JP4596683B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4596683B2
JP4596683B2 JP2001169577A JP2001169577A JP4596683B2 JP 4596683 B2 JP4596683 B2 JP 4596683B2 JP 2001169577 A JP2001169577 A JP 2001169577A JP 2001169577 A JP2001169577 A JP 2001169577A JP 4596683 B2 JP4596683 B2 JP 4596683B2
Authority
JP
Japan
Prior art keywords
temperature regenerator
refrigerant
absorber
low
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001169577A
Other languages
Japanese (ja)
Other versions
JP2002364940A (en
Inventor
雅裕 古川
春樹 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001169577A priority Critical patent/JP4596683B2/en
Publication of JP2002364940A publication Critical patent/JP2002364940A/en
Application granted granted Critical
Publication of JP4596683B2 publication Critical patent/JP4596683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷凍機(吸収冷温水機を含む)に係わるものである。
【0002】
【従来の技術】
従来の吸収冷凍機の多くは、夏季は2重効用の冷房運転が可能であるが、冬季は高温再生器で加熱した吸収液と、その加熱吸収液から蒸発分離した冷媒蒸気とを下胴に供給し、負荷に供給する循環水を蒸発器において加熱する単なるボイラー機能を持たせたものに過ぎなかったため、供給可能な温水の温度は60℃程度となり、暖房運転に使用することはできるもののエネルギー効率(COP)が0.85程度であり、COPが低いと云った問題点があった。
【0003】
一方、吸収ヒートポンプによる暖房運転おいては、大気圧以下と云う運転領域の制約があるため、COPは1.6〜1.7と高くなるものの、供給可能な温水温度は45℃程度と低いと云った問題点があった。
【0004】
【発明が解決しようとする課題】
そのため、吸収ヒートポンプによる快適な暖房運転が可能なように、特に室温が低い暖房運転の開始時においても十分に温度の高い空気の噴出しが可能なように、従来の45℃より高い温度の温水、例えば55℃程度の温水供給が可能な吸収冷凍機を提供する必要があった。また、冷房運転時においても熱効率に一層優れたものにする必要があり、これらの解決が課題となっていた。
【0005】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えると共に、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器、中温熱交換器、低温熱交換器を備えた吸収冷凍機において、中温再生器に接続した吸収液管の吸収液出入口部に逆止弁または開閉弁を設け、吸収液が中温再生器と中温熱交換器とを迂回して循環可能に開閉弁を備えた吸収液管を設け、高温再生器で吸収液から蒸発分離した冷媒蒸気を低温再生器の熱源として供給可能に高温再生器の冷媒蒸気出口と低温再生器の冷媒蒸気入口とを開閉弁が介在する冷媒管により接続し、吸収器と凝縮器とに冷却水を供給し、凝縮器で冷却水に放熱して凝縮した冷媒液を蒸発器で蒸発させ、その蒸発熱で冷却した冷水を供給する冷却運時には3重効用運転とし、蒸発器に河川水などの熱源流体を供給し、吸収器と凝縮器とを経由して加熱された温水を供給する加熱運転時には2重効用運転する切換弁機構を設けるようにした第の構成の吸収冷凍機と、
【000
前記第の構成の吸収冷凍機において、冷却運転時に吸収器で冷媒を吸収した吸収液が高温再生器、中温再生器、低温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に、且つ、加熱運転時に吸収器で冷媒を吸収した吸収液が高温再生器、低温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に吸収液管を設けるようにした第の構成の吸収冷凍機と、
【000
前記第の構成の吸収冷凍機において、冷却運転時に吸収器で冷媒を吸収した吸収液が中温再生器、高温再生器、低温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に、且つ、加熱運転時に吸収器で冷媒を吸収した吸収液が高温再生器、低温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に吸収液管を設けるようにした第の構成の吸収冷凍機と、
【000
前記第の構成の吸収冷凍機において、冷却運転時に吸収器で冷媒を吸収した吸収液が低温再生器、高温再生器、中温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に、且つ、加熱運転時に吸収器で冷媒を吸収した吸収液が低温再生器、高温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に吸収液管を設けるようにした第の構成の吸収冷凍機と、
【0009
前記第の構成の吸収冷凍機において、冷却運転時に吸収器で冷媒を吸収した吸収液が低温再生器、中温再生器、高温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に、且つ、加熱運転時に吸収器で冷媒を吸収した吸収液が低温再生器、高温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に吸収液管を設けるようにした第の構成の吸収冷凍機と、
【0010
吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えると共に、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器、中温熱交換器、低温熱交換器を備えた吸収冷凍機において、中温再生器に接続した吸収液管の吸収液出入口部に逆止弁または開閉弁を設け、高温再生器で吸収液から蒸発分離した冷媒蒸気を低温再生器の熱源として供給可能に高温再生器の冷媒蒸気出口と低温再生器の冷媒蒸気入口とを開閉弁が介在する冷媒管により接続すると共に、吸収器と凝縮器とに冷却水を供給し、凝縮器で冷却水に放熱して凝縮した冷媒液を蒸発器で蒸発させ、その蒸発熱で冷却した冷水を供給する冷却運時に吸収器で冷媒を吸収した吸収液が分岐して高温再生器、中温再生器、低温再生器それぞれに流れ、各再生器で冷媒を蒸発分離して吸収器に還流する3重効用運転とし、且つ、蒸発器に河川水などの熱源流体を供給し、吸収器と凝縮器とを経由して加熱された温水を供給する加熱運転時に吸収器で冷媒を吸収した吸収液が分岐して高温再生器と低温再生器とに流れ、各再生器で冷媒を蒸発分離して吸収器に還流する2重効用運転可能に吸収液管を設けるようにした第の構成の吸収冷凍機と、を提供することにより、前記した従来技術の課題を解決するものである。
【0011
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0012
〔第1の実施形態〕
第1の実施形態を図1に基づいて詳細に説明する。
図1において、1は高温再生器、2は中温再生器、3は低温再生器、4は凝縮器、5は蒸発器、6は吸収器、7は低温熱交換器、8は中温熱交換器、9は高温熱交換器、10・11は吸収液ポンプ、13は冷媒ポンプであり、それぞれは図示したように実線で示した吸収液管と破線で示した冷媒管とで接続され、吸収液と冷媒がそれぞれ循環可能に構成されている。
【0013
なお、中温再生器2に接続した吸収液管の吸収液入口側には開閉弁V1が設けられ、吸収液出口側には逆止弁V2が設けられ、吸収液が中温再生器2と中温熱交換器8とを迂回して循環可能に開閉弁V3が介在する吸収液管が設けられている。
【0014
