JP4586561B2 - Aqueous solution measuring device - Google Patents

Aqueous solution measuring device Download PDF

Info

Publication number
JP4586561B2
JP4586561B2 JP2005037660A JP2005037660A JP4586561B2 JP 4586561 B2 JP4586561 B2 JP 4586561B2 JP 2005037660 A JP2005037660 A JP 2005037660A JP 2005037660 A JP2005037660 A JP 2005037660A JP 4586561 B2 JP4586561 B2 JP 4586561B2
Authority
JP
Japan
Prior art keywords
water
light
absorption wavelength
width direction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005037660A
Other languages
Japanese (ja)
Other versions
JP2006226709A (en
Inventor
亘 谷本
寿人 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005037660A priority Critical patent/JP4586561B2/en
Publication of JP2006226709A publication Critical patent/JP2006226709A/en
Application granted granted Critical
Publication of JP4586561B2 publication Critical patent/JP4586561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、例えば鋼帯等の基材上に存在する水溶液量をオンライン測定する技術に関するものである。   The present invention relates to a technique for online measurement of the amount of an aqueous solution present on a base material such as a steel strip.

水を用いた加工・製造等のプロセスは産業界全般に渡り多用されている。それらのプロセスは、例えば、洗浄・冷却のように主に水の物理的な作用を利用したものから、電気めっき・化成処理等の水に溶解あるいは分散させた物質による化学的な作用を利用したもの等多様である。   Processes such as processing and manufacturing using water are widely used throughout the industry. These processes, for example, use the physical action of water, such as cleaning and cooling, and the chemical action of substances dissolved or dispersed in water, such as electroplating and chemical conversion. There are various things.

例えば、鉄鋼業においては、多くの製造プロセスにおいて製造される厚板材、冷延材、めっき材の冷却や洗浄に水を使用している。冷却や洗浄後の鋼材表面に残存する水は鋼材表面を腐食して表面外観を悪化させたり、次プロセスへ影響を及ぼしたり(例えば次プロセスがコイルに巻き取るプロセスだった場合に残存した水が蒸発できずに鋼材表面が腐食するなど)するため製品品質の特性を劣化させる問題となる。このため、鋼材表面に残存する水を取り除くために、鋼材の加熱や、ガスを吹き付けるドライヤーによる乾燥、自然乾燥して水が無くなるまで保持するなどの対策がとられている。この加熱や乾燥時の温度、保持時間などは明確な制御手法が確立されてないのが実情である。このため、建屋内の温度や湿度の変化、ライン速度、鋼材温度などの操業条件によっては鋼材表面に水が残存することがあり、製品品質の欠陥を生じていた。このように鋼材表面に残存している水は鉄鋼業の製品品質を左右する重要な因子となっている。   For example, in the steel industry, water is used for cooling and washing thick plate materials, cold-rolled materials, and plating materials manufactured in many manufacturing processes. The water remaining on the steel surface after cooling and cleaning may corrode the steel surface and deteriorate the surface appearance, or may affect the next process (for example, if the next process is a process of winding on a coil, The steel material surface corrodes without being able to evaporate), resulting in deterioration of product quality characteristics. For this reason, in order to remove the water remaining on the surface of the steel material, measures are taken such as heating the steel material, drying with a dryer that blows gas, or holding it until it is naturally dried and free of water. Actually, no clear control method has been established for the temperature and holding time during heating and drying. For this reason, depending on operating conditions such as temperature and humidity changes in the building, line speed, and steel material temperature, water may remain on the steel surface, resulting in product quality defects. Thus, the water remaining on the steel surface is an important factor that affects the product quality of the steel industry.

また、被処理物を水溶液中に浸漬して処理を行なうプロセスでは水分量が問題となることは無いが、塗布あるいはスプレー等によって被処理物表面に水溶液の薄い水膜を形成させて、被処理物と水溶液との化学反応により皮膜を生成させる処理(本明細書では、「湿式処理」とも記載する。)を行なうプロセスでは被処理物表面の水膜量が処理生成物の量と性状に大きな影響を与える。従って、その水膜量の測定技術は重要な要素技術である。   In addition, the amount of moisture does not become a problem in the process of immersing the workpiece in an aqueous solution, but a thin water film of the aqueous solution is formed on the surface of the workpiece by coating or spraying. In a process in which a film is formed by a chemical reaction between an object and an aqueous solution (also referred to as “wet process” in this specification), the amount of water film on the surface of the object to be processed is large in the amount and properties of the processed product. Influence. Therefore, the technique for measuring the amount of water film is an important elemental technique.

近年、鋼帯の表面処理プロセスにおいてめっき層の表面に潤滑作用のある皮膜を形成させて潤滑性を向上させる技術が種々提案されている。例えば、特許文献1〜3には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、亜鉛酸化物を主体とする酸化膜を形成させて溶接性または加工性を向上させる技術が開示されている。特許文献4には、亜鉛系めっき鋼板の表面にリン酸ナトリウム5〜60g/Lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行うか、または、上記水溶液を塗布することにより、リン酸化物を主体とする酸化膜を形成して、プレス成形性及び化成処理性を向上させる技術が開示されている。特許文献5には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術が開示されている。   In recent years, various techniques for improving lubricity by forming a film having a lubricating action on the surface of a plating layer in a surface treatment process of a steel strip have been proposed. For example, in Patent Documents 1 to 3, the surface of a zinc-based plated steel sheet is subjected to electrolytic treatment, dipping treatment, coating oxidation treatment, or heat treatment to form an oxide film mainly composed of zinc oxide and weldability. Or the technique which improves workability is disclosed. In Patent Document 4, the surface of the zinc-based plated steel sheet is immersed in an aqueous solution containing 5 to 60 g / L of sodium phosphate and having a pH of 2 to 6, or is subjected to electrolytic treatment, or the above aqueous solution is applied. Discloses a technique for improving the press formability and chemical conversion property by forming an oxide film mainly composed of phosphorous oxide. In Patent Document 5, the surface of a zinc-based plated steel sheet is improved in press formability and chemical conversion treatment by generating Ni oxide by electrolytic treatment, dipping treatment, coating treatment, coating oxidation treatment, or heat treatment. Technology is disclosed.

このような提案において、めっき鋼板の湿式処理においては、処理の温度、時間とともに鋼板表面の処理液量が皮膜形成の重要因子である。そのため、例えばロールコーターで一定量塗布したり、処理液を塗布後、ロールで絞ったり、ガスワイピングノズルで加圧気体を吹き付けるなどによって、処理液を一定量にする処理が行われているが、このような液量を制御するときは、鋼板長手方向の制御だけでなく、板幅方向の液量分布の制御も重要である。   In such a proposal, in the wet processing of the plated steel sheet, the amount of the processing liquid on the surface of the steel sheet is an important factor for film formation with the processing temperature and time. Therefore, for example, by applying a certain amount with a roll coater, after applying the treatment liquid, squeezing with a roll, or by blowing a pressurized gas with a gas wiping nozzle, processing to make the treatment liquid a constant amount is performed, When such a liquid amount is controlled, not only the control in the longitudinal direction of the steel plate but also the control of the liquid amount distribution in the plate width direction is important.

このように鋼材表面に存在する水膜量は製品品質を決定する重要な因子であり、鋼材表面に存在する水膜量を制御するためには、水膜量を迅速に測定し、測定結果に基いて、水膜量を制御できることが必要である。迅速な制御のためには、水膜量をオンライン測定することが望ましい。鋼帯上の水の分布状況は、鋼帯の板幅方向で均一な分布となっているのが望ましいが、端面から蒸発していき、鋼帯中央部での残存量が多いのが経験上において常である。絞りロールによる水量制御方法では、ロールの両端の押し付け圧によって鋼帯幅方向の水量の分布は変化する。ドライヤーや加熱炉による乾燥においても当然鋼帯板幅方向の水量の分布は変化する。このようなことから、鋼帯長手方向はもとより鋼帯板幅方向での水の分布状況を把握することは製造プロセス上で重要である。   In this way, the amount of water film present on the steel surface is an important factor that determines product quality.To control the amount of water film present on the steel surface, the amount of water film is measured quickly, Therefore, it is necessary to be able to control the amount of water film. For quick control, it is desirable to measure the amount of water film online. The distribution of water on the steel strip is preferably uniform in the width direction of the steel strip. Is always the case. In the water amount control method using the squeezing roll, the distribution of the water amount in the steel strip width direction changes depending on the pressing pressure at both ends of the roll. Even when drying with a dryer or a heating furnace, the distribution of the water amount in the width direction of the steel strip naturally changes. For this reason, it is important in the manufacturing process to grasp the water distribution in the steel strip width direction as well as the steel strip longitudinal direction.

鋼帯の板幅方向の水分布量を計測できれば、前述した乾燥プロセスの鋼帯板幅方向での制御も可能となり、革新的な製造プロセスが可能となる。   If the amount of water distribution in the strip width direction of the steel strip can be measured, the above-described drying process can be controlled in the strip width direction, and an innovative manufacturing process becomes possible.

水分量を計測する技術には多数の技術があるが、製造プロセスに組み込んで水分量を測定するのに好適な手法は、フィルター式赤外吸収方式である。この手法は、近赤外領域での特定波長の光が水に吸収されることを利用した測定方法である。つまり、赤外光を被測定試料に照射し、該試料から反射した光を水に吸収される波長および吸収されない波長の光を通過するフィルターを通して強度を測定することによって水による光の吸収量を計測し水分量を測定する装置である。この手法は、高速な応答性を持ち、また容易な装置構成で実現できることから多方面の製造業において用いられている(特許文献6〜10参照)。例えば、特許文献9、10には、水分計を製造ラインに設置して水分測定することで、鋼板上の水溶性皮膜の厚み制御技術が開示されている。   There are a number of techniques for measuring the amount of moisture, and a suitable method for measuring the amount of moisture incorporated in the manufacturing process is the filter-type infrared absorption method. This method is a measurement method using the fact that light of a specific wavelength in the near infrared region is absorbed by water. In other words, the amount of light absorbed by water is measured by irradiating a sample to be measured with infrared light and measuring the intensity of light reflected from the sample through a filter that passes light of wavelengths that are absorbed by water and wavelengths that are not absorbed. It is a device that measures water content. This method is used in various manufacturing industries because it has a high-speed response and can be realized with an easy apparatus configuration (see Patent Documents 6 to 10). For example, Patent Documents 9 and 10 disclose a technique for controlling the thickness of a water-soluble film on a steel sheet by installing a moisture meter on a production line and measuring moisture.

以下に先行技術文献情報について記載する。
特開昭53−60332号公報 特開平2−190483号公報 特開2004−3004号公報 特開平4−88196号公報 特開平3−191093号公報 特開平3−115838号公報 特開2004−20192号公報 特開2003−156437号公報 特開平4−48967号公報 特開平3−177578号公報
The prior art document information is described below.
JP-A-53-60332 Japanese Patent Laid-Open No. 2-190483 JP 2004-3004 A JP-A-4-88196 Japanese Patent Laid-Open No. 3-191093 Japanese Patent Laid-Open No. 3-115538 JP 2004-20192 A JP 2003-156437 A JP-A-4-48967 JP-A-3-177578

フィルター式赤外吸収法は、基本的に点測定であり、たかだか20〜30mmφの一点での領域しか測定できない。鋼帯長さ方向の分布を測定するためには、製造ラインに1つの装置を設置すればよいが、鋼帯幅方向の分布を測定するためには、幅方向に複数台の装置を設置するか、板幅方向に移動させながら測定する必要がある。例えば1.5mの板幅全幅を同時に測定するためには、測定領域が30mmφの装置の場合には、板幅方向に50台の装置を設置する必要がある。また、測定装置を板幅方向に移動させても、鋼帯が移動している場合には、測定は鋼帯表面を斜めにジグザグ状の測定となるため、板幅方向について同時に測定することは不可能である。   The filter-type infrared absorption method is basically point measurement, and can measure only a region at a point of 20 to 30 mmφ. In order to measure the distribution in the steel strip length direction, one device may be installed on the production line, but in order to measure the distribution in the steel strip width direction, a plurality of devices are installed in the width direction. Or it is necessary to measure while moving in the plate width direction. For example, in order to simultaneously measure the full width of 1.5 m, in the case of a device having a measurement area of 30 mmφ, it is necessary to install 50 devices in the plate width direction. In addition, even if the measuring device is moved in the plate width direction, if the steel strip is moving, the measurement becomes a zigzag measurement on the steel strip surface diagonally. Impossible.

本発明の課題は、基材表面上の水膜量の幅方向の分布状態、長さ方向の分布状態を非接触で迅速にオンライン測定できる分析装置を提供することである。   An object of the present invention is to provide an analyzer that can quickly and non-contactly measure the distribution state in the width direction and the distribution direction in the length direction of the amount of water film on the substrate surface.

上記課題を解決する本発明の要旨は次のとおりである。   The gist of the present invention for solving the above problems is as follows.

第1発明は、(1)水の吸収波長と非吸収波長を含む波長域の赤外光を放出する赤外光源と該赤外光源から放出された赤外光を、表面に水溶液膜が存在する連続的に移動する金属帯表面の全幅に照射する照射系を備える光照射部と、(2)金属帯表面の全幅から反射した光を、金属帯の長手方向と板幅方向で曲率を変えた非球面の凹面鏡に集め、該非球面の凹面鏡から反射する光束を金属帯幅方向の位置情報を保ったまま反射させ、反射させた光束を、水の吸収波長を透過するフィルター、水の非吸収波長を透過するフィルターを通過させた後、多素子型検出器からなる検出器に導く受光系を備える光検出部と、(3)水の吸収波長を透過するフィルターを通過した赤外光と水の非吸収波長を透過するフィルターを通過した赤外光を検出器に交互に導入する制御系と、(4)前記検出器で測定した水の吸収波長を透過したフィルターの光強度及び水の非吸収波長を透過したフィルターを通過した光強度から金属帯の幅方向位置の水の吸光度を求め、さらに金属帯表面の幅方向位置の水溶液量を算出する信号処理系と、を備えることを特徴とする金属帯表面の水溶液量測定装置である。 The first invention is (1) an infrared light source that emits infrared light in a wavelength range including the absorption wavelength and non-absorption wavelength of water, and an aqueous solution film on the surface of the infrared light emitted from the infrared light source. And a light irradiating unit comprising an irradiation system for irradiating the entire width of the continuously moving metal band surface, and (2) changing the curvature of the light reflected from the entire width of the metal band surface in the longitudinal direction and the plate width direction. The aspherical concave mirror collects and reflects the light beam reflected from the aspherical concave mirror while maintaining the positional information in the metal band width direction, and the reflected light beam is a filter that transmits the absorption wavelength of water. A light detection unit including a light receiving system that passes through a filter that transmits wavelengths and then leads to a detector composed of a multi-element detector; and (3) infrared light and water that have passed through a filter that transmits the absorption wavelength of water. Infrared light that has passed through a filter that transmits the non-absorption wavelength of Each other and a control system to be introduced, (4) the width direction position of the metal strip from the light intensity passing through the transmitted filter unabsorbed wavelength of light intensity and water filters through the absorption wavelength of water measured by the detector And a signal processing system for calculating the amount of water in the metal strip and calculating the amount of the aqueous solution at the position in the width direction of the surface of the metal strip .

発明は、第発明において、照射系が光ファイバーバンドルであることを特徴とする水溶液量測定装置である。 A second invention is the aqueous solution amount measuring device according to the first invention, wherein the irradiation system is an optical fiber bundle.

発明は、第1または第2発明において、前記、多素子型検出器がInGaAsリニアイメージセンサであることを特徴とする水溶液量測定装置である。 A third invention is the aqueous solution amount measuring apparatus according to the first or second invention , wherein the multi-element detector is an InGaAs linear image sensor.

本発明によれば、基材表面に存在する水膜量の幅方向、長手方向の分布を非接触で迅速にオンライン測定できるようになる。本発明の装置を用いて基材表面の水溶液膜量を計測し、その計測結果を製造プロセスの操業条件へフィードバック・フィードフォワードのための指標値として用いることができるので、品質の安定した製品を製造可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the distribution of the width direction of a water film quantity which exists on the base-material surface, and a longitudinal direction can be measured quickly on-line without contact. The amount of aqueous film on the substrate surface can be measured using the apparatus of the present invention, and the measurement result can be used as an index value for feedback / feedforward to the operating conditions of the manufacturing process. Manufacturable.

以下、本発明の実施の形態について詳しく説明する。図1は、本発明の実施の形態に係る水溶液量測定装置の全体構成を説明する概略斜視図である。図2は、図1の光検出部3の構成を示す図で、(a)は側面図、(b)は平面図である。図1において、1は鋼帯、2は光照射部、3は光検出部,4は信号処理装置(信号処理系)、5は制御装置(制御系)である。図2において、6は集光ミラー、7及び12はハーフミラー、8及び19はミラー、9は光路切り替え用ディスク、10は水の吸収波長透過フィルター、11は水の非吸収波長透過フィルター、13は検出器である。検出器13には、鋼帯幅方向に複数の素子を配置した一次元多素子型検出器が使用されている。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a schematic perspective view illustrating the overall configuration of an aqueous solution amount measuring apparatus according to an embodiment of the present invention. 2A and 2B are diagrams illustrating the configuration of the light detection unit 3 in FIG. 1, where FIG. 2A is a side view and FIG. 2B is a plan view. In FIG. 1, 1 is a steel strip, 2 is a light irradiation unit, 3 is a light detection unit, 4 is a signal processing device (signal processing system), and 5 is a control device (control system). In FIG. 2, 6 is a condensing mirror, 7 and 12 are half mirrors, 8 and 19 are mirrors, 9 is an optical path switching disk, 10 is a water absorption wavelength transmission filter, 11 is a water non-absorption wavelength transmission filter, 13 Is a detector. As the detector 13, a one-dimensional multi-element detector in which a plurality of elements are arranged in the steel strip width direction is used.

光照射部2の光源(図示せず)より水の吸収波長と非吸収波長を含む波長域の赤外光を、表面に水膜(図示せず)が付着し矢印方向に走行している鋼帯1の全幅に赤外光照射領域bとなるように照射する。光検出部3は、前記赤外光照射領域b内の鋼帯全幅にわたる光検出部視野aからの前記水膜を通して鋼帯1面から反射した光を受光し、赤外光の水の吸収波長および水の非吸収波長の各々の強度を検出する。信号処理装置4は前記各々の波長の光の強度から水による吸収量を計算して、鋼帯1上に付着した水分量を計算する。鋼帯1表面の水膜が水溶液の場合、当該水溶液中の水分濃度を予め求めておくことで鋼帯上の水溶液量を求めることができる。   Steel that is traveling in the direction of an arrow with a water film (not shown) attached to the surface of infrared light in a wavelength range including absorption and non-absorption wavelengths of water from a light source (not shown) of the light irradiation unit 2 The entire width of the band 1 is irradiated so as to be the infrared light irradiation region b. The light detection unit 3 receives light reflected from the surface of the steel strip through the water film from the light detection unit field of view a across the entire width of the steel strip in the infrared light irradiation region b, and absorbs water of infrared light. And the intensity of each of the non-absorbing wavelengths of water. The signal processing device 4 calculates the amount of water adhering to the steel strip 1 by calculating the amount of water absorption from the intensity of the light of each wavelength. When the water film on the surface of the steel strip 1 is an aqueous solution, the amount of the aqueous solution on the steel strip can be obtained by obtaining in advance the water concentration in the aqueous solution.

光検出部3の構成と作用を図2によって説明する。光照射部2より鋼帯1表面に照射された光は、水膜を通して鋼帯1表面で反射する。光照射部2に、例えば光ファイバーバンドルなどを用いることで赤外光源からの光を矩形状にして鋼帯1全幅に効率よく照射することができる。   The configuration and operation of the light detection unit 3 will be described with reference to FIG. The light irradiated on the surface of the steel strip 1 from the light irradiation unit 2 is reflected on the surface of the steel strip 1 through the water film. By using, for example, an optical fiber bundle or the like for the light irradiation unit 2, the light from the infrared light source can be formed into a rectangular shape and efficiently irradiated to the entire width of the steel strip 1.

鋼帯1表面からの反射光は集光ミラー6で反射される。集光ミラー6に、鋼帯1の長手方向と板幅方向で曲率を変えたミラーを使用することで、反射の光束を、位置情報(鋼帯幅方向の情報)を保ったまま検出器13に導くのに適した寸法に縮小させることができる。集光ミラー6で反射した光は、ハーフミラー7によって光路Aと光路Bに分割される。光路Aの光は水の吸収波長が透過する吸収波長透過フィルター10を通過し、ミラー19、ハーフミラー12を通って検出器13に集光される。ハーフミラー7によって分割された他方の光路Bの光は、水の非吸収波長が透過する非吸収波長透過フィルター11を通過し、ハーフミラー12で反射されて検出器13に集光される。吸収波長透過フィルター10および非吸収波長透過フィルター11は、多層膜干渉のバンドパス・フィルターなどを用いればよい。   Reflected light from the surface of the steel strip 1 is reflected by the collector mirror 6. By using a mirror whose curvature is changed in the longitudinal direction and the plate width direction of the steel strip 1 as the condensing mirror 6, the reflected light flux is detected by the detector 13 while maintaining the position information (information in the steel strip width direction). Can be reduced to a size suitable for leading to The light reflected by the condenser mirror 6 is divided into an optical path A and an optical path B by the half mirror 7. The light in the optical path A passes through the absorption wavelength transmission filter 10 through which the absorption wavelength of water passes, passes through the mirror 19 and the half mirror 12, and is collected on the detector 13. The light in the other optical path B divided by the half mirror 7 passes through the non-absorption wavelength transmission filter 11 through which the non-absorption wavelength of water is transmitted, is reflected by the half mirror 12 and is collected on the detector 13. The absorption wavelength transmission filter 10 and the non-absorption wavelength transmission filter 11 may be a band-pass filter for multilayer interference.

光路Aのハーフミラー7と吸収波長透過フィルター10の間、光路Bのミラー8と非吸収波長透過フィルター11の間に、光路切り替え回転ディスク9が設置されている。光路切り替え回転ディクス9の構造は、例えば図3に示すように、回転ディスク21の一部部分に空隙部分22を設けてあり、回転ディスク21を回転機構23で1/2回転させることで、検出器13に到達させる光を光路Aおよび光路Bのいずれか一方の光に切り替えることができる。   An optical path switching rotary disk 9 is installed between the half mirror 7 and the absorption wavelength transmission filter 10 in the optical path A, and between the mirror 8 and the non-absorption wavelength transmission filter 11 in the optical path B. For example, as shown in FIG. 3, the structure of the optical path switching rotating disk 9 is provided with a gap 22 in a part of the rotating disk 21, and is detected by rotating the rotating disk 21 by a half rotation by the rotating mechanism 23. The light that reaches the device 13 can be switched to one of the light paths A and B.

制御装置5は、検出器13に入力させる赤外光を制御する。すなわち、制御装置5は、回転ディスク9を回転させることで、光路Aの光(吸収波長が透過する吸収波長透過フィルター10を通過した光)および、光路Bの光(水の非吸収波長が透過する非吸収波長透過フィルター11を通過した光)のいずれかを、検出器13に所定時間、交互に入力し、検出器13は、入力された光量に基く出力信号を信号処理装置4に出力する。また、制御装置5は、信号処理装置4に検出器13に入力されている光路種別(光路A、光路Bの別)を出力する。   The control device 5 controls the infrared light input to the detector 13. That is, the control device 5 rotates the rotating disk 9 so that the light in the optical path A (the light that has passed through the absorption wavelength transmission filter 10 through which the absorption wavelength is transmitted) and the light in the optical path B (the non-absorption wavelength of water is transmitted). Or the light having passed through the non-absorbing wavelength transmission filter 11) is alternately input to the detector 13 for a predetermined time, and the detector 13 outputs an output signal based on the input light amount to the signal processing device 4. . Further, the control device 5 outputs to the signal processing device 4 the optical path type (separate between the optical path A and the optical path B) input to the detector 13.

鋼帯表面の水分量と、検出器13で検出した光路Aの光(吸収波長が透過する吸収波長透過フィルター10を通過した光)の信号出力と光路Bの光(水の非吸収波長が透過する非吸収波長透過フィルター11を通過した光)の信号出力の差との関係を予め調査して求めておき、この関係を信号処理装置4に入力しておく。   The amount of water on the surface of the steel strip, the signal output of the light in the optical path A detected by the detector 13 (the light that has passed through the absorption wavelength transmission filter 10 through which the absorption wavelength is transmitted), and the light in the optical path B (the non-absorption wavelength of water is transmitted) The relationship between the difference in the signal output of the light that has passed through the non-absorbing wavelength transmission filter 11 and the difference in signal output is obtained in advance, and this relationship is input to the signal processing device 4.

鋼帯1表面の水膜が水溶液の場合、当該水溶液中の水分濃度に基いて、鋼帯表面の水溶液量を容易に求めることができる。また、鋼帯表面の水溶液量と、前記信号出力の差との関係を求め、この関係を信号処理装置4に入力しておいてもよい。   When the water film on the surface of the steel strip 1 is an aqueous solution, the amount of the aqueous solution on the surface of the steel strip can be easily determined based on the moisture concentration in the aqueous solution. Further, a relationship between the amount of the aqueous solution on the surface of the steel strip and the difference in the signal output may be obtained and this relationship may be input to the signal processing device 4.

信号処理装置4は、検出器13からの出力信号及び制御装置5からの光路種別情報に基き、光路Aからの出力信号、及び光路Bからの出力信号を別々に演算し、さらに両者の差から鋼帯表面の水溶液量を演算して求める。   The signal processing device 4 separately calculates the output signal from the optical path A and the output signal from the optical path B based on the output signal from the detector 13 and the optical path type information from the control device 5, and further calculates the difference between the two. Calculate the amount of aqueous solution on the surface of the steel strip.

吸収波長での強度をIA、非吸収波長での強度をIBとすると吸光度(Abs)はAbs=−log(IA/IB)で示される。また、溶液濃度をc、溶液の分子吸光係数をε、鋼帯表面の水膜厚さをLとすると、Lambert−Berrの法則によってAbs=εcLが成り立つ。ここで、溶液成分および溶液濃度が一定ならば、εおよびcは定数とみなすことができるので、吸光度(Abs)と鋼帯表面の水膜厚さ(L)は比例関係にある。従って、吸収波長、非吸収波長での強度(IA、IB)を測定することで吸光度(Abs)が計算でき、鋼帯表面の水膜厚さ(L)を求めることができる。   If the intensity at the absorption wavelength is IA and the intensity at the non-absorption wavelength is IB, the absorbance (Abs) is expressed as Abs = −log (IA / IB). Further, when the solution concentration is c, the molecular extinction coefficient of the solution is ε, and the water film thickness on the steel strip surface is L, Abs = εcL is established according to the Lambert-Berr law. Here, if the solution component and the solution concentration are constant, ε and c can be regarded as constants, so that the absorbance (Abs) and the water film thickness (L) on the steel strip surface are in a proportional relationship. Therefore, the absorbance (Abs) can be calculated by measuring the intensity (IA, IB) at the absorption wavelength and the non-absorption wavelength, and the water film thickness (L) on the steel strip surface can be obtained.

前記で求めた結果に基いて、鋼帯表面の水溶液量が所定水溶液量になるようにプロセスの処理条件を制御、例えば絞りロールで塗布液量を制御する方式では絞りロールの圧下力を制御する。このようにすることで、鋼帯表面の水溶液量を所要の水溶液量に迅速に調整することができる。   Based on the result obtained above, the processing conditions of the process are controlled so that the amount of the aqueous solution on the surface of the steel strip becomes a predetermined amount of the aqueous solution. . By doing in this way, the amount of aqueous solution on the surface of a steel strip can be adjusted rapidly to a required amount of aqueous solution.

また、前記で求めた結果を、サンプリング位置情報(鋼帯長手方向位置情報または時刻情報)とともに信号処理装置5に内蔵される記憶装置に記録し、必要に応じて記録の内容をCRTに表示したり、プリントアウトする。また求めた水溶液量が予め設定した閾値を外れたときに、音声または表示灯等によって操作者に閾値を外れたことを知らしめたりしても良い。   The result obtained above is recorded in a storage device built in the signal processing device 5 together with the sampling position information (steel strip longitudinal direction position information or time information), and the recorded contents are displayed on the CRT as necessary. Or print out. Further, when the obtained aqueous solution amount deviates from a preset threshold value, the operator may be informed that the threshold value has been deviated by voice or an indicator lamp.

本装置では、走行中の鋼帯1に照射した赤外光を鋼帯1の長手方向および板幅方向の情報を保ったまま検出器13に集光することが可能である。検出器13に一次元多素子型検出器を用いることで、鋼帯1の板幅方向での水膜量の分布情報を得ることが可能になる。鋼帯幅方向位置に対応した光が検出器の鋼帯幅方向に対応した検出素子に入力され、各々の素子の出力信号は、信号処理装置4に出力される。信号処理装置4は、検出器13の各素子からの出力信号及び制御装置5からの光路種別情報に基き、鋼帯幅方向の各々の位置に対応する水溶液量を演算して求める。   In this apparatus, it is possible to condense the infrared light irradiated to the traveling steel strip 1 on the detector 13 while maintaining the information in the longitudinal direction and the plate width direction of the steel strip 1. By using a one-dimensional multi-element detector for the detector 13, it becomes possible to obtain distribution information of the amount of water film in the plate width direction of the steel strip 1. Light corresponding to the steel strip width direction position is input to the detection element corresponding to the steel strip width direction of the detector, and the output signal of each element is output to the signal processing device 4. The signal processing device 4 calculates and determines the amount of the aqueous solution corresponding to each position in the steel strip width direction based on the output signal from each element of the detector 13 and the optical path type information from the control device 5.

前記で求めた鋼帯幅方向の水溶液量の分布に不均一がある場合、その不均一を解消するようにプロセスの処理条件を制御、例えば絞りロールの幅方向の圧下量を制御する。このようにすることで、鋼帯幅方向の水溶液量の分布の不均一を迅速に解消することができる。   When the distribution of the aqueous solution amount in the steel strip width direction obtained above is non-uniform, the processing conditions of the process are controlled so as to eliminate the non-uniformity, for example, the amount of reduction in the width direction of the squeeze roll is controlled. By doing in this way, the nonuniform distribution of the aqueous solution amount in the steel strip width direction can be quickly eliminated.

また、前記で求めた結果を、サンプリング位置情報(鋼帯長手方向位置情報または時刻情報)とともに信号処理装置5に内蔵される記憶装置に記録し、必要に応じて記録の内容をCRTに表示したり、プリントアウトしたりしてもよい。   The result obtained above is recorded in a storage device built in the signal processing device 5 together with the sampling position information (steel strip longitudinal direction position information or time information), and the recorded contents are displayed on the CRT as necessary. Or print out.

多素子型検出器としては、例えばInGaAsリニアイメージセンサなどを用いることができる。InGaAsリニアイメージセンサは市販のものを使用できる。例えば、浜松フォトニクス社製のInGaAsリニアイメージセンサは、検出可能な波長範囲は0.9〜2.6μmで、水の吸収波長(1.1、1.4、1.9μm)と水の非吸収波長の両方を測定可能である。水の非吸収波長としては、吸収ピーク近傍の波長を用いれば良く、例えば1.0、1.3、1.7、2.2μmなど波長である。素子数は128個と512個のものがある。例えば、板幅方向の測定領域を0.5、1.0、1.5、2.0mとし、128個の素子、512個の素子を板幅方向に設置した場合、1素子当りの測定領域を表1に示す。1素子あたりの測定領域は数cm以下であり、従来のフィルター式赤外吸収法による装置での測定面積とほぼ同等となることがわかる。目的とする測定領域と分解能に見合った素子数のものを適宜選択すれば問題はない。   For example, an InGaAs linear image sensor can be used as the multi-element detector. A commercially available InGaAs linear image sensor can be used. For example, the InGaAs linear image sensor manufactured by Hamamatsu Photonics has a detectable wavelength range of 0.9 to 2.6 μm, and water absorption wavelengths (1.1, 1.4, 1.9 μm) and non-absorption of water. Both wavelengths can be measured. As the non-absorption wavelength of water, a wavelength in the vicinity of the absorption peak may be used. For example, the wavelength is 1.0, 1.3, 1.7, 2.2 μm, or the like. There are 128 and 512 elements. For example, when the measurement area in the plate width direction is 0.5, 1.0, 1.5, and 2.0 m, and 128 elements and 512 elements are installed in the plate width direction, the measurement area per element Is shown in Table 1. It can be seen that the measurement area per element is several centimeters or less, which is almost the same as the measurement area of a conventional filter-type infrared absorption apparatus. There is no problem if the number of elements corresponding to the target measurement region and resolution is appropriately selected.

Figure 0004586561
Figure 0004586561

なお、前述の装置では、集光ミラー6として鋼帯1の長手方向と板幅方向で曲率を変えたミラーを用いたが、鋼帯1の長手方向および板幅方向用に各々1枚のシリンドリカルミラーを用いて集光しても良い。   In the above-described apparatus, a mirror whose curvature is changed in the longitudinal direction and the plate width direction of the steel strip 1 is used as the collecting mirror 6. However, one cylindrical member is used for each of the longitudinal direction and the plate width direction of the steel strip 1. The light may be condensed using a mirror.

また、前述の装置では、ハーフミラー7によって光路を2つに分割し、各々の光路に、水の吸収波長が透過する吸収波長透過フィルター10と水の非吸収波長が透過する非吸収波長透過フィルター11を設置して、水の吸収波および非吸収波測定用に使用したが、例えば、図4(a)に示すように、集光ミラー6で反射された光路に周波数切り替え回転ディスク9aを設置し、図4(b)に示すように、該回転ディスク9aに水の吸収波長が透過するフィルター10aと水の非吸収波長が透過するフィルター11aを設置し、回転ディスク9aを回転して、検出器13に吸収波長が透過する吸収波長透過フィルター10aを通過した光と水の非吸収波長が透過する非吸収波長透過フィルター11aを通過した光を、所定時間交互に入力させるようにしてもよい。   Moreover, in the above-mentioned apparatus, the optical path is divided into two by the half mirror 7, and the absorption wavelength transmission filter 10 through which the absorption wavelength of water is transmitted and the non-absorption wavelength transmission filter through which the non-absorption wavelength of water is transmitted through each optical path. 11 is used for measuring the absorption wave and non-absorption wave of water. For example, as shown in FIG. 4A, a frequency switching rotating disk 9a is installed in the optical path reflected by the condenser mirror 6. Then, as shown in FIG. 4B, a filter 10a that transmits the water absorption wavelength and a filter 11a that transmits the non-absorption wavelength of water are installed in the rotating disk 9a, and the rotating disk 9a is rotated and detected. The light that has passed through the absorption wavelength transmission filter 10a through which the absorption wavelength is transmitted and the light that has passed through the non-absorption wavelength transmission filter 11a through which the water non-absorption wavelength is transmitted are alternately input for a predetermined time. Unishi may be.

また、図5に示すように、集光ミラー6で反射した光をハーフミラー7によって光路Aと光路Bに分割し、光路Aの光は水の吸収波長が透過する吸収波長透過フィルター10を通過させた後検出器13aに導き、光路Bの光は水の非吸収波長が透過する非吸収波長透過フィルター11を通過させた後検出器13bに導き、水の吸収波長での光強度および水の非吸収波長での光強度をそれぞれ独立に測定するように2個の検出器を用いても良い。この場合、回転ディスク等が不要となるので可動部品の数を削減でき、装置の耐久性を向上することができる。   Further, as shown in FIG. 5, the light reflected by the condenser mirror 6 is divided into an optical path A and an optical path B by a half mirror 7, and the light in the optical path A passes through an absorption wavelength transmission filter 10 through which the absorption wavelength of water passes. The light of the optical path B is guided to the detector 13b after passing through the non-absorption wavelength transmission filter 11 through which the non-absorption wavelength of water passes, and the light intensity at the absorption wavelength of water and the water Two detectors may be used so that the light intensity at the non-absorbing wavelength is measured independently. In this case, since a rotating disk or the like is not required, the number of movable parts can be reduced, and the durability of the apparatus can be improved.

以上説明したとおり、従来のフィルター式赤外吸収法を用いた水膜測定装置は、基材上のたかだか20〜30mmφの1点での領域しか測定できなかったが、本発明の装置によれば、板幅方向に赤外光を照射し、板幅方向の位置情報を保ったまま検出器に光を導き、さらに多素子の光検出器を用いることによって板幅方向の水膜を同時に測定可能になる。   As explained above, the water film measuring apparatus using the conventional filter-type infrared absorption method can measure only a region at a point of 20 to 30 mmφ on the base material, but according to the apparatus of the present invention. Irradiates infrared light in the plate width direction, guides the light to the detector while maintaining the position information in the plate width direction, and can simultaneously measure the water film in the plate width direction by using a multi-element photodetector become.

また、前述の装置では、検出器に一次元多素子型センサを用いる場合について説明したが、例えば検出器として二次元多素子センサを用いれば静止している鋼帯上の全面での水膜量分布を瞬時に測定できることは言うまでもない。   In the above-described apparatus, the case where a one-dimensional multi-element sensor is used as a detector has been described. For example, if a two-dimensional multi-element sensor is used as a detector, the amount of water film on the entire surface of a steel strip that is stationary Needless to say, the distribution can be measured instantaneously.

以下、本発明の実施例を説明する
図1〜図3に示した装置を合金化溶融亜鉛めっき鋼帯の表面改質を目的とするラインに設置し、酢酸ナトリウム20g/リットルを添加したpH:2.0、液温:50℃の硫酸酸性の水溶性処理液を絞りロールで塗布した直後の合金化溶融亜鉛めっき鋼帯表面の幅方向水膜量分布を計測した。鋼帯幅は1.5mである。絞りロールのロール圧下力、処理液の温度や粘度など多数のパラメーターで鋼帯表面の処理液量を変化させることができるが、一例として、板幅方向の両端部での絞りロール圧下力のみを変化させ、他のパラメーターは一定で製造したときの、絞りロール出側における鋼帯上の処理液量の測定結果例を図6に示す。
Examples of the present invention will be described below. The apparatus shown in FIGS. 1 to 3 is installed in a line for surface modification of an alloyed hot-dip galvanized steel strip, and pH of sodium acetate 20 g / liter is added: 2.0, Liquid temperature: The distribution of the amount of water film in the width direction on the surface of the alloyed hot-dip galvanized steel strip immediately after applying a sulfuric acid acidic water-soluble treatment solution at 50 ° C. with a drawing roll was measured. The steel strip width is 1.5 m. The amount of treatment liquid on the surface of the steel strip can be changed with a number of parameters such as the roll reduction force of the squeeze roll and the temperature and viscosity of the treatment liquid. For example, only the squeeze roll reduction force at both ends in the plate width direction FIG. 6 shows an example of the measurement result of the amount of the treatment liquid on the steel strip on the drawing roll exit side when the other parameters are manufactured at a constant value.

光源には、約2μmまでの波長範囲の光が放出されるタングステンハロゲンランプを用い、フィルター10、11には、波長選択できる狭帯域干渉フィルターを用いて、それぞれ1.4μmの水の吸収波長の光およびその吸収ピークの裾となり他の水による吸収ピークが現れない1.3μmを水の非吸収波長として光を透過させた。検出器13には256個の素子数のリニアイメージセンサを用いた。回転ディスク9は1500rpmで連続回転させて、それぞれのフィルター10、11を透過した光が検出器13に到達したときの強度を測定した。   A tungsten halogen lamp that emits light in the wavelength range up to about 2 μm is used as the light source, and a narrow-band interference filter that can select wavelengths is used for the filters 10 and 11, each having an absorption wavelength of 1.4 μm. The light was allowed to pass through a non-absorbing wavelength of 1.3 μm at which light and the absorption peak due to other water did not appear. A linear image sensor having 256 elements was used for the detector 13. The rotating disk 9 was continuously rotated at 1500 rpm, and the intensity when the light transmitted through the respective filters 10 and 11 reached the detector 13 was measured.

製造条件Aは板両端のロール圧下力を同等とし、製造条件Bは片側だけのロール圧下力を増加して製造した場合である。製造条件Aは板幅方向で均一な水膜量分布を示すのに対して、製造条件Bは、ロール圧下力を増加した側(幅方向測定位置0mm側)から逆側に向かって水膜量が徐々に多くなる傾向が得られた。本発明によれば、予めロール圧下力と水膜量、板両端のロール圧下力を変化させたときのロール圧下力の変化量と幅方向水膜量の変化量の対応関係を求めておくことで、幅方向水膜量分布が不均一になった場合のその不均一を迅速に解消できる。   Manufacturing condition A is the case where the roll rolling force at both ends of the plate is made equal, and manufacturing condition B is when the roll rolling force is increased only on one side. Manufacturing condition A shows a uniform water film amount distribution in the plate width direction, whereas manufacturing condition B shows a water film amount from the side where the roll rolling force is increased (width direction measurement position 0 mm side) toward the opposite side. There was a tendency to gradually increase. According to the present invention, the correspondence relationship between the roll rolling force and the amount of water film, the change amount of the roll rolling force when the roll rolling force at both ends of the plate is changed, and the change amount of the width direction water film amount is obtained. Therefore, when the width direction water film amount distribution becomes nonuniform, the nonuniformity can be quickly eliminated.

図6中には、前記各々の製造条件について、従来装置を用いて測定位置を板幅中央部分に固定して測定したデータを示す(図6中の符号○、△)。従来装置では、2つの製造条件で、水膜厚に差が生じていることは判るが、板幅中央部分のデータしか得られないために、板幅方向の分布状態まではわからない。従って、例えば製造条件Bのデータ(符号△)が得られたとしても、水膜厚の幅方向不均一のあることが判っていないので、両端のロール圧下力を調整しても製造条件Aのような均一な水膜量分布にすることはできない。   FIG. 6 shows data obtained by measuring each manufacturing condition with the measurement position fixed at the center portion of the plate width using a conventional apparatus (signs ◯ and Δ in FIG. 6). In the conventional apparatus, it can be seen that there is a difference in the water film thickness between the two manufacturing conditions, but since only the data of the central portion of the plate width can be obtained, the distribution state in the plate width direction is not known. Therefore, for example, even if the data of manufacturing condition B (symbol Δ) is obtained, it is not known that the water film thickness is not uniform in the width direction. Therefore, even if the roll rolling force at both ends is adjusted, the manufacturing condition A Such a uniform water film amount distribution cannot be obtained.

さらに、両側のロール圧下力を増加した場合(製造条件C)の測定例を図7に示す。なお、図7には、前述の製造条件Aの測定結果も示した。製造条件Cでは、両端での水膜厚が減少するのに対して、中央部では、ロールの湾曲等によって水膜厚が増加することがわかった。   Further, FIG. 7 shows a measurement example when the roll rolling force on both sides is increased (manufacturing condition C). Note that FIG. 7 also shows the measurement results of the manufacturing condition A described above. Under the production condition C, it was found that the water film thickness at both ends decreased, whereas the water film thickness increased at the center due to the curvature of the roll or the like.

表面改質処理を継続して行うと、塗布される水膜量が経時的に変化するが、以上の測定結果から、板幅中央部分に固定して測定した液膜量データに基づいて絞りロールの圧下力を調整しても板幅方向の水膜量分布の不均一は解消できないだけでなく、逆に幅方向の水膜厚の不均一を増大させることがあるので、水膜厚の分布を鋼帯幅方向、長手方向で均一にすることが極めて困難であることが判る。   If the surface modification treatment is continued, the amount of water film applied changes over time. From the above measurement results, the squeeze roll is based on the liquid film amount data measured with the plate width center fixed. Even if the rolling force is adjusted, not only the unevenness of the water film thickness distribution in the plate width direction cannot be eliminated, but also the water film thickness unevenness in the width direction may be increased. It can be seen that it is extremely difficult to make the thickness uniform in the steel strip width direction and longitudinal direction.

本発明の装置を用いて長期的にデータを採取した結果、絞りロールの損傷・汚れ等によって幅方向で均一な分布とならない場合もあった。このような現象は継続して現れることもあるし短時間で解消されることもあった。このような場合、従来の点で測定する装置では、幅方向の水膜厚分布の不均一を識別することができないため、製品となって各々の部位に鋼帯が使われてから、初めて皮膜厚不均一の問題が顕在化する。本発明の装置を用いると、板幅方向の水膜量分布が迅速に測定可能になり、測定結果に基いて高精度な板幅方向の水膜量分布の制御が可能になる。   As a result of collecting data for a long time using the apparatus of the present invention, there is a case where the distribution is not uniform in the width direction due to damage or dirt of the squeezing roll. Such a phenomenon may appear continuously or may be resolved in a short time. In such a case, the conventional measuring device cannot discriminate the nonuniformity of the water thickness distribution in the width direction. The problem of uneven thickness becomes obvious. When the apparatus of the present invention is used, the water film amount distribution in the plate width direction can be measured quickly, and the water film amount distribution in the plate width direction can be controlled with high accuracy based on the measurement result.

また、本発明の装置を使用すると、鋼帯長手方向の水膜厚の経時変化を把握することができるので、水膜厚の測定結果に基づいて、その不均一を解消するように操業条件を調整することで、鋼帯長手方向に水膜厚分布の変動を低減し、もって表面改質皮膜の膜厚変動を低減できる。また、本発明の装置では、局部的に水膜厚の不均一が発生してもそれが判るので、該膜厚不良部をトラッキングして、不良部を削除することで、膜厚不良部が製品に巻き込まれて出荷されるのを防止することができる。   In addition, when the apparatus of the present invention is used, it is possible to grasp the change with time of the water film thickness in the longitudinal direction of the steel strip, so that the operating conditions are set so as to eliminate the unevenness based on the measurement result of the water film thickness. By adjusting, it is possible to reduce the fluctuation of the water film thickness distribution in the longitudinal direction of the steel strip, thereby reducing the film thickness fluctuation of the surface-modified film. Further, in the apparatus of the present invention, even if the water film thickness non-uniformity occurs locally, it can be found. Therefore, by tracking the film thickness defect part and deleting the defective part, the film thickness defect part is It is possible to prevent the product from being rolled up and shipped.

本発明は、基材上に存在する水分量、水溶液量の幅方向、長手方向の分布を非接触で迅速に測定する装置として利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as an apparatus for rapidly measuring the distribution of water content and aqueous solution width direction and longitudinal direction on a substrate in a non-contact manner.

本発明の実施の形態に係る基材表面の水溶液量測定装置の全体構成とフローを示す概略図である。It is the schematic which shows the whole structure and flow of the aqueous-solution amount measuring apparatus on the base-material surface which concerns on embodiment of this invention. 図1の装置の光検出部の第1の実施形態を示す図で、(a)は側面図、(b)は平面図である。It is a figure which shows 1st Embodiment of the photon detection part of the apparatus of FIG. 1, (a) is a side view, (b) is a top view. 図2の装置の光検出部の光路切り替え回転ディスクの構造例を示す図で、(a)は断面図、(b)は正面図ある。It is a figure which shows the structural example of the optical path switching rotary disk of the optical detection part of the apparatus of FIG. 2, (a) is sectional drawing, (b) is a front view. 図1の装置の光検出部の第2の実施形態を示す図で、(a)は側面図、(b)は(a)に設置される周波数切り替え回転ディスクの構造を説明する図である。It is a figure which shows 2nd Embodiment of the photon detection part of the apparatus of FIG. 1, (a) is a side view, (b) is a figure explaining the structure of the frequency switching rotation disc installed in (a). 図1の装置の光検出部の第3の実施形態を示す側面図である。It is a side view which shows 3rd Embodiment of the photon detection part of the apparatus of FIG. 本発明の装置を用いた鋼帯幅方向の水膜量分布の測定例を示す図である。It is a figure which shows the example of a measurement of the water film amount distribution of the steel strip width direction using the apparatus of this invention. 本発明の装置を用いた鋼帯幅方向の水膜量分布の測定例を示す別の図である。It is another figure which shows the example of a measurement of the water film amount distribution of the steel strip width direction using the apparatus of this invention.

符号の説明Explanation of symbols

1 鋼帯
2 光照射部
3 光検出部
4 信号処理装置(信号処理系)
5 制御装置(制御系)
6 集光ミラー
7、12 ハーフミラー
8、19 ミラー
9 回転ディスク(光路切り替え回転ディスク)
9a 回転ディスク(周波数切り替え回転ディスク)
10、10a 水の吸収波長が透過する吸収波長透過フィルター
11、11a 水の非吸収波長が透過する非吸収波長透過フィルター
13 検出器
21 ディスク
22 空隙部分
23 回転機構
DESCRIPTION OF SYMBOLS 1 Steel strip 2 Light irradiation part 3 Light detection part 4 Signal processing apparatus (signal processing system)
5 Control device (control system)
6 Condensing mirrors 7 and 12 Half mirrors 8 and 19 Mirror 9 Rotating disk (optical path switching rotating disk)
9a Rotating disk (frequency switching rotating disk)
10, 10a Absorption wavelength transmission filter 11 through which the absorption wavelength of water is transmitted, 11a Non-absorption wavelength transmission filter through which the non-absorption wavelength of water is transmitted 13 Detector 21 Disc 22 Gap portion 23 Rotation mechanism

Claims (3)

(1)水の吸収波長と非吸収波長を含む波長域の赤外光を放出する赤外光源と該赤外光源から放出された赤外光を、表面に水溶液膜が存在する連続的に移動する金属帯表面の全幅に照射する照射系を備える光照射部と、
(2)金属帯表面の全幅から反射した光を、金属帯の長手方向と板幅方向で曲率を変えた非球面の凹面鏡に集め、該非球面の凹面鏡から反射する光束を金属帯幅方向の位置情報を保ったまま反射させ、反射させた光束を、水の吸収波長を透過するフィルター、水の非吸収波長を透過するフィルターを通過させた後、多素子型検出器からなる検出器に導く受光系を備える光検出部と、
(3)水の吸収波長を透過するフィルターを通過した赤外光と水の非吸収波長を透過するフィルターを通過した赤外光を検出器に交互に導入する制御系と、
(4)前記検出器で測定した水の吸収波長を透過したフィルターの光強度及び水の非吸収波長を透過したフィルターを通過した光強度から金属帯の幅方向位置の水の吸光度を求め、さらに金属帯表面の幅方向位置の水溶液量を算出する信号処理系と、
を備えることを特徴とする金属帯表面の水溶液量測定装置。
(1) An infrared light source that emits infrared light in a wavelength range including the absorption wavelength and non-absorption wavelength of water and the infrared light emitted from the infrared light source are continuously moved with an aqueous solution film on the surface. A light irradiation unit comprising an irradiation system for irradiating the entire width of the surface of the metal strip to be
(2) the light reflected from the entire width of the metal strip surface, collected aspheric concave mirror having different curvatures in the longitudinal direction and the plate width direction of the metal strip, the position of the metal strip width direction the light beam reflected from the concave mirror of the aspherical Receiving light that is reflected while maintaining the information, and after passing the reflected light flux through a filter that transmits the absorption wavelength of water and a filter that transmits the non-absorption wavelength of water, the light is guided to a multi-element detector. A light detection unit comprising a system;
(3) a control system that alternately introduces into the detector infrared light that has passed through a filter that transmits the absorption wavelength of water and infrared light that has passed through a filter that transmits the non-absorption wavelength of water;
(4) Obtain the absorbance of water in the width direction of the metal band from the light intensity of the filter that has passed through the absorption wavelength of water measured by the detector and the light intensity that has passed through the filter that has passed through the non-absorption wavelength of water; A signal processing system for calculating the amount of the aqueous solution at the position in the width direction of the surface of the metal strip , and
An apparatus for measuring the amount of an aqueous solution on the surface of a metal strip .
照射系が光ファイバーバンドルであることを特徴とする請求項に記載の水溶液量測定装置。 The aqueous solution amount measuring apparatus according to claim 1 , wherein the irradiation system is an optical fiber bundle. 前記、多素子型検出器がInGaAsリニアイメージセンサであることを特徴とする請求項1または2に記載の水溶液量測定装置。 3. The aqueous solution amount measuring device according to claim 1, wherein the multi-element detector is an InGaAs linear image sensor.
JP2005037660A 2005-02-15 2005-02-15 Aqueous solution measuring device Expired - Fee Related JP4586561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037660A JP4586561B2 (en) 2005-02-15 2005-02-15 Aqueous solution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037660A JP4586561B2 (en) 2005-02-15 2005-02-15 Aqueous solution measuring device

Publications (2)

Publication Number Publication Date
JP2006226709A JP2006226709A (en) 2006-08-31
JP4586561B2 true JP4586561B2 (en) 2010-11-24

Family

ID=36988228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037660A Expired - Fee Related JP4586561B2 (en) 2005-02-15 2005-02-15 Aqueous solution measuring device

Country Status (1)

Country Link
JP (1) JP4586561B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673715B2 (en) * 2016-02-18 2020-03-25 一般財団法人電力中央研究所 Structural fouling detector and steel tower corrosion management system
JP6824665B2 (en) * 2016-08-26 2021-02-03 株式会社Screenホールディングス Catalyst loading measuring device, coating system and catalyst loading measuring method
JP7199945B2 (en) * 2018-12-06 2023-01-06 株式会社チノー optical measuring device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199941A (en) * 1989-12-27 1991-08-30 Yokogawa Electric Corp Measuring apparatus for property of sheet shaped object
JPH04328449A (en) * 1991-04-26 1992-11-17 Kao Corp Measuring method and apparatus for moisture
JPH0720045A (en) * 1993-06-11 1995-01-24 Ontario Hydro Method and equipment for measuring moisture content
JPH0770799A (en) * 1993-08-31 1995-03-14 Nkk Corp Cold rolled steel sheet for tin plate or tin free steel
JPH08159958A (en) * 1994-12-02 1996-06-21 Chino Corp Moisture meter
JPH11178799A (en) * 1997-12-22 1999-07-06 Matsushita Electric Works Ltd Vital method and device for analyzing superficial tissue of organism
JP2002531855A (en) * 1998-12-04 2002-09-24 日本パーカライジング株式会社 Inspection method for the degree of hydrophilicity of solid surfaces using infrared spectroscopy
JP2003130615A (en) * 2001-10-25 2003-05-08 Yokogawa Electric Corp Method and device for measuring thickness and composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199941A (en) * 1989-12-27 1991-08-30 Yokogawa Electric Corp Measuring apparatus for property of sheet shaped object
JPH04328449A (en) * 1991-04-26 1992-11-17 Kao Corp Measuring method and apparatus for moisture
JPH0720045A (en) * 1993-06-11 1995-01-24 Ontario Hydro Method and equipment for measuring moisture content
JPH0770799A (en) * 1993-08-31 1995-03-14 Nkk Corp Cold rolled steel sheet for tin plate or tin free steel
JPH08159958A (en) * 1994-12-02 1996-06-21 Chino Corp Moisture meter
JPH11178799A (en) * 1997-12-22 1999-07-06 Matsushita Electric Works Ltd Vital method and device for analyzing superficial tissue of organism
JP2002531855A (en) * 1998-12-04 2002-09-24 日本パーカライジング株式会社 Inspection method for the degree of hydrophilicity of solid surfaces using infrared spectroscopy
JP2003130615A (en) * 2001-10-25 2003-05-08 Yokogawa Electric Corp Method and device for measuring thickness and composition

Also Published As

Publication number Publication date
JP2006226709A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
US7494567B2 (en) Combined paper sheet temperature and moisture sensor
FI81203C (en) Method and apparatus for measuring water content
KR100901420B1 (en) Method for Online Characterisation of a Moving Surface and Device Therefor
US20120084056A1 (en) Dry coating thickness measurement and instrument
US20060177566A1 (en) Anodizing system with a coating thickness monitor and an anodized product
KR20070067810A (en) Apparatus and method for on-line detecting welding part of strip
US20050196522A1 (en) System capable of determining applied and anodized coating thickness of a coated-anodized product
JP4586561B2 (en) Aqueous solution measuring device
US4865872A (en) Strip inspecting apparatus and associated method
US10739286B2 (en) Method for coating a surface of a metal strip and a metal strip-coating device
TW201226845A (en) Measuring method for topography of moving specimen and a measuring apparatus thereof
US20050139476A1 (en) Anodizing system with a coating thickness monitor and an anodized product
EP3465181B1 (en) Device and method for determining the microstructure of a metal product, and metallurgical installation
US20020060020A1 (en) On-line deposition monitor
JPH10282020A (en) Method of measuring composition and thickness of oxidized scale of steel plate and apparatus therefor
US7274463B2 (en) Anodizing system with a coating thickness monitor and an anodized product
US5796856A (en) Gap measuring apparatus and method
JP4736440B2 (en) Apparatus and method for measuring surface treatment film adhesion amount of metal strip
JP7233540B2 (en) Determination of crystallinity of polymer coatings on metal substrates
JP2006255687A (en) Production method of surface treated object
EP1927848A1 (en) Method of evaluating press formability of zinc-based plated steel sheet
JP3508452B2 (en) Method and apparatus for measuring oil coating amount on metal material surface
JP4923591B2 (en) Method for producing surface treated product
JP2943215B2 (en) Method and apparatus for measuring the amount of deposited rust-preventive oil
JPH0418763B2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees