JP2001208585A - Flowmeter - Google Patents

Flowmeter

Info

Publication number
JP2001208585A
JP2001208585A JP2000022081A JP2000022081A JP2001208585A JP 2001208585 A JP2001208585 A JP 2001208585A JP 2000022081 A JP2000022081 A JP 2000022081A JP 2000022081 A JP2000022081 A JP 2000022081A JP 2001208585 A JP2001208585 A JP 2001208585A
Authority
JP
Japan
Prior art keywords
flow rate
flow path
rate measurement
flow
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000022081A
Other languages
Japanese (ja)
Inventor
Minoru Kumagai
稔 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000022081A priority Critical patent/JP2001208585A/en
Publication of JP2001208585A publication Critical patent/JP2001208585A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flowmeter that can cope with an extremely wide range of flow rate. SOLUTION: The flowmeter is provided with a channel 3 for measuring a low flow rate, a channel 5 for measuring a high flow rate, first and second ultrasonic transducers 7 and 8 that are mounted to the channel 3 for measuring a low flow rate to transmit and receive ultrasonic beams each other, and ultrasonic transducers 9 and 10 that are mounted to the channel 5 for measuring a high flow rate to transmit and receive ultrasonic beams each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波により流量
の計測を行う流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow meter for measuring a flow rate by ultrasonic waves.

【0002】[0002]

【従来の技術】従来のこの種の流量計として、特開平9
−318411号公報に開示された超音波式流量計があ
る。この流量計は、矩形断面をした流量測定用流路を流
体が流動する方向である長手方向に延びる流路凹部を持
つ流量測定本体と、長手方向に延びる流路凸部を持つ流
量測定覆体を重ねて、流路凹部と流路凸部の間に矩形断
面の流量測定用流路を形成し、広範囲の流量レンジに対
して流路凹部或いは流路凸部の高さのみを変えること
で、流量測定用流路の矩形断面のアスペクト比を可変設
定するものである。
2. Description of the Related Art A conventional flow meter of this type is disclosed in
There is an ultrasonic flowmeter disclosed in Japanese Patent Publication No. 318411. This flowmeter has a flow measurement body having a flow channel concave portion extending in a longitudinal direction which is a direction in which a fluid flows in a flow channel for flow measurement having a rectangular cross section, and a flow measurement cover having a flow channel convex portion extending in a longitudinal direction. By forming a flow channel for flow measurement of a rectangular cross section between the flow channel concave portion and the flow channel convex portion, and changing only the height of the flow channel concave portion or the flow channel convex portion for a wide flow rate range. , The aspect ratio of the rectangular section of the flow path for flow measurement is variably set.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
流量計では、構造上、さらに広範囲の流量レンジに対応
することができない。また、1つのアスペクト比を有す
る流量測定用流路で測定できる流量範囲が制限されてし
まう。
However, the above-mentioned flow meter cannot structurally cope with a wider flow range. In addition, the flow rate range that can be measured by the flow rate measurement flow path having one aspect ratio is limited.

【0004】そこで、本発明の目的は、上述の課題に鑑
み、かなり広範囲の流量レンジに対応可能な流量計を提
供することにある。
In view of the above problems, an object of the present invention is to provide a flow meter capable of handling a considerably wide flow range.

【0005】[0005]

【課題を解決するための手段】上記した目的に鑑みて、
請求項1記載の発明の流量計は、低流量測定用流路と、
高流量測定用流路と、上記低流量測定用流路に取り付け
られ、互いに超音波ビームの送受信を行う第1および第
2の超音波トランスジューサと、上記高流量測定用流路
に取り付けられ、互いに超音波ビームの送受信を行う第
3および第4の超音波トランスジューサとを備えている
ことを特徴とする。
In view of the above-mentioned object,
The flow meter according to the first aspect of the present invention includes a flow path for measuring a low flow rate,
A first and a second ultrasonic transducer that are attached to the high flow rate measurement channel and the low flow rate measurement channel and transmit and receive ultrasonic beams to and from each other; And a third and a fourth ultrasonic transducer for transmitting and receiving an ultrasonic beam.

【0006】請求項1記載の発明によれば、流量計は、
低流量測定用流路と、高流量測定用流路と、低流量測定
用流路に取り付けられ、互いに超音波ビームの送受信を
行う第1および第2の超音波トランスジューサと、高流
量測定用流路に取り付けられ、互いに超音波ビームの送
受信を行う第3および第4の超音波トランスジューサと
を備えている。
According to the first aspect of the present invention, the flow meter is
First and second ultrasonic transducers attached to the low flow rate measurement flow path, the high flow rate measurement flow path, and the low flow rate measurement flow path for transmitting and receiving ultrasonic beams to and from each other; Third and fourth ultrasonic transducers attached to the road and transmitting and receiving ultrasonic beams to and from each other.

【0007】また、請求項2記載の発明の流量計は、低
流量測定用流路と、高流量測定用流路と、上記低流量測
定用流路に取り付けられた、所定距離の第1の伝搬経路
を有する第1および第2の超音波トランスジューサと、
上記高流量測定用流路に取り付けられ、上記第1の伝搬
経路より短い距離の第2の伝搬経路を有する第3および
第4の超音波トランスジューサとを備えていることを特
徴とする。
According to a second aspect of the present invention, there is provided a flow meter for measuring a low flow rate, a high flow rate flow path, and a first distance of a predetermined distance attached to the low flow rate flow path. First and second ultrasonic transducers having a propagation path;
A third and a fourth ultrasonic transducer attached to the high flow rate measurement flow path and having a second propagation path shorter in distance than the first propagation path are provided.

【0008】請求項2記載の発明によれば、流量計は、
低流量測定用流路と、高流量測定用流路と、低流量測定
用流路に取り付けられた、所定距離の第1の伝搬経路を
有する第1および第2の超音波トランスジューサと、高
流量測定用流路に取り付けられ、第1の伝搬経路より短
い距離の第2の伝搬経路を有する第3および第4の超音
波トランスジューサとを備えている。
[0008] According to the second aspect of the present invention, the flowmeter comprises:
A first and a second ultrasonic transducer having a first propagation path at a predetermined distance and attached to the low flow rate measurement flow path, the high flow rate measurement flow path, and the high flow rate measurement; Third and fourth ultrasonic transducers attached to the measurement flow path and having a second propagation path shorter than the first propagation path.

【0009】また、請求項3記載の発明は、請求項1ま
たは2記載の流量計において、前記低流量測定用流路と
前記高流量測定用流路は、連結部で直列に連結されてい
ることを特徴とする。
According to a third aspect of the present invention, in the flow meter according to the first or second aspect, the low flow rate measurement flow path and the high flow rate measurement flow path are connected in series at a connection portion. It is characterized by the following.

【0010】請求項3記載の発明によれば、低流量測定
用流路と高流量測定用流路は、連結部で直列に連結され
ている。
According to the third aspect of the present invention, the low flow rate measuring flow path and the high flow rate measuring flow path are connected in series at the connecting portion.

【0011】また、請求項4記載の発明は、請求項1乃
至3のいずれか1項記載の流量計において、前記低流量
測定用流路と前記高流量測定用流路は、それぞれ矩形断
面を有し、前記低流量測定用流路の矩形断面のアスペク
ト比(長辺と短辺の比)は、前記高流量測定用流路の矩
形断面のアスペクト比より大きく設定されていることを
特徴とする。
According to a fourth aspect of the present invention, in the flow meter according to any one of the first to third aspects, the low flow rate measuring flow path and the high flow rate measuring flow path each have a rectangular cross section. The aspect ratio (the ratio of the long side to the short side) of the rectangular cross section of the low flow rate measurement flow path is set to be larger than the aspect ratio of the rectangular cross section of the high flow rate measurement flow path. I do.

【0012】請求項4記載の発明によれば、低流量測定
用流路と高流量測定用流路は、それぞれ矩形断面を有
し、低流量測定用流路3の矩形断面のアスペクト比は、
高流量測定用流路の矩形断面のアスペクト比より大きく
設定されている。
According to the fourth aspect of the present invention, each of the low flow rate measuring flow path and the high flow rate measuring flow path has a rectangular cross section, and the low flow rate measuring flow path 3 has an aspect ratio of a rectangular cross section.
It is set larger than the aspect ratio of the rectangular cross section of the high flow rate measurement channel.

【0013】また、請求項5記載の発明は、請求項4記
載の流量計において、前記低流量測定用流路と前記高流
量測定用流路の矩形断面は同一断面積に設定されている
ことを特徴とする。
According to a fifth aspect of the present invention, in the flowmeter according to the fourth aspect, the rectangular cross sections of the low flow rate measuring flow path and the high flow rate measuring flow path are set to have the same sectional area. It is characterized by.

【0014】請求項5記載の発明によれば、低流量測定
用流路と高流量測定用流路の矩形断面は同一断面積に設
定されている。
According to the fifth aspect of the invention, the rectangular cross sections of the low flow rate measuring flow path and the high flow rate measuring flow path are set to have the same sectional area.

【0015】また、請求項6記載の発明は、請求項1乃
至3のいずれか1項記載の流量計において、前記低流量
測定用流路の矩形断面の断面積は、前記高流量測定用流
路の矩形断面の断面積より小さく設定され、かつ前記低
流量測定用流路の矩形断面と前記高流量測定用流路の矩
形断面のアスペクト比は同一に設定されていることを特
徴とする。
According to a sixth aspect of the present invention, in the flow meter according to any one of the first to third aspects, a cross-sectional area of a rectangular cross section of the low flow rate measuring flow path is equal to the high flow rate measuring flow rate. The cross-sectional area of the rectangular cross section of the road is set to be smaller than that of the rectangular cross section, and the rectangular cross section of the low flow rate measuring flow path and the rectangular cross section of the high flow rate measuring flow path have the same aspect ratio.

【0016】請求項6記載の発明によれば、低流量測定
用流路の矩形断面の断面積は、高流量測定用流路の矩形
断面の断面積より小さく設定され、かつ低流量測定用流
路の矩形断面と高流量測定用流路の矩形断面のアスペク
ト比は同一に設定されている。
According to the sixth aspect of the present invention, the cross-sectional area of the rectangular cross section of the low flow rate measuring flow path is set to be smaller than the rectangular cross-sectional area of the high flow rate measuring flow path, and The rectangular section of the road and the rectangular section of the high flow rate measuring channel have the same aspect ratio.

【0017】[0017]

【発明の実施の形態】以下、本発明による流量計の実施
の形態について図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a flow meter according to the present invention will be described below with reference to the drawings.

【0018】図1は、本発明による流量計の実施の形態
を示す斜視図、図2は同流量計の平面図、図3は同流量
計の側面図、図4は図2におけるA−A線断面図、図5
は図2におけるB−B線断面図、図6は同流量計の流量
演算部のブロック図である。
FIG. 1 is a perspective view showing an embodiment of a flow meter according to the present invention, FIG. 2 is a plan view of the flow meter, FIG. 3 is a side view of the flow meter, and FIG. Line sectional view, FIG.
2 is a sectional view taken along line BB in FIG. 2, and FIG. 6 is a block diagram of a flow rate calculation unit of the flow meter.

【0019】流量計1は、流体入口部2と、低流量測定
用流路3と、連結部4と、高流量測定用流路5と、流体
出口部6とからなる。低流量測定用流路3は、図4に示
すように、側壁3a,3bと、上壁3cと、底壁3dと
からなる、幅(長辺)W1および高さ(短辺)H1の断
面矩形を形成している。低流量測定用流路3の上流側の
側壁3aには超音波トランスジューサ7が取り付けら
れ、低流量測定用流路3の下流側の側壁3bには超音波
トランスジューサ7が取り付けられている。
The flow meter 1 comprises a fluid inlet 2, a low flow rate measuring channel 3, a connecting portion 4, a high flow rate measuring channel 5, and a fluid outlet 6. As shown in FIG. 4, the low flow rate measurement flow path 3 has a cross section of a width (long side) W1 and a height (short side) H1 composed of side walls 3a and 3b, an upper wall 3c, and a bottom wall 3d. It forms a rectangle. An ultrasonic transducer 7 is attached to the upstream side wall 3a of the low flow rate measurement flow path 3, and an ultrasonic transducer 7 is attached to the downstream side wall 3b of the low flow rate measurement flow path 3.

【0020】同様に、高流量測定用流路5は、図5に示
すように、側壁5a,5bと、上壁5cと、底壁5dか
らなる、幅(長辺)W2および高さ(短辺)H2の断面
矩形を形成している。高流量測定用流路5の上流側の側
壁5aには超音波トランスジューサ9が取り付けられ、
高流量測定用流路5の下流側の側壁5bには超音波トラ
ンスジューサ10が取り付けられている。
Similarly, as shown in FIG. 5, the flow path 5 for high flow rate measurement has a width (long side) W2 and a height (short side) composed of side walls 5a, 5b, an upper wall 5c, and a bottom wall 5d. A side section H2 forms a rectangular cross section. An ultrasonic transducer 9 is attached to the upstream side wall 5a of the high flow rate measurement flow path 5,
An ultrasonic transducer 10 is mounted on the downstream side wall 5b of the high flow rate measurement channel 5.

【0021】低流量測定用流路3と高流量測定用流路5
の矩形断面の断面積は同一に設定されているが、低流量
測定用流路3の矩形断面の幅(長辺)W1は、高流量測
定用流路5の矩形断面の幅(長辺)W2より長く設定さ
れ、高さ(短辺)H1は、高流量測定用流路5の矩形断
面の高さ(短辺)H2より短く設定されている。したが
って、低流量測定用流路3のアスペクト比(長辺と短辺
の比)は、高低流量測定用流路5のアスペクト比より大
きく設定されている。
The flow path 3 for low flow rate measurement and the flow path 5 for high flow rate measurement
Although the cross-sectional area of the rectangular cross-section is set to be the same, the width (long side) W1 of the rectangular cross-section of the low flow rate measuring flow path 3 is the width (long side) of the rectangular cross-section of the high flow rate measuring flow path 5 The height (short side) H1 is set longer than W2, and is shorter than the height (short side) H2 of the rectangular cross section of the high flow rate measurement flow path 5. Therefore, the aspect ratio (the ratio of the long side to the short side) of the low flow rate measurement flow path 3 is set to be larger than the aspect ratio of the high / low flow rate measurement flow path 5.

【0022】次に、上述の構造を有する流量計の動作を
説明する。流体(たとえば、ガス)は、流体入口部2に
入り、低流量測定用流路3、連結部4、高流量測定用流
路5を通って、流体出口部6から出ていくが、流体の流
れが低流量の時は、まず、技術上周知の方法(シングア
ラウンド法、伝搬時間差法など)により、超音波トラン
スジューサ7,8間で、低流量測定用流路3を斜めに横
切る第1の伝搬経路11に沿って超音波ビームの送受信
が行われる。
Next, the operation of the flow meter having the above structure will be described. The fluid (for example, gas) enters the fluid inlet portion 2, passes through the low flow rate measuring flow path 3, the connecting portion 4, and the high flow rate measuring flow path 5, and exits from the fluid outlet section 6. When the flow has a low flow rate, first, a first flow which obliquely crosses the low flow rate measurement flow path 3 between the ultrasonic transducers 7 and 8 by a method known in the art (such as a sing-around method or a propagation time difference method). Transmission and reception of the ultrasonic beam are performed along the propagation path 11.

【0023】次に、図6に示す流量演算部13におい
て、このとき計測される超音波トランスジューサ7,8
間の超音波ビームの送受信信号に基づいて、超音波の伝
搬時間より低流量測定用流路3中を流れる流体の流速が
算出され、次いで、算出された流速と上述の矩形断面の
断面積とに基づいて流量が算出される。このとき、超音
波トランスジューサ7,8間の第1の伝搬経路11の距
離が長いため、超音波ビームの伝搬時間が大きくなり、
測定精度が向上する。
Next, in the flow rate calculating section 13 shown in FIG.
The flow velocity of the fluid flowing in the low flow rate measurement flow path 3 is calculated based on the transmission time of the ultrasonic wave based on the transmission / reception signal of the ultrasonic beam between the ultrasonic wave, and the calculated flow velocity and the cross-sectional area of the above-described rectangular cross section are calculated. Is calculated based on the flow rate. At this time, since the distance of the first propagation path 11 between the ultrasonic transducers 7 and 8 is long, the propagation time of the ultrasonic beam increases,
Measurement accuracy is improved.

【0024】次に、流体の流れがある程度以上大きくな
ると、超音波ビームがたとえば超音波トランスジューサ
7から超音波トランスジューサ8へ伝搬する時、流速が
大きくて、伝搬距離が長いため、超音波ビームが下流方
向に流され、超音波トランスジューサ8での超音波ビー
ムの受信が弱くなり、正確な流量測定が困難になる。
Next, when the flow of the fluid becomes larger than a certain extent, when the ultrasonic beam propagates from the ultrasonic transducer 7 to the ultrasonic transducer 8, for example, the flow velocity is large and the propagation distance is long. Direction, the reception of the ultrasonic beam at the ultrasonic transducer 8 becomes weak, and accurate flow measurement becomes difficult.

【0025】そこで、流体の流れがある程度以上高流量
になった場合は、低流量測定用流路3に取り付けられた
超音波トランスジューサ7,8での超音波ビームの送受
信は停止し、その代わりに、超音波トランスジューサ
9,10間で、高流量測定用流路5を斜めに横切る第2
の伝搬経路12に沿って超音波ビームの送受信が行われ
る。
When the flow rate of the fluid becomes higher than a certain level, the transmission and reception of the ultrasonic beam by the ultrasonic transducers 7 and 8 attached to the low flow rate measuring channel 3 are stopped. Between the ultrasonic transducers 9, 10 obliquely crossing the high flow rate measurement flow path 5;
The transmission and reception of the ultrasonic beam are performed along the propagation path 12.

【0026】そして、図6に示す流量演算部13におい
て、このとき計測される超音波トランスジューサ9,1
0間の超音波ビームの送受信信号に基づいて、超音波の
伝搬時間より高流量測定用流路5中を流れる流体の流速
が算出され、次いで、算出された流速と上述の矩形断面
の断面積とに基づいて流量が算出される。このとき、超
音波トランスジューサ9,10間の第2の伝搬経路12
の距離は、超音波トランスジューサ7,8間の第1の伝
搬経路11の距離より短いため、流速が大きくても正確
な流量測定が可能となる。
Then, in the flow rate calculating section 13 shown in FIG.
Based on the transmission / reception signal of the ultrasonic beam between 0, the flow velocity of the fluid flowing through the high flow rate measurement flow path 5 is calculated from the propagation time of the ultrasonic wave, and then the calculated flow velocity and the cross-sectional area of the above-described rectangular cross section And the flow rate is calculated. At this time, the second propagation path 12 between the ultrasonic transducers 9 and 10
Is shorter than the distance of the first propagation path 11 between the ultrasonic transducers 7 and 8, accurate flow measurement can be performed even when the flow velocity is large.

【0027】このように、低流量測定の場合は、超音波
トランスジューサ7,8間を伝搬する超音波ビームの伝
搬時間を大きくすることで、測定精度が向上する。した
がって、高流量の超音波ビームの伝搬時間より大きくと
れるため、高流量測定用流路5のアスペクト比を小さく
し、高流量の時圧損を小さくする寸法とすることができ
る。すなわち、大流量のアスペクト比を最適化し、次に
低流量のアスペクト比を別個に最適化することができ
る。
As described above, in the case of low flow rate measurement, measurement accuracy is improved by increasing the propagation time of the ultrasonic beam propagating between the ultrasonic transducers 7 and 8. Therefore, since the propagation time of the ultrasonic beam with a high flow rate can be set longer, the aspect ratio of the flow path for high flow rate measurement 5 can be reduced, and the pressure loss at high flow rates can be reduced. That is, the high flow aspect ratio can be optimized, and then the low flow aspect ratio can be separately optimized.

【0028】したがって、大流量は高流量測定用流路5
で、また、低流量は低流量測定用流路3で別々に測定し
て、精度を最適にすることができる。また、低流量の
時、アスペクト比を大きくすることで二次元流路を形成
して層流の流量範囲を広げることができる。また、低流
量測定における層流の流量範囲を大きくできる。
Therefore, the large flow rate is determined by the high flow rate measurement flow path 5.
In addition, the low flow rate can be separately measured in the low flow rate measurement flow path 3 to optimize the accuracy. When the flow rate is low, a two-dimensional flow path can be formed by increasing the aspect ratio, and the flow rate range of the laminar flow can be expanded. Further, the flow rate range of the laminar flow in the low flow rate measurement can be widened.

【0029】さらに、全流路の長さ(低流量測定用流路
の長さ+高流量測定用流路の長さ)をアスペクト比が大
きい低流量測定用流路だけで形成すると、圧損が大きく
なるが、本発明では圧損は低下する。
Further, if the length of the entire flow path (the length of the flow path for low flow rate measurement + the length of the flow path for high flow rate measurement) is formed only by the flow path for low flow rate measurement having a large aspect ratio, the pressure loss is reduced. Although increased, the pressure loss is reduced in the present invention.

【0030】以上の通り、本発明の実施の形態について
説明したが、本発明はこれに限らず、種々の変形、応用
が可能である。
As described above, the embodiments of the present invention have been described. However, the present invention is not limited thereto, and various modifications and applications are possible.

【0031】たとえば、上述の実施の形態では、低流量
測定用流路3と高流量測定用流路5の矩形断面の断面積
は同一に設定されているが、異なる断面積としても良
い。ただし、この場合でも、低流量測定用流路3のアス
ペクト比は、高低流量測定用流路5のアスペクト比より
大きく設定され、超音波トランスジューサ7,8間の第
1の伝搬経路11の距離は、超音波トランスジューサ
9,10間の伝搬経路の距離より長く設定される。そし
て、流量演算部は、低流量測定時は、算出された流速と
低流量測定用流路3の矩形断面の断面積とに基づいて流
量を算出し、高流量測定時は、算出された流速と高流量
測定用流路5の矩形断面の断面積とに基づいて流量を算
出する。
For example, in the above-described embodiment, the cross-sectional areas of the rectangular cross sections of the low flow rate measuring flow path 3 and the high flow rate measuring flow path 5 are set to be the same, but may be different. However, also in this case, the aspect ratio of the flow path for low flow rate measurement 3 is set to be larger than the aspect ratio of the flow path for high and low flow rate measurement 5, and the distance of the first propagation path 11 between the ultrasonic transducers 7 and 8 is Are set longer than the distance of the propagation path between the ultrasonic transducers 9 and 10. The flow rate calculation unit calculates the flow rate based on the calculated flow velocity and the cross-sectional area of the rectangular cross section of the low flow rate measurement flow path 3 at the time of low flow rate measurement, and calculates the calculated flow rate at the time of high flow rate measurement. The flow rate is calculated based on the cross-sectional area of the rectangular cross section of the high flow rate measurement flow path 5.

【0032】また、他の実施例として、図7乃至図9に
それぞれ斜視図、平面図および側面図で示すように、低
流量測定用流路3の矩形断面の断面積を、高流量測定用
流路5の矩形断面の断面積より小さく設定し、かつ低流
量測定用流路3の矩形断面と高流量測定用流路5の矩形
断面のアスペクト比を同一に設定しても良い。
As another embodiment, as shown in a perspective view, a plan view, and a side view of FIGS. The cross-sectional area of the rectangular cross section of the flow path 5 may be set smaller than that of the rectangular cross section, and the rectangular cross section of the low flow rate measuring flow path 3 and the rectangular cross section of the high flow rate measuring flow path 5 may have the same aspect ratio.

【0033】[0033]

【発明の効果】請求項1記載の発明によれば、低流量と
高流量を別個の流路で測定するため、流量測定の精度が
向上する。
According to the first aspect of the present invention, since the low flow rate and the high flow rate are measured in separate flow paths, the accuracy of the flow rate measurement is improved.

【0034】また、請求項2記載の発明によれば、低流
量と高流量の超音波ビームの伝搬経路をそれぞれ最適化
でき、測定精度が向上する。
According to the second aspect of the present invention, the propagation paths of the low flow rate and high flow rate ultrasonic beams can be optimized, respectively, and the measurement accuracy is improved.

【0035】また、請求項3記載の発明によれば、一連
の流路で低流量と高流量を分けて測定することができ
る。
According to the third aspect of the present invention, a low flow rate and a high flow rate can be measured separately in a series of flow paths.

【0036】また、請求項4記載の発明によれば、低流
量に適するアスペクト比の低流量測定用流路と、大流量
に適するアスペクト比の高流量測定用流路をそれぞれ分
けて形成できるため、測定精度を高くできる。また、低
流量測定における層流の流量範囲を大きくできる。
According to the fourth aspect of the present invention, a low flow rate measurement flow path having an aspect ratio suitable for a low flow rate and a high flow rate measurement flow rate having an aspect ratio suitable for a large flow rate can be formed separately. , Measurement accuracy can be increased. Further, the flow rate range of the laminar flow in the low flow rate measurement can be widened.

【0037】また、請求項5記載の発明によれば、流量
算出時の流路断面積ファクタを1つにすることができ
る。
According to the fifth aspect of the present invention, the flow path cross-sectional area factor at the time of calculating the flow rate can be reduced to one.

【0038】また、請求項6記載の発明によれば、低流
量と高流量を別個の流路で測定するため、流量測定の精
度が向上する。
According to the present invention, the low flow rate and the high flow rate are measured in separate flow paths, so that the accuracy of the flow rate measurement is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による流量計の実施の形態を示す斜視図
である。
FIG. 1 is a perspective view showing an embodiment of a flow meter according to the present invention.

【図2】同流量計の平面図である。FIG. 2 is a plan view of the flow meter.

【図3】同流量計の側面図である。FIG. 3 is a side view of the flow meter.

【図4】図2におけるA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 2;

【図5】図2におけるB−B線断面図である。FIG. 5 is a sectional view taken along line BB in FIG. 2;

【図6】同流量計の流量演算部のブロック図である。FIG. 6 is a block diagram of a flow rate calculation unit of the flow meter.

【図7】本発明による流量計の他の実施例を示す斜視図
である。
FIG. 7 is a perspective view showing another embodiment of the flow meter according to the present invention.

【図8】図7の流量計の平面図である。FIG. 8 is a plan view of the flow meter of FIG. 7;

【図9】図7の流量計の側面図である。FIG. 9 is a side view of the flow meter of FIG. 7;

【符号の説明】[Explanation of symbols]

1 流量計 3 低流量測定用流路 4 連結部 5 高流量測定用流路 7 超音波トランスジューサ 8 超音波トランスジューサ 9 超音波トランスジューサ 10 超音波トランスジューサ 11 第1の伝搬経路 12 第2の伝搬経路 13 流量演算部 DESCRIPTION OF SYMBOLS 1 Flow meter 3 Flow path for low flow rate measurement 4 Connecting part 5 Flow path for high flow rate measurement 7 Ultrasonic transducer 8 Ultrasonic transducer 9 Ultrasonic transducer 10 Ultrasonic transducer 11 First propagation path 12 Second propagation path 13 Flow rate Arithmetic unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 低流量測定用流路と、 高流量測定用流路と、 上記低流量測定用流路に取り付けられ、互いに超音波ビ
ームの送受信を行う第1および第2の超音波トランスジ
ューサと、 上記高流量測定用流路に取り付けられ、互いに超音波ビ
ームの送受信を行う第3および第4の超音波トランスジ
ューサとを備えていることを特徴とする流量計。
A first and a second ultrasonic transducer attached to the low flow rate measurement flow path, the high flow rate measurement flow path, and transmitting and receiving an ultrasonic beam to and from each other; A flow meter comprising: a third and a fourth ultrasonic transducer attached to the high flow rate measurement flow path and transmitting and receiving an ultrasonic beam to and from each other.
【請求項2】 低流量測定用流路と、 高流量測定用流路と、 上記低流量測定用流路に取り付けられた、所定距離の第
1の伝搬経路を有する第1および第2の超音波トランス
ジューサと、 上記高流量測定用流路に取り付けられ、上記第1の伝搬
経路より短い距離の第2の伝搬経路を有する第3および
第4の超音波トランスジューサとを備えていることを特
徴とする流量計。
2. A flow path for low flow rate measurement, a flow path for high flow rate measurement, and a first and a second super-flow path having a first propagation path of a predetermined distance attached to the flow path for low flow rate measurement. An ultrasonic transducer, and third and fourth ultrasonic transducers attached to the high flow rate measurement flow path and having a second propagation path shorter in distance than the first propagation path. Flow meter.
【請求項3】 前記低流量測定用流路と前記高流量測定
用流路は、連結部で直列に連結されていることを特徴と
する請求項1または2記載の流量計。
3. The flowmeter according to claim 1, wherein the low flow rate measurement flow path and the high flow rate measurement flow path are connected in series at a connection portion.
【請求項4】 前記低流量測定用流路と前記高流量測定
用流路は、それぞれ矩形断面を有し、前記低流量測定用
流路3の矩形断面のアスペクト比(長辺と短辺の比)
は、前記高流量測定用流路の矩形断面のアスペクト比よ
り大きく設定されていることを特徴とする請求項1乃至
3のいずれか1項記載の流量計。
4. The low flow rate measurement flow path and the high flow rate measurement flow path each have a rectangular cross section, and the low flow rate measurement flow path 3 has a rectangular cross section having an aspect ratio (long side and short side). ratio)
The flowmeter according to any one of claims 1 to 3, wherein the flow rate is set to be larger than an aspect ratio of a rectangular cross section of the high flow rate measurement flow path.
【請求項5】 前記低流量測定用流路と前記高流量測定
用流路の矩形断面は同一断面積に設定されていることを
特徴とする請求項4記載の流量計。
5. The flowmeter according to claim 4, wherein the rectangular cross sections of the low flow rate measurement flow path and the high flow rate measurement flow path have the same cross-sectional area.
【請求項6】 前記低流量測定用流路の矩形断面の断面
積は、前記高流量測定用流路の矩形断面の断面積より小
さく設定され、かつ前記低流量測定用流路の矩形断面と
前記高流量測定用流路の矩形断面のアスペクト比は同一
に設定されていることを特徴とする請求項1乃至3のい
ずれか1項記載の流量計。
6. A cross-sectional area of a rectangular cross section of the low flow rate measuring channel is set smaller than a rectangular cross-sectional area of the high flow rate measuring channel, and the rectangular cross section of the low flow rate measuring channel. The flowmeter according to any one of claims 1 to 3, wherein an aspect ratio of a rectangular cross section of the high flow rate measurement channel is set to be the same.
JP2000022081A 2000-01-31 2000-01-31 Flowmeter Withdrawn JP2001208585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000022081A JP2001208585A (en) 2000-01-31 2000-01-31 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000022081A JP2001208585A (en) 2000-01-31 2000-01-31 Flowmeter

Publications (1)

Publication Number Publication Date
JP2001208585A true JP2001208585A (en) 2001-08-03

Family

ID=18548418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000022081A Withdrawn JP2001208585A (en) 2000-01-31 2000-01-31 Flowmeter

Country Status (1)

Country Link
JP (1) JP2001208585A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056745A1 (en) * 2006-11-08 2008-05-15 Panasonic Corporation Ultrasonic fluid measurement device
JP2010139291A (en) * 2008-12-10 2010-06-24 Honda Electronic Co Ltd Method for correcting ultrasonic flowmeter, and ultrasonic flowmeter
EP3367072B1 (en) * 2017-02-24 2019-01-02 SICK Engineering GmbH Flow measurement with ultrasound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056745A1 (en) * 2006-11-08 2008-05-15 Panasonic Corporation Ultrasonic fluid measurement device
US7980142B2 (en) 2006-11-08 2011-07-19 Panasonic Corporation Ultrasonic flow rate measuring device having a plurality of ultrasonic flow rate sensors
JP2010139291A (en) * 2008-12-10 2010-06-24 Honda Electronic Co Ltd Method for correcting ultrasonic flowmeter, and ultrasonic flowmeter
EP3367072B1 (en) * 2017-02-24 2019-01-02 SICK Engineering GmbH Flow measurement with ultrasound

Similar Documents

Publication Publication Date Title
EP0913670B1 (en) Ultrasonic flowmeter
US5717145A (en) Detector for an ultrasonic flow meter
JP2010164558A (en) Device for measuring flow of fluid
US7806003B2 (en) Doppler type ultrasonic flow meter
JP5259313B2 (en) Ultrasonic flow meter
JP2001208585A (en) Flowmeter
JPH09287989A (en) Ultrasonic flowmeter
JP2000065613A (en) Ultrasonic flowmeter
JP4604520B2 (en) Flow measuring device
JP2009276226A (en) Ultrasonic flowmeter
JP2003114142A (en) Ultrasonic gas meter
JP2008014829A (en) Ultrasonic flowmeter
JP3689975B2 (en) Ultrasonic flow meter
JP3521622B2 (en) Ultrasonic flow meter and ultrasonic flow meter
JP3438713B2 (en) Ultrasonic flow meter
JP3497279B2 (en) Ultrasonic flow meter
JP4007861B2 (en) Ultrasonic flow meter
JP4346458B2 (en) Ultrasonic flow meter
RU27218U1 (en) PRIMARY TRANSMITTER OF ULTRASONIC FLOW METER
JP2003344129A (en) Ultrasonic flowmeter
JP2002267513A (en) Ultrasonic flowmeter
JP3217021B2 (en) Ultrasonic flow meter
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter
JP3627729B2 (en) Flow measuring device
JPH11237263A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403