また、熱源としての冷媒蒸気を供給する中温再生器2に接続した冷媒管の冷媒入口側には開閉弁V4が設けられ、冷媒出口側には逆止弁V5が設けられ、中温再生器2で吸収液から蒸発分離した冷媒蒸気の出口側に逆止弁V6が設けられ、高温再生器1の冷媒蒸気出口側と低温再生器3の冷媒蒸気入口側とが開閉弁V7が介在する冷媒蒸気管とで接続されている。
【0015
また、蒸発器5には冷水/熱源水管14が通され、吸収器6と凝縮器4には冷却水/温水管15が直列に通されている。
【0016
上記構成になる吸収冷凍機においては、図1(A)に示したように開閉弁V1、V4を開弁し、開閉弁V3、V7を閉弁し、吸収液ポンプ10、11および冷媒ポンプ13を運転し、冷却水/温水管15に冷却水を流しながら、高温再生器1に添設したバーナ1Aで天然ガスなどを燃焼させると、高温再生器1においては燃焼熱により吸収液が加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。
【0017
高温再生器1で生成された高温の冷媒蒸気は、開弁している開閉弁V4を介して中温再生器2に入り、中温再生器2内にある吸収液、すなわち高温再生器1における前記加熱により既に吸収液濃度が1度高められ、高温熱交換器9・開閉弁V1を介して高温再生器1から供給された吸収液を加熱して冷媒を蒸発させる。
【0018
中温再生器2で吸収液から蒸発分離した冷媒蒸気は、逆止弁V6を介して低温再生器3に入り、低温再生器3内にある吸収液、すなわち高温再生器1、中温再生器2における前記加熱により既に吸収液濃度が2度高められ、逆止弁V2・中温熱交換器8を介して中温再生器2から供給された吸収液を加熱して冷媒を蒸発させる。
【0019
低温再生器3で吸収液から蒸発分離した冷媒蒸気は、凝縮器4に入り、冷却水/温水管15内を流れる冷却水に放熱して凝縮し、中温再生器2、低温再生器3で吸収液に放熱して凝縮し、中温再生器2・低温再生器3から流入する冷媒液と一緒になって蒸発器5に入る。
【0020
蒸発器5に入って底部に溜まった冷媒液は、冷媒ポンプ13により上方から散布され、冷水/熱源水管14の内部を流れる水と熱交換して蒸発し、冷水/熱源水管14の内部を流れる水を冷却する。
【0021
蒸発器5で蒸発した冷媒は吸収器6に入り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち低温熱交換器7を経由して低温再生器3から供給され、上方から散布される吸収液に吸収される。
【0022
吸収器6で冷媒を吸収して吸収液濃度の薄くなった吸収液は、吸収液ポンプ10の運転により低温熱交換器7・中温熱交換器8・高温熱交換器9を経由して高温再生器1に戻される。
【0023
上記のように吸収冷凍機が運転されると、冷水/熱源水管14の内部を流れて蒸発器5に入った冷水は、蒸発器5内において冷媒の気化熱により冷却され、その冷却された冷水が冷水/熱源水管14を介して図示しない冷却負荷に循環供給できるので、冷房などの冷却運転が熱効率に優れた3重効用により行える。
【0024
一方、図1(B)に示したように開閉弁V3、V7を開弁し、開閉弁V1、V4を閉弁し、吸収液ポンプ10、11および冷媒ポンプ13を運転し、冷水/熱源水管14に熱源水として河川水、排温水などを流しながら、高温再生器1に添設したバーナ1Aで天然ガスなどを燃焼させると、高温再生器1においてはその燃焼熱により吸収液が加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。
【0025
高温再生器1で生成された高温の冷媒蒸気は、開弁している開閉弁V7を介して低温再生器3に入り、低温再生器3内にある吸収液、すなわち高温再生器1における前記加熱により既に吸収液濃度が1度高められ、高温熱交換器9・開閉弁V3を介して高温再生器1から供給された吸収液を加熱して冷媒を蒸発させる。
【0026
低温再生器3で吸収液から蒸発分離した冷媒蒸気は、凝縮器4に入り、冷却水/温水管15内を流れる水に放熱して凝縮し、低温再生器3で吸収液に放熱して凝縮し、低温再生器3から流入する冷媒液と一緒になって蒸発器5に入る。
【0027
蒸発器5に入って底部に溜まった冷媒液は、冷媒ポンプ13により上方から散布され、冷水/熱源水管14の内部を流れる熱源水から熱を奪って蒸発する。
【0028
蒸発器5で蒸発した冷媒は吸収器6に入り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち低温熱交換器7を経由して供給され、上方から散布される吸収液に吸収される。
【0029
吸収器6で冷媒を吸収して濃度の薄くなった吸収液は、吸収液ポンプ10の運転により低温熱交換器7・中温熱交換器8・高温熱交換器9を経由して高温再生器1に戻される。
【0030
上記のように吸収冷凍機が運転されると、冷却水/温水管15の内部を流れる水は、吸収器6においては、低温再生器3から冷媒蒸気により加熱されて低温熱交換器7を介して流入する吸収液が、蒸発器5から蒸発して流入する冷媒を吸収する際に出る吸収熱により加熱され、凝縮器4においては、低温再生器3で蒸発して流入する冷媒の凝縮熱と、低温再生器3で凝縮して流入する吸収液とで加熱され、その2箇所で例えば55℃程度に加熱された温水が冷却水/温水管15を介して図示しない暖房負荷に循環供給できるので、暖房などの加熱運転が熱効率に優れた2重効用により行える。
【0031
なお、吸収液出口側に設けた逆止弁V2は、いわゆる開閉弁であっても良い。また、上記吸収液ポンプ11は、省略することも可能である。
【0032
〔第2の実施形態〕
第2の実施形態を図2に基づいて説明する。なお、理解を容易にするため、第2の実施形態の吸収冷凍機においても、前記図1に示した第1の実施形態の吸収冷凍機と同様の機能を有する部分には同一の符号を付した(第3の実施形態以降も同じ)。
【0033
この第2の実施形態の吸収冷凍機が、前記第1の実施形態の吸収冷凍機と相違する部分は、吸収液の循環順にある。すなわち、この第2の実施形態の吸収冷凍機においては、冷媒を吸収して吸収器6から出た吸収液は、図2(A)に示したように、冷房などの冷却運転時には吸収液ポンプ10により低温熱交換器7、中温熱交換器8を経由して中温再生器2に入り、そこで1度目の加熱・濃縮が行われ、続いて吸収液ポンプ12により高温熱交換器9を経由して高温再生器1に入り、そこで2度目の加熱・濃縮が行われ、さらに高温熱交換器9、中温熱交換器8を経由して低温再生器3に入り、そこで3度目の加熱・濃縮が行われた後、吸収液ポンプ11により低温熱交換器7を経由して吸収器6に戻る循環が可能に吸収液管が接続されている。
【0034
そして、この場合も、吸収液が中温再生器2と中温熱交換器8とを迂回して循環可能に開閉弁V3が介在する吸収液管が設けられて、暖房などの加熱運転時に冷媒を吸収して吸収器6から出た吸収液は、図2(B)に示したように、吸収液ポンプ10により低温熱交換器7、開閉弁V3、高温熱交換器9を経由して高温再生器1に入り、そこで1度目の加熱・濃縮が行われ、続いて高温熱交換器9、中温熱交換器8を経由して低温再生器3に入り、そこで2度目の加熱・濃縮が行われた後、吸収液ポンプ11により低温熱交換器7を経由して吸収器6に戻る循環が可能に吸収液管が接続されている。
【0035
上記構成の吸収冷凍機においても、夏季には熱効率に優れた3重効用により冷房などの冷却運転が行え、冬季には熱効率に優れた2重効用の運転により55℃程度に加熱した温水を負荷に循環供給する暖房などの加熱運転が行える。なお、この場合も吸収液ポンプ11は、省略することが可能である。
【0036
〔第3の実施形態〕
第3の実施形態を図3に基づいて説明する。この第3の実施形態の吸収冷凍機が、前記第1、第2の実施形態の吸収冷凍機と相違する部分も、吸収液の循環順にある。
【0037
すなわち、この第3の実施形態の吸収冷凍機においては、冷媒を吸収して吸収器6から出た吸収液は、図3(A)に示したように、冷房などの冷却運転時には吸収液ポンプ10により低温熱交換器7を経由して低温再生器3に入り、そこで1度目の加熱・濃縮が行われ、続いて吸収液ポンプ11により中温熱交換器8、高温熱交換器9を経由して高温再生器1に入り、そこで2度目の加熱・濃縮が行われ、さらに高温熱交換器9を経由して中温再生器2に入り、そこで3度目の加熱・濃縮が行われた後、中温熱交換器8、低温熱交換器7を経由して吸収器6に戻る循環が可能に吸収液管が接続されている。
【0038
そして、この場合も、吸収液が中温再生器2と中温熱交換器8とを迂回して循環可能に開閉弁V3が介在する吸収液管が設けられて、暖房などの加熱運転時に冷媒を吸収して吸収器6から出た吸収液は、図3(B)に示したように、吸収液ポンプ10により低温熱交換器7を経由して低温再生器3に入り、そこで1度目の加熱・濃縮が行われ、続いて吸収液ポンプ11により中温熱交換器8、高温熱交換器9を経由して高温再生器1に入り、そこで2度目の加熱・濃縮が行われ、さらに高温熱交換器9、開閉弁V3、低温熱交換器7を経由して吸収器6に戻る循環が可能に吸収液管が接続されている。
【0039
上記構成の吸収冷凍機においても、夏季には熱効率に優れた3重効用により冷房などの冷却運転が行え、冬季には熱効率に優れた2重効用の運転により55℃程度に加熱した温水を負荷に循環供給する暖房などの加熱運転が行える。
【0040
〔第4の実施形態〕
第4の実施形態を図4に基づいて説明する。この第4の実施形態の吸収冷凍機が、前記第1〜第3の実施形態の吸収冷凍機と相違する部分も、吸収液の循環順にある。
【0041
すなわち、この第4の実施形態の吸収冷凍機においては、冷媒を吸収して吸収器6から出た吸収液は、図4(A)に示したように、冷房などの冷却運転時には吸収液ポンプ10により低温熱交換器7を経由して低温再生器3に入り、そこで1度目の加熱・濃縮が行われ、続いて吸収液ポンプ11により中温熱交換器8、開閉弁V1を経由して中温再生器2に入り、そこで2度目の加熱・濃縮が行われ、さらに吸収液ポンプ12により高温熱交換器9を経由して高温再生器1に入り、そこで3度目の加熱・濃縮が行われた後、高温熱交換器9、中温熱交換器8、低温熱交換器7を経由して吸収器6に戻る循環が可能に吸収液管が接続されている。
【0042
そして、この場合も、吸収液が中温再生器2と中温熱交換器8とを迂回して循環可能に開閉弁V3が介在する吸収液管が設けられて、暖房などの加熱運転時に冷媒を吸収して吸収器6から出た吸収液は、図4(B)に示したように、吸収液ポンプ10により低温熱交換器7を経由して低温再生器3に入り、そこで1度目の加熱・濃縮が行われ、続いて吸収液ポンプ11により開閉弁V3、高温熱交換器9を経由して高温再生器1に入り、そこで2度目の加熱・濃縮が行われ、さらに高温熱交換器9、中温熱交換器8、低温熱交換器7を経由して吸収器6に戻る循環が可能に吸収液管が接続されている。
【0043
上記構成の吸収冷凍機においても、夏季には熱効率に優れた3重効用により冷房などの冷却運転が行え、冬季には熱効率に優れた2重効用の運転により55℃程度に加熱した温水を負荷に循環供給する暖房などの加熱運転が行える。
【0044
〔第5の実施形態〕
第5の実施形態を図5に基づいて説明する。この第5の実施形態の吸収冷凍機が、前記第1〜第4の実施形態の吸収冷凍機と相違する部分も、吸収液の循環順にある。
【0045
すなわち、この第5の実施形態の吸収冷凍機においては、冷媒を吸収して吸収器6から出た吸収液は、図5(A)に示したように、冷房などの冷却運転時には吸収液ポンプ10により低温熱交換器7を経由して低温再生器3に入るものと、低温熱交換器7を経由した後さらに中温熱交換器8を経由して中温再生器2に入るものと、低温熱交換器7、中温熱交換器8を経由した後さらに高温熱交換器9を経由して高温再生器1に入るものとに分岐し、それぞれの再生器において加熱・濃縮が行われ、高温再生器1に入って加熱・凝縮された吸収液は高温熱交換器9、中温熱交換器8、低温熱交換器7を経由して吸収器6に戻り、中温再生器2に入って加熱・凝縮された吸収液は吸収液ポンプ12により中温熱交換器8、低温熱交換器7を経由して吸収器6に戻り、低温再生器3に入って加熱・凝縮された吸収液は吸収液ポンプ11により低温熱交換器7を経由して吸収器6に戻る循環が可能に吸収液管が接続されている。
【0046
そして、この場合は、暖房などの加熱運転時に冷媒を吸収して吸収器6から出た吸収液は、図5(B)に示したように、吸収液ポンプ10により低温熱交換器7を経由して低温再生器3に入るものと、低温熱交換器7を経由した後さらに中温熱交換器8、高温熱交換器9を経由して高温再生器1に入るものとに分岐し、それぞれの再生器において加熱・濃縮が行われ、高温再生器1に入って加熱・凝縮された吸収液は高温熱交換器9、中温熱交換器8、低温熱交換器7を経由して吸収器6に戻り、低温再生器3に入って加熱・凝縮された吸収液は吸収液ポンプ11により低温熱交換器7を経由して吸収器6に戻る循環が可能に吸収液管が接続されている。
【0047
上記構成の吸収冷凍機においても、夏季には熱効率に優れた3重効用により冷房などの冷却運転が行え、冬季には熱効率に優れた2重効用の運転により55℃程度に加熱した温水を負荷に循環供給する暖房などの加熱運転が行える。
【0048
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0049
【発明の効果】
以上説明したように本発明によれば、熱効率に優れた2重効用運転により従来技術より温度が大凡10℃も高い55℃程度の温水供給が可能となったので、部屋の温度が低い暖房運転の開始時においても十分に温度の高い空気の噴出しが可能であり、快適な暖房運転が可能になった。また、冷房などの冷却運転は、3重効用運転となるので熱効率が高い。
【図面の簡単な説明】
【図1】第1の実施形態の装置構成を示す説明図であり、(A)は冷房運転時の説明図、(B)は暖房運転時の説明図である。
【図2】第2の実施形態の装置構成を示す説明図であり、(A)は冷房運転時の説明図、(B)は暖房運転時の説明図である。
【図3】第3の実施形態の装置構成を示す説明図であり、(A)は冷房運転時の説明図、(B)は暖房運転時の説明図である。
【図4】第4の実施形態の装置構成を示す説明図であり、(A)は冷房運転時の説明図、(B)は暖房運転時の説明図である。
【図5】第5の実施形態の装置構成を示す説明図であり、(A)は冷房運転時の説明図、(B)は暖房運転時の説明図である。
【符号の説明】
1 高温再生器
1A バーナ
2 中温再生器
3 低温再生器
4 凝縮器
5 蒸発器
6 吸収器
7 低温熱交換器
8 中温熱交換器
9 高温熱交換器
10・11・12 吸収液ポンプ
13 冷媒ポンプ
14 冷水/熱源水管
15 冷却水/温水管
V1 開閉弁
V2 逆止弁
V3 開閉弁
V4 開閉弁
V5 逆止弁
V6 逆止弁
V7 開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator (including an absorption chiller / heater).
[0002]
[Prior art]
Many conventional absorption refrigerators can perform double-effect cooling in the summer, but in the winter the absorption liquid heated by the high-temperature regenerator and the refrigerant vapor evaporated and separated from the heated absorption liquid are used as the lower body. The temperature of the hot water that can be supplied is about 60 ° C. and can be used for heating operation because it merely has a boiler function for heating the circulating water supplied to the load and heated in the evaporator. There was a problem that the efficiency (COP) was about 0.85 and the COP was low.
[0003]
On the other hand, in the heating operation by the absorption heat pump, there is a limitation of the operation region of atmospheric pressure or less, so the COP becomes as high as 1.6 to 1.7, but the hot water temperature that can be supplied is as low as about 45 ° C. There was a problem.
[0004]
[Problems to be solved by the invention]
Therefore, hot water having a temperature higher than the conventional 45 ° C. is required so that a sufficiently high temperature of air can be ejected even at the start of heating operation, particularly at low room temperature, so that a comfortable heating operation by the absorption heat pump is possible. For example, it was necessary to provide an absorption refrigerator capable of supplying hot water at about 55 ° C. Moreover, it is necessary to make it more excellent in thermal efficiency even during the cooling operation, and these solutions have been problems.
[0005]
[Means for Solving the Problems]
As a specific means for solving the above-described problems of the prior art, the present invention provides a high-temperature regenerator that heats the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed. In an absorption refrigerator equipped with a regenerator, a medium temperature regenerator, a low temperature regenerator, and a high temperature heat exchanger, a medium temperature heat exchanger, a low temperature heat exchanger as a heat exchanger for heat exchange between absorption liquids of different temperatures, Absorption liquid equipped with a check valve or on / off valve at the inlet / outlet of the absorption liquid pipe connected to the intermediate temperature regenerator, and with an on / off valve that allows the absorption liquid to circulate around the intermediate temperature regenerator and intermediate temperature heat exchanger A refrigerant pipe in which an open / close valve is interposed between the refrigerant vapor outlet of the high temperature regenerator and the refrigerant vapor inlet of the low temperature regenerator so that the refrigerant vapor evaporated and separated from the absorption liquid in the high temperature regenerator can be supplied as a heat source of the low temperature regenerator. connect a result, the absorber and the condenser When the cooling water is supplied to the evaporator, the refrigerant liquid that dissipates heat to the cooling water by the condenser is evaporated by the evaporator, and the cold water cooled by the evaporation heat is supplied. An absorption refrigerating machine having a first configuration in which a switching valve mechanism for performing a dual effect operation is provided during a heating operation in which a heat source fluid such as the above is supplied and heated water is supplied via an absorber and a condenser. ,
[000 6 ]
In the absorption refrigerator having the first configuration, the absorption liquid that has absorbed the refrigerant by the absorber during the cooling operation flows in the order of the high-temperature regenerator, the intermediate-temperature regenerator, and the low-temperature regenerator, and evaporates and separates the refrigerant each time to the absorber. The absorption liquid that has absorbed the refrigerant in the absorber during the heating operation flows in the order of the high-temperature regenerator and the low-temperature regenerator so that the refrigerant is evaporated and separated each time, and an absorption liquid pipe is provided in the absorber so that it can be recirculated. An absorption refrigerator having a second configuration,
[000 7 ]
In the absorption refrigerator having the first configuration, the absorption liquid that has absorbed the refrigerant by the absorber during the cooling operation flows in the order of the intermediate temperature regenerator, the high temperature regenerator, and the low temperature regenerator, and evaporates and separates the refrigerant each time to the absorber. The absorption liquid that has absorbed the refrigerant in the absorber during the heating operation flows in the order of the high-temperature regenerator and the low-temperature regenerator so that the refrigerant is evaporated and separated each time, and an absorption liquid pipe is provided in the absorber so that it can be recirculated. An absorption refrigerator having a third configuration,
[000 8 ]
In the absorption refrigerator having the first configuration, the absorbing liquid that has absorbed the refrigerant by the absorber during the cooling operation flows in the order of the low-temperature regenerator, the high-temperature regenerator, and the medium-temperature regenerator, and evaporates and separates the refrigerant each time to the absorber. The absorbing liquid that has absorbed the refrigerant in the absorber during the heating operation flows in the order of the low-temperature regenerator and the high-temperature regenerator so that the refrigerant is evaporated and separated each time, and an absorbing liquid pipe is provided in the absorber so that the refrigerant can be recirculated. An absorption refrigerator having a fourth configuration,
[00 09 ]
In the absorption refrigerator having the first configuration, the absorbing liquid that has absorbed the refrigerant by the absorber during the cooling operation flows in the order of the low temperature regenerator, the medium temperature regenerator, and the high temperature regenerator, and evaporates and separates the refrigerant each time to the absorber. The absorbing liquid that has absorbed the refrigerant in the absorber during the heating operation flows in the order of the low-temperature regenerator and the high-temperature regenerator so that the refrigerant is evaporated and separated each time, and an absorbing liquid pipe is provided in the absorber so that the refrigerant can be recirculated. An absorption refrigerator having a fifth configuration,
[00 10 ]
As the regenerator that heats the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed, it is equipped with a high-temperature regenerator, medium-temperature regenerator, and low-temperature regenerator, and absorbs different temperatures In absorption refrigerators equipped with high-temperature heat exchangers, medium-temperature heat exchangers, and low-temperature heat exchangers as heat exchangers that exchange heat between liquids, a check valve is provided at the absorption liquid inlet / outlet portion of the absorption liquid pipe connected to the medium-temperature regenerator Alternatively, an on-off valve is provided, and the on-off valve is interposed between the refrigerant vapor outlet of the high-temperature regenerator and the refrigerant vapor inlet of the low-temperature regenerator so that the refrigerant vapor evaporated and separated from the absorbent in the high-temperature regenerator can be supplied as a heat source for the low-temperature regenerator. In addition to being connected by the refrigerant pipe, the cooling water is supplied to the absorber and the condenser, the refrigerant liquid that dissipates heat to the cooling water by the condenser is evaporated by the evaporator, and the cold water cooled by the evaporation heat is supplied. Absorbs refrigerant with absorber during cooling operation The absorbed liquid is branched and flows to the high-temperature regenerator, medium-temperature regenerator, and low-temperature regenerator, and a triple-effect operation in which the refrigerant is evaporated and separated in each regenerator and returned to the absorber. In the heating operation, supplying the heat source fluid such as, and supplying the heated hot water via the absorber and the condenser, the absorbing liquid that has absorbed the refrigerant in the absorber is branched into the high temperature regenerator and the low temperature regenerator By providing an absorption refrigerator having a sixth configuration in which an absorption liquid pipe is provided so as to be capable of double-effect operation in which a refrigerant is evaporated and separated in each regenerator and then returned to the absorber. It solves technical problems.
[00 11 ]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[00 12 ]
[First Embodiment]
The first embodiment will be described in detail with reference to FIG.
In FIG. 1, 1 is a high temperature regenerator, 2 is a medium temperature regenerator, 3 is a low temperature regenerator, 4 is a condenser, 5 is an evaporator, 6 is an absorber, 7 is a low temperature heat exchanger, and 8 is a medium temperature heat exchanger. , 9 is a high-temperature heat exchanger, 10 and 11 are absorption liquid pumps, and 13 is a refrigerant pump, each of which is connected by an absorption liquid pipe indicated by a solid line and a refrigerant pipe indicated by a broken line, as shown in FIG. And the refrigerant can be circulated.
[00 13 ]
An on-off valve V1 is provided on the absorption liquid inlet side of the absorption liquid pipe connected to the intermediate temperature regenerator 2, and a check valve V2 is provided on the absorption liquid outlet side so that the absorption liquid is in the intermediate temperature regenerator 2 and the intermediate temperature heat. An absorption liquid pipe is provided in which an on-off valve V3 is interposed so as to be able to circulate around the exchanger 8.
[00 14 ]
In addition, an on-off valve V4 is provided on the refrigerant inlet side of the refrigerant pipe connected to the intermediate temperature regenerator 2 that supplies refrigerant vapor as a heat source, and a check valve V5 is provided on the refrigerant outlet side. A check valve V6 is provided on the outlet side of the refrigerant vapor evaporated and separated from the absorbing liquid, and the refrigerant vapor pipe in which the on / off valve V7 is interposed between the refrigerant vapor outlet side of the high temperature regenerator 1 and the refrigerant vapor inlet side of the low temperature regenerator 3 is provided. And connected with.
[00 15 ]
Further, a cold water / heat source water pipe 14 is passed through the evaporator 5, and a cooling water / hot water pipe 15 is passed through the absorber 6 and the condenser 4 in series.
[00 16 ]
In the absorption refrigerator having the above-described configuration, as shown in FIG. 1A, the on-off valves V1 and V4 are opened, the on-off valves V3 and V7 are closed, and the absorption liquid pumps 10 and 11 and the refrigerant pump 13 are opened. When natural gas or the like is burned by the burner 1A attached to the high temperature regenerator 1 while cooling water is supplied to the cooling water / warm water pipe 15, the absorbing liquid is heated by the combustion heat in the high temperature regenerator 1. Thus, the refrigerant vapor evaporated and separated from the absorption liquid and the concentrated absorption liquid are obtained.
[00 17 ]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the intermediate-temperature regenerator 2 through the open / close valve V4, and the absorption liquid in the intermediate-temperature regenerator 2, that is, the heating in the high-temperature regenerator 1. As a result, the concentration of the absorbing solution is already increased once, and the absorbing solution supplied from the high-temperature regenerator 1 is heated through the high-temperature heat exchanger 9 and the on-off valve V1 to evaporate the refrigerant.
[00 18 ]
The refrigerant vapor evaporated and separated from the absorption liquid in the intermediate temperature regenerator 2 enters the low temperature regenerator 3 through the check valve V6, and is absorbed in the low temperature regenerator 3, that is, in the high temperature regenerator 1 and the intermediate temperature regenerator 2. By the heating, the concentration of the absorbing solution is already increased twice, and the absorbing solution supplied from the intermediate temperature regenerator 2 is heated through the check valve V2 and the intermediate temperature heat exchanger 8 to evaporate the refrigerant.
[00 19 ]
The refrigerant vapor evaporated and separated from the absorption liquid by the low-temperature regenerator 3 enters the condenser 4, dissipates heat to the cooling water flowing in the cooling water / hot water pipe 15, and is condensed by the medium-temperature regenerator 2 and the low-temperature regenerator 3. The liquid is dissipated and condensed, and enters the evaporator 5 together with the refrigerant liquid flowing from the intermediate temperature regenerator 2 and the low temperature regenerator 3.
[00 20 ]
The refrigerant liquid that has entered the evaporator 5 and accumulated at the bottom is sprayed from above by the refrigerant pump 13, evaporates by exchanging heat with water flowing inside the cold water / heat source water pipe 14, and flows inside the cold water / heat source water pipe 14. Cool the water.
[00 21 ]
The refrigerant evaporated in the evaporator 5 enters the absorber 6 and is heated in the low-temperature regenerator 3 to evaporate and separate the refrigerant. The refrigerant is further cooled by the absorption liquid whose concentration is further increased, that is, through the low-temperature heat exchanger 7. It is supplied from the regenerator 3 and absorbed by the absorbing liquid sprayed from above.
[00 22 ]
The absorption liquid whose absorption liquid concentration has been reduced by absorbing the refrigerant in the absorber 6 is regenerated at a high temperature via the low temperature heat exchanger 7, the intermediate temperature heat exchanger 8, and the high temperature heat exchanger 9 by the operation of the absorption liquid pump 10. Returned to vessel 1.
[00 23 ]
When the absorption refrigerator is operated as described above, the cold water flowing through the cold water / heat source water pipe 14 and entering the evaporator 5 is cooled by the heat of vaporization of the refrigerant in the evaporator 5, and the cooled cold water Can be circulated and supplied to a cooling load (not shown) via the cold water / heat source water pipe 14, so that a cooling operation such as cooling can be performed by triple effect with excellent thermal efficiency.
[00 24 ]
On the other hand, as shown in FIG. 1B, the on-off valves V3 and V7 are opened, the on-off valves V1 and V4 are closed, the absorption liquid pumps 10 and 11 and the refrigerant pump 13 are operated, and the cold water / heat source water pipe When natural gas or the like is burned in the burner 1A attached to the high-temperature regenerator 1 while flowing river water, exhaust hot water, etc. as heat source water, the absorption liquid is heated by the combustion heat in the high-temperature regenerator 1, The refrigerant vapor evaporated and separated from the absorption liquid and the concentrated absorption liquid are obtained.
[00 25 ]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the low-temperature regenerator 3 through the open / close valve V7, and absorbs the liquid in the low-temperature regenerator 3, that is, the heating in the high-temperature regenerator 1. As a result, the concentration of the absorbing solution is already increased once, and the absorbing solution supplied from the high-temperature regenerator 1 is heated through the high-temperature heat exchanger 9 and the on-off valve V3 to evaporate the refrigerant.
[00 26 ]
The refrigerant vapor evaporated and separated from the absorption liquid in the low-temperature regenerator 3 enters the condenser 4 and dissipates heat to the water flowing in the cooling water / hot water pipe 15 to condense, and the low-temperature regenerator 3 dissipates heat to the absorption liquid and condenses. Then, it enters the evaporator 5 together with the refrigerant liquid flowing from the low temperature regenerator 3.
[00 27 ]
The refrigerant liquid that has entered the evaporator 5 and accumulated at the bottom is sprayed from above by the refrigerant pump 13 and evaporates by taking heat from the heat source water flowing inside the cold water / heat source water pipe 14.
[00 28 ]
The refrigerant evaporated in the evaporator 5 enters the absorber 6, is heated by the low temperature regenerator 3, evaporates and separates the refrigerant, and is supplied via the absorbing liquid whose concentration of the absorbing liquid is further increased, that is, the low temperature heat exchanger 7. And absorbed by the absorbing liquid sprayed from above.
[00 29 ]
The absorption liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 6 passes through the low temperature heat exchanger 7, the medium temperature heat exchanger 8, and the high temperature heat exchanger 9 by the operation of the absorption liquid pump 10. Returned to
[00 30 ]
When the absorption refrigerator is operated as described above, the water flowing inside the cooling water / hot water pipe 15 is heated by the refrigerant vapor from the low temperature regenerator 3 through the low temperature heat exchanger 7 in the absorber 6. The absorption liquid flowing in is heated by the absorption heat that is generated when the refrigerant flowing in and evaporating from the evaporator 5 is absorbed, and in the condenser 4, the condensation heat of the refrigerant evaporating and flowing in the low temperature regenerator 3 Since the hot water heated by the low-temperature regenerator 3 and the absorbing liquid flowing in, and heated to, for example, about 55 ° C., can be circulated and supplied to a heating load (not shown) via the cooling water / hot water pipe 15. Heating operation such as heating can be performed by double effect with excellent thermal efficiency.
[00 31 ]
The check valve V2 provided on the absorption liquid outlet side may be a so-called on-off valve. The absorbing liquid pump 11 can be omitted.
[00 32 ]
[Second Embodiment]
A second embodiment will be described with reference to FIG. In order to facilitate understanding, in the absorption refrigerator of the second embodiment, parts having the same functions as those of the absorption refrigerator of the first embodiment shown in FIG. (The same applies to the third and subsequent embodiments).
[00 33 ]
The difference between the absorption refrigerator of the second embodiment and the absorption refrigerator of the first embodiment is in the order of circulation of the absorption liquid. That is, in the absorption refrigerator of the second embodiment, the absorption liquid that has absorbed the refrigerant and exited from the absorber 6 is absorbed into the absorption liquid pump during cooling operation such as cooling, as shown in FIG. 10 enters the intermediate temperature regenerator 2 via the low temperature heat exchanger 7 and the intermediate temperature heat exchanger 8, where the first heating / concentration is performed, and then the absorption liquid pump 12 passes through the high temperature heat exchanger 9. Then, it enters the high temperature regenerator 1, where the second heating and concentration is performed, and further enters the low temperature regenerator 3 via the high temperature heat exchanger 9 and the medium temperature heat exchanger 8, where the third heating and concentration is performed. After being carried out, the absorbent liquid pipe 11 is connected to the absorbent liquid pipe 11 so that it can be circulated back to the absorber 6 via the low-temperature heat exchanger 7.
[00 34 ]
In this case as well, an absorption liquid pipe having an on-off valve V3 is provided so that the absorption liquid can circulate around the intermediate temperature regenerator 2 and the intermediate temperature heat exchanger 8, and absorb the refrigerant during heating operation such as heating. As shown in FIG. 2 (B), the absorption liquid discharged from the absorber 6 passes through the low-temperature heat exchanger 7, the on-off valve V3, and the high-temperature heat exchanger 9 by the absorption liquid pump 10, and the high-temperature regenerator. 1, where the first heating / concentration was performed, and then the low temperature regenerator 3 was entered via the high temperature heat exchanger 9 and the intermediate temperature heat exchanger 8, where the second heating / concentration was performed. Thereafter, the absorption liquid pipe 11 is connected to the absorption liquid pump 11 so as to be able to circulate back to the absorber 6 via the low-temperature heat exchanger 7.
[00 35 ]
In the absorption refrigerator having the above configuration, cooling operation such as cooling can be performed by a triple effect with excellent thermal efficiency in summer, and hot water heated to about 55 ° C by a double effect operation with excellent thermal efficiency is loaded in winter. Heating operation such as heating that circulates and supplies air can be performed. In this case, the absorption liquid pump 11 can be omitted.
[00 36 ]
[Third Embodiment]
A third embodiment will be described with reference to FIG. The absorption refrigerator of the third embodiment is different from the absorption refrigerators of the first and second embodiments in the order in which the absorption liquid is circulated.
[00 37 ]
That is, in the absorption refrigerator of the third embodiment, the absorption liquid that has absorbed the refrigerant and exited from the absorber 6 is absorbed by the absorption liquid pump during cooling operation such as cooling, as shown in FIG. 10 enters the low-temperature regenerator 3 via the low-temperature heat exchanger 7, where the first heating / concentration is performed, followed by the absorption liquid pump 11 via the intermediate-temperature heat exchanger 8 and the high-temperature heat exchanger 9. Then, it enters the high temperature regenerator 1, where the second heating / concentration is performed, and further enters the intermediate temperature regenerator 2 via the high temperature heat exchanger 9, where the third heating / concentration is performed, An absorption liquid pipe is connected so as to be able to circulate back to the absorber 6 via the hot heat exchanger 8 and the low temperature heat exchanger 7.
[00 38 ]
In this case as well, an absorption liquid pipe having an on-off valve V3 is provided so that the absorption liquid can circulate around the intermediate temperature regenerator 2 and the intermediate temperature heat exchanger 8, and absorb the refrigerant during heating operation such as heating. Then, as shown in FIG. 3 (B), the absorbing liquid exiting from the absorber 6 enters the low-temperature regenerator 3 via the low-temperature heat exchanger 7 by the absorbing liquid pump 10, where the first heating and Concentration is performed, and then the absorption liquid pump 11 enters the high-temperature regenerator 1 via the intermediate temperature heat exchanger 8 and the high temperature heat exchanger 9, where the second heating / concentration is performed, and further the high temperature heat exchanger. 9. An absorption liquid pipe is connected so as to be able to circulate back to the absorber 6 via the on-off valve V3 and the low-temperature heat exchanger 7.
[00 39 ]
In the absorption refrigerator having the above configuration, cooling operation such as cooling can be performed by a triple effect with excellent thermal efficiency in summer, and hot water heated to about 55 ° C by a double effect operation with excellent thermal efficiency is loaded in winter. Heating operation such as heating that circulates and supplies air can be performed.
[00 40 ]
[Fourth Embodiment]
A fourth embodiment will be described with reference to FIG. The absorption refrigerator of the fourth embodiment is different from the absorption refrigerators of the first to third embodiments in the order in which the absorption liquid is circulated.
[00 41 ]
In other words, in the absorption refrigerator of the fourth embodiment, the absorption liquid that has absorbed the refrigerant and exited from the absorber 6 is absorbed by the absorption liquid pump during cooling operation such as cooling, as shown in FIG. 10 enters the low-temperature regenerator 3 via the low-temperature heat exchanger 7, where the first heating / concentration is performed, and then the intermediate temperature heat exchanger 8 and the on-off valve V 1 are used for the intermediate temperature by the absorbent pump 11. It entered into the regenerator 2, where the second heating / concentration was performed, and further, the absorption liquid pump 12 entered the high temperature regenerator 1 via the high temperature heat exchanger 9, where the third heating / concentration was performed. After that, the absorption liquid pipe is connected so as to be able to circulate back to the absorber 6 via the high temperature heat exchanger 9, the intermediate temperature heat exchanger 8, and the low temperature heat exchanger 7.
[00 42 ]
In this case as well, an absorption liquid pipe having an on-off valve V3 is provided so that the absorption liquid can circulate around the intermediate temperature regenerator 2 and the intermediate temperature heat exchanger 8, and absorb the refrigerant during heating operation such as heating. As shown in FIG. 4 (B), the absorbing liquid exiting from the absorber 6 enters the low-temperature regenerator 3 via the low-temperature heat exchanger 7 by the absorbing liquid pump 10, where the first heating and Concentration is performed, and then the absorption liquid pump 11 enters the high-temperature regenerator 1 via the on-off valve V3 and the high-temperature heat exchanger 9, where the second heating / concentration is performed, and the high-temperature heat exchanger 9, An absorption liquid pipe is connected so as to be able to circulate back to the absorber 6 via the intermediate temperature heat exchanger 8 and the low temperature heat exchanger 7.
[00 43 ]
In the absorption refrigerator having the above configuration, cooling operation such as cooling can be performed by a triple effect with excellent thermal efficiency in summer, and hot water heated to about 55 ° C by a double effect operation with excellent thermal efficiency is loaded in winter. Heating operation such as heating that circulates and supplies air can be performed.
[00 44 ]
[Fifth Embodiment]
A fifth embodiment will be described with reference to FIG. The absorption refrigerator of the fifth embodiment is different from the absorption refrigerators of the first to fourth embodiments in the order in which the absorption liquid is circulated.
[00 45 ]
That is, in the absorption refrigerator of the fifth embodiment, the absorption liquid that has absorbed the refrigerant and exited from the absorber 6 is absorbed into the absorption liquid pump during cooling operation such as cooling, as shown in FIG. 10 enters the low temperature regenerator 3 via the low temperature heat exchanger 7, enters the intermediate temperature regenerator 2 via the low temperature heat exchanger 7 and then via the intermediate temperature heat exchanger 8, After passing through the exchanger 7 and the intermediate temperature heat exchanger 8, it further branches to the one entering the high temperature regenerator 1 via the high temperature heat exchanger 9, and heating / concentration is performed in each regenerator. The absorption liquid heated and condensed after entering 1 is returned to the absorber 6 via the high temperature heat exchanger 9, the intermediate temperature heat exchanger 8, and the low temperature heat exchanger 7, and is then heated and condensed into the intermediate temperature regenerator 2. The absorbed liquid passes through the intermediate temperature heat exchanger 8 and the low temperature heat exchanger 7 by the absorption liquid pump 12. Returning to the absorber 6, the absorbing liquid heated and condensed after entering the low temperature regenerator 3 is connected to the absorbing liquid pipe 11 so that it can be circulated back to the absorber 6 via the low temperature heat exchanger 7 by the absorbing liquid pump 11. ing.
[00 46 ]
In this case, the absorbing liquid that has absorbed the refrigerant and exited from the absorber 6 during heating operation such as heating passes through the low-temperature heat exchanger 7 by the absorbing liquid pump 10 as shown in FIG. Branching into the low temperature regenerator 3 and the low temperature heat exchanger 7 and then the medium temperature heat exchanger 8 and the high temperature heat exchanger 9 into the high temperature regenerator 1. In the regenerator, the absorption liquid heated and condensed after entering the high temperature regenerator 1 is passed through the high temperature heat exchanger 9, the intermediate temperature heat exchanger 8 and the low temperature heat exchanger 7 to the absorber 6. The absorption liquid pipe that is returned to the low temperature regenerator 3 is connected to the absorption liquid pipe so that the absorption liquid heated and condensed can be circulated back to the absorber 6 via the low temperature heat exchanger 7 by the absorption liquid pump 11.
[00 47 ]
In the absorption refrigerator having the above configuration, cooling operation such as cooling can be performed by a triple effect with excellent thermal efficiency in summer, and hot water heated to about 55 ° C by a double effect operation with excellent thermal efficiency is loaded in winter. Heating operation such as heating that circulates and supplies air can be performed.
[00 48 ]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[00 49 ]
【The invention's effect】
As described above, according to the present invention, the hot water supply at about 55 ° C., which is about 10 ° C. higher than the conventional technology, can be supplied by the double-effect operation with excellent thermal efficiency. It was possible to blow out sufficiently hot air even at the start of the operation, and comfortable heating operation became possible. In addition, the cooling operation such as cooling is a triple effect operation, so that the thermal efficiency is high.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a device configuration of a first embodiment, wherein (A) is an explanatory diagram during cooling operation, and (B) is an explanatory diagram during heating operation.
FIGS. 2A and 2B are explanatory diagrams showing a device configuration of a second embodiment, in which FIG. 2A is an explanatory diagram during a cooling operation, and FIG. 2B is an explanatory diagram during a heating operation;
FIGS. 3A and 3B are explanatory diagrams showing a device configuration of a third embodiment, wherein FIG. 3A is an explanatory diagram during a cooling operation, and FIG. 3B is an explanatory diagram during a heating operation;
4A and 4B are explanatory diagrams showing a device configuration of a fourth embodiment, in which FIG. 4A is an explanatory diagram during a cooling operation, and FIG. 4B is an explanatory diagram during a heating operation;
FIGS. 5A and 5B are explanatory diagrams showing a device configuration of a fifth embodiment, in which FIG. 5A is an explanatory diagram during a cooling operation, and FIG. 5B is an explanatory diagram during a heating operation;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 1A Burner 2 Medium temperature regenerator 3 Low temperature regenerator 4 Condenser 5 Evaporator 6 Absorber 7 Low temperature heat exchanger 8 Medium temperature heat exchanger 9 High temperature heat exchanger 10,11,12 Absorption liquid pump 13 Refrigerant pump 14 Cold water / heat source water pipe 15 Cooling water / hot water pipe V1 On-off valve V2 Check valve V3 On-off valve V4 On-off valve V5 Check valve V6 Check valve V7 On-off valve

Claims (6)

吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えると共に、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器、中温熱交換器、低温熱交換器を備えた吸収冷凍機において、
中温再生器に接続した吸収液管の吸収液出入口部に逆止弁または開閉弁を設け、
吸収液が中温再生器と中温熱交換器とを迂回して循環可能に開閉弁を備えた吸収液管を設け、
高温再生器で吸収液から蒸発分離した冷媒蒸気を低温再生器の熱源として供給可能に高温再生器の冷媒蒸気出口と低温再生器の冷媒蒸気入口とを開閉弁が介在する冷媒管により接続し
吸収器と凝縮器とに冷却水を供給し、凝縮器で冷却水に放熱して凝縮した冷媒液を蒸発器で蒸発させ、その蒸発熱で冷却した冷水を供給する冷却運時には3重効用運転とし、蒸発器に河川水などの熱源流体を供給し、吸収器と凝縮器とを経由して加熱された温水を供給する加熱運転時には、2重効用運転とする切換弁機構が設けられた
ことを特徴とする吸収冷凍機。
As the regenerator that heats the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed, it is equipped with a high-temperature regenerator, medium-temperature regenerator, and low-temperature regenerator, and absorbs different temperatures In an absorption refrigerator equipped with a high temperature heat exchanger, a medium temperature heat exchanger, and a low temperature heat exchanger as a heat exchanger for heat exchange between liquids,
A check valve or on / off valve is provided at the absorption liquid inlet / outlet part of the absorption liquid pipe connected to the medium temperature regenerator,
An absorption liquid pipe with an on-off valve is provided so that the absorption liquid can circulate around the intermediate temperature regenerator and the intermediate temperature heat exchanger,
Connect the refrigerant vapor outlet of the high-temperature regenerator and the refrigerant vapor inlet of the low-temperature regenerator by a refrigerant pipe with an open / close valve so that the refrigerant vapor evaporated and separated from the absorption liquid in the high-temperature regenerator can be supplied as a heat source of the low-temperature regenerator ,
Cooling water is supplied to the absorber and the condenser, the refrigerant liquid that dissipates heat to the cooling water by the condenser is evaporated by the evaporator, and the cooling water that is cooled by the evaporation heat is supplied. A switching valve mechanism was provided for double-effect operation during the heating operation in which a heat source fluid such as river water is supplied to the evaporator and heated water is supplied via the absorber and the condenser. Absorption refrigerator characterized by.
冷却運転時に吸収器で冷媒を吸収した吸収液が高温再生器、中温再生器、低温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に、且つ、加熱運転時に吸収器で冷媒を吸収した吸収液が高温再生器、低温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に吸収液管が設けられたことを特徴とする請求項記載の吸収冷凍機。The absorbing liquid that has absorbed the refrigerant in the absorber during cooling operation flows in the order of the high-temperature regenerator, medium-temperature regenerator, and low-temperature regenerator, and the refrigerant can be evaporated and separated each time to return to the absorber. absorbing liquid high temperature generator which has absorbed refrigerant in the flow in the order of the low-temperature regenerator, according to claim 1, wherein the refluxing allow absorbed liquid pipe in each case evaporated separated by absorber the refrigerant is provided Absorption refrigerator. 冷却運転時に吸収器で冷媒を吸収した吸収液が中温再生器、高温再生器、低温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に、且つ、加熱運転時に吸収器で冷媒を吸収した吸収液が高温再生器、低温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に吸収液管が設けられたことを特徴とする請求項記載の吸収冷凍機。Absorbed liquid that has absorbed the refrigerant in the absorber during cooling operation flows in the order of medium temperature regenerator, high temperature regenerator, and low temperature regenerator, refrigerant can be evaporated and separated each time to return to the absorber, and absorber during heating operation absorbing liquid high temperature generator which has absorbed refrigerant in the flow in the order of the low-temperature regenerator, according to claim 1, wherein the refluxing allow absorbed liquid pipe in each case evaporated separated by absorber the refrigerant is provided Absorption refrigerator. 冷却運転時に吸収器で冷媒を吸収した吸収液が低温再生器、高温再生器、中温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に、且つ、加熱運転時に吸収器で冷媒を吸収した吸収液が低温再生器、高温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に吸収液管が設けられたことを特徴とする請求項記載の吸収冷凍機。The absorbing liquid that has absorbed the refrigerant in the absorber during the cooling operation flows in the order of the low-temperature regenerator, the high-temperature regenerator, and the medium-temperature regenerator, and the refrigerant can be evaporated and separated each time to be returned to the absorber. absorbing liquid low-temperature regenerator which has absorbed refrigerant in the flow in the order of the high-temperature regenerator of claim 1, wherein the refluxing allow absorbed liquid pipe in each case evaporated separated by absorber the refrigerant is provided Absorption refrigerator. 冷却運転時に吸収器で冷媒を吸収した吸収液が低温再生器、中温再生器、高温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に、且つ、加熱運転時に吸収器で冷媒を吸収した吸収液が低温再生器、高温再生器の順に流れ、冷媒をその都度蒸発分離して吸収器に還流可能に吸収液管が設けられたことを特徴とする請求項記載の吸収冷凍機。The absorbing liquid that has absorbed the refrigerant in the absorber during the cooling operation flows in the order of the low temperature regenerator, the medium temperature regenerator, and the high temperature regenerator, and the refrigerant can be evaporated and separated each time to be returned to the absorber. absorbing liquid low-temperature regenerator which has absorbed refrigerant in the flow in the order of the high-temperature regenerator of claim 1, wherein the refluxing allow absorbed liquid pipe in each case evaporated separated by absorber the refrigerant is provided Absorption refrigerator. 吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えると共に、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器、中温熱交換器、低温熱交換器を備えた吸収冷凍機において、
中温再生器に接続した吸収液管の吸収液出入口部に逆止弁または開閉弁を設け、
高温再生器で吸収液から蒸発分離した冷媒蒸気を低温再生器の熱源として供給可能に高温再生器の冷媒蒸気出口と低温再生器の冷媒蒸気入口とを開閉弁が介在する冷媒管により接続すると共に、
吸収器と凝縮器とに冷却水を供給し、凝縮器で冷却水に放熱して凝縮した冷媒液を蒸発器で蒸発させ、その蒸発熱で冷却した冷水を供給する冷却運時に吸収器で冷媒を吸収した吸収液が分岐して高温再生器、中温再生器、低温再生器それぞれに流れ、各再生器で冷媒を蒸発分離して吸収器に還流する3重効用運転とし、且つ、
蒸発器に河川水などの熱源流体を供給し、吸収器と凝縮器とを経由して加熱された温水を供給する加熱運転時に吸収器で冷媒を吸収した吸収液が分岐して高温再生器と低温再生器とに流れ、各再生器で冷媒を蒸発分離して吸収器に還流する2重効用運転可能に吸収液管を設けた
ことを特徴とする吸収冷凍機。
As the regenerator that heats the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed, it is equipped with a high-temperature regenerator, medium-temperature regenerator, and low-temperature regenerator, and absorbs different temperatures In an absorption refrigerator equipped with a high temperature heat exchanger, a medium temperature heat exchanger, and a low temperature heat exchanger as a heat exchanger for heat exchange between liquids,
A check valve or on / off valve is provided at the absorption liquid inlet / outlet part of the absorption liquid pipe connected to the medium temperature regenerator,
Connect the refrigerant vapor outlet of the high-temperature regenerator and the refrigerant vapor inlet of the low-temperature regenerator through a refrigerant pipe with an on-off valve so that the refrigerant vapor evaporated and separated from the absorbent in the high-temperature regenerator can be supplied as a heat source for the low-temperature regenerator. ,
Cooling water is supplied to the absorber and the condenser, the refrigerant liquid that dissipates heat to the cooling water by the condenser is evaporated by the evaporator, and the cold water cooled by the evaporation heat is supplied. A three-effect operation in which the absorption liquid that has absorbed the water branches and flows to each of the high-temperature regenerator, the medium-temperature regenerator, and the low-temperature regenerator, evaporates and separates the refrigerant in each regenerator and returns to the absorber;
The heat source fluid such as river water is supplied to the evaporator, and the hot water heated via the absorber and the condenser is supplied to the high temperature regenerator. An absorption refrigerator comprising an absorption liquid pipe that is capable of a double effect operation that flows to a low-temperature regenerator, evaporates and separates refrigerant in each regenerator, and returns to the absorber.
JP2001169577A 2001-06-05 2001-06-05 Absorption refrigerator Expired - Fee Related JP4596683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169577A JP4596683B2 (en) 2001-06-05 2001-06-05 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169577A JP4596683B2 (en) 2001-06-05 2001-06-05 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2002364940A JP2002364940A (en) 2002-12-18
JP4596683B2 true JP4596683B2 (en) 2010-12-08

Family

ID=19011632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169577A Expired - Fee Related JP4596683B2 (en) 2001-06-05 2001-06-05 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4596683B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885467B2 (en) * 2005-03-25 2012-02-29 川重冷熱工業株式会社 Absorption heat pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152362A (en) * 1989-11-10 1991-06-28 Ebara Corp Absorption refrigerator
JPH05203279A (en) * 1992-01-30 1993-08-10 Hitachi Ltd Absorption solution and absorption type heat conversion device based on its application
JPH08159594A (en) * 1994-12-06 1996-06-21 Nippondenso Co Ltd Multiple effect absorption refrigerator
JP2000055497A (en) * 1998-08-05 2000-02-25 Hitachi Ltd Triple effect absorption type refrigerator
JP2001012831A (en) * 1999-06-28 2001-01-19 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine/hot and chilled water generator with safety device
JP2002071239A (en) * 2000-08-28 2002-03-08 National Institute Of Advanced Industrial & Technology Multiple effect absorption refrigerating machine and its operating method
JP2002286320A (en) * 2001-03-27 2002-10-03 Tokyo Gas Co Ltd Steam heating absorption chiller-heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152362A (en) * 1989-11-10 1991-06-28 Ebara Corp Absorption refrigerator
JPH05203279A (en) * 1992-01-30 1993-08-10 Hitachi Ltd Absorption solution and absorption type heat conversion device based on its application
JPH08159594A (en) * 1994-12-06 1996-06-21 Nippondenso Co Ltd Multiple effect absorption refrigerator
JP2000055497A (en) * 1998-08-05 2000-02-25 Hitachi Ltd Triple effect absorption type refrigerator
JP2001012831A (en) * 1999-06-28 2001-01-19 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine/hot and chilled water generator with safety device
JP2002071239A (en) * 2000-08-28 2002-03-08 National Institute Of Advanced Industrial & Technology Multiple effect absorption refrigerating machine and its operating method
JP2002286320A (en) * 2001-03-27 2002-10-03 Tokyo Gas Co Ltd Steam heating absorption chiller-heater

Also Published As

Publication number Publication date
JP2002364940A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP3287131B2 (en) Absorption chiller / heater
KR20020035770A (en) Absorbed refrigerator
JP4184197B2 (en) Hybrid absorption heat pump system
JP4596683B2 (en) Absorption refrigerator
JPH0794933B2 (en) Air-cooled absorption air conditioner
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP4179799B2 (en) Absorption refrigerator
JP4553523B2 (en) Absorption refrigerator
JP4553522B2 (en) Absorption refrigerator
JP4562323B2 (en) Absorption refrigerator
JP2005106408A (en) Absorption type freezer
JP4562325B2 (en) Absorption refrigerator
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JP4212083B2 (en) Exhaust heat input type single-effect absorption chiller / heater
JP2865305B2 (en) Absorption refrigerator
JP4260095B2 (en) Single double effect absorption refrigerator
JP3851136B2 (en) Absorption refrigerator
JPH1038402A (en) Steam-heating absorption type water cooler/heater
JP4557468B2 (en) Absorption refrigerator
JP2543258B2 (en) Absorption heat source device
JP4282225B2 (en) Absorption refrigerator
KR0137580Y1 (en) Cooling apparatus of liquid refrigerator absorptive airconditioner
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JPS5829819Y2 (en) Absorption heat pump
JP4212084B2 (en) Exhaust heat input type single-effect absorption chiller / heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees