では流速分布が砲弾型になることは周知の事実であるが、送受信器5a、5bはこの流速の異なる部分を伝わるので、場所によって伝搬時間への影響が異なることになる。送受信器5aは送信面から一様な音波を送信することはきわめて難しく、通常は音波も強度分布が存在している。したがって一様でない流速分布の流速を一様でない音波分布で計測することになり、誤差が大きく発生する。また大流量では図3(A)bのようなパターンになるので、小流速のとときと大流速のときでは、何らかの補正を行う必要がある。さらに同じ流速であっても、流体の種類や性質が異なればレイノルズ数が異なるので補正が必要になる。   FIG. 3 shows the flow velocity distribution in the flow path, each normalized by the average flow rate. FIG. 3A shows the flow velocity distribution when there is no flow dividing means, FIG. 3A shows the flow velocity distribution when the flow velocity is small (laminar flow region), and FIG. 3A shows the flow velocity distribution. It is the flow velocity distribution when it is large (turbulent flow region). In this way, it is a well-known fact that the flow velocity distribution is bullet-shaped in the laminar flow region, but the transmitters / receivers 5a and 5b travel through different portions of the flow velocity, so the influence on the propagation time differs depending on the location. It is extremely difficult for the transmitter / receiver 5a to transmit a uniform sound wave from the transmission surface, and normally the sound wave also has an intensity distribution. Therefore, the flow velocity of the non-uniform flow velocity distribution is measured with the non-uniform sound wave distribution, and a large error occurs. Further, since the pattern shown in FIG. 3A is obtained at a large flow rate, some correction is required at a low flow rate and a high flow rate. Furthermore, even if the flow rate is the same, the Reynolds number is different if the type and nature of the fluid are different, so correction is necessary.

図3(B)は、流路分割手段10、11、12を有してはいるが、流路区画手段11a、11bがない場合、すなわち流路分割手段10、11、12の長さが等しい時の流速分布である。流速が小さい時はそれぞれ図3(B)c、d、e、fの分布になり、流速が大きい時にはそれぞれ図3(B)g、h、i、jのような流速分布になる。流速が大きい時には4つの流速分布はほぼ一様であるが、流速の小さい時には上流部の層流(線k)の影響を受けて中央部の流速がわずかに大きくなる。   FIG. 3 (B) has the flow path dividing means 10, 11, 12 but no flow path dividing means 11a, 11b, that is, the lengths of the flow path dividing means 10, 11, 12 are equal. It is the flow velocity distribution at the time. When the flow velocity is small, the distributions are c, d, e, and f in FIG. 3B, respectively, and when the flow velocity is large, the flow distributions are as shown in FIGS. 3B, g, h, i, and j, respectively. When the flow velocity is high, the four flow velocity distributions are almost uniform, but when the flow velocity is low, the flow velocity in the central portion is slightly increased due to the influence of the laminar flow (line k) in the upstream portion.

中央部に流路区画手段11aを有した場合には、流速分布は図3(C)l、m、n、oように均一になる。すなわち上流部で層流の流速分布であっても、流路区画手段11aによって図3(C)p、qのような流速分布に変形し、速度分布の影響を小さくすることができ、乱流に近い速度分布が得られる。小流速と大流速の分布の形状が似通っていれば、流速による補正が必要でなくなるので高精度に流速や流量が計測できる。   When the flow path dividing means 11a is provided at the center, the flow velocity distribution becomes uniform as shown in FIG. 3 (C) l, m, n, o. That is, even if the flow velocity distribution of the laminar flow is upstream, it can be transformed into the flow velocity distribution as shown in FIGS. 3C and 3C by the flow path dividing means 11a, and the influence of the velocity distribution can be reduced. A velocity distribution close to is obtained. If the distribution shapes of the small flow velocity and the large flow velocity are similar, correction by the flow velocity is not necessary, so the flow velocity and flow rate can be measured with high accuracy.

流路区画手段11a、11bは流路分割手段10、11、12よりも流れ方向に長さLの距離だけそれぞれ長くなっているが、この距離Lは流路高さをHとすると、Hよりも小さい距離に設定してある。この距離Lが長いと大流量において流れが乱れて超音波に悪影響を与えるばかりでなく、圧力損失を増加させる。   The flow path dividing means 11a and 11b are longer than the flow path dividing means 10, 11, and 12 by a distance of a length L in the flow direction, respectively. Is also set to a small distance. If this distance L is long, the flow is disturbed at a large flow rate, which not only adversely affects the ultrasonic waves, but also increases the pressure loss.

助走流路部13a、13bや流路区画手段11a、11bはそれぞれ送受信器5a、5bのからみて対象的に配置してあり、流れが前述の逆方向(図2の右から左)に流れても流速分布が均一性を保つように構成してある。   The run-up channel portions 13a and 13b and the channel partitioning means 11a and 11b are symmetrically arranged as viewed from the transmitters / receivers 5a and 5b, respectively, and the flow flows in the reverse direction (from right to left in FIG. 2). Also, the flow velocity distribution is configured to maintain uniformity.

助走流路部13aは大きな流速のとき流れが乱れて流入したときに、その乱れを緩和するためのものであり、最大の流速に応じて適切な長さを必要とする。   When the flow is disturbed and flows in at a large flow velocity, the run-up flow channel portion 13a is for reducing the disturbance and requires an appropriate length according to the maximum flow velocity.

(実施の形態2)
図4は流路区画手段の中央部の間隔を細かくして、よりいっそうの流速分布の均一性を高めたものであり、流路区画手段14、15、16は中央部が間隔が小さく、周辺部が大きくなるように構成してあり、中央が流速の大きい層流の流速分布を均一化させるものであり、よりいっそうの均一化ができる。
(Embodiment 2)
FIG. 4 shows a further improvement in the uniformity of the flow velocity distribution by reducing the interval at the center of the flow path dividing means, and the flow path dividing means 14, 15 and 16 have a small interval at the center and the periphery. The portion is configured to be large, and the center is for uniformizing the flow velocity distribution of the laminar flow having a large flow velocity, and can be made even more uniform.

(実施の形態3)
図5は流路区画手段を平面で示したもので、流路分割手段を延長させて流路区画手段を構成させたものであるが、図に示すように流路区画手段17の端部17aは中央部が凸になるように構成してある。このようにして平面的にも中央部と周辺部の流速を均一にさせることができる。
(Embodiment 3)
FIG. 5 is a plan view of the flow path dividing means, and the flow path dividing means is extended to form the flow path dividing means. As shown in FIG. 5, the end portion 17a of the flow path dividing means 17 is shown. Is configured so that the center part is convex. In this way, the flow velocity in the central portion and the peripheral portion can be made uniform even in a plan view.

図6は、流路4の内壁上面に流路上面手段18と流路4の内壁底面に流路底面手段19ととをそれぞれ配置したもので、流路上面、底面手段18、19は、他の流路分割手段20、21の材料と同じ摩擦係数のものを使用し、摩擦によって生じる流速分布の形を同一にする。また同一の材質のものであれば熱的な変化による膨張や収縮にも対して誤差が少ない。   FIG. 6 shows a flow channel upper surface means 18 on the inner wall upper surface of the flow channel 4 and a flow channel bottom surface means 19 on the inner wall bottom surface of the flow channel 4, respectively. The material having the same friction coefficient as the material of the flow path dividing means 20 and 21 is used, and the shape of the flow velocity distribution caused by the friction is the same. Further, if the same material is used, there is little error with respect to expansion and contraction due to thermal changes.

