JP4590579B2 - Highly efficient photocatalytic thin film and method for producing the same - Google Patents

Highly efficient photocatalytic thin film and method for producing the same Download PDF

Info

Publication number
JP4590579B2
JP4590579B2 JP2000339096A JP2000339096A JP4590579B2 JP 4590579 B2 JP4590579 B2 JP 4590579B2 JP 2000339096 A JP2000339096 A JP 2000339096A JP 2000339096 A JP2000339096 A JP 2000339096A JP 4590579 B2 JP4590579 B2 JP 4590579B2
Authority
JP
Japan
Prior art keywords
thin film
acceleration voltage
single crystal
implantation
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000339096A
Other languages
Japanese (ja)
Other versions
JP2002143688A (en
Inventor
泰史 住田
徹也 八巻
春也 山本
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2000339096A priority Critical patent/JP4590579B2/en
Publication of JP2002143688A publication Critical patent/JP2002143688A/en
Application granted granted Critical
Publication of JP4590579B2 publication Critical patent/JP4590579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可視光応答性及び高活性を有する光触媒薄膜、ならびに、該光触媒薄膜の製造方法に関するものである。
【0002】
【従来の技術】
近年酸化チタン(TiO2)を代表とする金属酸化物が光触媒を有する機能性コーティング材料として、空気及び水の浄化、脱臭、殺菌、抗菌などに広く利用されている。この主なメカニズムは現在以下のように考えられている。1.金属酸化物表面にバンドギャップ以上のエネルギーを有する光を照射することによって、内部に電子−正孔対が生じる。2.金属酸化物の表面の酸素欠損に起因する電位勾配により正孔が薄膜表面に励起される。3.この正孔が表面に吸着している水を酸化することで、非常に酸化力の強い水のラジカルが生じ、この中間生成物が機能性コーティング材料としての役割を果たす。
【0003】
このように光触媒効果を利用するためには励起光として、そのバンドギャップ以上の光が必要となる。代表的な光触媒体であるTiO2のバンドギャップは約3.0〜3.2eVであり、これは励起光として400nm以下の紫外光が必要であることを意味している。しかし自然光の大部分は可視光(波長約420nm以上)であるため、紫外光を必要とするTiO2光触媒は十分な分解効率が得られないという欠点があり、自然光下もしくは屋内照明下においても高効率な光触媒を形成する方法が望まれている。
【0004】
イオン注入による光触媒体の可視光化の試みは、粉体及び多結晶薄膜に対して行われているが(例えば特開平11−197512)、イオン注入における深さ方向の濃度プロファイルを利用した傾斜効果(バンドの傾きやバンドギャップの変化)に関しては言及していない。
【0005】
【発明が解決しようとする課題】
本発明の目的は、自然光下、特に600〜250nmの波長域の光照射下において高効率な光触媒薄膜を提供すること、ならびに、該光触媒薄膜の製造方法を提供することにある。
【0006】
【課題を解決しようとするための手段】
基板上に製膜した光触媒薄膜にNb、V及びCrのうちいずれからの金属イオンを注入する。その際、厚さ方向に金属イオンの濃度勾配を加速電圧及び注入量を制御することにより意図的にもうけて、バンドギャップもしくは電位勾配を厚さ方向に変化させた構造を有する薄膜を提供するものである。このような構造を持つ薄膜は、薄膜の深部に向かって徐々にバンドギャップが減少もしくは増大していることで可視光領域まで利用することができ、あるいは電子−正孔対生成後の両者の再結合確率が低下するような電位勾配が内部に形成されることにより、結果的に効率良く表面まで正孔を導くことが可能となる。
【0007】
【発明の実施の形態】
本発明の光触媒薄膜は、酸化チタンにNb、VおよびCrなどの金属イオンのうち少なくとも一種の金属イオン注入を行い、その際膜厚方向に意図的に濃度分布をもうけた傾斜機能薄膜である。
【0008】
酸化チタンの合成法は、例えば、パルスレーザー製膜(PLD)法、CVD法、スパッタ法、ゾルゲル用、MBE法〜真空蒸着法などから少なくとも1種類を用いて製膜した膜を使用する。
【0009】
イオン注入の際、加速電圧及び注入量を制御させることにより膜厚方向に金属イオンの濃度分布を形成させる。具体的には高い加速電圧で、比較的長時間注入を行った後、加速電圧を減少させ短時間注入を行えば、表面から徐々に金属イオン濃度が増加するような傾斜膜が得られ、加速電圧と注入時間との関係を逆に実行すれば、膜表面から徐々に減少するような傾斜膜が得られる。
【0010】
イオン注入後、熱処理を大気中、温度200℃〜700℃で1〜10時間程度熱処理を行うことにより、イオン注入の際に結晶内に生じた欠陥が消失し、定常的に高い触媒性能を持つ膜を得ることができる。以下、本発明を実施例に基づいて説明する。
【0011】
【実施例1】
まず、注入量と光応答性との関係を明らかにするために、単結晶のバルクの試料に注入を行った。これは、後に濃度プロファイルを持った傾斜薄膜を実際に作製する際の知見を得るためである。
【0012】
1cm角、厚さ500μmの単結晶TiO2(ルチル型)基板にCrイオンを150keVの加速電圧で、5.5×1014ions/cm2、3.2×1015ions/cm2、2.6×1016ions/cm2の注入量でイオン注入をそれぞれ行った後、600℃で5時間大気中で熱処理を行った。この試料の濃度プロファイルを2次イオン質量分析法(SIMS)により分析を行うと表面から約3000Å付近まで徐々に濃度が減少しているような分布を有していることが確認された。
【0013】
これら3つの注入量の異なる試料の光伝導度の波長依存性を図1に示す。注入量が増加するにつれ光応答が低エネルギー側へシフトしていることがわかる。
2.6×1016ions/cm2注入した試料について、深さ1500Åまでの平均のバンドギャップを算出すると約2.0eVであった。つまり、Crイオン注入を行うことによりTiO2のバンドギャップを低エネルギー側へ制御することが可能であることが明らかとなった。
【0014】
【実施例2】
PLD法を用いて1cm角のAl23 基板に単結晶ルチル膜を約5000Å製膜した。次にCrイオンを150keVで1×1016ions/cm2注入後600℃で5時間熱処理を行った。また、比較のため光触媒性能が高いとされる単結晶アナターゼ膜を1cm角のLaAlO3膜上に厚さ約5000Å堆積させた。
【0015】
これらの膜の光触媒性能を見積もるため、パルス光励起表面正孔量測定法(特願2000−213772号)により評価を行った。その結果を図2に示す。横軸は励起光の波長、縦軸は量子効率(表面励起正孔数/入射光強度)でプロットしている。
【0016】
図2より、注入前のルチル単結晶薄膜は340nm付近まで、アナターゼ単結晶薄膜はそのバンドギャップに相当する390nm付近(約3.2eV)までしか表面への正孔が励起していないのに対し、Crイオン注入試料は500nm付近まで正孔の励起が観測された。このCr注入試料の結晶構造をX線回折法で評価したところルチル単結晶であった。ルチルのバンドギャップは約3.0eV(410nm程度)であるので、明らかにCrイオン注入の影響によるものである。
【0017】
【発明の効果】
本発明の光触媒薄膜は可視光から紫外光までの広い範囲のエネルギーを有する光の照射下においても効率的に正孔を表面に導くことができ、結果的に光触媒性能が向上することが期待される。
【図面の簡単な説明】
【図1】図1は、Cr注入された単結晶ルチル型TiO2の光伝導特性を測定したものを示す図である(注入量を増加するにつれTiO2の光応答が低エネルギー側へシフトしている)。
【図2】図2は、アナターゼ単結晶薄膜、ルチル単結晶薄膜及びCr注入ルチル薄膜の表面励起正孔量測定結果を示す図である(Cr注入ルチル薄膜のみ500nm付近まで正孔が表面まで励起されているのが確認できる)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalytic thin film having visible light responsiveness and high activity, and a method for producing the photocatalytic thin film.
[0002]
[Prior art]
In recent years, a metal oxide typified by titanium oxide (TiO 2 ) has been widely used as a functional coating material having a photocatalyst for purification, deodorization, sterilization, antibacterial and the like of air and water. This main mechanism is currently considered as follows. 1. By irradiating the metal oxide surface with light having energy greater than or equal to the band gap, electron-hole pairs are generated inside. 2. Holes are excited on the surface of the thin film by a potential gradient caused by oxygen vacancies on the surface of the metal oxide. 3. By oxidizing the water adsorbed on the surface by the holes, water radicals with very strong oxidizing power are generated, and this intermediate product plays a role as a functional coating material.
[0003]
Thus, in order to utilize the photocatalytic effect, light exceeding the band gap is required as excitation light. The band gap of TiO 2 , which is a typical photocatalyst, is about 3.0 to 3.2 eV, which means that ultraviolet light of 400 nm or less is necessary as excitation light. However, since most of the natural light is visible light (wavelength of about 420 nm or more), a TiO 2 photocatalyst that requires ultraviolet light has a drawback that sufficient decomposition efficiency cannot be obtained, and it is high even under natural light or indoor lighting. A method for forming an efficient photocatalyst is desired.
[0004]
Attempts to make photocatalysts visible by ion implantation have been performed on powders and polycrystalline thin films (for example, JP-A-11-197512), but a gradient effect using a concentration profile in the depth direction in ion implantation is used. No mention is made of (band tilt or band gap change).
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a highly efficient photocatalytic thin film under natural light, particularly under light irradiation in the wavelength range of 600 to 250 nm, and to provide a method for producing the photocatalytic thin film.
[0006]
[Means for solving problems]
Metal ions from any of Nb, V and Cr are implanted into the photocatalytic thin film formed on the substrate . At that time, a thin film having a structure in which a band gap or a potential gradient is changed in the thickness direction by intentionally generating a concentration gradient of metal ions in the thickness direction by controlling the acceleration voltage and the implantation amount is provided. It is. A thin film having such a structure can be used up to the visible light region because the band gap gradually decreases or increases toward the deep part of the thin film, or both of them after the generation of electron-hole pairs are regenerated. As a result, a potential gradient that reduces the coupling probability is formed inside, and as a result, holes can be efficiently guided to the surface.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The photocatalytic thin film of the present invention is a functionally graded thin film in which at least one kind of metal ions such as Nb, V and Cr is implanted into titanium oxide and a concentration distribution is intentionally distributed in the film thickness direction.
[0008]
As the titanium oxide synthesis method, for example, a film formed using at least one of a pulse laser film formation (PLD) method, a CVD method, a sputtering method, a sol-gel method, an MBE method to a vacuum deposition method, and the like is used.
[0009]
At the time of ion implantation, the concentration distribution of metal ions is formed in the film thickness direction by controlling the acceleration voltage and the implantation amount. Specifically, after implanting for a relatively long time at a high acceleration voltage, if the acceleration voltage is decreased and implantation is performed for a short time, a gradient film in which the metal ion concentration gradually increases from the surface can be obtained. If the relationship between the voltage and the injection time is reversed, a gradient film that gradually decreases from the film surface can be obtained.
[0010]
After ion implantation, heat treatment is performed in the atmosphere at a temperature of 200 ° C. to 700 ° C. for about 1 to 10 hours, so that defects generated in the crystal at the time of ion implantation disappear, and the catalyst performance is constantly high. A membrane can be obtained. Hereinafter, the present invention will be described based on examples.
[0011]
[Example 1]
First, in order to clarify the relationship between the injection amount and the photoresponsiveness, a single crystal bulk sample was injected. This is to obtain knowledge when actually manufacturing a gradient thin film having a concentration profile later.
[0012]
A 1 cm square, 500 μm thick single crystal TiO 2 (rutile type) substrate with Cr ions at an acceleration voltage of 150 keV, 5.5 × 10 14 ions / cm 2 , 3.2 × 10 15 ions / cm 2 , 2. After performing ion implantation at an implantation amount of 6 × 10 16 ions / cm 2 , heat treatment was performed in the air at 600 ° C. for 5 hours. When the concentration profile of this sample was analyzed by secondary ion mass spectrometry (SIMS), it was confirmed that the sample had a distribution in which the concentration gradually decreased from the surface to around 3000 mm.
[0013]
FIG. 1 shows the wavelength dependence of the photoconductivity of these three different injection amounts. It can be seen that the optical response shifts to the low energy side as the injection amount increases.
With respect to the sample injected with 2.6 × 10 16 ions / cm 2 , the average band gap up to a depth of 1500 mm was calculated to be about 2.0 eV. That is, it has become clear that the band gap of TiO 2 can be controlled to the low energy side by performing Cr ion implantation.
[0014]
[Example 2]
A single crystal rutile film was formed on a 1 cm square Al 2 O 3 substrate by using the PLD method. Next, after Cr ions were implanted at 150 keV at 1 × 10 16 ions / cm 2, heat treatment was performed at 600 ° C. for 5 hours. For comparison, a single crystal anatase film, which has high photocatalytic performance, was deposited on a 1 cm square LaAlO 3 film to a thickness of about 5000 mm.
[0015]
In order to estimate the photocatalytic performance of these films, evaluation was performed by a pulsed photoexcitation surface hole content measurement method (Japanese Patent Application No. 2000-213772). The result is shown in FIG. The horizontal axis plots the wavelength of the excitation light, and the vertical axis plots the quantum efficiency (number of surface excited holes / incident light intensity).
[0016]
From FIG. 2, the rutile single crystal thin film before injection is excited up to about 340 nm, while the anatase single crystal thin film is excited only up to about 390 nm (about 3.2 eV) corresponding to the band gap. In the Cr ion-implanted sample, hole excitation was observed up to around 500 nm. When the crystal structure of this Cr-implanted sample was evaluated by X-ray diffraction, it was a rutile single crystal. Since the rutile band gap is about 3.0 eV (about 410 nm), it is clearly due to the influence of Cr ion implantation.
[0017]
【The invention's effect】
The photocatalytic thin film of the present invention can efficiently lead holes to the surface even under irradiation with light having a wide range of energy from visible light to ultraviolet light, and as a result, it is expected to improve the photocatalytic performance. The
[Brief description of the drawings]
FIG. 1 is a diagram showing the measurement of photoconductive properties of Cr-implanted single crystal rutile TiO 2 (the optical response of TiO 2 shifts to a lower energy side as the injection amount is increased). ing).
FIG. 2 is a diagram showing the results of surface excitation hole measurement of anatase single crystal thin film, rutile single crystal thin film and Cr-implanted rutile thin film (only Cr-implanted rutile thin film is excited to the surface up to about 500 nm). Can be confirmed).

