JP4601855B2 - Foamable phenolic resole resin composition - Google Patents

Foamable phenolic resole resin composition Download PDF

Info

Publication number
JP4601855B2
JP4601855B2 JP2001149895A JP2001149895A JP4601855B2 JP 4601855 B2 JP4601855 B2 JP 4601855B2 JP 2001149895 A JP2001149895 A JP 2001149895A JP 2001149895 A JP2001149895 A JP 2001149895A JP 4601855 B2 JP4601855 B2 JP 4601855B2
Authority
JP
Japan
Prior art keywords
mass
resole resin
parts
resin composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001149895A
Other languages
Japanese (ja)
Other versions
JP2002338784A (en
Inventor
康弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2001149895A priority Critical patent/JP4601855B2/en
Publication of JP2002338784A publication Critical patent/JP2002338784A/en
Application granted granted Critical
Publication of JP4601855B2 publication Critical patent/JP4601855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、主として表面に設けたシート状面材の剥離を防止し、又は改善された耐吸水性若しくは断熱性の熱劣化に対して耐性を有する環境対応型のフェノール系レゾール樹脂フォームを提供しうる発泡性フェノール系レゾール樹脂組成物に関するものである。
【0002】
【従来の技術】
従来、フェノール系レゾール樹脂フォーム(以下、フェノール系フォームと称する)は、難燃性、耐熱性、低発煙性などの特徴を有するため、例えば建築用、保温用の断熱材料をはじめとする種々の用途に使用されている。
しかしながら、断熱性に代表されるフォーム特性は、水分の影響を受けやすいため、従前より材料の構造面又は施工面で対応することを余儀なくされてきた。
【0003】
本発明者は、このような現状に鑑み、先に耐吸水性の改善を主とした目的の1つとして、フェノール系レゾール樹脂、酸硬化剤、発泡剤、整泡剤及びケイ素原子に結合した加水分解性基を有する有機ケイ素化合物及びその部分加水分解縮合物を含む発泡性フェノール系レゾール樹脂組成物を提案した(特願2000−224341号)。
【0004】
しかしながら、この発泡性フェノール系レゾール樹脂組成物は、吸水性の点では改善されたが、環境対応型のある種の代替フロン系発泡剤を用いて作製された表面に、クラフト紙、不織布などのシート状面材を有する構造に形成したときに、長期に保管したときに当該面材が剥離しやすく、また高温に曝されたときに断熱性が熱劣化しやすいなどの欠点を有し、改善の余地が残されている上に、耐吸水性についても、より一層の改善が求められている。
【0005】
【発明が解決しようとする課題】
本発明は、表面に設けたシート状面材の剥離問題を解消し、又は改善された耐吸水性若しくは断熱性の熱劣化に対して耐性を有する環境対応型のフェノール系フォームを与える発泡性フェノール系レゾール樹脂組成物を提供することを目的としてなされたものである。
なお、ここでいう環境対応型とは、オゾン層破壊や地球温暖化問題を生ずる危険性の低いことを意味する。
【0006】
【課題を解決するための手段】
本発明者は、前記の特性を有する発泡性フェノール系レゾール樹脂組成物を開発するために鋭意研究を重ねた結果、特定の有機ケイ素化合物の部分加水分解縮合物と特定の炭化水素を主成分とする発泡剤とを併用することにより、上記した課題、例えば断熱性の熱劣化に耐えるフェノール系フォームを与える発泡性フェノール系レゾール樹脂が得られることを見出し、この知見に基づき本発明を完成するに至った。
【0007】
すなわち、本発明は、(A)フェノール系レゾール樹脂100質量部に対し、(B)酸性硬化剤1〜50質量部と、(C)シクロペンタンを50質量%以上にて含む発泡剤0.5〜30質量部と、(D)加水分解性基を有する有機ケイ素化合物の部分加水分解縮合物0.1質量部以上と、(E)整泡剤0.3〜10質量部と、を含有することを特徴とする発泡性フェノール系レゾール樹脂組成物を提供するものである。
【0008】
【発明の実施の形態】
本発明においては、(C)成分の発泡剤としてシクロペンタンを主成分とする炭化水素系発泡剤、特にシクロペンタンのみ及び(B)成分の酸性硬化剤としてアリールスルホン酸を主成分とし、かつ含水率が10質量%未満のグリコール系溶液を用いるのが好ましい。
【0009】
本発明の発泡性フェノール系レゾール樹脂組成物において、(A)成分として用いられるフェノール系レゾール樹脂は、例えばフェノール類とアルデヒド類とを反応触媒、例えば塩基、酸、二価金属塩及びこれらの組合せの存在下に、40℃から還流温度までの温度で0.5〜24時間反応させたのち、必要に応じて中和し、濃縮することにより製造される酸硬化性のレゾール樹脂又は該レゾール樹脂の製造時ないし製造後に任意の変性剤と混合或いは反応させて得られる変性されたレゾール樹脂若しくはこれらの混合物である。これらの樹脂は、一般に適正な水分量に調整した粘度5.0〜50Pa・s/25℃(JIS K−7233)程度の液状として使用するのが好ましいが、もちろん固形状で用いることもできる。
【0010】
前記レゾール樹脂としては、例えば、塩基触媒反応を行って得られるレゾール樹脂、酸触媒反応若しくは該反応後に塩基触媒反応を行って得られるノボラック型レゾール樹脂、二価金属塩触媒反応を行って得られるベンジルエーテル型レゾール樹脂及びこれらの混合物などが挙げられる。なかでも、酸硬化性に優れたレゾール樹脂及びノボラック型レゾール樹脂が好ましく、特にノボラック型レゾール樹脂がレゾール樹脂より耐吸水性に優れているため有利である。
【0011】
前記フェノール系レゾール樹脂の原料として用いられるフェノール類としては、フェノールのほか、例えばクレゾール、キシレノール、p‐tert‐ブチルフェノールなどのアルキルフェノール、レゾルシノール、カテコール、ビスフェノールF、ビスフェノールAなどの多価フェノール及びこれらの混合物などが挙げられる。
【0012】
一方、アルデヒド類としては、例えば、ホルマリン、パラホルムアルデヒド、トリオキサン、ポリオキシメチレン、グリオキザール、フルフラール及びこれらの混合物などがある。このようなフェノール類とアルデヒド類との配合割合としては、特に制限はないが、一般的にはフェノール類1モルに対してアルデヒド類は0.8〜3.0モルの割合で配合される。
また、変性剤としては、例えばキシレン樹脂、尿素樹脂、エポキシ化合物、ポリビニルアルコール、尿素、アミド類、デンプン類、単糖類及びこれらの混合物などが用いられる。
【0013】
前記フェノール類とアルデヒド類との反応触媒として用いられる塩基触媒としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化バリウム、水酸化カルシウム、酸化マグネシウム、アンモニアなどがある。
酸触媒としては、例えば塩酸、硫酸、シュウ酸、p‐トルエンスルホン酸などがある。
二価金属塩触媒としては、例えば酢酸亜鉛、酢酸鉛、ホウ酸亜鉛などがある。
【0014】
本発明において(B)成分として用いられる酸性硬化剤は、(A)成分のフェノール系レゾール樹脂の硬化促進作用や(D)加水分解性基を有する有機ケイ素化合物の部分加水分解縮合物の加水分解や縮合の促進作用を有する酸性化合物であり、このような酸性化合物のなかでも好ましいものとして、例えば有機スルホン酸、無機酸及びこれらの混合物などが挙げられるが、これらに限定されるものではない。このものは、(A)成分のフェノール系レゾール樹脂100質量部に対して、通常1〜50質量部の割合で配合される。このものは、通常、水や有機溶剤に溶解して溶液として使用される。
【0015】
このような酸性硬化剤の有機スルホン酸としては、例えばフェノールスルホン酸、ベンゼンスルホン酸、エチルベンゼンスルホン酸、p‐トルエンスルホン酸、キシレンスルホン酸、クメンスルホン酸、スチレンスルホン酸、ナフタレンスルホン酸、ナフトールスルホン酸、アントラセンスルホン酸、アントラノールスルホン酸、スルホン化フェノール樹脂、芳香族スルホン酸とホルムアルデヒドとの縮合生成物などのアリールスルホン酸、メタンスルホン酸などのアルキルスルホン酸、スルホン化クレオソート油、スルホン化クレオソート油とホルムアルデヒドとの縮合生成物などが用いられる。
また、無機酸としては、例えばリン酸、ポリリン酸、硫酸などがある。
【0016】
上記した酸性硬化剤の中でも、断熱性の熱劣化に対する耐性がよいという点で、アリールスルホン酸、特にエチルベンゼンスルホン酸、p‐トルエンスルホン酸及びキシレンスルホン酸が好ましい。この中で特に断熱性の点で好ましいのは、p‐トルエンスルホン酸を主成分とし、かつ含水率10質量%未満のグリコール系溶液、特にジエチレングリコール溶液である。
【0017】
本発明において(C)成分として用いられる発泡剤は、(B)酸性硬化剤の作用により硬化反応を発現する(A)フェノール系レゾール樹脂の膨張泡化作用、すなわち発泡現象を有するガスを物理的又は化学的に生じさせる化合物であるが、面材の剥離防止、断熱性能及び安全性の観点から、シクロペンタンを主成分とする発泡剤、特にシクロペンタンを主成分とする炭化水素系発泡剤が好ましい。
このような発泡剤中のシクロペンタンの含有量としては、50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上である。さらに断熱性の熱劣化に対する耐性の点で、シクロペンタン単独が特に好ましい。
このような(C)成分の配合量としては、(A)成分のフェノール系レゾール樹脂100質量部に対して通常0.5〜30質量部である。
【0018】
本発明において、シクロペンタンと併用する発泡剤としては、炭化水素系発泡剤が好ましいが、これに限定されるものではなく、必要に応じてジエチルエーテル、ジイソプロピルエーテルなどの脂肪族エーテル、酸、水、熱の作用により二酸化炭素、窒素などを発生する化学的発泡剤、例えば炭酸水素ナトリウム、炭酸カルシウム、過酸化水素、アゾジカルボンアミドのほか、二酸化炭素、窒素ガスなどが用いられる。
【0019】
前記炭化水素系発泡剤としては、例えば、ブタン、ペンタン、ヘキサンなどの脂肪族炭化水素、シクロヘキサン、シクロヘキセン、シクロペンテンのような脂環式炭化水素、ジクロロモノフルオロエタン(HCFC−141b)、ジクロロトリフルオロエタン(HCFC−123)、テトラフルオロエタン(HFC−134a)、テトラフルオロプロパン(HFC−245fa)、ペンタフルオロブタン(HFC−365mfc)、フルオロヘキサン、フルオロペンタン、塩化メチレン、塩化プロピルのようなハロゲン化炭化水素などが挙げられる。なかでも、断熱性の熱劣化に対する耐性の点で、ペンタン、シクロヘキサン、ジクロロモノフルオロエタン、テトラフルオロエタン、テトラフルオロプロパン及びペンタフルオロブタン、特にペンタン及びペンタフルオロブタンが好ましい。
【0020】
本発明において、(D)成分として用いられる加水分解性基を有する有機ケイ素化合物の部分加水分解縮合物(以下、有機ケイ素化合物の部分加水分解縮合物と称する)は、加水分解性基と水との反応を利用することにより、発泡性フェノール系レゾール樹脂組成物中の水分を消費して硬化の促進を果たす一方、元来有する撥水機能又は加水分解により生成したシラノールの縮合による撥水機能発現に伴う耐吸水性の改善に寄与するものである。このような有機ケイ素化合物の部分加水分解縮合物の中でも、これらの諸機能を一層効果的に発現し、しかも取り扱いの容易さから、特に液状の有機ケイ素化合物の部分加水分解縮合物、例えばKC89(信越化学工業社製、商品名、オルガノメトキシシランモノマーを含むオルガノメトキシシランの部分加水分解縮合物)、AFP−1(信越化学工業社製、商品名、KC89を脱モノマー処理して得られたオルガノメトキシシランの部分加水分解縮合物)など、特にAFP−1が好ましい。
【0021】
前記加水分解性基としては、水との反応性がよいという点でアルコキシ基、フェノキシ基及びメルカプトメチル基が好ましいが、アルコキシ基、特にコストの点でメトキシ基が好ましい。また加水分解性基は、分子中に1種のみ存在してもよく、2種以上混在してもよい。
【0022】
(D)成分の配合量としては、(A)成分のフェノール系レゾール樹脂100質量部に対し、通常0.1質量部以上、好ましくは0.3〜10質量部、より好ましくは0.5〜2質量部の範囲内で選ばれる。配合量が0.1質量部未満では硬化性及び耐吸水性の改善効果が認められない。なお、(D)成分は、上述したように水との反応性が極めて大きいため、一般的には(C)成分の発泡剤にあらかじめ混合して使用される。
【0023】
本発明において、(E)成分として用いられる整泡剤は、主として(B)酸性硬化剤の存在下で(C)発泡剤の膨張作用により形成される(A)フェノール系レゾール樹脂の気泡の均一化及び安定化などに作用する化合物であり、このような性質を有する好ましい整泡剤としては、非イオン系界面活性剤が挙げられるが、これに限定されるものではなく、必要に応じて従来公知のアニオン系又はカチオン系界面活性剤を単独で又は非イオン系界面活性剤と併用することもできる。
【0024】
前記非イオン系界面活性剤としては、例えばヒマシ油エチレンオキシド付加物、ポリシロキサン・オキシアルキレン共重合体、アルキルフェニル縮合物エーテル、ポリアルキレングリコールアルキルエーテル、グリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ラウリン酸エステル、ポリプロピレンアルキルアミド及びこれらの混合物などを例示することができる。(E)成分の配合量としては、(A)成分のフェノール系レゾール樹脂100質量部に対して通常0.3〜10質量部の範囲内で選ばれる。
【0025】
次に、本発明の発泡性フェノール系レゾール樹脂組成物は、(A)フェノール系レゾール樹脂と(E)整泡剤との混合物と、あらかじめ作製した(C)シクロペンタンを主成分とする発泡剤と(D)加水分解性基を有する有機ケイ素化合物の部分加水分解縮合物との混合物とを高速撹拌混合して均一化した後、さらに(B)酸性硬化剤を添加して再び均一に高速撹拌混合をすることにより、又はこれらの成分を同時的に高圧衝突混合をすることにより製造することができる。
【0026】
このようにして得られた本発明組成物は、種々の発泡方法、例えば連続発泡法、注入発泡法、現場発泡法などにより発泡硬化させることにより、長期保管でも面材の剥離がなく又は優れた耐吸水性若しくは断熱性の熱劣化に対して耐性を有する環境対応型のフェノール系フォームを提供することができる。
【0027】
本発明組成物には、必要に応じて種々の助剤、例えばレゾルシン、アルキルレゾルシンなどの硬化促進剤、例えば尿素、メラミンなどのホルムアルデヒド捕捉剤、例えば尿素樹脂、メラミン樹脂、含リン系・含ハロゲン系化合物、水酸化アルミニウムなどの難燃剤、例えばセラミック繊維、ガラス繊維、炭素繊維、フェノール繊維、アラミド繊維などの繊維補強剤、例えばシラスバルーン、ガラスバルーン、多孔質骨剤、木粉などの充填剤のほか、減粘剤、可塑剤、着色剤、消臭剤、抗菌剤などを加えることができる。
【0028】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
【0029】
なお、実施例及び比較例により得られたフェノール系フォームについては下記の試験法により諸特性を調べた。
(1)密度及び吸水量:JIS A−1412に準拠して測定した。
(2)面材剥離の有無:25℃で180日間放置した後に観察した。
(3)断熱性(熱伝導率の熱劣化に対する耐性):フェノール系フォーム製造後、25℃の温度雰囲気で1日放置した後、所定の温度に調整した防爆仕様温風循環式恒温器中で、さらに14日間熱処理し、さらに25℃の温度雰囲気で12時間放置してから熱伝導率測定装置(アムコ社製、商品名「アナコンTCAポイント2」)により、その熱伝導率を測定した。
(4)断熱性(熱伝導率):フェノール系フォーム製造後、25℃の温度雰囲気で1日放置した後、前記熱伝導率測定装置により、その熱伝導率を測定した。
【0030】
参考例1(ノボラック型レゾール樹脂組成物の製造)
還流器、温度計、撹拌機を備えた三つ口反応フラスコ内にフェノール1600g、47質量%ホルマリン869g及びシュウ酸1.6gを仕込み、還流温度で60分間ノボラック化反応を行った。40℃に冷却後、47質量%ホルマリン1412g及び50質量%水酸化ナトリウム水溶液41.6gを仕込み、80℃で80分間レゾール化反応を行った後、40℃に冷却した。次に、50質量%p‐トルエンスルホン酸水溶液で中和した後、尿素153.6gを加えて減圧・加熱下に、含水率8.0質量%(カールフィッシャー法)まで脱水濃縮して液状の(A)ノボラック型レゾール樹脂2880gを得た。次に(A)ノボラック型レゾール樹脂100質量部に対して(E)整泡剤としてヒマシ油系エチレンオキシド付加物3質量部を加えて粘度13.5Pa・s/25℃のノボラック型レゾール樹脂組成物を得た。
【0031】
参考例2(レゾール樹脂組成物の製造)
還流器、温度計、撹拌機を備えた三つ口反応フラスコ内にフェノール1600g、47質量%ホルマリン2282g及び50質量%水酸化ナトリウム水溶液41.6gを仕込み、80℃で80分間レゾール化反応を行った。40℃に冷却後、50質量%p‐トルエンスルホン酸水溶液で中和し、尿素153.6gを加えて減圧・加熱下に、含水率8.0質量%まで脱水濃縮して液状の(A)レゾール樹脂2830gを得た。次に(A)レゾール樹脂100質量部に対して(E)整泡剤としてヒマシ油系エチレンオキシド付加物3.0質量部を加えて粘度25.2Pa・s/25℃のレゾール樹脂組成物を得た。
【0032】
実施例1
500mlディスポカップ内で参考例1で作製したノボラック型レゾール樹脂組成物100質量部と、(C)成分のシクロペンタン5質量部と(D)成分のAFP−1(信越化学工業社製、商品名、KC89を脱モノマー処理して得られたオルガノメトキシシランの部分加水分解縮合物)0.1質量部との混合物とを混合し、さらに温度25℃に調整した。次いで、あらかじめ温度25℃に調整した(B)成分の60質量%p‐トルエンスルホン酸ジエチレングリコール溶液18質量部を添加し、直ちに高速撹拌機(特殊機化工業社製、商品名「ホモディスパー」)で10秒間撹拌混合して発泡性フェノール系レゾール樹脂組成物を作製した。
得られた組成物を、80℃の金型内に敷設したクラフト紙上に素早く注入し、さらにクラフト紙を敷設し、金型を密閉し、これを80℃の防爆仕様温風循環式恒温器内で5分間熱処理して発泡硬化させることにより、密度40.1kg/cm3のフェノール系フォームを作製した。得られたフェノール系フォームは前記試験法により吸水量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面材の剥離有無を調べた。それらの結果を表1に示す。
【0033】
実施例2〜4
実施例1において、(D)成分のAFP−1を表1に示す配合量に代えた以外は、実施例1と同様にして3種類のフェノール系フォームを作製し、さらに得られたフェノール系フォームの密度、吸水量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面材の剥離有無を調べた。それらの結果を表1に示す。
【0034】
実施例5
実施例1において、(D)成分のAFP−1 0.1質量部をKC89(信越化学工業社製、商品名、オルガノメトキシシランモノマーを含むオルガノメトキシシランの部分加水分解縮合物)0.5質量部に代えた以外は、実施例1と同様にしてフェノール系フォームを作製し、さらに得られたフェノール系フォームの密度、吸水量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面材の剥離有無を調べた。それらの結果を表1に示す。
【0035】
実施例6
実施例1において、参考例1で作製したノボラック型レゾール樹脂組成物を参考例2で作製したレゾール樹脂組成物に代え、(D)成分のAFP−1の配合量を0.1質量部から0.5質量部に代えた以外は、実施例1と同様にしてフェノール系フォームを作製し、さらに得られたフェノール系フォームの密度、吸水量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面材の剥離有無を調べた。それらの結果を表1に示す。
【0036】
実施例7、8
実施例1において、(C)成分のシクロペンタン5質量部を、シクロペンタン70質量%とペンタン30質量%との混合物5質量部、又はシクロペンタン70質量%とペンタフルオロブタン(HFC−365mfc)30質量%との混合物5質量部にそれぞれ代え、(D)成分のAFP−1の配合量を0.1質量部から0.5質量部に代えた以外は、実施例1と同様にして2種類のフェノール系フォームを作製し、さらに得られたフェノール系フォームの密度、吸水量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面材の剥離有無を調べた。それらの結果を表1に示す。
【0037】
比較例1
実施例1において、(C)成分のシクロペンタンをAK−141b(旭硝子社製、商品名、HCFC−141b相当品)に代え、(D)成分のAFP−1の配合量を0.1質量部から0.5質量部に代えた以外は、実施例1と同様にしてフェノール系フォームを作製し、さらに得られたフェノール系フォームの密度、吸水量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面材の剥離有無を調べた。それらの結果を表1に示す
【0038】
比較例2
実施例1において、(D)成分のAFP−1 0.1質量部をKBPH−13(信越化学工業社製、商品名、メチルトリフェノキシシラン)0.5質量部に代えた以外は、実施例1と同様にしてフェノール系フォームを作製し、さらに得られたフェノール系フォームの密度、吸水量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面材の剥離有無を調べた。それらの結果を表1に示す。
【0039】
比較例3
実施例1において、(D)成分を配合せず、それ以外は、実施例1と同様にしてフェノール系フォームを作製し、さらに得られたフェノール系フォームの密度、吸水量、熱伝導率及び熱伝導率の熱劣化に対する耐性及び面材の剥離有無を調べた。それらの結果を表1に示す。
【0040】
【表1】

Figure 0004601855
【0041】
【発明の効果】
本発明によれば、(C)シクロペンタンを主成分とする発泡剤と(D)加水分解性基を有する有機ケイ素化合物の部分加水分解縮合物とを併用することにより、(1)改善された耐吸水性、(2)長期保管しても面材の剥離がない、(3)改善された断熱性(熱伝導率)の熱劣化に対する耐性、といった効果を、単独で若しくは複合に有する、オゾン層破壊や地球温暖化問題を生じる危険性の低い環境対応型のフェノール系レゾール樹脂フォームを提供することができる。
また、本発明組成物により得られるフェノール系レゾール樹脂フォームは良好な断熱性、換言すれば低熱伝導率を有するという利点がある。[0001]
BACKGROUND OF THE INVENTION
The present invention provides an environment-friendly phenolic resole resin foam that mainly prevents peeling of a sheet-like face material provided on the surface, or has improved resistance to water absorption or heat insulation. The present invention relates to a foamable phenolic resole resin composition.
[0002]
[Prior art]
Conventionally, phenolic resole resin foams (hereinafter referred to as phenolic foams) have characteristics such as flame retardancy, heat resistance, low smoke generation, etc., and thus various types including heat insulating materials for construction and heat insulation, for example. Used for applications.
However, since the foam characteristics represented by heat insulation are easily affected by moisture, it has been forced to cope with the structure or construction of the material.
[0003]
In view of the current situation, the present inventor has bonded to a phenolic resole resin, an acid curing agent, a foaming agent, a foam stabilizer, and a silicon atom as one of the main objectives of improving water absorption resistance. A foamable phenolic resole resin composition containing an organosilicon compound having a hydrolyzable group and a partial hydrolysis condensate thereof was proposed (Japanese Patent Application No. 2000-224341).
[0004]
However, this foamable phenolic resole resin composition has been improved in terms of water absorption, but on the surface produced using a certain type of environmentally friendly alternative fluorocarbon foaming agent, kraft paper, non-woven fabric, etc. When formed into a structure having a sheet-like face material, the face material is easy to peel off when stored for a long period of time, and the heat insulation properties are likely to be thermally deteriorated when exposed to high temperatures. In addition, there is a need for further improvement in water absorption resistance.
[0005]
[Problems to be solved by the invention]
The present invention eliminates the peeling problem of the sheet-like face material provided on the surface, or provides an expandable phenol that provides an environment-friendly phenolic foam having improved resistance to water absorption or heat insulation. The purpose of the present invention is to provide a resin-based resol resin composition.
The environmentally-friendly type here means that the risk of causing ozone layer destruction and global warming is low.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to develop a foamable phenolic resole resin composition having the above-mentioned properties, the present inventors have as a main component a partial hydrolysis condensate of a specific organosilicon compound and a specific hydrocarbon. In combination with the foaming agent to be used, it is found that a foamable phenolic resole resin that gives a phenolic foam that can withstand the above-described problems, for example, heat-insulating thermal deterioration, is obtained, and the present invention is completed based on this finding. It came.
[0007]
That is, the present invention relates to (A) 100 parts by mass of a phenolic resole resin, 1 to 50 parts by mass of (B) an acidic curing agent, and (C) a foaming agent containing 50% by mass or more of cyclopentane. Contains 30 parts by mass, (D) 0.1 part by mass or more of a partially hydrolyzed condensate of an organosilicon compound having a hydrolyzable group, and (E) 0.3 to 10 parts by mass of a foam stabilizer. The present invention provides a foamable phenolic resole resin composition characterized by the above.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the hydrocarbon-based foaming agent mainly composed of cyclopentane as the foaming agent of component (C), particularly cyclopentane alone and the aryl sulfonic acid as the acidic curing agent of component (B), and water-containing It is preferable to use a glycol-based solution having a rate of less than 10% by mass.
[0009]
In the foamable phenolic resole resin composition of the present invention, the phenolic resole resin used as the component (A) is, for example, a reaction catalyst such as a phenol and an aldehyde, such as a base, an acid, a divalent metal salt, and a combination thereof. Acid curable resole resin produced by reacting at a temperature from 40 ° C. to reflux temperature for 0.5 to 24 hours in the presence of water, neutralizing and concentrating as necessary, or the resole resin A modified resole resin obtained by mixing or reacting with an arbitrary modifier during or after the production of or a mixture thereof. In general, these resins are preferably used as liquids having a viscosity of about 5.0 to 50 Pa · s / 25 ° C. (JIS K-7233) adjusted to an appropriate amount of water, but can of course be used in solid form.
[0010]
Examples of the resole resin include a resole resin obtained by conducting a base catalyzed reaction, an acid catalyzed reaction, or a novolac-type resole resin obtained by conducting a base catalyzed reaction after the reaction, and a divalent metal salt catalyzed reaction. Examples thereof include benzyl ether type resole resins and mixtures thereof. Of these, resol resins and novolak-type resole resins having excellent acid curability are preferable, and in particular, novolak-type resole resins are advantageous because they have better water absorption resistance than resole resins.
[0011]
Examples of phenols used as a raw material for the phenolic resole resin include phenols, polyphenols such as alkylphenols such as cresol, xylenol, and p-tert-butylphenol, resorcinol, catechol, bisphenol F, bisphenol A, and the like. A mixture etc. are mentioned.
[0012]
On the other hand, examples of aldehydes include formalin, paraformaldehyde, trioxane, polyoxymethylene, glyoxal, furfural, and mixtures thereof. The blending ratio of such phenols and aldehydes is not particularly limited, but generally aldehydes are blended at a ratio of 0.8 to 3.0 moles with respect to 1 mole of phenols.
Examples of the modifier include xylene resin, urea resin, epoxy compound, polyvinyl alcohol, urea, amides, starches, monosaccharides, and mixtures thereof.
[0013]
Examples of the base catalyst used as a reaction catalyst for the phenols and aldehydes include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, barium hydroxide, calcium hydroxide, and oxidation. There are magnesium and ammonia.
Examples of the acid catalyst include hydrochloric acid, sulfuric acid, oxalic acid, p-toluenesulfonic acid, and the like.
Examples of the divalent metal salt catalyst include zinc acetate, lead acetate, and zinc borate.
[0014]
In the present invention, the acidic curing agent used as the component (B) is a curing accelerating action of the phenolic resole resin of the component (A) or hydrolysis of a partially hydrolyzed condensate of an organosilicon compound having a hydrolyzable group. Among these acidic compounds, organic sulfonic acids, inorganic acids, mixtures thereof, and the like are preferable, but are not limited thereto. This thing is normally mix | blended in the ratio of 1-50 mass parts with respect to 100 mass parts of phenol-type resole resin of (A) component. This is usually dissolved in water or an organic solvent and used as a solution.
[0015]
Examples of the organic sulfonic acid of such an acidic curing agent include phenol sulfonic acid, benzene sulfonic acid, ethyl benzene sulfonic acid, p-toluene sulfonic acid, xylene sulfonic acid, cumene sulfonic acid, styrene sulfonic acid, naphthalene sulfonic acid, naphthol sulfone. Acid, anthracene sulfonic acid, anthranol sulfonic acid, sulfonated phenol resin, aryl sulfonic acid such as condensation product of aromatic sulfonic acid and formaldehyde, alkyl sulfonic acid such as methane sulfonic acid, sulfonated creosote oil, sulfonated A condensation product of creosote oil and formaldehyde is used.
Examples of the inorganic acid include phosphoric acid, polyphosphoric acid, and sulfuric acid.
[0016]
Among the above-described acidic curing agents, arylsulfonic acid, particularly ethylbenzenesulfonic acid, p-toluenesulfonic acid and xylenesulfonic acid are preferable because they have good heat resistance and resistance to thermal deterioration. Among these, a glycol-based solution, particularly a diethylene glycol solution, containing p-toluenesulfonic acid as a main component and having a water content of less than 10% by mass is particularly preferable from the viewpoint of heat insulation.
[0017]
In the present invention, the foaming agent used as the component (C) is (B) an expansion foaming action of a phenolic resole resin that expresses a curing reaction by the action of an acidic curing agent, that is, a gas having a foaming phenomenon is physically used. Alternatively, it is a chemically generated compound, but from the viewpoint of preventing peeling of the face material, heat insulating performance and safety, a foaming agent mainly composed of cyclopentane, particularly a hydrocarbon-based foaming agent mainly composed of cyclopentane is used. preferable.
The content of cyclopentane in such a foaming agent is 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. Further, cyclopentane alone is particularly preferred from the viewpoint of heat resistance and heat resistance.
As a compounding quantity of such (C) component, it is 0.5-30 mass parts normally with respect to 100 mass parts of phenol-type resole resin of (A) component.
[0018]
In the present invention, the foaming agent used in combination with cyclopentane is preferably a hydrocarbon-based foaming agent, but is not limited thereto, and if necessary, aliphatic ether such as diethyl ether and diisopropyl ether, acid, water Chemical foaming agents that generate carbon dioxide, nitrogen, etc. by the action of heat, such as sodium hydrogen carbonate, calcium carbonate, hydrogen peroxide, azodicarbonamide, carbon dioxide, nitrogen gas, etc. are used.
[0019]
Examples of the hydrocarbon foaming agent include aliphatic hydrocarbons such as butane, pentane and hexane, alicyclic hydrocarbons such as cyclohexane, cyclohexene and cyclopentene, dichloromonofluoroethane (HCFC-141b), dichlorotrifluoro Halogenation such as ethane (HCFC-123), tetrafluoroethane (HFC-134a), tetrafluoropropane (HFC-245fa), pentafluorobutane (HFC-365mfc), fluorohexane, fluoropentane, methylene chloride, propyl chloride A hydrocarbon etc. are mentioned. Of these, pentane, cyclohexane, dichloromonofluoroethane, tetrafluoroethane, tetrafluoropropane, and pentafluorobutane, particularly pentane and pentafluorobutane are preferred in terms of heat resistance and resistance to thermal deterioration.
[0020]
In the present invention, a partially hydrolyzed condensate of an organosilicon compound having a hydrolyzable group used as the component (D) (hereinafter referred to as a partially hydrolyzed condensate of an organosilicon compound) includes a hydrolyzable group, water, By utilizing this reaction, water in the foamable phenolic resole resin composition is consumed to promote curing, while water repellent function is inherently present or water repellent function is manifested by condensation of silanol produced by hydrolysis. This contributes to the improvement of water absorption resistance. Among such partially hydrolyzed condensates of organosilicon compounds, these various functions are more effectively expressed, and from the viewpoint of ease of handling, in particular, partially hydrolyzed condensates of liquid organosilicon compounds such as KC89 ( Shin-Etsu Chemical Co., Ltd., trade name, organomethoxysilane partially hydrolyzed condensate containing organomethoxysilane monomer), AFP-1 (Shin-Etsu Chemical Co., trade name, KC89) AFP-1 is particularly preferable, such as a partially hydrolyzed condensate of methoxysilane).
[0021]
As the hydrolyzable group, an alkoxy group, a phenoxy group and a mercaptomethyl group are preferable from the viewpoint of good reactivity with water, but an alkoxy group, particularly a methoxy group is preferable from the viewpoint of cost. Further, only one type of hydrolyzable group may be present in the molecule, or two or more types may be mixed.
[0022]
(D) As a compounding quantity of component, it is 0.1 mass part or more normally with respect to 100 mass parts of phenol-type resol resin of (A) component, Preferably it is 0.3-10 mass parts, More preferably, 0.5- It is selected within the range of 2 parts by mass. If the blending amount is less than 0.1 parts by mass, the effect of improving curability and water absorption resistance is not recognized. In addition, since (D) component has the very high reactivity with water as mentioned above, generally it mixes with the foaming agent of (C) component beforehand, and is used.
[0023]
In the present invention, the foam stabilizer used as the component (E) is mainly formed by the expansion action of the foaming agent (C) in the presence of the acidic curing agent (B) Uniform air bubbles of the phenolic resole resin. Examples of preferred foam stabilizers having such properties, such as nonionic surfactants, are not limited thereto, and are conventionally used as necessary. Known anionic or cationic surfactants can be used alone or in combination with nonionic surfactants.
[0024]
Examples of the nonionic surfactant include castor oil ethylene oxide adduct, polysiloxane-oxyalkylene copolymer, alkylphenyl condensate ether, polyalkylene glycol alkyl ether, glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, laurin. Examples thereof include acid esters, polypropylene alkyl amides, and mixtures thereof. (E) As a compounding quantity of a component, it is chosen in the range of 0.3-10 mass parts normally with respect to 100 mass parts of phenol-type resol resin of (A) component.
[0025]
Next, the foamable phenolic resole resin composition of the present invention comprises (A) a mixture of a phenolic resole resin and (E) a foam stabilizer, and a foaming agent mainly composed of (C) cyclopentane prepared in advance. And (D) a mixture of the hydrolyzable group-containing organic silicon compound and the partially hydrolyzed condensate are homogenized by high-speed stirring and mixing, and then (B) an acidic curing agent is further added and uniform high-speed stirring is performed again. It can be produced by mixing or by simultaneous high pressure collision mixing of these components.
[0026]
The composition of the present invention thus obtained has no or excellent peeling of the face material even when stored for a long period of time by foaming and curing by various foaming methods such as continuous foaming method, injection foaming method and in-situ foaming method. It is possible to provide an environment-friendly phenolic foam having resistance to water absorption or heat insulation heat deterioration.
[0027]
In the composition of the present invention, various auxiliary agents, for example, curing accelerators such as resorcin and alkyl resorcin, formaldehyde scavengers such as urea and melamine, such as urea resin, melamine resin, phosphorus-containing and halogen-containing are included. Flame retardants such as system compounds, aluminum hydroxide, fiber reinforcing agents such as ceramic fibers, glass fibers, carbon fibers, phenol fibers, and aramid fibers, fillers such as shirasu balloons, glass balloons, porous bone agents, and wood powders In addition, a thickener, a plasticizer, a colorant, a deodorant, an antibacterial agent, and the like can be added.
[0028]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
[0029]
In addition, about the phenol-type foam obtained by the Example and the comparative example, various characteristics were investigated with the following test method.
(1) Density and water absorption: Measured according to JIS A-1412.
(2) Presence / absence of face material peeling: observed after standing at 25 ° C. for 180 days.
(3) Thermal insulation (resistance to thermal deterioration of thermal conductivity): After producing phenolic foam, left in a temperature atmosphere at 25 ° C for 1 day, and then adjusted to a predetermined temperature in an explosion-proof hot air circulation thermostat. Then, after further heat treatment for 14 days, the sample was allowed to stand in a temperature atmosphere at 25 ° C. for 12 hours, and then the thermal conductivity was measured with a thermal conductivity measuring device (trade name “Anacon TCA Point 2” manufactured by AMCO).
(4) Thermal insulation (thermal conductivity): After the phenolic foam was produced, it was left in a temperature atmosphere at 25 ° C. for 1 day, and then the thermal conductivity was measured by the thermal conductivity measuring device.
[0030]
Reference Example 1 (Production of Novolac Resole Resin Composition)
In a three-necked reaction flask equipped with a reflux condenser, a thermometer, and a stirrer, 1600 g of phenol, 869 g of 47 mass% formalin and 1.6 g of oxalic acid were charged, and a novolak reaction was performed at reflux temperature for 60 minutes. After cooling to 40 ° C., 1412 g of 47% by mass formalin and 41.6 g of a 50% by mass aqueous sodium hydroxide solution were charged, followed by a resolation reaction at 80 ° C. for 80 minutes, and then cooled to 40 ° C. Next, after neutralizing with a 50% by mass p-toluenesulfonic acid aqueous solution, 153.6 g of urea was added, and the mixture was dehydrated and concentrated to a water content of 8.0% by mass (Karl Fischer method) under reduced pressure and heating. (A) 2880 g of novolac-type resol resin was obtained. Next, (A) 3 parts by weight of castor oil-based ethylene oxide adduct as a foam stabilizer is added to 100 parts by weight of novolak-type resol resin, and a novolak-type resole resin composition having a viscosity of 13.5 Pa · s / 25 ° C. Got.
[0031]
Reference Example 2 (Production of resole resin composition)
In a three-necked reaction flask equipped with a reflux, thermometer and stirrer, 1600 g of phenol, 2282 g of 47% by mass formalin and 41.6 g of 50% by mass sodium hydroxide aqueous solution were charged, and the resolation reaction was carried out at 80 ° C. for 80 minutes. It was. After cooling to 40 ° C., the solution is neutralized with a 50 mass% p-toluenesulfonic acid aqueous solution, added with 153.6 g of urea, dehydrated and concentrated to a water content of 8.0 mass% under reduced pressure and heating, and is liquid (A) 2830 g of resole resin was obtained. Next, 3.0 parts by mass of castor oil-based ethylene oxide adduct as (E) foam stabilizer is added to 100 parts by mass of (A) resol resin to obtain a resol resin composition having a viscosity of 25.2 Pa · s / 25 ° C. It was.
[0032]
Example 1
100 parts by mass of the novolac-type resol resin composition prepared in Reference Example 1 in a 500 ml disposable cup, 5 parts by mass of (C) component cyclopentane, and AFP-1 (D) component (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) The mixture was mixed with 0.1 part by mass of a partially hydrolyzed condensate of organomethoxysilane obtained by de-monomerizing KC89, and further adjusted to a temperature of 25 ° C. Next, 18 parts by mass of 60 mass% p-toluenesulfonic acid diethylene glycol solution of component (B), which was adjusted to a temperature of 25 ° C. in advance, was added immediately and a high-speed stirrer (trade name “Homo Disper” manufactured by Tokushu Kika Kogyo Co., Ltd.) And stirred for 10 seconds to prepare a foamable phenolic resole resin composition.
The obtained composition is quickly poured onto kraft paper laid in a mold at 80 ° C, craft paper is laid, the mold is sealed, and this is placed in an explosion-proof hot air circulation thermostat at 80 ° C. Then, a phenolic foam having a density of 40.1 kg / cm 3 was produced by heat-treating for 5 minutes by foaming and curing. The obtained phenolic foam was examined for water absorption, thermal conductivity, resistance to thermal deterioration of the thermal conductivity, and the presence or absence of peeling of the face material by the above test methods. The results are shown in Table 1.
[0033]
Examples 2-4
In Example 1, except that AFP-1 as the component (D) was changed to the blending amount shown in Table 1, three types of phenolic foams were produced in the same manner as in Example 1, and the obtained phenolic foams were further obtained. The density, water absorption, thermal conductivity, resistance to thermal degradation of the thermal conductivity, and peeling of the face material were examined. The results are shown in Table 1.
[0034]
Example 5
In Example 1, 0.1 part by mass of component (D) AFP-1 was added to 0.5 part by mass of KC89 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name, organomethoxysilane partially hydrolyzed condensate of organomethoxysilane). The phenolic foam was prepared in the same manner as in Example 1 except that the part was replaced with the part. Further, the density of the obtained phenolic foam, the water absorption, the thermal conductivity, the resistance to thermal deterioration of the thermal conductivity, and the face material The presence or absence of peeling was examined. The results are shown in Table 1.
[0035]
Example 6
In Example 1, the novolak-type resol resin composition produced in Reference Example 1 was replaced with the resol resin composition produced in Reference Example 2, and the blending amount of component (D) AFP-1 was changed from 0.1 parts by mass to 0 parts. A phenolic foam was prepared in the same manner as in Example 1 except that the amount was changed to 5 parts by mass. Further, the density, water absorption, thermal conductivity and resistance to thermal deterioration of the obtained phenolic foam and The presence or absence of peeling of the face material was examined. The results are shown in Table 1.
[0036]
Examples 7 and 8
In Example 1, 5 parts by mass of the component (C), 5 parts by mass of a mixture of 70% by mass of cyclopentane and 30% by mass of pentane, or 70% by mass of cyclopentane and pentafluorobutane (HFC-365mfc) 30 2 parts in the same manner as in Example 1, except that 5 parts by mass of the mixture with 5% by mass and AFP-1 as the component (D) was changed from 0.1 parts by mass to 0.5 parts by mass. The phenolic foam was prepared, and the density, water absorption, thermal conductivity, resistance to thermal deterioration of the thermal conductivity, and peeling of the face material were examined. The results are shown in Table 1.
[0037]
Comparative Example 1
In Example 1, component (C) cyclopentane was replaced with AK-141b (manufactured by Asahi Glass Co., Ltd., trade name, equivalent to HCFC-141b), and the blending amount of component (D) AFP-1 was 0.1 parts by mass. The phenolic foam was prepared in the same manner as in Example 1 except that the amount was changed to 0.5 parts by mass, and the density, water absorption, thermal conductivity, and thermal conductivity of the obtained phenolic foam were further reduced. Resistance and peeling of the face material were examined. The results are shown in Table 1. [0038]
Comparative Example 2
Example 1 Example 1 except that 0.1 part by mass of component (D) AFP-1 was replaced with 0.5 part by mass of KBPH-13 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name, methyltriphenoxysilane). A phenolic foam was prepared in the same manner as in No. 1, and the density, water absorption, thermal conductivity, resistance to thermal deterioration of the thermal conductivity and the presence or absence of peeling of the face material were further investigated. The results are shown in Table 1.
[0039]
Comparative Example 3
In Example 1, the component (D) was not blended, and other than that, a phenolic foam was produced in the same manner as in Example 1, and the density, water absorption, thermal conductivity and heat of the obtained phenolic foam were further obtained. The resistance to thermal deterioration of conductivity and the presence or absence of peeling of the face material were examined. The results are shown in Table 1.
[0040]
[Table 1]
Figure 0004601855
[0041]
【The invention's effect】
According to the present invention, (C) improved by using (C) a foaming agent mainly composed of cyclopentane and (D) a partial hydrolysis condensate of an organosilicon compound having a hydrolyzable group. Ozone that has the effects of water absorption resistance, (2) no peeling of the face material even after long-term storage, (3) improved heat insulation (thermal conductivity) resistance to thermal degradation, alone or in combination It is possible to provide an environment-friendly phenolic resole resin foam with a low risk of causing layer destruction and global warming problems.
In addition, the phenolic resole resin foam obtained by the composition of the present invention has an advantage of having good heat insulation, in other words, low thermal conductivity.

Claims (4)

(A)フェノール系レゾール樹脂100質量部に対し、(B)酸性硬化剤1〜50質量部と、(C)シクロペンタンを50質量%以上にて含む発泡剤0.5〜30質量部と、(D)加水分解性基を有する有機ケイ素化合物の部分加水分解縮合物0.1質量部以上と、(E)整泡剤0.3〜10質量部と、を含有することを特徴とする発泡性フェノール系レゾール樹脂組成物。(A) 1 to 50 parts by mass of an acidic curing agent and (C) 0.5 to 30 parts by mass of a foaming agent containing 50% by mass or more of cyclopentane with respect to 100 parts by mass of the phenolic resole resin, (D) 0.1 part by mass or more of a partially hydrolyzed condensate of an organosilicon compound having a hydrolyzable group ; and (E) 0.3 to 10 parts by mass of a foam stabilizer. -Based phenolic resole resin composition. (C)成分がシクロペンタンを50質量%以上にて含む炭化水素系発泡剤である請求項1記載の発泡性フェノール系レゾール樹脂組成物。The foamable phenolic resole resin composition according to claim 1, wherein the component (C) is a hydrocarbon foaming agent containing cyclopentane at 50% by mass or more . (C)成分がシクロペンタンである請求項2記載の発泡性フェノール系レゾール樹脂組成物。  The foamable phenolic resole resin composition according to claim 2, wherein the component (C) is cyclopentane. (B)成分が、含率10質量%未満の、アリールスルホン酸のグリコール系溶液である請求項1ないし3のいずれかに記載の発泡性フェノール系レゾール樹脂組成物。Component (B), containing water ratio of less than 1 0% by weight, the foamable phenolic resole resin composition according to any one of claims 1 is a glycol solution of arylsulfonic acids 3.
JP2001149895A 2001-05-18 2001-05-18 Foamable phenolic resole resin composition Expired - Lifetime JP4601855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149895A JP4601855B2 (en) 2001-05-18 2001-05-18 Foamable phenolic resole resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149895A JP4601855B2 (en) 2001-05-18 2001-05-18 Foamable phenolic resole resin composition

Publications (2)

Publication Number Publication Date
JP2002338784A JP2002338784A (en) 2002-11-27
JP4601855B2 true JP4601855B2 (en) 2010-12-22

Family

ID=18995010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149895A Expired - Lifetime JP4601855B2 (en) 2001-05-18 2001-05-18 Foamable phenolic resole resin composition

Country Status (1)

Country Link
JP (1) JP4601855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151299A (en) * 2017-07-12 2017-09-12 河北科技大学 It is a kind of for delicate fragrance type phenol-formaldehyde resin modified of sand casting and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130063903A (en) * 2011-12-07 2013-06-17 (주)엘지하우시스 Phenolic foam resin composition and phenolic foam using the same
KR101437722B1 (en) * 2012-02-24 2014-09-05 (주)엘지하우시스 Phenol board having Honeycomb structure
EP2933286B1 (en) 2012-12-11 2018-07-11 Asahi Kasei Construction Materials Corporation Phenolic resin foam and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251452A (en) * 1987-04-08 1988-10-18 Mitsui Toatsu Chem Inc Phenolic resin composition
JPH07196838A (en) * 1993-12-29 1995-08-01 Asahi Organic Chem Ind Co Ltd Expansion-curable phenolic resin composition
JPH11124501A (en) * 1997-10-21 1999-05-11 Nippon Paint Co Ltd Thermosetting resin composition
JPH11181334A (en) * 1997-12-24 1999-07-06 Nippon Paint Co Ltd Coating composition, film forming method and coated product
JPH11512131A (en) * 1995-08-28 1999-10-19 オウェンス コーニング Method for producing phenolic resin foam
WO2000001761A1 (en) * 1998-07-03 2000-01-13 Asahi Kasei Kogyo Kabushiki Kaisha Phenolic foam
JP2000044772A (en) * 1998-08-03 2000-02-15 Dainippon Ink & Chem Inc Phenol resin composition and composite
JP2002037910A (en) * 2000-07-25 2002-02-06 Asahi Organic Chem Ind Co Ltd Expandable phenol-based resol resin composition and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251452A (en) * 1987-04-08 1988-10-18 Mitsui Toatsu Chem Inc Phenolic resin composition
JPH07196838A (en) * 1993-12-29 1995-08-01 Asahi Organic Chem Ind Co Ltd Expansion-curable phenolic resin composition
JPH11512131A (en) * 1995-08-28 1999-10-19 オウェンス コーニング Method for producing phenolic resin foam
JPH11124501A (en) * 1997-10-21 1999-05-11 Nippon Paint Co Ltd Thermosetting resin composition
JPH11181334A (en) * 1997-12-24 1999-07-06 Nippon Paint Co Ltd Coating composition, film forming method and coated product
WO2000001761A1 (en) * 1998-07-03 2000-01-13 Asahi Kasei Kogyo Kabushiki Kaisha Phenolic foam
JP2000044772A (en) * 1998-08-03 2000-02-15 Dainippon Ink & Chem Inc Phenol resin composition and composite
JP2002037910A (en) * 2000-07-25 2002-02-06 Asahi Organic Chem Ind Co Ltd Expandable phenol-based resol resin composition and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151299A (en) * 2017-07-12 2017-09-12 河北科技大学 It is a kind of for delicate fragrance type phenol-formaldehyde resin modified of sand casting and preparation method thereof
CN107151299B (en) * 2017-07-12 2019-07-30 河北科技大学 A kind of delicate fragrance type phenol-formaldehyde resin modified and preparation method thereof for sand casting

Also Published As

Publication number Publication date
JP2002338784A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP6550415B2 (en) Phenolic resin foam laminate and method for producing the same
CA2978859A1 (en) Phenolic resin foam and method for producing same
JP5587199B2 (en) Foamable phenolic resin composition, phenolic resin foam and method for producing the same
JP4756683B2 (en) Foamable resol-type phenolic resin molding material and phenolic resin foam
JP5430875B2 (en) Method for producing phenolic resin foam laminate
JP4878672B2 (en) Foamable phenolic resole resin composition and method for producing the same
JP4601855B2 (en) Foamable phenolic resole resin composition
JPH07278339A (en) Production of predominantly closed-cell phenolic resin foam
JP2010540752A (en) Phenol novolac foams and compositions for their production
JP4711469B2 (en) Phenolic resin foam
JP5588109B2 (en) Foamable resol-type phenolic resin molding material and phenolic resin foam
AU2021217298B2 (en) Phenolic Resin Foam Laminate Board
JP5400485B2 (en) Foamable resol-type phenolic resin molding material and phenolic resin foam using the same
EP0242620B1 (en) Modified phenolic foam catalysts and method
JP4060694B2 (en) Foamable resol-type phenolic resin composition and phenolic resin foam using the same
JP4776304B2 (en) Resin composition for foam production, foam production method using the composition, and foam
JP4170163B2 (en) Phenol foam raw material composition, phenol foam using the same, and method for producing the same
JP5385634B2 (en) Foamable resol-type phenolic resin molding material and phenolic resin foam
JP4868653B2 (en) Phenolic resin foam
JP2001011230A (en) Phenolic resin foam
JPH036243A (en) Phenol resin composition for foaming
JP2541703B2 (en) Method for producing phenolic resin foam
JP2006152094A (en) Phenol resin foam and its manufacturing process
JP3555012B2 (en) Phenolic resin foamable composition and method for producing foam using the composition
JP2001181427A (en) Method for producing phenolic resin foam and formable phenolic resin composition for production of the foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term