本発明の流れ計測装置は、広範囲の流速や流量を正確に計測できるので、ガスや水道などの計量メータや、産業用プラントや実験設備における流量計などの計測器にも適用できる。   Since the flow measuring device of the present invention can accurately measure a wide range of flow velocities and flow rates, it can also be applied to measuring meters such as metering meters such as gas and water, and flow meters in industrial plants and experimental facilities.

本発明の実施例1における流れ計測装置のブロック図1 is a block diagram of a flow measuring device according to a first embodiment of the present invention. 本発明の実施例1における流れ計測装置の流路断面図Flow path sectional view of a flow measuring device in Example 1 of the present invention (A)流路分割手段のないときの流路内の流速分布を示す特性図(B)流路分割手段があるときの流路内の流速分布を示す特性図(C)本発明の実施の形態1における流路内の流速分布を示す特性図(A) A characteristic diagram showing the flow velocity distribution in the flow channel when there is no flow channel dividing means (B) A characteristic diagram showing the flow velocity distribution in the flow channel when there is a flow channel dividing means (C) Characteristic diagram showing flow velocity distribution in flow path in form 1 本発明の実施の形態2における流れ計測装置の流路断面図Flow path sectional view of a flow measuring device in Embodiment 2 of the present invention 本発明の実施の形態3における流れ計測装置の流路区画手段の平面図The top view of the flow-path division means of the flow measurement apparatus in Embodiment 3 of this invention 本発明の実施の形態4における流れ計測装置の流路断面図Flow path sectional view of a flow measuring device in Embodiment 4 of the present invention 従来の流れ計測装置としての流量計測装置の流路構成図Flow path configuration diagram of a flow measurement device as a conventional flow measurement device 従来の流量計測装置の流路断面図Cross-sectional view of a conventional flow measurement device

符号の説明Explanation of symbols

4 流路
5a、5b 送受信器
9 流体算出手段
10、11、12 流路分割手段
11a、11b 流路区画手段
13a、13b 助走流路部
4 Flow path 5a, 5b Transmitter / receiver 9 Fluid calculating means 10, 11, 12 Flow path dividing means 11a, 11b Flow path dividing means 13a, 13b Running flow path section

Claims (2)

流路の上流側と下流側に配置された音波を送信または受信する送受信器と、
前記送受信器間の音波伝搬時間に応じて流体の流速及びまたは流量を算出する流体算出手段と、
前記送受信器間の音波が伝搬する区間を流れる流体を均等に分割する流路分割手段と、
前記送受信器間の音波が伝搬する区間を流れる流体を、前記流路分割手段の上流側の端部において分割する流路区画手段とを備え、
前記流路区画手段は、層流の流速分布を均一化するために前記送受信器間の音波が伝搬する区間のうち上流側の端部における断面中央部をその周辺部より密に分割するように形成され、かつ、平面方向において中央が周辺より凸状に形成された流れ計測装置。
A transceiver for transmitting or receiving sound waves disposed on the upstream side and the downstream side of the flow path;
Fluid calculating means for calculating the flow velocity and / or flow rate of the fluid according to the sound wave propagation time between the transceivers;
A flow path dividing means for equally dividing a fluid flowing through a section in which sound waves propagate between the transceivers;
The fluid flowing through a section waves between the transceiver is propagated, and a flow path partition means for dividing the upstream end of the flow path dividing means,
In order to make the flow velocity distribution of the laminar flow uniform, the flow path dividing means divides the central part of the cross section at the upstream end of the section in which the sound wave between the transmitter and the receiver propagates more densely than the peripheral part. And a flow measuring device having a center formed in a convex shape from the periphery in the planar direction .
前記流路分割手段に並設して前記流路の内壁面に設けられた流路上面手段と流路底面手段とを有し、
前記流路上面手段流路と前記流路底面手段は、前記流路分割手段と摩擦係数が同一の材料で構成した請求項記載の流れ計測装置。
A channel upper surface means and a channel bottom surface means provided in parallel with the channel dividing means and provided on the inner wall surface of the channel,
Wherein the channel bottom surface means the flow path surface means passage, the flow path dividing means and the friction coefficient of the flow measuring device according to claim 1 which is made of the same material.
JP2004066875A 2004-03-10 2004-03-10 Flow measuring device Expired - Lifetime JP4604520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066875A JP4604520B2 (en) 2004-03-10 2004-03-10 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066875A JP4604520B2 (en) 2004-03-10 2004-03-10 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2005257363A JP2005257363A (en) 2005-09-22
JP4604520B2 true JP4604520B2 (en) 2011-01-05

Family

ID=35083239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066875A Expired - Lifetime JP4604520B2 (en) 2004-03-10 2004-03-10 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4604520B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579214B2 (en) 2006-09-20 2010-11-10 パナソニック株式会社 Ultrasonic fluid measuring device
LT5859B (en) * 2010-10-14 2012-08-27 Ab Axis Industries Ultrasonic flow meter
JP2012132801A (en) * 2010-12-22 2012-07-12 Panasonic Corp Ultrasonic flowmeter
WO2023223985A1 (en) * 2022-05-16 2023-11-23 パナソニックIpマネジメント株式会社 Flow channel device for fluid measurement, and ultrasonic flow rate meter using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133832U (en) * 1975-04-21 1976-10-28
JPH08512126A (en) * 1993-01-30 1996-12-17 ゲー.クロムシュローダー アクチエンゲゼルシャフト Flowmeter
JPH0943015A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2003083791A (en) * 2001-09-11 2003-03-19 Tokyo Gas Co Ltd Flow rate-measuring apparatus and gas meter
JP2003202252A (en) * 2001-12-28 2003-07-18 Ricoh Elemex Corp Flow meter and strainer used therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133832U (en) * 1975-04-21 1976-10-28
JPH08512126A (en) * 1993-01-30 1996-12-17 ゲー.クロムシュローダー アクチエンゲゼルシャフト Flowmeter
JPH0943015A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2003083791A (en) * 2001-09-11 2003-03-19 Tokyo Gas Co Ltd Flow rate-measuring apparatus and gas meter
JP2003202252A (en) * 2001-12-28 2003-07-18 Ricoh Elemex Corp Flow meter and strainer used therefor

Also Published As

Publication number Publication date
JP2005257363A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
WO2010070891A1 (en) Ultrasonic flowmeter
US9091575B2 (en) Ultrasonic flow-meter
KR20170093871A (en) Ultrasonic method and device for measuring fluid flow
WO2017002281A1 (en) Measurement unit and flow rate meter
JP2014077679A (en) Flow meter
JP2017125701A (en) Gas meter
JP4604520B2 (en) Flow measuring device
WO2009074162A1 (en) Ultrasonic type fluid flow measurement apparatus
JP5070620B2 (en) Ultrasonic flow meter and flow measurement method
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
KR100935876B1 (en) Method of measuring flow velocity by ultrasonic waves and method of measuring flux by ultrasonic waves
CN111473827B (en) V-shaped sound channel zero drift elimination method
KR100793088B1 (en) Ultrasonic multi circuit speed measurement, ultrasonic multi circuit flow measurement and ultrasonic distance measurement
JP2956805B2 (en) Ultrasonic flow meter
JP2013217780A (en) Ultrasonic flowmeter
JP6229144B2 (en) Flow measuring device
JP5070624B2 (en) Ultrasonic flow meter and flow measurement method
JP2000065613A (en) Ultrasonic flowmeter
JP2004251700A (en) Fluid measuring device
JP2002267513A (en) Ultrasonic flowmeter
KR102438018B1 (en) method for controlling multi-path ultrasonic flowmeter
JP4092977B2 (en) Flow measuring device
JPH0447768B2 (en)
CN111473828B (en) Zero drift elimination method for commercial meter
JP2001208585A (en) Flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R151 Written notification of patent or utility model registration

Ref document number: 4604520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

EXPY Cancellation because of completion of term