JP4593502B2 - Method of reducing and firing metal oxide particles or surface oxide film of metal particles and method of forming conductive parts - Google Patents

Method of reducing and firing metal oxide particles or surface oxide film of metal particles and method of forming conductive parts Download PDF

Info

Publication number
JP4593502B2
JP4593502B2 JP2006085910A JP2006085910A JP4593502B2 JP 4593502 B2 JP4593502 B2 JP 4593502B2 JP 2006085910 A JP2006085910 A JP 2006085910A JP 2006085910 A JP2006085910 A JP 2006085910A JP 4593502 B2 JP4593502 B2 JP 4593502B2
Authority
JP
Japan
Prior art keywords
metal
firing
particles
metal oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006085910A
Other languages
Japanese (ja)
Other versions
JP2007262446A (en
Inventor
琢也 原田
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2006085910A priority Critical patent/JP4593502B2/en
Publication of JP2007262446A publication Critical patent/JP2007262446A/en
Application granted granted Critical
Publication of JP4593502B2 publication Critical patent/JP4593502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プリント配線基板や電子実装部品(基板等)の製造に用いる金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法及び導電部品の形成方法であって、特に導電路、バンプ、立体金属配線パターン、アンテナパターン、熱伝導路あるいは触媒電極等の導電部品の製造に用いる金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法及び導電部品の形成方法に関する。   The present invention is a method for reducing and firing metal oxide particles or a surface oxide film of metal particles used in the manufacture of printed wiring boards and electronic mounting parts (boards, etc.) and a method for forming conductive parts, particularly conductive paths, bumps, The present invention relates to a reduction firing method of metal oxide particles or a surface oxide film of metal particles used for manufacturing a conductive component such as a three-dimensional metal wiring pattern, an antenna pattern, a heat conduction path, or a catalyst electrode, and a method of forming a conductive component.

金属(あるいは金属酸化物)微細粒子の製造技術、独立分散技術、さらには、超微量インクジェット、精密スクリーン印刷、ナノプリンティング、ナノインプリンティングによる微細配線パターニング技術が、近年著しく進展しているのに伴い、それら技術を応用した直接回路描画法が次世代の電子実装部品形成技術として大いに注目されている。   Along with the recent significant progress in metal (or metal oxide) fine particle manufacturing technology, independent dispersion technology, and micro wiring patterning technology using ultra-micro inkjet, precision screen printing, nanoprinting and nanoimprinting The direct circuit drawing method applying these technologies is attracting much attention as the next generation electronic component forming technology.

この直接回路描画法は、それまでリゾグラフィーやエッチングといった複雑な工程を経て製造されていた電子実装部品を、金属(あるいは金属酸化物)粒子の直接描画→焼成→相互融着→導電化といった工程で製造するという手法であり、その詳細については非特許文献1の第71頁に記載されている。この手法の確立により、導電回路パターン、バンプ、パッド、ビア、アンテナパターンやその他の電子実装部品を、安価かつ簡便に製造することが可能になると期待されている。さらには、電子実装部品の熱伝導路としての利用も検討されている。   This direct circuit drawing method is a process of direct drawing of metal (or metal oxide) particles → firing → mutual fusion → electrical conduction of electronic mounting parts that have been manufactured through complicated processes such as lithography and etching. The details are described on page 71 of Non-Patent Document 1. By establishing this method, it is expected that conductive circuit patterns, bumps, pads, vias, antenna patterns and other electronic mounting parts can be manufactured inexpensively and easily. Furthermore, the use of electronic mounting parts as a heat conduction path is also being studied.

上記の直接回路描画法に使用される微細粒子として、従来は金もしくは銀からなるナノ粒子が用いられることが多かった。しかしながら、金のナノ粒子を用いる場合は、金自体の材料価格が非常に高価なため、これを用いて形成される電子部品も高価になってしまうといった問題があり、また銀のナノ粒子を用いる場合には、エレクトロマイグレーション現象に起因する断線等の問題を解決しなければならないといった課題が指摘されてきた。   Conventionally, nanoparticles made of gold or silver are often used as the fine particles used in the direct circuit drawing method. However, when gold nanoparticles are used, the material price of gold itself is very expensive, so that there is a problem that electronic parts formed using the gold nanoparticles are also expensive, and silver nanoparticles are used. In some cases, it has been pointed out that a problem such as disconnection caused by the electromigration phenomenon must be solved.

これに対し近年は、上記の金、銀に代わる微細粒子として、安価でかつエレクトロマイグレーションも少ない銅ナノ粒子の利用が検討されている。しかしながら、銅は、貴金属の金・銀と異なって酸化しやすく、室温でも空気中の酸素と容易に反応して表面に酸化被膜を形成してしまうことが知られている。特に、表面積比率の高い微粒子状の銅の場合には、空気中であってもほぼ全体が酸化銅になってしまう。   On the other hand, in recent years, the use of copper nanoparticles that are inexpensive and have low electromigration as fine particles to replace the above gold and silver has been studied. However, it is known that copper is easily oxidized unlike the noble metals gold and silver, and easily reacts with oxygen in the air even at room temperature to form an oxide film on the surface. In particular, in the case of finely divided copper having a high surface area ratio, almost the whole becomes copper oxide even in the air.

そこで、上記の直接回路描画法において、銅などの酸化されやすい金属を用いて良好な導電性を有する導電部品等を形成するためには、表面もしくは全体が酸化された金属微粒子(金属酸化物微粒子)の酸化物をまず還元する必要があり、その上で粒子同士を焼成(相互融着)する必要がある。   Therefore, in the direct circuit drawing method described above, in order to form a conductive part having good conductivity using a metal that is easily oxidized such as copper, metal fine particles (metal oxide fine particles) whose surface or the whole is oxidized are formed. ) Oxide must first be reduced, and then the particles must be fired (mutual fusion).

上記の酸化物粒子を還元・相互融着させる方法として、まず、水素ガス、一酸化窒素ガスをはじめとする還元性気体を用いる方法がある。例えば、特許文献1では、水素ガスまたは水素ガスと不活性ガスとの混合ガス中において、500℃以下の温度で熱処理する方法が開示されている。また、特許文献2では、水素、アンモニア、一酸化炭素あるいはその混合気体中でプラズマを生起・反応させる方法が紹介されている。
同じく酸化物粒子を還元・相互融着させる別の方法として、各種還元剤を混合する方法がある。例えば、特許文献2の技術背景として、水素化ホウ素誘導体等の還元剤を酸化銅に添加して熱処理する方法が記載されている。また、特許文献3では、カーボン材料をはじめとする電磁波吸収性の優れた焼結助剤を混合した後、不活性雰囲気において高周波電磁波を照射する方法が紹介されている。
Nikkei Electronics、Vol.67、No824(2002)、p67−78 特開H10−294018号公報 特開2004−119686号公報 特願2005−082082号公報
As a method for reducing and mutually fusing the above oxide particles, first, there is a method using a reducing gas such as hydrogen gas and nitrogen monoxide gas. For example, Patent Document 1 discloses a method of performing a heat treatment at a temperature of 500 ° C. or less in hydrogen gas or a mixed gas of hydrogen gas and inert gas. Patent Document 2 introduces a method for generating and reacting plasma in hydrogen, ammonia, carbon monoxide, or a mixed gas thereof.
Similarly, as another method for reducing and mutually fusing oxide particles, there is a method of mixing various reducing agents. For example, as a technical background of Patent Document 2, a method of adding a reducing agent such as a borohydride derivative to copper oxide and performing a heat treatment is described. Patent Document 3 introduces a method of irradiating a high-frequency electromagnetic wave in an inert atmosphere after mixing a sintering aid having excellent electromagnetic wave absorption such as a carbon material.
Nikkei Electronics, Vol. 67, No824 (2002), p67-78. JP H10-294018 A JP 2004-119686 A Japanese Patent Application No. 2005-082082

しかしながら、上記従来の酸化物粒子の還元・相互融着方法では、以下のような問題があった。
特許文献3に記載の方法では、焼成温度を高くする必要があるため、実装部品の形成に使用できる基板材料が、耐熱温度の高い材料に限定されてしまうといった問題があった。また特許文献1に記載の方法では、高価なプラズマ発生装置を用いる必要があり、また基板上に塗布された酸化物粒子にプラズマを照射した場合、該プラズマによって基板材料が劣化してしまう恐れがあることが知られている。
However, the conventional oxide particle reduction / mutual fusion method has the following problems.
In the method described in Patent Document 3, since it is necessary to increase the firing temperature, there is a problem that the substrate material that can be used for forming the mounted component is limited to a material having a high heat resistance temperature. Further, in the method described in Patent Document 1, it is necessary to use an expensive plasma generator, and when the oxide particles applied on the substrate are irradiated with plasma, the plasma may cause deterioration of the substrate material. It is known that there is.

さらに、特許文献1に記載の水素化ホウ素誘導体を混合する方法では、400℃以上に高温加熱する必要があり、上記と同様、使用可能な基板材料が耐熱温度の高い材料に限定されてしまうといった問題があった。また特許文献2に記載の方法では、高価な高周波電磁波発生装置が必要となるのに加えて、高周波電磁波の照射により、基板上に配置された他の電子部品が劣化損傷してしまう恐れがあることが知られている。   Furthermore, in the method of mixing the borohydride derivative described in Patent Document 1, it is necessary to heat at a high temperature of 400 ° C. or higher, and the usable substrate material is limited to a material having a high heat resistant temperature, as described above. There was a problem. Further, in the method described in Patent Document 2, in addition to the need for an expensive high-frequency electromagnetic wave generator, there is a risk that other electronic components arranged on the substrate may be deteriorated and damaged by the irradiation of the high-frequency electromagnetic wave. It is known.

そこで、本発明は上記に鑑みてなされたものであり、耐熱温度の低い基板を溶融することなく、塗布またはパターニングされた前記金属酸化物粒子を還元焼成することで、導電性の配線パターンもしくは低抵抗の実装部品を安価に形成することが可能な金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法及び導電部品の形成方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above, and by reducing and firing the coated or patterned metal oxide particles without melting a substrate having a low heat-resistant temperature, a conductive wiring pattern or a low wiring pattern can be obtained. It is an object of the present invention to provide a method for reducing and firing metal oxide particles or a surface oxide film of metal particles and a method for forming a conductive component that can form a resistance-mounted component at low cost.

この発明の第1の態様は、有機物保護材で表面が被覆された金属酸化物粒子もしくは表面酸化被膜を有する金属粒子と、カーボンブラック、カーボンナノチューブ、VGCF(気相成長カーボンファイバー)、カーボンフラーレンの少なくともいずれか一つを含むカーボン材料との混合物を、酸素を含有した酸化性ガス中(以下では酸化性雰囲気という)で第1焼成し、さらに不活性ガス中(以下では不活性雰囲気という)で第2焼成することを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   According to a first aspect of the present invention, a metal oxide particle or a metal particle having a surface oxide film whose surface is coated with an organic material protective material, carbon black, carbon nanotube, VGCF (vapor-grown carbon fiber), carbon fullerene A mixture with a carbon material containing at least one of them is first fired in an oxidizing gas containing oxygen (hereinafter referred to as an oxidizing atmosphere), and further in an inert gas (hereinafter referred to as an inert atmosphere). The second firing method is a reduction firing method for metal oxide particles or a surface oxide film of metal particles.

第2の態様は、前記酸化性雰囲気の酸素濃度が0.1%(原子数%、以下同じ)以上50%以下であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   In a second aspect, the oxygen concentration of the oxidizing atmosphere is 0.1% (number of atoms, the same shall apply hereinafter) or more and 50% or less, and the reduction of the metal oxide particles or the surface oxide film of the metal particles is characterized in that It is a firing method.

第3の態様は、前記酸化性雰囲気の酸素濃度が0.5%以上25%以下であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   A third aspect is a method for reducing and firing metal oxide particles or a surface oxide film of metal particles, wherein the oxygen concentration in the oxidizing atmosphere is 0.5% or more and 25% or less.

第4の態様は、前記不活性雰囲気に含まれる不活性ガスが、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノンのいずれか、もしくは前記不活性ガスの混合気体であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   In a fourth aspect, the inert gas contained in the inert atmosphere is one of nitrogen, helium, neon, argon, krypton, and xenon, or a mixed gas of the inert gas. This is a reduction firing method for surface oxide coatings of product particles or metal particles.

第5の態様は、前記不活性雰囲気に含まれる不活性ガスが、窒素またはアルゴンもしくはその混合気体であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   A fifth aspect is a method for reducing and firing metal oxide particles or a surface oxide film of metal particles, wherein the inert gas contained in the inert atmosphere is nitrogen, argon, or a mixed gas thereof.

第6の態様は、前記酸化性雰囲気での第1焼成の温度が100℃以上500℃以下であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   A sixth aspect is a method for reducing and firing metal oxide particles or a surface oxide film of metal particles, wherein the temperature of the first firing in the oxidizing atmosphere is 100 ° C. or more and 500 ° C. or less.

第7の態様は、前記酸化性雰囲気での第1焼成の温度が150℃以上450℃以下であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   A seventh aspect is a method for reducing and firing metal oxide particles or a surface oxide film of metal particles, wherein the temperature of the first firing in the oxidizing atmosphere is 150 ° C. or higher and 450 ° C. or lower.

第8の態様は、前記不活性雰囲気での第2焼成の温度が150℃以上であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   An eighth aspect is a method for reducing and firing metal oxide particles or a surface oxide film of metal particles, wherein the temperature of the second firing in the inert atmosphere is 150 ° C. or higher.

第9の態様は、前記不活性雰囲気での第2焼成の温度が200℃以上であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   A ninth aspect is a method for reducing and firing metal oxide particles or a surface oxide film of metal particles, wherein the temperature of the second firing in the inert atmosphere is 200 ° C. or higher.

第10の態様は、前記金属酸化物粒子が酸化銅、酸化銀粒子、酸化ニッケルのいずれかである、もしくは前記表面酸化被膜を有する金属粒子が銅、銀、ニッケルのいずれかであることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   In a tenth aspect, the metal oxide particles are any one of copper oxide, silver oxide particles, and nickel oxide, or the metal particles having the surface oxide film are any one of copper, silver, and nickel. The metal oxide particles or the surface oxide coating of metal particles is reduced and fired.

第11の態様は、前記金属酸化物粒子もしくは前記金属粒子の平均粒径が1nm〜100nmの微粒子であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜還元焼成方法である。   An eleventh aspect is a method for reducing and firing a surface oxide film of metal oxide particles or metal particles, wherein the metal oxide particles or the metal particles are fine particles having an average particle diameter of 1 nm to 100 nm.

第12の態様は、前記有機物保護材が、金属酸化物と化学的もしくは物理的に結合、吸着する化合物であることを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法である。   A twelfth aspect is a method for reducing and firing metal oxide particles or a surface oxide film of metal particles, wherein the organic protective material is a compound that chemically or physically binds to and adsorbs to a metal oxide. is there.

第13の態様は、有機物保護材で表面が被覆された金属酸化物粒子もしくは表面酸化被膜を有する金属粒子と、カーボンブラック、カーボンナノチューブ、VGCF、カーボンフラーレンの少なくともいずれか一つを含むカーボン材料との混合物を、基板上に塗布もしくは表面パターニングした後、第1の態様から第7の態様のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法を用いて焼成することを特徴とする導電部品の形成方法である。   In a thirteenth aspect, a metal oxide particle whose surface is coated with an organic protective material or a metal particle having a surface oxide film, and a carbon material containing at least one of carbon black, carbon nanotube, VGCF, and carbon fullerene, After the mixture is applied onto the substrate or subjected to surface patterning, firing is performed using the method for reducing and firing the metal oxide particles or the surface oxide film of the metal particles according to any one of the first to seventh embodiments. And forming a conductive component.

第14の態様は、前記基板が酸化物、ガラス、セラミックス、金属、半導体、プラスチックのいずれか一つからなることを特徴とする導電部品の形成方法である。   A fourteenth aspect is a method for forming a conductive component, wherein the substrate is made of any one of oxide, glass, ceramics, metal, semiconductor, and plastic.

以上説明したように本発明によれば、第1焼成により予め粒子表面に形成された有機被膜を除去した上で、第2焼成により金属粒子の全体あるいは表面に形成された金属酸化物を還元するようにしたことから、導電性の優れた導電部品を形成することが可能となる。   As described above, according to the present invention, after removing the organic film previously formed on the particle surface by the first baking, the metal oxide formed on the whole or the surface of the metal particles by the second baking is reduced. Since it did in this way, it becomes possible to form the electrically conductive component excellent in electroconductivity.

ガラスエポキシ等の耐熱温度の低い基板上においても、塗布またはパターニングされた前記金属酸化物粒子を、基板を溶融することなく還元焼成することで、導電性の配線パターンもしくは低抵抗の実装部品を安価に形成することが可能となる。   Even on substrates with low heat resistance, such as glass epoxy, the metal oxide particles that have been coated or patterned can be reduced and fired without melting the substrate, thereby reducing the cost of conductive wiring patterns or low-resistance mounting components. Can be formed.

図面を参照して本発明の好ましい実施の形態における金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法及び導電部品の形成方法について詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。   A method for reducing and firing metal oxide particles or a surface oxide film of metal particles and a method for forming a conductive component in a preferred embodiment of the present invention will be described in detail with reference to the drawings. In addition, about each structural part which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description.

図1は、本発明の実施の形態に係る金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法を示す工程図である。同図において、第一の工程10では、有機物保護材で表面が被覆された金属酸化物粒子もしくは表面酸化被膜を有する金属粒子と、カーボンブラック、カーボンナノチューブ、VGCF(気相成長カーボンファイバー)、カーボンフラーレンの少なくともいずれか一つを含むカーボン材料との混合物を生成する。   FIG. 1 is a process diagram showing a method for reducing and firing metal oxide particles or a surface oxide film of metal particles according to an embodiment of the present invention. In the figure, in the first step 10, metal oxide particles whose surface is coated with an organic protective material or metal particles having a surface oxide film, carbon black, carbon nanotubes, VGCF (vapor-grown carbon fiber), carbon A mixture with a carbon material containing at least one of fullerenes is produced.

次の第二の工程20では、第一の工程10で生成した前記混合物60を所定の基板50の上に塗布する。あるいは、混合物60で基板50上に表面パターニングする。基板50として、酸化物、ガラス、セラミックス、金属、半導体、プラスチックのいずれか一つを用いることができる。   In the next second step 20, the mixture 60 generated in the first step 10 is applied onto a predetermined substrate 50. Alternatively, surface patterning is performed on the substrate 50 with the mixture 60. As the substrate 50, any one of oxide, glass, ceramics, metal, semiconductor, and plastic can be used.

第三の工程30では、酸素を含有した酸化性ガス中(酸化性雰囲気)において、基板50上に塗布または表面パターニングされた混合物60を第1焼成する。本実施形態では、第三の工程30における第1焼成により、ナノ粒子表面に形成された有機被膜を酸化分解させるのが特徴である。   In the third step 30, the mixture 60 applied or surface-patterned on the substrate 50 is first baked in an oxygen-containing oxidizing gas (oxidizing atmosphere). The present embodiment is characterized in that the organic coating formed on the nanoparticle surface is oxidatively decomposed by the first baking in the third step 30.

前記酸化性雰囲気における酸素以外の成分としては、ガス全体の酸化性を変化させないものであれば何でも良い。しかしながら、好ましくは他の不要な化合物が生成する恐れが少ない窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、もしくはそれらの混合気体、より好ましくは窒素、アルゴンもしくはその混合気体とするのがよい。   Any component other than oxygen in the oxidizing atmosphere may be used as long as it does not change the oxidizing property of the entire gas. However, it is preferable to use nitrogen, helium, neon, argon, krypton, xenon, or a mixed gas thereof, more preferably nitrogen, argon, or a mixed gas thereof, which is less likely to generate other unnecessary compounds.

第四の工程40では、第三の工程30で第1焼成された基板50上の混合物60を、さらに不活性ガス中で第2焼成する。
上記説明の本実施形態の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法によれば、第三の工程30の第1焼成により予め粒子表面に形成された有機被膜を除去した上で、第四の工程40の第2焼成により金属粒子の全体あるいは表面に形成された金属酸化物を還元するようにしたことから、導電性の優れた導電部品を形成することが可能となる。
In the fourth step 40, the mixture 60 on the substrate 50 fired first in the third step 30 is further subjected to second firing in an inert gas.
According to the reduction firing method of the metal oxide particles or the surface oxide coating of the metal particles of the present embodiment described above, the organic coating previously formed on the particle surface by the first firing of the third step 30 is removed. Since the metal oxide formed on the whole or the surface of the metal particles is reduced by the second firing in the fourth step 40, it is possible to form a conductive component having excellent conductivity.

混合物60に用いるカーボン材料として、カーボンブラック、カーボンナノチューブ、VGCF、カーボンフラーレンの少なくともいずれか一つを用いるのがよい。特に、絶縁性のカーボンフラーレンより、カーボンブラック、カーボンナノチューブ、VGCFなどの導電性カーボンの方が、金属酸化物に対する還元効果がより顕著なことから、混合物60に用いるカーボン材料としてより好ましい。   As a carbon material used for the mixture 60, it is preferable to use at least one of carbon black, carbon nanotube, VGCF, and carbon fullerene. In particular, conductive carbon such as carbon black, carbon nanotube, and VGCF is more preferable as the carbon material used for the mixture 60 than the insulating carbon fullerene because the reduction effect on the metal oxide is more remarkable.

本発明の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法による効果を、実施例を用いて以下に説明する。ここでは、酸化されやすい金属として銅を選択し、金属微粒子の一例として表面酸化被膜を有する銅ナノ粒子(独立分散型Cuナノメタルインク、平均粒径10nm)を用いる。また、カーボン材料としてカーボンブラック粉末(活性炭)を用い、前記銅ナノ粒子との混合割合を重量比で、前記銅ナノ粒子:前記カーボンブラック粉末=24:1としている。   The effect of the reduction firing method of the metal oxide particles or the surface oxide film of the metal particles of the present invention will be described below using examples. Here, copper is selected as a metal that is easily oxidized, and copper nanoparticles having a surface oxide film (independently dispersed Cu nanometal ink, average particle size of 10 nm) are used as an example of metal fine particles. Further, carbon black powder (activated carbon) is used as a carbon material, and the mixing ratio with the copper nanoparticles is set to the copper nanoparticles: carbon black powder = 24: 1 by weight ratio.

まず、上記実施形態の第三の工程30で行われる第1焼成の効果を確認した結果について、以下に説明する。第三の工程30では、酸化性雰囲気の中で第1焼成を行っている。そこで、第三の工程30の第1焼成を行う本実施形態と、これを行わない従来例との比較結果を以下に示す。   First, the result of confirming the effect of the first firing performed in the third step 30 of the above embodiment will be described below. In the third step 30, the first baking is performed in an oxidizing atmosphere. Therefore, a comparison result between the present embodiment in which the first baking in the third step 30 is performed and a conventional example in which this is not performed is shown below.

前記銅ナノ粒子と前記カーボンブラック粉末との混合物を石英硝子基板上に塗布したものを2枚用意し、下記の通り、2種類の熱処理を行った。すなわち、一方の前記基板には第1焼成と第2焼成の2段階の熱処理を行い、他方の前記基板には第2焼成のみの1段階の熱処理を行った。   Two sheets of a mixture of the copper nanoparticles and the carbon black powder coated on a quartz glass substrate were prepared, and two types of heat treatment were performed as follows. That is, one of the substrates was subjected to a two-step heat treatment of the first firing and the second firing, and the other substrate was subjected to a one-step heat treatment of only the second firing.

前記一方の基板は、雰囲気が窒素ガス比率95%、酸素ガス比率5%となるよう調整された電気炉内に入れられ、内部温度を300℃にして30分間保持された(第1焼成)。その後、雰囲気が窒素ガス比率100%に調整された別の電気炉に入れられ、内部温度を300℃にしてさらに30分間保持された(第2焼成)後、炉冷された。   The one substrate was placed in an electric furnace whose atmosphere was adjusted to a nitrogen gas ratio of 95% and an oxygen gas ratio of 5%, and the internal temperature was kept at 300 ° C. for 30 minutes (first firing). Then, the atmosphere was put into another electric furnace adjusted to a nitrogen gas ratio of 100%, the internal temperature was set to 300 ° C. and held for another 30 minutes (second firing), and then the furnace was cooled.

これに対し前記他方の基板は、雰囲気を窒素ガス比率100%に調整された前記別の電気炉に入れられ、内部温度を300℃にして30分間保持された後、さらに同じ窒素ガス比率100%の雰囲気中に300℃で30分間保持され、その後炉冷された。すなわち、前記他方の基板は、前記別の電気炉内で合計1時間の第2焼成のみが行われた。   On the other hand, the other substrate is placed in the other electric furnace whose atmosphere is adjusted to a nitrogen gas ratio of 100%, held at an internal temperature of 300 ° C. for 30 minutes, and then the same nitrogen gas ratio of 100%. Was kept at 300 ° C. for 30 minutes in the atmosphere, and then cooled in the furnace. That is, the second substrate was only subjected to second baking for a total of 1 hour in the separate electric furnace.

上記のように熱処理された前記2枚の基板に対し、各々の前記混合物が塗布された部分を粉末X線回折装置(XRD)を用いて測定し、それぞれの結晶構造を同定した。同定した結果を表1に示す。

Figure 0004593502
Each of the two substrates subjected to the heat treatment as described above was measured using a powder X-ray diffractometer (XRD) to identify each crystal structure. The identified results are shown in Table 1.
Figure 0004593502

上記同定結果より、第1焼成と第2焼成の2段階の熱処理を行った場合には、銅酸化物が効率的に還元されていることが確認できた。これにより、カーボン材料を用いた本発明の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法は、酸化性雰囲気における第1焼成を行うようにしたことにより、金属酸化物粒子の還元を効果よく行うことができることが確認できた。   From the above identification results, it was confirmed that the copper oxide was efficiently reduced when the two-step heat treatment of the first firing and the second firing was performed. As a result, the reduction firing method of the metal oxide particles or the surface oxide coating of the metal particles according to the present invention using the carbon material reduces the metal oxide particles by performing the first firing in an oxidizing atmosphere. It was confirmed that it can be performed effectively.

なお、熱処理後の前記基板上には、未反応のカーボン材料が残留していると考えられるが、上記の粉末X線回折による測定結果には、前記カーボン材料の存在を示す顕著なピークは確認されなかった。これは、前記カーボン材料に用いたカーボンブラックの結晶構造が、非晶質状態であったことに起因するものと考えられる。   In addition, although it is thought that the unreacted carbon material remains on the substrate after the heat treatment, a remarkable peak indicating the presence of the carbon material is confirmed in the measurement result by the powder X-ray diffraction. Was not. This is considered due to the fact that the crystal structure of carbon black used for the carbon material was in an amorphous state.

次に、前記カーボン材料の有無により、金属酸化物の還元性にどのような影響を与えるかを確認した結果を以下に説明する。ここでは、前記銅ナノ粒子と前記カーボンブラック粉末との混合物を石英硝子基板上に塗布したものと、前記銅ナノ粒子のみを石英硝子基板に塗布した2種類のサンプルを用意し、それぞれに対し前記第1焼成と第2焼成の2段階の熱処理を行っている。   Next, the result of confirming how the presence or absence of the carbon material affects the reducibility of the metal oxide will be described below. Here, two types of samples prepared by applying a mixture of the copper nanoparticles and the carbon black powder on a quartz glass substrate and two samples obtained by applying only the copper nanoparticles to the quartz glass substrate are prepared. Two-stage heat treatment is performed, ie, first firing and second firing.

前記2段階の熱処理を行った後、前記混合物あるいは前記銅ナノ粒子が塗布された部分を粉末X線回折装置(XRD)を用いて測定し、それぞれの結晶構造を同定した。該測定による同定結果を表2に示す。

Figure 0004593502
After the two-stage heat treatment, the portion where the mixture or the copper nanoparticles were applied was measured using a powder X-ray diffractometer (XRD), and the respective crystal structures were identified. Table 2 shows the identification results of the measurement.
Figure 0004593502

上記同定結果より、カーボン材料を用いずに熱処理を行った場合には銅酸化物が残留しているのに対し、カーボン材料を用いて熱処理を行った場合には、銅酸化物が効率的に還元されていることが確認できた。これにより、カーボン材料を用いた本発明の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法は、金属酸化物粒子の還元を効果よく行えることが確認できた。   From the above identification results, when heat treatment was performed without using a carbon material, copper oxide remained, whereas when heat treatment was performed using a carbon material, copper oxide was efficiently It was confirmed that the product was reduced. Thus, it was confirmed that the metal oxide particles of the present invention using the carbon material or the method for reducing and firing the metal oxide surface oxide film can effectively reduce the metal oxide particles.

次に、前記第1焼成を行う前記電気炉内の酸化性雰囲気として、好ましい酸素分圧を検討した。ここでは、前記石英硝子基板を8枚用意し、それぞれに表面酸化皮膜を有する銅ナノ粒子とカーボンブラックからなる前記混合物を部分的に塗布した。そして、前記電気炉内の酸素分圧を0.1%、0.5%、1.0%、10.0%、25.0%、50.0%、75.0%、100.0%とし、それぞれの酸化性雰囲気の中に前記石英硝子基板を1枚ずつ入れて第1焼成を行った。なお、酸素分圧100.0%以外のケースでは、酸素以外は窒素のみが含まれる酸化性雰囲気とした。   Next, a preferable oxygen partial pressure was examined as an oxidizing atmosphere in the electric furnace for performing the first firing. Here, eight quartz glass substrates were prepared, and the mixture composed of copper nanoparticles having a surface oxide film and carbon black was partially applied thereto. And the oxygen partial pressure in the electric furnace is 0.1%, 0.5%, 1.0%, 10.0%, 25.0%, 50.0%, 75.0%, 100.0% Then, the quartz glass substrates were put one by one in each oxidizing atmosphere, and the first firing was performed. In cases other than oxygen partial pressure of 100.0%, an oxidizing atmosphere containing only nitrogen other than oxygen was used.

前記第1焼成後に前記第2焼成を行い、さらにその後に前記混合物が塗布された部分を粉末X線回折装置(XRD)を用いて測定した。前記酸素分圧毎に同定された結晶構造の結果を表3に示す。

Figure 0004593502
The second baking was performed after the first baking, and the portion where the mixture was applied was measured using a powder X-ray diffractometer (XRD). Table 3 shows the results of the crystal structure identified for each oxygen partial pressure.
Figure 0004593502

上記同定結果より、前記第1焼成を行う酸化性雰囲気として、酸素分圧が0.1%以上50%以下とするのがよく、より好ましくは0.5%以上25%以下とするのがよい。酸化性雰囲気を上記のようにすることにより、銅酸化物が効率的に還元されることが確認できた。   From the above identification result, the oxygen partial pressure is preferably 0.1% or more and 50% or less, more preferably 0.5% or more and 25% or less as the oxidizing atmosphere for performing the first firing. . It was confirmed that the copper oxide was efficiently reduced by making the oxidizing atmosphere as described above.

次に、前記第1焼成を行う前記電気炉内の内部温度が金属酸化物の還元性にどのような影響を与えるかを確認した。ここでは、前記石英硝子基板を10枚用意し、それぞれに表面酸化皮膜を有する銅ナノ粒子とカーボンブラックからなる前記混合物を部分的に塗布した。   Next, it was confirmed how the internal temperature in the electric furnace where the first firing is performed affects the reducibility of the metal oxide. Here, ten quartz glass substrates were prepared, and the mixture of copper nanoparticles having a surface oxide film and carbon black was partially applied thereto.

そして、前記電気炉内の内部温度を100℃、150℃、200℃、250℃、300℃、350℃、400℃、450℃、500℃、600℃とし、それぞれの内部温度で第1焼成を行った。なお、前記電気炉内の酸化性雰囲気は、酸素ガス比率5%、窒素ガス比率95%としている。   And the internal temperature in the said electric furnace is 100 degreeC, 150 degreeC, 200 degreeC, 250 degreeC, 300 degreeC, 350 degreeC, 400 degreeC, 450 degreeC, 500 degreeC, 600 degreeC, and 1st baking is carried out at each internal temperature. went. The oxidizing atmosphere in the electric furnace has an oxygen gas ratio of 5% and a nitrogen gas ratio of 95%.

上記各内部温度で前記第1焼成を行い、続いて前記第2焼成を行った後に、前記混合物が塗布された部分を粉末X線回折装置(XRD)を用いて測定し、それぞれの結晶構造を同定した。前記測定により得られた同定結果を表4に示す。

Figure 0004593502
After performing the first firing at each internal temperature and subsequently performing the second firing, the portion coated with the mixture is measured using a powder X-ray diffractometer (XRD), and the respective crystal structures are measured. Identified. Table 4 shows the identification results obtained by the measurement.
Figure 0004593502

上記同定結果より、前記第1焼成を行うときの前記電気炉内の内部温度として、100℃以上500℃以下とするのがよく、より好ましくは150℃以上450℃以下とするのがよい。前記第1焼成時の温度を上記のように設定することにより、銅酸化物が効率的に還元されることが確認できた。   From the above identification result, the internal temperature in the electric furnace when performing the first firing is preferably 100 ° C. or more and 500 ° C. or less, more preferably 150 ° C. or more and 450 ° C. or less. It was confirmed that the copper oxide was efficiently reduced by setting the temperature during the first firing as described above.

前記第1焼成時の温度が、例えば100℃以下と低すぎる場合には、有機被膜の酸化分解反応が進行せず好ましくない。逆に、前記第1焼成時の温度が例えば500℃以上と高すぎる場合には、金属粒子自体がその内部まで強固に酸化され、その後の第2焼成による還元が困難になってしまうため好ましくない。   If the temperature during the first baking is too low, for example, 100 ° C. or less, the oxidative decomposition reaction of the organic coating does not proceed, which is not preferable. On the contrary, when the temperature at the first firing is too high, for example, 500 ° C. or higher, the metal particles themselves are strongly oxidized to the inside, and subsequent reduction by the second firing becomes difficult, which is not preferable. .

最後に、前記第2焼成を行う前記別の電気炉内の内部温度が金属酸化物の還元性にどのような影響を与えるかを確認した。ここでも、前記石英硝子基板を10枚用意し、それぞれに表面酸化皮膜を有する銅ナノ粒子とカーボンブラックからなる前記混合物を部分的に塗布した。そして、前記電気炉内の酸化性雰囲気を窒素ガス比率95%、酸素ガス比率5%とし、内部温度200℃で30分間保持して前記各石英硝子基板を第1焼成した。   Finally, it was confirmed how the internal temperature in the second electric furnace where the second firing is performed affects the reducibility of the metal oxide. Also here, ten quartz glass substrates were prepared, and the mixture composed of copper nanoparticles and carbon black each having a surface oxide film was partially applied. Then, the quartz glass substrate was first fired by maintaining the oxidizing atmosphere in the electric furnace at a nitrogen gas ratio of 95% and an oxygen gas ratio of 5% and holding at an internal temperature of 200 ° C. for 30 minutes.

その後、窒素ガス比率100%の前記別の電気炉内に前記各石英硝子基板を入れ、前記別の電気炉内の内部温度を100℃、150℃、200℃、250℃、300℃、350℃、400℃、450℃、500℃、600℃とした各ケースについて、それぞれ30分間保持して第2焼成を行い、その後炉冷した。   Thereafter, each quartz glass substrate is placed in another electric furnace having a nitrogen gas ratio of 100%, and the internal temperature in the other electric furnace is 100 ° C., 150 ° C., 200 ° C., 250 ° C., 300 ° C., 350 ° C. , 400 ° C., 450 ° C., 500 ° C., and 600 ° C., each case was held for 30 minutes for second firing, and then cooled in the furnace.

上記炉冷後に、前記混合物が塗布された部分を粉末X線回折装置(XRD)を用いて測定し、それぞれの結晶構造を同定した。前記測定により得られた結果を表5に示す。

Figure 0004593502
After the furnace cooling, the portion coated with the mixture was measured using a powder X-ray diffractometer (XRD) to identify the crystal structure of each. Table 5 shows the results obtained by the measurement.
Figure 0004593502

上記同定結果より、前記第2焼成を行うときの前記別の電気炉内の内部温度として、150℃以上とするのがよく、より好ましくは200℃以上とするのがよい。前記第2焼成時の温度を上記のようにすることにより、銅酸化物が効率的に還元されることが確認できた。   From the above identification result, the internal temperature in the separate electric furnace when performing the second firing is preferably 150 ° C. or higher, more preferably 200 ° C. or higher. It was confirmed that the copper oxide was efficiently reduced by setting the temperature during the second firing as described above.

前記第2焼成の温度が、例えば150℃以下と低すぎる場合には、酸化物の還元反応(2MO+C→2M+CO、ここで、Cはカーボン、Mは金属元素を表す)が進行しないため好ましくない。なお、金属酸化物の還元方法という観点からは、焼成温度の上限は特に存在しない。但し、金属酸化物を塗布する基板からの制約が考えられ、該基板の耐熱温度以下にする必要があると考えられる。 When the temperature of the second baking is too low, for example, 150 ° C. or lower, the oxide reduction reaction (2MO + C → 2M + CO 2 , where C represents carbon and M represents a metal element) is not preferable. . From the viewpoint of the method for reducing the metal oxide, there is no particular upper limit for the firing temperature. However, there may be restrictions from the substrate to which the metal oxide is applied, and it is considered necessary to set the temperature to be equal to or lower than the heat resistant temperature of the substrate.

上記実施形態及び実施例では金属酸化物粒子として酸化銅を対象に説明したが、このほか酸化銀粒子あるいは酸化ニッケルナノ粒子であっても同様である。もしくは、表面酸化被膜を有する銅、銀あるいはニッケルからなる金属粒子であってもよい。上記いずれの金属酸化物粒子もしくは金属粒子の表面酸化被膜に対しても、本発明の還元焼成方法により効率的に還元することが可能となる。   Although the said embodiment and Example demonstrated copper oxide as object as a metal oxide particle, it is the same even if it is a silver oxide particle or nickel oxide nanoparticle. Or the metal particle which consists of copper, silver, or nickel which has a surface oxide film may be sufficient. Any of the above metal oxide particles or the surface oxide film of the metal particles can be efficiently reduced by the reduction firing method of the present invention.

また、前記金属酸化物粒子もしくは前記金属粒子の平均粒径は、1nm〜100nmの微粒子とするのがよく、より好ましくは1nm〜10nmとするのがよい。前記平均粒径を1nm〜10nmとした場合には、焼成後の粒子融着性が向上するといった効果が得られる。   Moreover, the average particle diameter of the metal oxide particles or the metal particles is preferably 1 nm to 100 nm, and more preferably 1 nm to 10 nm. When the average particle diameter is 1 nm to 10 nm, the effect of improving the particle fusion property after firing can be obtained.

さらに、前記有機物保護材には、金属酸化物と化学的もしくは物理的に結合、吸着する化合物を用いるのが好ましい。具体的には、ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等のタンパク質系、デンプン、デキストリン、寒天、アルギン酸ソーダ等の天然高分子や、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等のセルロース系、ポリビニルアルコール、ポリビニルピロリドン等のビニル系、ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等のアクリル酸系、ステアリン酸等の高級脂肪酸、ポリエチレングリコール等の合成高分子、クエン酸等の多価カルボン酸、アニリンまたはそれらの誘導体等が挙げられる。特に、ゼラチン、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコールを用いるのがよい。   Furthermore, it is preferable to use a compound that is chemically or physically bonded to and adsorbed to the metal oxide as the organic protective material. Specifically, protein systems such as gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, natural polymers such as starch, dextrin, agar, sodium alginate, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, etc. Cellulose, vinyl alcohol such as polyvinyl alcohol, polyvinyl pyrrolidone, acrylic acid such as sodium polyacrylate, ammonium polyacrylate, higher fatty acid such as stearic acid, synthetic polymer such as polyethylene glycol, polyvalent carboxylic acid such as citric acid Examples include acids, anilines or derivatives thereof. In particular, gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, or polyethylene glycol is preferably used.

上記説明の本発明の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法を用いることで、導電性の優れた導電部品を形成することができる。すなわち、本発明の導電部品の形成方法によれば、前記金属酸化物粒子もしくは表面酸化被膜を有する前記金属粒子と前記カーボン材料との混合物を、基板上に塗布もしくは表面パターニングした後、前記第1焼成と前記第2焼成を行うことで、導電性の優れた導電部品を形成することができる。   By using the above-described method for reducing and firing the metal oxide particles or the surface oxide film of the metal particles according to the present invention, a conductive component having excellent conductivity can be formed. That is, according to the method for forming a conductive component of the present invention, after applying or surface patterning a mixture of the metal oxide particles or the metal particles having a surface oxide film and the carbon material onto the substrate, the first By performing the firing and the second firing, a conductive component having excellent conductivity can be formed.

前記導電部品として、例えば導電路、バンプ、ビア、アンテナパターン、熱伝導路及び触媒電極等が挙げられる。また、前記基板は前記導電部品の形成に使用されるものであり、例えば、酸化物、ガラス、セラミックス、金属、半導体、プラスチックのいずれかを用いることができる。特に、本発明の導電部品の形成方法によれば、耐熱性の低い汎用樹脂基板(ガラエポやポリイミド等)を用いることも可能となる。   Examples of the conductive component include conductive paths, bumps, vias, antenna patterns, thermal conductive paths, and catalyst electrodes. The substrate is used for forming the conductive component. For example, any of oxide, glass, ceramics, metal, semiconductor, and plastic can be used. In particular, according to the method for forming a conductive component of the present invention, it is possible to use a general-purpose resin substrate (eg, glass epoxy or polyimide) having low heat resistance.

なお、本実施の形態における記述は、本発明に係る金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法及び導電部品の形成方法の一例を示すものであり、これに限定されるものではない。本実施の形態における細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   Note that the description in the present embodiment shows an example of the method for reducing and firing the metal oxide particles or the surface oxide film of the metal particles and the method for forming the conductive component according to the present invention, and is not limited to this. Absent. The detailed configuration, detailed operation, and the like in the present embodiment can be changed as appropriate without departing from the spirit of the present invention.

図1は、本発明の実施の形態に係る金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法を示す工程図である。FIG. 1 is a process diagram showing a method for reducing and firing metal oxide particles or a surface oxide film of metal particles according to an embodiment of the present invention.

符号の説明Explanation of symbols

10〜40・・・工程
50・・・基板
60・・・混合物
10-40 ... Process 50 ... Substrate 60 ... Mixture

Claims (14)

有機物保護材で表面が被覆された金属酸化物粒子もしくは表面酸化被膜を有する金属粒子と、カーボンブラック、カーボンナノチューブ、VGCF(気相成長カーボンファイバー)、カーボンフラーレンの少なくともいずれか一つを含むカーボン材料との混合物を、酸素を含有した酸化性ガス中(以下では酸化性雰囲気という)で第1焼成し、
さらに不活性ガス中(以下では不活性雰囲気という)で第2焼成する
ことを特徴とする金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
Carbon material including metal oxide particles whose surface is coated with an organic protective material or metal particles having a surface oxide film, and at least one of carbon black, carbon nanotube, VGCF (vapor-grown carbon fiber), and carbon fullerene And a first firing in an oxidizing gas containing oxygen (hereinafter referred to as an oxidizing atmosphere),
Further, the second firing is performed in an inert gas (hereinafter referred to as an inert atmosphere), and the method for reducing and firing the metal oxide particles or the surface oxide film of the metal particles.
前記酸化性雰囲気の酸素濃度が0.1%(原子数%、以下同じ)以上50%以下である
ことを特徴とする請求項1に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
2. The reduction of the metal oxide particles or the surface oxide film of the metal particles according to claim 1, wherein the oxygen concentration in the oxidizing atmosphere is 0.1% (number of atoms, hereinafter the same) to 50%. Firing method.
前記酸化性雰囲気の酸素濃度が0.5%以上25%以下である
ことを特徴とする請求項1に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
2. The method for reducing and firing metal oxide particles or a surface oxide film of metal particles according to claim 1, wherein the oxygen concentration in the oxidizing atmosphere is 0.5% or more and 25% or less.
前記不活性雰囲気に含まれる不活性ガスが、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノンのいずれか、もしくは前記不活性ガスの混合気体である
ことを特徴とする請求項1から請求項3のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
The inert gas contained in the inert atmosphere is any one of nitrogen, helium, neon, argon, krypton, and xenon, or a mixed gas of the inert gas. The reduction firing method of the metal oxide particle of any one, or the surface oxide film of a metal particle.
前記不活性雰囲気に含まれる不活性ガスが、窒素またはアルゴンもしくはその混合気体である
ことを特徴とする請求項1から請求項3のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
The surface of the metal oxide particle or metal particle according to any one of claims 1 to 3, wherein the inert gas contained in the inert atmosphere is nitrogen, argon, or a mixed gas thereof. A method for reducing and firing an oxide film.
前記酸化性雰囲気での第1焼成の温度が100℃以上500℃以下である
ことを特徴とする請求項1から請求項5のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
The surface oxidation of the metal oxide particles or metal particles according to any one of claims 1 to 5, wherein the temperature of the first firing in the oxidizing atmosphere is 100 ° C or higher and 500 ° C or lower. A method for reducing and firing the coating.
前記酸化性雰囲気での第1焼成の温度が150℃以上450℃以下である
ことを特徴とする請求項1から請求項3のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
4. The surface oxidation of metal oxide particles or metal particles according to claim 1, wherein the temperature of the first firing in the oxidizing atmosphere is 150 ° C. or higher and 450 ° C. or lower. 5. A method for reducing and firing the coating.
前記不活性雰囲気での第2焼成の温度が150℃以上である
ことを特徴とする請求項1から請求項7のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
The reduction of the metal oxide particles or the surface oxide film of the metal particles according to any one of claims 1 to 7, wherein a temperature of the second baking in the inert atmosphere is 150 ° C or higher. Firing method.
前記不活性雰囲気での第2焼成の温度が200℃以上である
ことを特徴とする請求項1から請求項7のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
The reduction of the metal oxide particles or the surface oxide film of the metal particles according to any one of claims 1 to 7, wherein a temperature of the second baking in the inert atmosphere is 200 ° C or higher. Firing method.
前記金属酸化物粒子が酸化銅、酸化銀粒子、酸化ニッケルのいずれかである、もしくは前記表面酸化被膜を有する金属粒子が銅、銀、ニッケルのいずれかである
ことを特徴とする、請求項1から請求項9のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
The metal oxide particles are any one of copper oxide, silver oxide particles, and nickel oxide, or the metal particles having the surface oxide film are any one of copper, silver, and nickel. The method for reducing and firing the metal oxide particles or the surface oxide film of the metal particles according to claim 9.
前記金属酸化物粒子もしくは前記金属粒子の平均粒径が1nm〜100nmの微粒子である
ことを特徴とする請求項1から請求項10のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜還元焼成方法。
The surface of the metal oxide particle or metal particle according to any one of claims 1 to 10, wherein the metal oxide particle or the metal particle is a fine particle having an average particle diameter of 1 nm to 100 nm. Oxide film reduction firing method.
前記有機物保護材が、金属酸化物と化学的もしくは物理的に結合、吸着する化合物である
ことを特徴とする請求項1から請求項11のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法。
The metal oxide particles or metal particles according to any one of claims 1 to 11, wherein the organic protective material is a compound that chemically or physically binds and adsorbs to a metal oxide. A method for reducing and firing the surface oxide film.
有機物保護材で表面が被覆された金属酸化物粒子もしくは表面酸化被膜を有する金属粒子と、カーボンブラック、カーボンナノチューブ、VGCF、カーボンフラーレンの少なくともいずれか一つを含むカーボン材料との混合物を、基板上に塗布もしくは表面パターニングした後、請求項1から請求項7のいずれか1項に記載の金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法を用いて焼成する
ことを特徴とする導電部品の形成方法。
A mixture of a metal oxide particle having a surface coated with an organic protective material or a metal particle having a surface oxide film and a carbon material containing at least one of carbon black, carbon nanotube, VGCF, and carbon fullerene is formed on a substrate. An electrically conductive component comprising: applying metal oxide particles or applying surface patterning to the surface, followed by firing using the reduction firing method for metal oxide particles or metal particle surface oxide coating according to any one of claims 1 to 7. Forming method.
前記基板が酸化物、ガラス、セラミックス、金属、半導体、プラスチックのいずれか一つからなる
ことを特徴とする請求項13に記載の導電部品の形成方法。
The method for forming a conductive component according to claim 13, wherein the substrate is made of any one of oxide, glass, ceramics, metal, semiconductor, and plastic.
JP2006085910A 2006-03-27 2006-03-27 Method of reducing and firing metal oxide particles or surface oxide film of metal particles and method of forming conductive parts Expired - Fee Related JP4593502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085910A JP4593502B2 (en) 2006-03-27 2006-03-27 Method of reducing and firing metal oxide particles or surface oxide film of metal particles and method of forming conductive parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085910A JP4593502B2 (en) 2006-03-27 2006-03-27 Method of reducing and firing metal oxide particles or surface oxide film of metal particles and method of forming conductive parts

Publications (2)

Publication Number Publication Date
JP2007262446A JP2007262446A (en) 2007-10-11
JP4593502B2 true JP4593502B2 (en) 2010-12-08

Family

ID=38635712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085910A Expired - Fee Related JP4593502B2 (en) 2006-03-27 2006-03-27 Method of reducing and firing metal oxide particles or surface oxide film of metal particles and method of forming conductive parts

Country Status (1)

Country Link
JP (1) JP4593502B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5338235B2 (en) * 2008-09-30 2013-11-13 大日本印刷株式会社 Manufacturing method of conductive substrate and conductive substrate obtained by the method
DE102008053027A1 (en) 2008-10-24 2010-04-29 Kme Germany Ag & Co. Kg Method for producing a coating comprising carbon nanotubes, fullerenes and / or graphene
KR101038784B1 (en) * 2009-02-03 2011-06-03 삼성전기주식회사 Method for forming metal wiring and metal wiring using the same
JP2013135070A (en) * 2011-12-26 2013-07-08 Jsr Corp Pattern forming method and metal pattern
EP3363561A1 (en) * 2017-02-16 2018-08-22 Höganäs AB Particles having a sinterable core and a polymeric coating, use thereof, and additive manufacturing method using the same
CN108788132B (en) * 2018-07-09 2020-04-28 中南大学 In-situ reaction preparation method of copper-carbon composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103043A1 (en) * 2003-05-16 2004-11-25 Harima Chemicals, Inc. Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film using said method
JP2006269119A (en) * 2005-03-22 2006-10-05 Furukawa Electric Co Ltd:The Reduction/thermolysis mutual fusion method by high frequency electromagnetic wave irradiation for metal oxide particle or the like to which sintering aid is added, and calcination material for various electronic parts and metal oxide particle or like using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599950B2 (en) * 1997-04-16 2004-12-08 株式会社アルバック Method of firing metal paste
JP3630920B2 (en) * 1997-05-02 2005-03-23 株式会社アルバック Metal paste firing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103043A1 (en) * 2003-05-16 2004-11-25 Harima Chemicals, Inc. Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film using said method
JP2006269119A (en) * 2005-03-22 2006-10-05 Furukawa Electric Co Ltd:The Reduction/thermolysis mutual fusion method by high frequency electromagnetic wave irradiation for metal oxide particle or the like to which sintering aid is added, and calcination material for various electronic parts and metal oxide particle or like using it

Also Published As

Publication number Publication date
JP2007262446A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4593502B2 (en) Method of reducing and firing metal oxide particles or surface oxide film of metal particles and method of forming conductive parts
Yang et al. Printed electrically conductive composites: conductive filler designs and surface engineering
EP2906027B1 (en) Lead solder-free electronics
JP4157468B2 (en) Wiring board
KR101020844B1 (en) Reducing agent for low temperature reducing and sintering of copper nanoparticels, and method for low temperature sintering using the same
JP2014225338A (en) Copper fine particle dispersion liquid, conductive film forming method, and circuit board
TWI665332B (en) Dispersion,method for manufacturing structure with conductive pattern using the same,and structure with conductive pattern
JP2015164896A (en) Method for applying carbon/tin mixtures to metal or alloy coatings
JP6165063B2 (en) Conductive particles and method for producing the same
Gysling Nanoinks in inkjet metallization—Evolution of simple additive-type metal patterning
Dai et al. Self-reducible Cu nanoparticles for conductive inks
JP5582498B2 (en) Electrical conductor and method for forming the same
JP4762582B2 (en) Reduction / mutual fusion method of high-frequency electromagnetic wave irradiation such as metal oxide particles with sintering aid added, and various electronic parts using the same and firing materials such as metal oxide particles
KR101235510B1 (en) Methods of forming high density metal wiring for fine line and space packaging applications and structures formed thereby
JP2005135982A (en) Circuit board and manufacturing method therefor
JP2009278045A (en) Workpiece and method for producing the same
KR100599053B1 (en) Conductive ink, method for forming conductive wiring, and conductive substrate
WO2014059798A1 (en) Nano-copper ink and copper conductive film preparation method
JP2008121043A (en) Fine particle, fine particle dispersion, method for producing fine particle and method for producing fine particle dispersion
KR100902037B1 (en) Foramtion method for wiring pattern using nano ink comprising metals with low melting point
JP4761110B2 (en) Metal coating and method for forming the same
JP2009076568A (en) Electronic device
JP2016086013A (en) Film-like printed circuit board and method for manufacturing the same
US11254156B2 (en) Magnetic field patterning of nickel nanofibers using precursor ink
JP2007154231A (en) Spherical molybdenum metal particle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees