JP4597279B2 - Thermally conductive composite material - Google Patents

Thermally conductive composite material Download PDF

Info

Publication number
JP4597279B2
JP4597279B2 JP21784898A JP21784898A JP4597279B2 JP 4597279 B2 JP4597279 B2 JP 4597279B2 JP 21784898 A JP21784898 A JP 21784898A JP 21784898 A JP21784898 A JP 21784898A JP 4597279 B2 JP4597279 B2 JP 4597279B2
Authority
JP
Japan
Prior art keywords
copper
heat
matrix
silver
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21784898A
Other languages
Japanese (ja)
Other versions
JP2000043186A (en
Inventor
敏和 竹田
浩巳 木村
弘治 大石橋
俊進 奥田
晋正 竹下
Original Assignee
弘治 大石橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弘治 大石橋 filed Critical 弘治 大石橋
Priority to JP21784898A priority Critical patent/JP4597279B2/en
Publication of JP2000043186A publication Critical patent/JP2000043186A/en
Application granted granted Critical
Publication of JP4597279B2 publication Critical patent/JP4597279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、より小型軽量の放熱デバイス設計に適した熱良導複合材料に関するものである。
【0002】
【従来の技術と課題】
熱エネルギーを空気中や液体中に効率よく放熱するために放熱デバイスが使用されている。
【0003】
従来より放熱デバイスとしては、アルミ合金が最も普及している。これは金属中では銀、銅につぐ高い熱伝導性および熱拡散性、放熱性、並びにデバイスとしての加工性、材料コストなどの総合的な観点から採用されている。
【0004】
ところで、放熱デバイス設計において、より小型化および軽量化を図るためには、従来より熱伝導性および熱拡散性に優れた材料が必要である。従来より高い熱伝導性を有する材料として炭素繊維および黒鉛がある。例えば、引張り弾性率が90〜95t/mm2 のピッチ系炭素繊維は、900〜1200W/m・kの熱伝導率があり、銅やアルミ合金の2.5〜4倍であることからより小型の放熱デバイス設計が可能である。
【0005】
そこで、近年、炭素繊維の熱伝導性が金属の数倍ということに注目して、エポキシ樹脂をマトリクスとして炭素繊維で繊維強化した複合材、更にはシアネート系樹脂をマトリクスとして炭素繊維で繊維強化した複合材による宇宙用光学機器など、新しい放熱デバイスの方向性が模索されている。しかし、マトリクスに樹脂を使用していることから、炭素繊維の高い熱伝導性がほとんど無駄になっているのが実状である。
【0006】
また、一方には黒鉛をマトリクスとして炭素繊維で繊維補強したC/Cコンポジット(カーボン・カーボン複合材)による放熱デバイスの方向性がある。しかし、マトリクスに黒鉛を使用することから、炭素繊維の高い熱伝導性を効率よく応用できる特長があるが、実際にはボイドが多く発生して理論値より低い熱伝導率であったり、製造コストが異常に高過ぎるなどの問題点があり、核融合炉の第1壁などに一部使われている程度である。
【0007】
しかも、炭素繊維および黒鉛は、銅および銅合金やアルミおよびアルミ合金より優れた熱伝導性を有しているものの、熱拡散性、放熱性の点では銅やアルミ合金より劣っており、より小型軽量の放熱デバイス設計を行うには不利である。
【0008】
従って、本発明は、高い熱伝導性および熱拡散性、放熱性、並びにデバイスとしての加工性、材料コストなどに優れ、より小型軽量の放熱デバイス設計を実現できるようにした熱良導複合材料を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するため、銅および銅合金箔またはアルミおよびアルミ合金箔からなり、所定間隙をあけて対向配置した一対の拡散シートと、この一対の拡散シート間に挟み込まれた中間基材とを備え、この中間基材が、前記拡散シートの幅方向の一方向に多数列に並列させ乍ら繊維方向を揃えて複数層に積層させた炭素繊維と、この炭素繊維の間に充填された銀−銅系のろう材からなるマトリクスとで形成され、前記炭素繊維の表面にニッケルをメッキ乃至蒸着し、このニッケルを前記炭素繊維及び前記マトリクスの双方に接触させたことを特徴とする熱良導複合材料を提供する。
【0010】
また、本発明は、銅および銅合金箔またはアルミおよびアルミ合金箔からなる一対の拡散シートを所定間隙をあけて対向配置し、この一対の拡散シート間に銀―銅系のろう材をマトリクスとしてダイヤモンドパウダーまたは粉末窒化硼素で形成した中間基材を挟み込むことを特徴とする熱良導複合材料を提供する。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0012】
図1は、本発明の第1の実施の形態による熱良導複合材料Aを示す。この熱良導複合材料Aは、所定間隙をあけて対向配置された熱拡散性、放熱性に優れた金属材料、例えば銅および銅合金箔またはアルミおよびアルミ合金箔からなる一対の拡散シート1,1と、この一対の拡散シート1,1間に挟み込まれた熱拡散性、放熱性に優れた金属材料、例えば銀―銅系のろう材をマトリクス2として高い熱伝導性を有する材料、例えば炭素繊維または黒鉛からなる熱良導体3を組み合せて形成した中間基材4とで構成されている。
【0013】
熱良導複合材料Aは、熱良導体3である拡散シート1の幅方向に多数列に並列させ乍ら複数層に積層させた炭素繊維の間隙にマトリクス2である銀―銅系のろう材粉末を充填して、または、熱良導体3である黒鉛マトリクス2である銀―銅系のろう材粉末の中に分散して中間基材4の予備成形体を作り、その両面を拡散シート1,1である銅および銅合金箔またはアルミおよびアルミ合金箔で覆い、これを真空中または不活性ガス中でろう材の溶融温度まで加熱後、冷却することで、ろう材を溶融・凝固させて形成させたものである。但し、銀−銅系のろう材と炭素繊維または黒鉛との界面では反応性が極めて乏しいため、銀−銅系のろう材と炭素繊維または黒鉛とが接合して一体化することが難しく、従って理論値より熱伝導率が低くなってしまう。これへの対策として炭素繊維および黒鉛の表面にこれと反応性のある金属をメッキ乃至蒸着することで、炭素繊維および黒鉛と銀−銅系のろう材との界面反応性が良好になり、銀−銅系のろう材と炭素繊維または黒鉛とが融合して高い熱伝導性を実現することができる。尚、炭素繊維および黒鉛と反応性のある金属としては、コストおよび加工性の面を考慮してニッケルを用いるのが望ましい。
【0014】
熱良導複合材料Aによれば、熱拡散性、放熱性に優れた銀―銅系のろう材をマトリクス2として高い熱導電性を有する炭素繊維または黒鉛からなる熱良導体3を組み合せて形成した中間基材4の両面に、熱拡散性、放熱性に優れた銅箔またはアルミ箔からなる拡散シート1,1を配置していることで、熱エネルギーが中間基材4で効率よく熱伝導されるとともに、拡散シート1,1で効率よく熱拡散、放熱される結果、中間基材2の高い熱伝導性を拡散シート1,1で効率よく引き出すことができ、高効率な熱伝導性および熱拡散性、放熱性が得られ、より小型軽量の放熱デバイス設計を実現することが可能となる。
【0015】
図2は、本発明の第2の実施の形態による熱良導複合材料Bを示す。この熱良導複合材料Bは、所定間隙をあけて対向配置された熱拡散性、放熱性に優れた金属材料、例えば銅および銅合金箔またはアルミおよびアルミ合金箔からなる一対の拡散シート5,5と、この一対の拡散シート5,5間に挟み込まれた熱拡散性、放熱性に優れた金属材料、例えば銀―銅系のろう材をマトリクス6として炭素繊維または黒鉛よりさらに高い熱伝導性を有する材料、例えばダイヤモンドまたは窒化硼素からなる熱良導体7を組み合せて形成した中間基材8とで構成されている。
【0016】
熱良導複合材料Bは、熱良導体7であるダイヤモンドおよび窒化硼素は繊維形状にすることが困難なことから粉末形状にし、このダイヤモンドパウダーまたは粉末窒化硼素とマトリクス6である銀―銅系のろう材粉末とを混合して中間基材8の予備成形体を作り、この予備成形体を拡散シート5,5である銅および銅合金箔またはアルミおよびアルミ合金箔の間に挟み込み、これを真空中または不活性ガス中でろう材の溶融温度まで加熱後、冷却することで、ろう材を溶融・凝固させて形成させたものである。但し、ダイヤモンドや窒化硼素の熱伝導および熱拡散にはパーコレーション現象を応用するため、効率よく熱伝導させるためにはダイヤモンドや窒化硼素の添加量および混合方法を適正に制御することが必要となる。また、銀―銅系のろう材に少量のチタンを添加することにより、ダイヤモンドや窒化硼素に対して良好な濡れ性および接合強度が確保できる。
【0017】
熱良導混合材料Bによれば、熱良導体7に炭素繊維および黒鉛よりさらに高い熱伝導性および熱拡散性を有するダイヤモンドまたは窒化硼素を使用したことで、第1の実施の形態の熱良導複合材料Aよりもさらに高効率な熱伝導性および熱拡散性、放熱性が得られ、第1の実施の形態の熱良導複合材料Aよりもさらにより小型軽量の放熱デバイス設計を実現することが可能となる。
【0018】
以上、本発明の第1および第2の実施の形態について説明したが、この第1および第2の実施の形態はあくまでも本発明の好適な具体例について説明しているにすぎす、本発明はこのような第1および第2の実施の形態に限定されることなく種々の変形が可能である。例えば、第1および第2の実施の形態では中間基材を一対の拡散シートで挟み込んだ3層構造であるが、本発明は上中下の3枚の拡散シート間に中間基材およびマトリクスを挟み込んだ5層構造等の3層構造以上でも可能である。
【0019】
【発明の効果】
このように本発明によれば、熱拡散性、放熱性に優れた銅および銅合金箔またはアルミおよびアルミ合金箔からなる拡散シート間に、熱拡散性、放熱性に優れた銀―銅系のろう材をマトリクスとして高い熱導電性を有する炭素繊維または黒鉛、或いは、ダイヤモンドパウダーまたは粉末窒化硼素を組み合せて形成した中間基材を挟み込んでいることで、中間基材の高い熱伝導性を拡散シートで効率よく引き出すことができるため、高効率な熱伝導性および熱拡散性、放熱性が得られ、より小型軽量の放熱デバイス設計が可能となり、放熱デバイスに用いて好適である。
【図面の簡単な説明】
【図1】第1の実施の形態の熱良導複合材料の一部拡大断面図である。
【図2】第2の実施の形態の熱良導複合材料の一部拡大断面図である。
【符号の説明】
A 熱良導複合材料
1 拡散シート
2 マトリクス
3 熱良導体
4 中間基材
B 熱良導複合材料
5 拡散シート
6 マトリクス
7 熱良導体
8 中間基材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermally conductive composite material suitable for designing a smaller and lighter heat dissipation device.
[0002]
[Prior art and issues]
A heat dissipation device is used to efficiently dissipate heat energy in the air or liquid.
[0003]
Conventionally, aluminum alloys have been most popular as heat dissipation devices. This is adopted in the metal from the comprehensive viewpoints such as high thermal conductivity and thermal diffusivity following silver and copper, heat dissipation, workability as a device, and material cost.
[0004]
By the way, in designing a heat dissipation device, in order to further reduce the size and weight, a material having better thermal conductivity and thermal diffusivity than before is required. Carbon fiber and graphite are materials having higher thermal conductivity than conventional ones. For example, a pitch-based carbon fiber having a tensile modulus of 90 to 95 t / mm 2 has a thermal conductivity of 900 to 1200 W / m · k, and is 2.5 to 4 times that of copper or aluminum alloy. The heat dissipation device design is possible.
[0005]
Therefore, in recent years, paying attention to the fact that the thermal conductivity of carbon fibers is several times that of metals, composite materials reinforced with carbon fibers using epoxy resin as a matrix, and further reinforced with carbon fibers using cyanate resin as a matrix. The direction of new heat-dissipating devices such as optical equipment for space applications using composite materials is being sought. However, since the resin is used for the matrix, the high thermal conductivity of the carbon fiber is almost wasted.
[0006]
On the other hand, there is directionality of a heat dissipation device by a C / C composite (carbon / carbon composite material) reinforced with carbon fiber using graphite as a matrix. However, since graphite is used for the matrix, it has the advantage that the high thermal conductivity of the carbon fiber can be applied efficiently, but in reality, many voids are generated and the thermal conductivity is lower than the theoretical value. Is abnormally too high, and is only partially used for the first wall of the fusion reactor.
[0007]
Moreover, although carbon fiber and graphite have better thermal conductivity than copper and copper alloys, aluminum and aluminum alloys, they are inferior to copper and aluminum alloys in terms of thermal diffusivity and heat dissipation and are smaller. It is disadvantageous for designing lightweight heat dissipation devices.
[0008]
Therefore, the present invention provides a thermally conductive composite material that is excellent in high thermal conductivity and thermal diffusivity, heat dissipation, processability as a device, material cost, etc., and can realize a smaller and lighter heat dissipation device design. It is intended to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention comprises a pair of diffusion sheets made of copper and copper alloy foil or aluminum and aluminum alloy foil and arranged to face each other with a predetermined gap therebetween, and an intermediate sandwiched between the pair of diffusion sheets A base material, and the intermediate base material is arranged between a plurality of carbon fibers laminated in a plurality of layers with the fiber direction aligned in parallel in multiple rows in one direction in the width direction of the diffusion sheet, and between the carbon fibers. And a matrix made of a filled silver-copper brazing material , wherein nickel is plated or deposited on the surface of the carbon fiber, and the nickel is brought into contact with both the carbon fiber and the matrix. Provide a heat conducting composite material.
[0010]
In the present invention, a pair of diffusion sheets made of copper and copper alloy foil or aluminum and aluminum alloy foil are arranged to face each other with a predetermined gap, and a silver-copper brazing material is used as a matrix between the pair of diffusion sheets. Provided is a thermally conductive composite material characterized by sandwiching an intermediate substrate formed of diamond powder or powdered boron nitride.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 shows a thermally conductive composite material A according to a first embodiment of the present invention. This heat conducting composite material A includes a pair of diffusion sheets 1 made of a metal material excellent in heat diffusibility and heat dissipation disposed opposite to each other with a predetermined gap, such as copper and copper alloy foil or aluminum and aluminum alloy foil. 1 and a metal material excellent in heat diffusibility and heat dissipation sandwiched between the pair of diffusion sheets 1, 1, for example, a material having high thermal conductivity, such as a silver-copper brazing material, such as carbon It is comprised with the intermediate | middle base material 4 formed combining the heat good conductor 3 which consists of a fiber or graphite.
[0013]
Thermally conductive composite material A is a silver-copper-based brazing material powder that is a matrix 2 in the gap between carbon fibers laminated in multiple rows in the width direction of a diffusion sheet 1 that is a thermal good conductor 3 while being arranged in multiple rows. Or graphite , which is a good thermal conductor 3, is dispersed in a silver-copper-based brazing powder, which is a matrix 2 , to form a preform of the intermediate substrate 4, and both sides of the diffusion sheet 1, Covered with copper and copper alloy foil or aluminum and aluminum alloy foil, which is 1, heated to the melting temperature of the brazing material in a vacuum or inert gas, and then cooled to melt and solidify the brazing material It has been made. However, since the reactivity at the interface between the silver-copper brazing material and the carbon fiber or graphite is extremely poor, it is difficult for the silver-copper brazing material and the carbon fiber or graphite to be joined and integrated. Thermal conductivity will be lower than the theoretical value. As a countermeasure against this, by plating or depositing a reactive metal on the surface of carbon fiber and graphite, the interfacial reactivity between the carbon fiber and graphite and the silver-copper brazing material is improved, and silver -High thermal conductivity can be realized by fusing copper-based brazing material with carbon fiber or graphite. As the metal reactive with carbon fiber and graphite, it is desirable to use nickel in consideration of cost and workability.
[0014]
According to the heat conductive composite material A, a silver-copper brazing material excellent in heat diffusibility and heat dissipation is used as a matrix 2 and is formed by combining a heat conductive conductor 3 made of carbon fiber or graphite having high thermal conductivity. By disposing the diffusion sheets 1 and 1 made of copper foil or aluminum foil excellent in thermal diffusibility and heat dissipation on both surfaces of the intermediate substrate 4, heat energy is efficiently conducted by the intermediate substrate 4. In addition, as a result of efficient thermal diffusion and heat dissipation by the diffusion sheets 1, 1, the high thermal conductivity of the intermediate substrate 2 can be efficiently extracted by the diffusion sheets 1, 1, and highly efficient thermal conductivity and heat Diffusivity and heat dissipation can be obtained, and a more compact and lightweight heat dissipation device design can be realized.
[0015]
FIG. 2 shows a thermally conductive composite material B according to the second embodiment of the present invention. This heat conducting composite material B is made up of a pair of diffusion sheets 5 made of a metal material excellent in heat diffusibility and heat dissipation disposed opposite to each other with a predetermined gap, such as copper and copper alloy foil or aluminum and aluminum alloy foil. 5 and a metal material excellent in heat diffusibility and heat dissipation sandwiched between the pair of diffusion sheets 5, 5, for example, a silver-copper brazing material as a matrix 6, higher thermal conductivity than carbon fiber or graphite. And an intermediate substrate 8 formed by combining a good thermal conductor 7 made of diamond or boron nitride.
[0016]
The heat good conductive composite material B is made into a powder shape because diamond and boron nitride as the heat good conductor 7 are difficult to form into a fiber shape, and this silver powder or powder boron nitride and the matrix 6 are silver-copper based brazing. The material powder is mixed to make a preform of the intermediate substrate 8, and the preform is sandwiched between the diffusion sheets 5 and 5, which are copper and copper alloy foil or aluminum and aluminum alloy foil, and this is vacuumed Alternatively, the brazing material is formed by melting and solidifying the brazing material by heating to the melting temperature of the brazing material in an inert gas and then cooling. However, since the percolation phenomenon is applied to the heat conduction and thermal diffusion of diamond and boron nitride, it is necessary to appropriately control the amount of diamond and boron nitride added and the mixing method in order to conduct heat efficiently. Also, by adding a small amount of titanium to the silver-copper brazing material, good wettability and bonding strength can be secured for diamond and boron nitride.
[0017]
According to the heat good conductivity mixed material B, the heat good conductivity of the first embodiment is obtained by using diamond or boron nitride having higher heat conductivity and heat diffusibility than carbon fiber and graphite for the heat good conductor 7. More efficient thermal conductivity, thermal diffusibility, and heat dissipation than the composite material A can be obtained, and a more compact and lightweight heat dissipation device design can be realized than the thermally conductive composite material A of the first embodiment. Is possible.
[0018]
The first and second embodiments of the present invention have been described above. However, the first and second embodiments merely describe preferred specific examples of the present invention. Various modifications are possible without being limited to the first and second embodiments. For example, the first and second embodiments have a three-layer structure in which the intermediate base material is sandwiched between a pair of diffusion sheets, but the present invention has an intermediate base material and a matrix between three upper, middle, and lower diffusion sheets. A three-layer structure or more such as a sandwiched five-layer structure is also possible.
[0019]
【The invention's effect】
As described above, according to the present invention, between a diffusion sheet made of copper and copper alloy foil or aluminum and aluminum alloy foil excellent in heat diffusibility and heat dissipation, a silver-copper system excellent in heat diffusibility and heat dissipation is provided. A diffusion sheet that provides high thermal conductivity of the intermediate substrate by sandwiching an intermediate substrate formed by combining carbon fiber or graphite having high thermal conductivity with brazing material as a matrix, or diamond powder or powdered boron nitride. Therefore, highly efficient thermal conductivity, thermal diffusivity, and heat dissipation can be obtained, and a more compact and lightweight heat dissipation device can be designed, which is suitable for use in a heat dissipation device.
[Brief description of the drawings]
FIG. 1 is a partially enlarged cross-sectional view of a thermally conductive composite material according to a first embodiment.
FIG. 2 is a partially enlarged cross-sectional view of a thermally conductive composite material according to a second embodiment.
[Explanation of symbols]
A Thermally conductive composite material 1 Diffusion sheet 2 Matrix 3 Heat good conductor 4 Intermediate base material B Thermally conductive composite material 5 Diffusion sheet 6 Matrix 7 Thermal good conductor 8 Intermediate base material

Claims (3)

銅および銅合金箔またはアルミおよびアルミ合金箔からなり、所定間隙をあけて対向配置した一対の拡散シートと、この一対の拡散シート間に挟み込まれた中間基材とを備え、この中間基材が、前記拡散シートの幅方向の一方向に多数列に並列させ乍ら繊維方向を揃えて複数層に積層させた炭素繊維と、この炭素繊維の間に充填された銀−銅系のろう材からなるマトリクスとで形成され、前記炭素繊維の表面にニッケルをメッキ乃至蒸着し、このニッケルを前記炭素繊維及び前記マトリクスの双方に接触させたことを特徴とする熱良導複合材料。A pair of diffusion sheets made of copper and copper alloy foil or aluminum and aluminum alloy foil, facing each other with a predetermined gap therebetween, and an intermediate base material sandwiched between the pair of diffusion sheets, the intermediate base material comprising A carbon fiber laminated in a plurality of layers with the fiber direction aligned in parallel in multiple rows in one direction in the width direction of the diffusion sheet, and a silver-copper brazing material filled between the carbon fibers A thermally conductive composite material, characterized in that nickel is plated or vapor-deposited on the surface of the carbon fiber, and the nickel is brought into contact with both the carbon fiber and the matrix . 銅および銅合金箔またはアルミおよびアルミ合金箔からなる一対の拡散シートを所定間隙をあけて対向配置し、この一対の拡散シート間に銀−銅系のろう材をマトリクスとしてダイヤモンドパウダーまたは粉末窒化硼素で形成した中間基材を挟み込むことを特徴とする熱良導複合材料。  A pair of diffusion sheets made of copper and copper alloy foil or aluminum and aluminum alloy foil are arranged to face each other with a predetermined gap, and diamond powder or powder boron nitride using a silver-copper brazing material as a matrix between the pair of diffusion sheets. A heat conducting composite material characterized by sandwiching an intermediate base material formed in step (b). マトリクスである前記銀−銅系のろう材にチタンを添加したことを特徴とする請求項記載の熱良導混合材料。 3. A heat-conductive mixed material according to claim 2 , wherein titanium is added to the silver-copper brazing material which is a matrix.
JP21784898A 1998-07-31 1998-07-31 Thermally conductive composite material Expired - Lifetime JP4597279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21784898A JP4597279B2 (en) 1998-07-31 1998-07-31 Thermally conductive composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21784898A JP4597279B2 (en) 1998-07-31 1998-07-31 Thermally conductive composite material

Publications (2)

Publication Number Publication Date
JP2000043186A JP2000043186A (en) 2000-02-15
JP4597279B2 true JP4597279B2 (en) 2010-12-15

Family

ID=16710720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21784898A Expired - Lifetime JP4597279B2 (en) 1998-07-31 1998-07-31 Thermally conductive composite material

Country Status (1)

Country Link
JP (1) JP4597279B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876612B2 (en) * 2005-02-22 2012-02-15 三菱マテリアル株式会社 Insulated heat transfer structure and power module substrate
JP5024814B2 (en) * 2006-10-31 2012-09-12 島根県 Manufacturing method of high thermal conductive composite material
WO2015119064A1 (en) * 2014-02-10 2015-08-13 新日鉄住金マテリアルズ株式会社 Thermally conductive composite material, and manufacturing method therefor
CN112823214B (en) * 2018-11-21 2022-11-04 昭和电工株式会社 Aluminium-carbon particle composite material and its production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180858A (en) * 1997-09-03 1999-03-26 Furukawa Electric Co Ltd:The Composite material and its production

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294652A (en) * 1988-09-30 1990-04-05 Mitsubishi Metal Corp Substrate for semiconductor device
JPH06196884A (en) * 1992-12-25 1994-07-15 Toshiba Corp High-heat-conductivity composite
EP0673900A3 (en) * 1994-03-25 1996-07-17 Goodrich Co B F Carbon/carbon composites and electrical apparatus containing the same.
JPH08167675A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Semiconductor device and electronic device using it
JPH08222669A (en) * 1995-02-10 1996-08-30 Fuji Dies Kk Heat sink and production thereof
JPH09321190A (en) * 1996-05-29 1997-12-12 Tonen Corp Heat sink
JP3850956B2 (en) * 1997-07-31 2006-11-29 鈴木総業株式会社 Heat dissipation carbon composite board
JP2000022055A (en) * 1998-07-07 2000-01-21 Furukawa Electric Co Ltd:The Carbon fabric composite radiator plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180858A (en) * 1997-09-03 1999-03-26 Furukawa Electric Co Ltd:The Composite material and its production

Also Published As

Publication number Publication date
JP2000043186A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
CA2128872C (en) High conductivity hybrid material for thermal management
US10794642B2 (en) Low temperature sintering porous metal foam layers for enhanced cooling and processes for forming thereof
JP2011091106A (en) Thermally conductive member and method of manufacturing the same, heat dissipating component, and semiconductor package
TW201236539A (en) Shell structure and electronic device having the same
WO2023179665A1 (en) Heat dissipation module and electronic device
GB1570850A (en) Composite joint system including composite structure of carbon fibres embedded in copper matrix
JPH10247708A (en) Face-to-face heat conductive plate
JP4597279B2 (en) Thermally conductive composite material
JP2010098057A (en) Substrate for power module with heat sink, power module with heat sink and substrate for power module with buffer layer
JP2010098059A (en) Substrate for power module with heat sink, power module with heat sink, substrate for power module with buffer layer, and method of manufacturing substrate for power module with heat sink
TW201639706A (en) Heat-dissipation laminated structure and method for manufacturing the same
CN110358508A (en) Diamantiferous composite heat dissipation material and preparation method thereof
JP2005347616A (en) Heat spreader, manufacturing method thereof and electronic apparatus
JP2016207799A (en) Cooling substrate
JP4051402B2 (en) Flexible heat transfer device and method for manufacturing the same
JP7201658B2 (en) Cooling system
EP1025586B1 (en) Flexible heat transfer device and method
JP6040570B2 (en) Heat exchanger
JP4803515B2 (en) Interfacial heat transfer plate
CN209845582U (en) Multilayer heat conducting part
JP2013243212A (en) Thermal diffusion device
JP5648705B2 (en) Power module substrate with heat sink, power module with heat sink and power module substrate with buffer layer
JP2010098058A (en) Substrate for power module with heat sink, power module with heat sink and method of manufacturing substrate for power module with heat sink
JP5659542B2 (en) Insulating substrate and power module
JP4647746B2 (en) Structural members that can be thermally loaded

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100413

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term