Claims (3)

基板上に作製した単結晶二酸化チタン薄膜に、加速電圧及び注入量を制御しながらNb、VおよびCrの金属イオンのうち少なくとも一種のイオンを注入して単結晶二酸化チタン薄膜の表面から深さ方向に注入イオンの濃度勾配を意図的に設け、イオン注入後、大気中、温度200℃〜700℃で1〜10時間熱処理を行うことにより結晶を回復させることを特徴とする、光触媒薄膜の作製方法。A single crystal titanium dioxide thin film formed on a substrate is implanted with at least one kind of Nb, V, and Cr metal ions while controlling the acceleration voltage and the implantation amount, and the depth direction from the surface of the single crystal titanium dioxide thin film. A method for producing a photocatalytic thin film, wherein a concentration gradient of implanted ions is intentionally provided, and after the ion implantation, the crystal is recovered by performing heat treatment in the atmosphere at a temperature of 200 ° C. to 700 ° C. for 1 to 10 hours . 加速電圧及び注入量を制御しながらイオン注入を行う工程が、高い加速電圧で長時間注入を行った後加速電圧を減少させて短時間注入を行うか、又は低い加速電圧で長時間注入を行った後加速電圧を増加させて短時間注入を行う工程を含む、請求項1に記載の方法。The process of implanting ions while controlling the acceleration voltage and the implantation amount is performed by implanting for a long time with a high acceleration voltage and then decreasing the acceleration voltage for a short time, or performing a long time implantation with a low acceleration voltage. The method according to claim 1, further comprising the step of performing a short time implantation by increasing the acceleration voltage. バンドギャップもしくは電位勾配が厚さ方向に変化した傾斜膜であることを特徴とする、請求項1又は2に記載の方法によって作製された単結晶二酸化チタン光触媒薄膜。The single crystal titanium dioxide photocatalyst thin film produced by the method according to claim 1 or 2, wherein the thin film is a tilted film whose band gap or potential gradient is changed in the thickness direction.
JP2000339096A 2000-11-07 2000-11-07 Highly efficient photocatalytic thin film and method for producing the same Expired - Fee Related JP4590579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000339096A JP4590579B2 (en) 2000-11-07 2000-11-07 Highly efficient photocatalytic thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000339096A JP4590579B2 (en) 2000-11-07 2000-11-07 Highly efficient photocatalytic thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002143688A JP2002143688A (en) 2002-05-21
JP4590579B2 true JP4590579B2 (en) 2010-12-01

Family

ID=18814210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000339096A Expired - Fee Related JP4590579B2 (en) 2000-11-07 2000-11-07 Highly efficient photocatalytic thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4590579B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4295231B2 (en) 2005-03-01 2009-07-15 富士通株式会社 Broadband light-absorbing photocatalyst and method for producing the same, and broadband light-absorbing photocatalyst-containing composition and molded article
US8236146B2 (en) 2008-10-30 2012-08-07 Panasonic Corporation Photoelectrochemical cell and energy system using the same
US8758578B2 (en) 2009-08-05 2014-06-24 Panasonic Corporation Photoelectrochemical cell and energy system using the same
EP2500449B1 (en) 2009-11-10 2017-09-27 Panasonic Intellectual Property Management Co., Ltd. Photoelectrochemical cell and energy system using same
EP2555314B1 (en) 2010-03-31 2016-09-21 Panasonic Intellectual Property Management Co., Ltd. Photoelectrochemical cell and energy system using same
JP6009254B2 (en) * 2012-07-17 2016-10-19 シャープ株式会社 Photocatalyst, method for producing the same, and purification device
WO2014068944A1 (en) 2012-10-31 2014-05-08 パナソニック株式会社 Photosemiconductor electrode, photoelectrochemical cell, and energy system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192176A (en) * 1997-07-22 1999-04-06 Bridgestone Corp Photocatalytic film and its production
JPH11197512A (en) * 1998-01-08 1999-07-27 Sumitomo Chem Co Ltd Thin photocatalyst film, photocatalytic reaction method and production of thin photocatalyst film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262904A (en) * 1999-03-18 2000-09-26 Inax Corp Photocatalyst carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192176A (en) * 1997-07-22 1999-04-06 Bridgestone Corp Photocatalytic film and its production
JPH11197512A (en) * 1998-01-08 1999-07-27 Sumitomo Chem Co Ltd Thin photocatalyst film, photocatalytic reaction method and production of thin photocatalyst film

Also Published As

Publication number Publication date
JP2002143688A (en) 2002-05-21

Similar Documents

Publication Publication Date Title
US6794065B1 (en) Photocatalytic material and photocatalytic article
EP1153658B1 (en) Visible light response type photocatalyst
US6793980B2 (en) Method of forming photo-catalytic film made of titanium oxide on base material and laminated material thereof
CA2314381C (en) Article having photocatalytic activity
JP2942829B1 (en) Method of forming metal oxide film by photoelectroless oxidation method
US20120189681A1 (en) Photocatalytic coating for the controlled release of volatile agents
US20100240531A1 (en) Process for producing titanium oxide layers
JP4590579B2 (en) Highly efficient photocatalytic thin film and method for producing the same
KR100882345B1 (en) Photocatalyst element, method and device for preparing the same
KR100852496B1 (en) Method of preparation for titania photo-catalyst by oxygen plasma and rapid thermal annealing
KR20060133681A (en) Photocatalyst titanium dioxide thin film chemoreceptible to visible light and manufacturing method thereof
RU2499850C1 (en) Production method of metal-containing carbon nanomaterial
JP3829183B2 (en) Photocatalyst and method for producing the same
JP4150213B2 (en) Manufacturing method of visible light responsive titanium oxide
JP2007224370A (en) MANUFACTURING METHOD OF TiO2 SPUTTER COATING FILM
KR101430285B1 (en) Method for preparing of TiON photocatalyst
JP4883512B2 (en) Fabrication method of visible light responsive titanium oxide thin film
Micic et al. Enhanced redox chemistry in quantized semiconductor colloids
JP2005218957A (en) Visible light-responsive titanium dioxide photocatalyst thin film and manufacturing method therefor
JP2004255332A (en) Visible light response type photocatalyst
JP4042509B2 (en) Visible light responsive photocatalyst
JP4631041B2 (en) Photocatalytic material with non-metallic impurities added and its preparation method
JP3550658B2 (en) Method for producing titanium dioxide-based thin film with controlled crystal structure
JP4789085B2 (en) Preparation of crystal-oriented sulfur-doped titanium dioxide film
Bansode et al. Reusable thin film photocatalyst of Fe‐doped TiO2 deposited by ECR plasma

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees