JP4585165B2 - Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface - Google Patents

Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface Download PDF

Info

Publication number
JP4585165B2
JP4585165B2 JP2002235957A JP2002235957A JP4585165B2 JP 4585165 B2 JP4585165 B2 JP 4585165B2 JP 2002235957 A JP2002235957 A JP 2002235957A JP 2002235957 A JP2002235957 A JP 2002235957A JP 4585165 B2 JP4585165 B2 JP 4585165B2
Authority
JP
Japan
Prior art keywords
heating
curved surface
metal plate
curvature
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002235957A
Other languages
Japanese (ja)
Other versions
JP2004074200A (en
Inventor
正美 三浦
隆之 河野
好章 井上
剛 中濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SHIP TECHNOLOGY RESEARCH ASSOCIATION
Mitsubishi Heavy Industries Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Sumitomo Heavy Industries Ltd
Kawasaki Zosen KK
Universal Shipbuilding Corp
Mitsui E&S Holdings Co Ltd
Original Assignee
JAPAN SHIP TECHNOLOGY RESEARCH ASSOCIATION
Mitsubishi Heavy Industries Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Sumitomo Heavy Industries Ltd
Kawasaki Zosen KK
Universal Shipbuilding Corp
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SHIP TECHNOLOGY RESEARCH ASSOCIATION, Mitsubishi Heavy Industries Ltd, Mitsui Engineering and Shipbuilding Co Ltd, Sumitomo Heavy Industries Ltd, Kawasaki Zosen KK, Universal Shipbuilding Corp, Mitsui E&S Holdings Co Ltd filed Critical JAPAN SHIP TECHNOLOGY RESEARCH ASSOCIATION
Priority to JP2002235957A priority Critical patent/JP4585165B2/en
Publication of JP2004074200A publication Critical patent/JP2004074200A/en
Application granted granted Critical
Publication of JP4585165B2 publication Critical patent/JP4585165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、曲面を有する金属板の製造方法およびその製造装置並びに曲面を有する金属板に関するものである。
【0002】
【従来の技術】
たとえば船殻の外板は、推進抵抗を低減して水中を効率よく航行するために、複雑な非可展曲面形状をもつ厚さ10〜30mm程度の鋼板(金属板)で構成されている。
この曲がり外板を加工するのに、一般に角変形と熱収縮とが古くから用いられている。
【0003】
角変形は、図8の上段に示すように、ガスバーナ等を用いて鋼板の表面を局部的に加熱してその際に生成される塑性歪みによる鋼板の曲がりを利用するものである。
【0004】
また熱収縮は、図8の下段に示すように、ガスバーナ等を用いて鋼板の表面から裏面にかけて加熱し、その部分を収縮させる、いわゆる絞り加熱といわれるものである。
なお、この加熱位置は線状であってもよいしあるいはピンポイント的な点状であってもよい。
【0005】
図9は、船殻の外板となる鋼板の曲げ加工方法による従来技術を概念的に示す図であり、当該曲げ加工に用いるたとえば木製の型1を鋼板2に設置した状態を示す斜視図である。
この図に示すように、従来技術においては、まず船殻外板のフレームライン(当該外板の骨材を取り付ける位置におけるこの骨材に沿うライン;以下同じ)を目標形状(所望の形状)として有する多数(図では4個)の型1を鋼板2上に設置する。
つぎに、各型1と鋼板2の形状を作業者が目視観察で比較して両者の形状の違い、たとえば型1と鋼板2との間のギャップ(隙間あるいは差)を考慮し、どの位置を加熱すれば目標形状に近づいていくかを考慮して各加熱位置(加熱点)を決定している。
具体的には、垂直面(図9において左側から見た面)内で型1を鋼板2のフレームラインに沿って転動させ、このとき型1が接する接点を確認しつつ各状態における型1と鋼板2との間のギャップを考慮して決定している。
【0006】
その後、各加熱点をどのように結べば鋼板2を目標形状に近づけることができるのかを考慮して加熱線を決定し、決定した加熱線をチョーク等で鋼板2の表面上にマークし、この加熱線に沿ってガスバーナで加熱している。
【0007】
【発明が解決しようとする課題】
しかしながら、熟練した技術者であっても見た目にわかりやすい角変形を多用して鋼板2の形状を目標の形状、すなわち型1に合わせていこうとするため、鋼板の表面を滑らかに仕上げることができないという問題点があった。
また、加熱線の決定を合理的に行う能力を備えるには約5年以上の経験が必要とされており、経験の浅い作業者では所定の曲面を得ることができないという問題点があった。
さらに、熟練技術者の減少により上述したような鋼板でさえ、得ることが難しい状況になりつつあるという問題点もある。
【0008】
本発明は、上記の事情に鑑みてなされたもので、経験の浅い作業者であっても熟練技術者が行った作業と同等程度に、船殻外板等の複雑な曲面形状を有する鋼板を目標の形状に加工することができる曲面を有する金属板の製造方法を提供することを目的としている。
また、本発明の他の目的は、船殻外板等に適した滑らかな曲面を有する金属板を提供することを目的としている。
さらに、本発明の別の目的は、船殻外板等の複雑な曲面形状を有する鋼板を目標形状に自動的に曲げ加工することができる曲面を有する金属板の製造装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の曲面を有する金属板の製造方法およびその製造装置並びに曲面を有する金属板では、上記課題を解決するため、以下の手段を採用した。
すなわち、請求項1記載の曲面を有する金属板の製造方法によれば、金属板の表面に熱を加えることにより起こる角変形、および/または金属板の表面から裏面にかけて熱を加えることにより起こる熱収縮を用いて、前記金属板を曲面を含む目標形状に加工していく曲面を有する金属板の製造方法において、前記金属板の前記目標形状と現在の形状との差がつくる加工曲面を求め、曲面理論を用いて、該加工曲面上における複数の点で、法平面と該加工曲面との交線である法断面の曲率が最大曲率となる方向と最小曲率となる方向とを求めて、最大曲率となる方向と最小曲率となる方向とをそれぞれ結ぶことで、前記加工曲面上に直交座標系を構成する曲率線を求めて、前記現在の形状である前記金属板の上に前記曲率線を幾何学的に設定して、該曲率線に沿って前記加熱線および/または加熱点を作成し、該作成した前記加熱線および/または加熱点を加熱することを特徴とする。
【0010】
この曲面を有する金属板の製造方法においては、予め設定(指定)された加熱位置(加熱線および/または加熱点)に沿って熱を加えていくと、鋼板が所望の形状(目標形状)に近づいていくこととなる。
【0012】
また、この曲面を有する金属板の製造方法においては、目標形状と現在の金属板の形状との差がつくる曲面、および現在の金属板の曲面が曲面解析されることとなる。
曲面解析とは曲率線を定義することであり、この曲率線からは曲率線が作る“折れ角”と、曲線の持つ長さ(以下、“ガース長さ”という)とをそれぞれ求めることができる。
したがって、目標形状と現在の金属板の形状との差がつくる曲面、および現在の金属板の曲面のそれぞれの“折れ角”と“ガース長さ”とを求め、これらの角度と長さのバランスが取れるように金属板を加工することで、綺麗な(滑らかな)曲面を有する金属板を製造することができるようになっている。
すなわち、一つの曲面形状に対して一意的に加熱位置が金属板上に設定されることとなる。
【0013】
請求項2に記載の曲面を有する金属板の製造方法によれば、請求項1に記載の曲面を有する金属板の製造方法において、前記加熱線および/または加熱点の作成は、前記加工曲面上の任意の一点で法平面を法線周りに回転させて、前記法断面の曲率の変化から、最大曲率となる方向と最小曲率となる方向を求め、同様に他の任意の点について最大曲率となる方向と最小曲率となる方向を求めることを繰り返し、求めた最大曲率となる方向と最小曲率となる方向とをそれぞれ結ぶことで、前記曲率線を求め、前記現在の形状である前記金属板の上に幾何学的に投影して、前記加熱線および/または加熱点を設定することを特徴とする。
また、請求項3に記載の曲面を有する金属板の製造方法によれば、請求項1または請求項2に記載の曲面を有する金属板の製造方法において、前記曲面理論を用いて求めた前記曲率線によって構成される直交座標系を基準にした前記加工曲面における角度およびガース長さの幾何量の変化量を求め、該変化量から角変形および/または熱収縮を起こさせる加熱量を算出し、該加熱量だけ、前記加熱線および/または加熱点を加熱することを特徴とする。
また、請求項4に記載の曲面を有する金属板の製造方法によれば、請求項1または請求項2に記載の曲面を有する金属板の製造方法において、前記曲面理論を用いて求めた前記曲率線によって構成される直交座標系を基準に、地図の逆変換を用いて角度を正確に保持し、若しくは、ガース長さを正確に保持して前記加工曲面における角度およびガース長さの差異を幾何学的に求め、該差異から角変形および/または熱収縮を起こさせる加熱量を算出し、該加熱量だけ、前記加熱線および/または加熱点を加熱することを特徴とする。
また、請求項5に記載の曲面を有する金属板の製造方法によれば、請求項1から請求項4のいずれかに記載の曲面を有する金属板の製造方法において、前記角変形および/または熱収縮を起こさせる加熱線、および/または熱収縮を起こさせる加熱点に沿う加熱は、前記目標形状に合わせて作られた型と、現在の金属板の形状との差に基づいて前記加工曲面を求めて行われることを特徴とする。
【0014】
この曲面を有する金属板の製造方法においては、所望の形状に合わせて作られた型と、現在の金属板の形状との差に応じて、加熱位置に熱が加えられることとなる。
【0015】
請求項に記載の曲面を有する金属板の製造方法によれば、請求項1から請求項4のいずれかに記載の曲面を有する金属板の製造方法において、前記角変形および/または熱収縮を起こさせる加熱線、および/または熱収縮を起こさせる加熱点に沿う加熱は、データとして蓄積された前記目標形状と、三次元形状計測手段により計測された現在の金属板の形状との差に基づいて前記加工曲面を求めて行われることを特徴とする。
【0016】
この曲面を有する金属板の製造方法においては、データとして蓄積された所望の形状と、三次元形状計測手段により計測された現在の金属板の形状との差に応じて、加熱位置に熱が加えられることとなる。
【0017】
請求項に記載の曲面を有する金属板の製造方法によれば、請求項1から請求項4のいずれかに記載の曲面を有する金属板の製造方法において、前記角変形および/または熱収縮を起こさせる加熱線、および/または熱収縮を起こさせる加熱点に沿う加熱は、データとして蓄積された前記目標形状と、三次元形状計測手段により計測された現在の金属板の形状との差に基づいて前記加工曲面を求めるとともに、入熱量と変形量との関係がデータベースとして蓄積された加熱条件最適化手段から加熱量を求めて行われることを特徴とする。
【0018】
この曲面を有する金属板の製造方法においては、データとして蓄積された所望の形状と、三次元形状計測手段により計測された現在の金属板の形状との差、および入熱量と変形量との関係がデータベースとして蓄積された加熱条件最適化手段から、前記差に基づいて出力される信号に応じて、加熱位置に熱が加えられることとなる。
【0019】
請求項8に記載の曲面を有する金属板の製造装置によれば、金属板の表面に熱を加えることにより起こる角変形、および/または金属板の表面から裏面にかけて熱を加えることにより起こる熱収縮を用いて、前記金属板を曲面を含む目標形状に加工していく曲面を有する金属板の製造装置において、前記目標形状と前記現在の形状との差がつくる加工曲面を求め、曲面理論を用いて、該加工曲面上における複数の点で、法平面と該加工曲面との交線である法断面の曲率が最大曲率となる方向と最小曲率となる方向とを求めて、最大曲率となる方向と最小曲率となる方向とをそれぞれ結ぶことで、前記加工曲面上に直交座標系を構成する曲率線を求めて、前記現在の形状である前記金属板の上に前記曲率線を幾何学的に設定して、該曲率線に沿って加熱線および/または加熱点を作成する画像作成処理手段と、 該作成した前記加熱線および/または加熱点上を移動し、前記金属板を加熱する加熱手段と、前記加熱手段を前記画像作成処理手段で作成した前記加熱線および/または加熱点上で移動させるとともにその部位に熱を加えるように加熱信号を出力する制御手段と、を具備することを特徴とする。
請求項9に記載の曲面を有する金属板の製造装置によれば、請求項8に記載の曲面を有する金属板の製造装置において、前記画像作成処理手段は、前記加工曲面上の任意の一点で法平面を法線周りに回転させて、前記法断面の曲率の変化から、最大曲率となる方向と最小曲率となる方向を求め、同様に他の任意の点について最大曲率となる方向と最小曲率となる方向を求めることを繰り返し、求めた最大曲率となる方向と最小曲率となる方向とをそれぞれ結ぶことで、前記曲率線を求め、前記現在の形状である前記金属板の上に幾何学的に投影して、前記加熱線および/または加熱点を設定することを特徴とする。
また、請求項10に記載の曲面を有する金属板の製造装置によれば、請求項8または請求項9に記載の曲面を有する金属板の製造装置において、前記曲面理論を用いて求めた前記曲率線によって構成される直交座標系を基準にした前記加工曲面における角度およびガース長さの幾何量の変化量を求める比較手段と、該比較手段で求めた前記変化量から角変形および/または熱収縮を起こさせる加熱量を算出する加熱条件設定手段を備え、前記制御手段は、前記加熱条件設定手段で算出した前記加熱量だけ、前記加熱手段によって前記加熱線および/または加熱点を加熱させることを特徴とする。
また、請求項11に記載の曲面を有する金属板の製造装置によれば、請求項8または請求項9に記載の曲面を有する金属板の製造装置において、前記曲面理論を用いて求めた前記曲率線によって構成される直交座標系を基準に、地図の逆変換を用いて角度を正確に保持し、若しくは、ガース長さを正確に保持して前記加工曲面における角度およびガース長さの差異を幾何学的に求める比較手段と、該比較手段で求めた前記差異から角変形および/または熱収縮を起こさせる加熱量を算出する加熱条件設定手段を備え、前記制御手段は、前記加熱条件設定手段で算出した前記加熱量だけ、前記加熱手段によって前記加熱線および/または加熱点を加熱させることを特徴とする。
【0020】
この曲面を有する金属板の製造装置においては、画像作成処理手段により設定された加熱位置に、制御手段により制御される加熱手段から熱が加えられるようになる。
すなわち、金属板上に設定された加熱位置に自動的に熱が加えられるようになっている。
【0021】
請求項12に記載の曲面を有する金属板の製造装置によれば、請求項8から請求項11のいずれかに記載の曲面を有する金属板の製造装置において、前記目標形状に合わせて作られた型と、前記現在の形状との差を計測することができるギャップ計測手段を備え、前記画像作成処理手段は、該ギャップ計測手段で計測した前記目標形状と前記現在の形状との差から前記加工曲面を求めることを特徴とする。
【0022】
この曲面を有する金属板の製造装置においては、所望の形状に合わせて作られた型と、現在の金属板の形状との差に応じて、画像作成処理手段により設定された加熱位置に、制御手段により制御される加熱手段から熱が加えられるようになる。
すなわち、所望の形状に合わせて作られた型と、現在の金属板の形状との差に応じて、金属板上に設定された加熱位置に自動的に熱が加えられるようになっている。
【0023】
請求項13に記載の曲面を有する金属板の製造装置によれば、請求項8から請求項11のいずれかに記載の曲面を有する金属板の製造装置において、前記現在の形状を三次元的に計測することのできる三次元形状計測手段を備え、前記画像作成処理手段は、前記目標形状と前記三次元計測手段で計測した前記現在の形状との差から前記加工曲面を求めることを特徴とする。
【0024】
この曲面を有する金属板の製造装置においては、データとして蓄積された所望の形状と、三次元形状計測手段により計測された現在の金属板の形状との差に応じて、画像作成処理手段により設定された加熱位置に、制御手段により制御される加熱手段から熱が加えられるようになる。
すなわち、データとして蓄積された所望の形状と、三次元形状計測手段により計測された現在の金属板の形状との差に応じて、金属板上に設定された加熱位置に自動的に熱が加えられるようになっている。
【0025】
請求項14に記載の曲面を有する金属板の製造装置によれば、請求項10または請求項11に記載の曲面を有する金属板の製造装置において、前記加熱条件設定手段は、入熱量と変形量との関係がデータベースとして蓄積され、該データべースに基づいて前記比較手段からの信号に応じて加熱量を出力する加熱条件最適化手段であることを特徴とする。
【0026】
この曲面を有する金属板の製造方法においては、データとして蓄積された所望の形状と、三次元形状計測手段により計測された現在の金属板の形状との差、および入熱量と変形量との関係がデータベースとして蓄積された加熱条件最適化手段から、前記差に基づいて出力される信号に応じて、画像作成処理手段により設定された加熱位置に、制御手段により制御される加熱手段から熱が加えられるようになる。
すなわち、データとして蓄積された所望の形状と、三次元形状計測手段により計測された現在の金属板の形状との差、および入熱量と変形量との関係がデータベースとして蓄積された加熱条件最適化手段から、前記差に基づいて出力される信号に応じて、金属板上に設定された加熱位置に自動的に熱が加えられるようになっている。
【0027】
請求項15に記載の曲面を有する金属板によれば、請求項1から請求項のいずれかに記載の金属板の製造方法で製造され、該金属板が滑らかな自由曲面で形成されていることを特徴とする。
【0028】
完成した金属板の表面および裏面には、角張った部分が一切形成されていない。このような形状は、従来の手作業では、全く作ることができなかった。
【0029】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
従来技術の欄のところで既に説明したように、鋼板(金属板)を複雑な曲面を有する形状に加工していく場合、角変形を起こさせる加熱線、および/または熱収縮を起こさせる加熱線および/または加熱点の位置が第一にわかれば、経験の浅い技術者であってもその加熱位置(加熱線および/または加熱点)に加熱していくことにより、鋼板を目標形状(所望の形状)に近づけていくことが容易にできるようになる。本発明の特徴はまさにこの点にあるといっても過言ではない。
【0030】
まずはじめに、本発明の特徴を、図1を用いて概念的に説明すると以下のようになる。
a.目標形状と部材形状との形状差(加工曲面)をとる。
b.加工曲面を曲面理論解析を行って加熱位置を求める。また、加工曲面のガース長さ変化量を求め、ガース長さ変化量から各加熱線の収縮量の目安を算出し、これ(収縮量の目安)を各加熱線の仮の収縮量として加熱条件設定手段を用いて各加熱線に必要な真の収縮量(固有変形量)および与える加熱量を決定する。
c.加熱位置を部材形状にマッピング(投影)する。
d.加熱位置に基づいて加熱する。
e.以上のことを繰り返し行って、部材形状を目標形状に近づける。
【0031】
つぎに、鋼板の曲げ加熱加工の原理について説明する。図2に示すように、鋼板の曲がりは、加熱線(U方向)に対して直交する方向(V方向)に起こる。このことを詳しく説明すると、図8に示したように加熱量により、鋼板の表面を主に加熱することで起こる角変形と、鋼板の裏面まで板厚方向に加熱することで起こる収縮がある。しかし、これら角変形、収縮はそれぞれ単独に発生するものではなく、角変形を起こす加熱は同時に収縮を起こし、収縮を起こす加熱は同時に角変形も起こすためにそれぞれが重畳される変形が起こる。
【0032】
【表1】

Figure 0004585165
【0033】
上記表1に示す実験結果を基に入熱量と角変形、横収縮、縦収縮を整理すると、ほとんど角変形と横収縮が支配的であるといえる。というのは、収縮に関しては、横方向(V方向)の収縮が縦方向(U方向)の収縮よりも約3倍と大きいため、加熱線に対して直角方向に縮む変形が支配的となるからである。
これらの加熱による変形原理から、曲げたい方向と直交する方向に加熱すればよいこととなり、加熱量(加熱速度一定で火力を変化させる方法や、火力を一定にして速度を変化させる方法など)の制御により角変形を起こす加熱加工と横収縮を起こす加熱加工の選択を行うことで、希望する加工が実現できる。
【0034】
前述したように、ガース長さと角度のバランスを取る変形を起こさせるためには、曲げたい方向と直交する方向に加熱すればよいこととなる。この時、加熱の方法として、角度の差が長さの差に比べて大きい時は長さの変化が小さい角変形を起こす折れ曲げ加熱主体の加熱を施工し、角度の差が長さの差に比べて小さい時は絞り加熱主体の加熱を施工すればよい。
このような関係は曲面理論(「CAD/CAMにおける曲線曲面のモデリング」穂坂 衛 著、東京電機大学出版局)を用いることにより幾何学的に解析することができる。
すなわち、図3に示すように、曲面上のある点Pに対して垂直にたてられた単位法線ベクトルnと、この曲面上のある点Pに対する単位接線ベクトルtとで決まる面を法平面といい、この法平面と曲面との交線を法断面という。
そしてこの法断面の微分を曲率として、法平面を法線nの周りに回転させると、その回転角θと曲率との関係が、図3の右半分に示すグラフのようになる。
このグラフから、最大曲率と最小曲率とはπ/2(=90°)だけずれていることがわかる。
実際には、点Pにおける最小曲率を生じる方向(ここでは角度θb)に点をわずかにずらし、その点における最小曲率を生じる方向を同様の方法で探し出す。このような作業を繰り返し行って曲面上における最小曲率となる点を結ぶ曲率線を曲面上に貼り付けることで曲面上に直交座標系を構成することができる。この直交座標系を“目標形状(所望の形状)と部材形状(現在の金属板の形状)との差がつくる曲面”と、“部材形状の曲面”それぞれに貼り付けることで、角度および長さとこれらの変形とによってできる形状の変形について、“目標形状と部材形状との差がつくる曲面”と、“部材形状の曲面”との差違が求まる。この差違から、角度の差違が長さの差違に比べて大きい時は長さの変化が小さい角変形を起こす折れ曲げ加熱主体の加熱位置を求める解析を行い、角度の差違が長さの差違に比べて小さい時は絞り加熱主体の加熱位置を求める解析を行う。
この曲率線に沿って角変形、収縮変形を制御しながら加熱すれば、結果的に鋼板を曲げたい方向に曲げていくことができることとなる。
【0035】
つぎに、地図を作るときなど、曲面を平面に変換しようとすると、角度、長さ、面積を同時かつ正確に投影展開することができないことは周知のことである。たとえば、角度を保持したまま投影展開すると中央部と端部とでは縮尺が異なる。いいかえれば、中央部については略そのままでよいが、端部については拡大する(伸ばす)必要がある。
逆に、平面から曲面をつくる際には、前述の角度保持の展開では、中央部についてはそのままでよいが、端部については収縮させる(縮める)必要がある。
この角度を保持したままの展開は、実は現図展開手法の基になる原理であり、具体的にはメルカトル図法的な正角図法を基にした展開を参考にして現図展開手法が開発された経緯がある。
このように、実際には曲面を有する地表面を平面である地図に変換したり、あるいは逆に平面となった地図から曲面を有する地表面に逆変換する技術(以下、地図の逆変換という)、すなわち幾何モデルを解析する技術は、電算機などを使用して解析することができるものであり、現在では周知の技術となっている。
なお、地図展開については、1970年代以降の地図展開では、前述の角度、長さ、面積の歪みを小さくするために従来のマクロ的な展開(例、メルカトル図法)からミクロ的な展開(歪みの誤差が無視できる程度に曲面を微小曲面の集まりとして定義する、UTM:ユニバーサル横メルカトル図法)に置き換われつつあり、電算機などを使用することにより歪みの小さい展開をすることが可能になることができるものであり、現在では周知の技術となっている。
したがって、このような技術を使えば、鋼板を曲面にする場合に、“折れ曲げ”や“収縮”させなければならない部位、すなわち鋼板上で“角変形”や“熱収縮”を起こさせるべき加熱線および/または加熱点の位置を鋼板上に設定することができる。
【0036】
このように、図に示すように、所望の形状と現在の金属板の形状との差が作る曲面に対し、曲面理論を用いて角変形や熱収縮を起こさせ得るべき加熱線および/または加熱点の位置を鋼板上に設定することができ、所望の形状と現在の金属板の形状との差がなくなるまで繰り返すことで、鋼板を所望の形状に曲げていくことができることになる。
また、作業者はこの予め設定された加熱位置(加熱線および/または加熱点の位置)に熱を加えていくだけで、鋼板を所望の形状に曲げていくことができることとなる。
【0037】
実際の作業手順としては図4ないし図6に示すような手順をとることとなる。なお、図4ないし図6において1次曲げプレスが描かれているが、この作業はなくても良いし、また必要で有ればこれ以外の曲げプレスが予め加えられていても良い。
また従来と同一の部材には同一の符号を付している。
図4ないし図6はいずれも鋼板2を皿型形状に加工しようとする例である。
【0038】
まずはじめに、画像作成処理手段により所望の形状をCAD情報(画像)として作成・処理するとともに、この画像を上述した曲面理論を用いて処理し、鋼板2上に加熱位置(加熱線および/または加熱点)を指定する。
図4の場合、鋼板2に1次曲げプレスを与え、大まかな形状を形成させている。
そして、この鋼板2の内側面(凹面)上にたとえば木製の型1をあてて、目標形状と現在の鋼板2の形状とのギャップを作業者が目で確認する。
作業者は、鋼板2の形状を型1の形状に近づけていくため、予め設定された加熱位置に沿って、熱を加えていく。
熱を加えた後、再び目標形状と現在の鋼板2の形状とのギャップを作業者が目で確認する。
このように、加熱位置にしたがった入熱と、現在の鋼板と型とのギャップの確認作業を繰り返し行って、鋼板2の形状を目標の形状に近づけていくこととなる。
ここでは、加熱位置については予め指定されているが、加える熱量の判断については、作業者に任されていることとなる。
すなわち、作業者が視認した鋼板2の形状と目標の形状とのギャップに応じて、作業者は鋼板2上に指定された加熱位置に熱を加えていき、鋼板2を目標形状に徐々に近づけていくこととなる。
【0039】
このように、熟練者の永年の経験と勘により設定されていた加熱位置が、予め幾何学的に解析されて鋼板上に指定されることとなるので、経験の浅い作業者であっても、十分に鋼板を目標形状に加工することができる。
また、加熱位置は目標形状によって決定されており、作業者の経験や勘によって左右されることがないので、完成した製品に大きな差を生じることがなく、略均一の製品を作り出すことができる。
なお、図中の加熱位置指定における黒点は熱収縮を与えるための絞り加熱位置、等高線のような線は角変形を与えるための線状加熱位置、左から右に延びる直線は1次曲げプレスによるローラ線、左上から右下に延びる6本の平行線はそれぞれフレームラインである。
【0040】
つぎに、図5に示す実施形態について説明する。図4同様、画像作成処理手段により所望の形状をCAD情報(画像)として作成・処理するとともに、この画像を上述した曲面理論を用いて処理し、鋼板2上に加熱位置(加熱線および/または加熱点)を指定する。
図5の場合、鋼板2に1次曲げプレスを与え、大まかな形状を形成させている。
そして、この鋼板2の形状を三次元的に計測することのできる三次元形状計測手段30により計測し、この計測結果と目標形状とのギャップを、たとえばディスプレイなどの表示器(図示せず)に表示して、作業者にこのギャップを視覚的に伝える。
作業者は、鋼板2の形状を目標形状に近づけていくため、予め設定された加熱位置に沿って、熱を加えていく。
熱を加えた後、再び鋼板2を三次元形状計測手段30で計測するとともに、表示器に表示された目標形状と現在の鋼板2の形状とのギャップを作業者が目で確認する。
このように、加熱位置にしたがった入熱と、現在の鋼板と目標形状とのギャップの確認作業を繰り返し行って、鋼板の形状を目標形状に近づけていくこととなる。
ここでも図4に示すものと同様、加熱位置については予め指定されているが、加える熱量の判断については、作業者に任されていることとなる。
すなわち、作業者が表示器に表示された鋼板形状と目標形状とのギャップに応じて、作業者は鋼板に指定された加熱位置に熱を加えていき、鋼板を目標形状に徐々に近づけていくこととなる。
【0041】
このように、三次元形状計測手段30を使用することにより、型1の製作、設置、および撤去などといった付帯作業を省略することができて、コストを低減させることができるとともに、作業時間および作業工数を大幅に削減することができる。
また、熟練者の永年の経験と勘により設定されていた加熱位置が、予め幾何学的に解析されて鋼板上に指定されることとなるので、経験の浅い作業者であっても、十分に鋼板を目標形状に加工することができる。
さらに、加熱位置は目標形状によって決定されており、作業者の経験や勘によって左右されることがないので、完成した製品に大きな差を生じることがなく、略均一の製品を作り出すことができる。
なお、図中の加熱位置指定における黒点は熱収縮を与えるための絞り加熱位置、等高線のような線は角変形を与えるための線状加熱位置、左から右に延びる直線は1次曲げプレスによるローラ線、左上から右下に延びる6本の平行線はそれぞれフレームラインである。
【0042】
つぎに、図6に示す実施形態について説明する。図4および図5同様、画像作成処理手段により所望の形状をCAD情報(画像)として作成・処理するとともに、この画像を上述した曲面理論の逆変換を用いて処理し、鋼板2上に加熱位置(加熱線および/または加熱点)を指定する。
図6の場合、鋼板2に1次曲げプレスを与え、大まかな形状を形成させている。
そして、この鋼板2の形状を三次元的に計測することのできる三次元形状計測手段30により計測し、この計測結果とCAD情報から得られた目標形状とのギャップを、たとえばディスプレイなどの表示器(図示せず)に表示して、作業者にこのギャップを視覚的に伝える。
また、三次元形状計測手段30による計測結果は加熱条件最適化手段(図示せず)に出力され、この加熱条件最適化手段に蓄積された入熱量・変形量データと比較される。比較された結果は加熱条件(たとえば入熱量など)として前述した表示器あるいは別途用意された、たとえばディスプレイなどの表示器(図示せず)に表示される。
すなわち、作業者はどの加熱位置にどれだけの熱を加えればよいかを表示器で確認することができることとなる。
作業者は、鋼板2の形状を目標形状に近づけていくため、予め設定された加熱位置に沿って、加熱条件最適化手段より出力された熱量分だけを加えていく。
熱を加えた後、再び鋼板2を三次元形状計測手段30で計測するとともに、表示器に表示された目標形状と現在の鋼板2の形状とのギャップ、および加熱条件最適化手段により出力された熱量を作業者が目で確認する。
このように、指示された加熱位置に指示された熱量分だけ鋼板2に熱を加えることと、現在の鋼板と目標形状とのギャップの確認作業とを繰り返し行って、鋼板の形状を目標形状に近づけていく。
図6に示す実施形態では、加熱位置と入熱量が指定されることとなるので、作業者の判断によるところはほとんどない。
すなわち、作業者は、鋼板上に指定された加熱位置に、表示器上に表示された熱量を加えていくだけで、鋼板を目標形状により早く近づけていくことができる。
【0043】
このように、加熱条件最適化手段を使用することにより、どの加熱位置にどれくらいの熱量を加えればよいのかを情報として得ることができるので、作業効率を向上させることができて、作業時間を短縮することができる。
また、三次元形状計測手段30を使用することにより、型1の製作、設置、および撤去などといった付帯作業を省略することができて、コストを低減させることができるとともに、作業時間および作業工数を大幅に削減することができる。
さらに、熟練者の永年の経験と勘により設定されていた加熱位置が、予め幾何学的に解析されて鋼板上に指定されることとなるので、経験の浅い作業者であっても、十分に鋼板を目標形状に加工することができる。
さらにまた、加熱位置は目標形状によって決定されており、作業者の経験や勘によって左右されることがないので、完成した製品に大きな差を生じることがなく、略均一の製品を作り出すことができる。
なお、図中の加熱位置指定における黒点は熱収縮を与えるための絞り加熱位置、等高線のような線は角変形を与えるための線状加熱位置、左から右に延びる直線は1次曲げプレスによるローラ線、左上から右下に延びる6本の平行線はそれぞれフレームラインである。
【0044】
以上説明してきたように、本発明による手法によれば、図7の下段に示すように、少しずつなだらかに鋼板を目標の形状に近づけていくことができる。したがって、完成した製品の、特に表面が非常に滑らかな曲面で形成されることとなり、たとえば船殻外板等に用いられる場合には推進抵抗を低減させることができるようになる。
これに対して、従来のような熟練作業者の経験と勘だけに頼る手法では、図7の上段に示すように、徐々に目標形状に近づいてはいくものの、目標形状を通り越して何回も曲げられてしまうため、完成した製品の表面および裏面が波打ってしまうこととなる。
このように、従来の手法と本発明による手法とでは完成した製品にも大きな形状上の差違が生じてくる。
なお、図7の下段に示すグラフの内、実線で示すものは図4および図5による実施形態を採用した場合であり、一点鎖線で示すものは図6に示す実施形態を採用した場合である。すなわち、図6のもののように、加熱条件が指定された場合には、より早く目標形状に到達し得るということを示している。
【0045】
また、図4ないし図6に示す熱曲げ加工を、機械的に自動で行わせることもできる。
すなわち、図4に示す実施形態において、現在の鋼板形状と型形状とのギャップを計測することのできるギャップ計測手段と、入力された加熱位置に沿って移動可能とされ、鋼板に熱を加えることのできる加熱手段と、ギャップに応じて加熱手段を移動させるとともにその部位に熱を加えるよう信号を出力する制御手段とを設けるようにすることができる。
これにより、過酷な作業から作業者を解放することができるとともに、人件費を削減することができ、コストを低減させることができる。
【0046】
また、図5に示す実施形態において、CAD情報として蓄えられた目標形状と三次元形状計測手段30により計測された計測結果とが入力される比較手段と、入力された加熱位置に沿って移動可能とされ、鋼板に熱を加えることのできる加熱手段と、比較手段からのデータに応じて加熱手段を移動させるとともにその部位に熱を加えるよう信号を出力する制御手段とを設けるようにすることができる。
これにより、過酷な作業から作業者を解放することができるとともに、人件費を削減することができ、コストを低減させることができる。
【0047】
さらに、図6に示す実施形態において、CAD情報として蓄えられた目標形状と三次元形状計測手段30により計測された計測結果とが入力される比較手段と、入力された加熱位置に沿って移動可能とされ、鋼板に熱を加えることのできる加熱手段と、入熱量と変形量との関係がデータベースとして蓄積され、比較手段からの信号に応じて加熱条件を出力する加熱条件最適化手段と、加熱条件最適化手段からのデータに応じて加熱手段を移動させるとともにその部位に最適な熱を加えるよう信号を出力する制御手段とを設けるようにすることができる。
これにより、過酷な作業から作業者を解放することができるとともに、人件費を削減することができ、コストを低減させることができる。
【0048】
なお、上述した実施形態において、三次元形状計測手段30はカメラを用いたものを採用しているが、本発明はこれに限定されるものではなく、たとえばX−Y方向(すなわち水平方向)に移動自在とされたシリンダと、このシリンダ内でZ方向(垂直方向)に移動自在とされたピストンと、このピストンの先端に設けられ、鋼板上を転動するローラとにより構成されたものであっても良い。
すなわち、ローラがシリンダおよびピストンとともに鋼板上を移動していくことにより、鋼板の三次元形状が把握できるようなものであっても良い。
【0049】
また、本発明は船殻外板に対してのみ適用されるものではなく、たとえば原子力、航空/宇宙、自動車/列車などの技術分野における金属板(たとえば、アルミニウムやステンレス鋼の板)に対しても適用可能なものである。
【0050】
【発明の効果】
本発明の曲面を有する金属板の製造方法およびその製造装置並びに曲面を有する金属板によれば、以下の効果を奏する。
請求項1から請求項4に記載の曲面を有する金属板の製造方法によれば、予め設定(指定)された加熱位置(加熱線および/または加熱点)に沿って熱を加えていけば、鋼板が所望の形状に近づいていくこととなるので、経験の浅い作業者であっても、十分に鋼板を目標形状に加工することができるという効果を奏する。
【0051】
さらに、加熱位置が目標形状に対して一対一で決定されることとなるので、作業者の経験や勘に左右されず、完成した製品に大きな差を生じることがなく、略均一の製品を作り出すことができるという効果を奏する。
【0052】
請求項に記載の曲面を有する金属板の製造方法によれば、目標形状に合わせて作られた型と、現在の金属板の形状との差に応じて、加熱位置に熱が加えられることとなるので、加えた熱量による金属板の変形量をその場で確認することができて、作業状況を即座に把握することができるという効果を奏する。
【0053】
請求項に記載の曲面を有する金属板の製造方法によれば、現在の金属板の形状が三次元形状計測手段により計測されることとなるので、型の製作、設置、および撤去などといった付帯作業を省略することができて、コストを低減させることができるとともに、作業時間および作業工数を大幅に削減することができるという効果を奏する。
【0054】
請求項に記載の曲面を有する金属板の製造方法によれば、どの加熱位置にどれくらいの熱量を加えればよいのかを作業者が情報として得ることができるので、作業効率を向上させることができて、作業時間を短縮することができるという効果を奏する。
【0055】
請求項8から11に記載の曲面を有する金属板の製造装置によれば、金属板上に設定された加熱位置に自動的に熱が加えられるようになっているので、過酷な作業から作業者を解放することができるとともに、人件費を削減することができ、コストを低減させることができるという効果を奏する。
【0056】
請求項12に記載の曲面を有する金属板の製造装置によれば、金属板上に設定された加熱位置に自動的に熱が加えられるようになっているので、過酷な作業から作業者を解放することができるとともに、人件費を削減することができ、コストを低減させることができるという効果を奏する。
【0057】
請求項13に記載の曲面を有する金属板の製造装置によれば、現在の金属板の形状が三次元形状計測手段により計測されることとなるので、型の製作、設置、および撤去などといった付帯作業を省略することができて、コストを低減させることができるとともに、作業時間および作業工数を大幅に削減することができ、かつ過酷な作業から作業者を解放することができるとともに、人件費を削減することができ、コストを低減させることができるという効果を奏する。
【0058】
請求項14に記載の曲面を有する金属板の製造装置によれば、どの加熱位置にどれくらいの熱量を加えればよいのかを情報として得ることができるので、作業効率を向上させることができて、作業時間を短縮することができ、かつ過酷な作業から作業者を解放することができるとともに、人件費を削減することができ、コストを低減させることができるという効果を奏する。
【0059】
請求項15に記載の曲面を有する金属板によれば、完成した金属板の表面および裏面が滑らかな曲線で形成されることとなるので、たとえば船殻外板等に用いられた場合には推進抵抗を低減させることができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の概念を説明するための図である。
【図2】変形を詳細に説明するための説明図である。
【図3】本発明に適用した曲面理論を説明するための説明図である。
【図4】本発明による金属板の曲げ加工手法の一実施形態を概念的に示す図である。
【図5】本発明による金属板の曲げ加工手法の他の実施形態を概念的に示す図である。
【図6】本発明による金属板の曲げ加工手法の別の実施形態を概念的に示す図である。
【図7】熟練技能者と本発明による加工手法の違いをイメージ化した図である。
【図8】一般に行われている角変形と熱収縮とを説明するための説明図である。
【図9】船殻の外板となる鋼板の曲げ加工手法による従来技術を概念的に示す図であり、当該曲げ加工に用いる型を鋼板に設置した状態を示す斜視図である。
【符号の説明】
1 型
2 鋼板(金属板)
30 三次元形状計測手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a metal plate having a curved surface, a manufacturing apparatus thereof, and a metal plate having a curved surface.
[0002]
[Prior art]
For example, the outer plate of the hull is composed of a steel plate (metal plate) having a complicated non-developable curved surface shape with a thickness of about 10 to 30 mm in order to reduce the propulsion resistance and efficiently navigate underwater.
In general, angular deformation and heat shrinkage have been used for a long time to process the bent outer plate.
[0003]
As shown in the upper part of FIG. 8, the angular deformation uses the bending of the steel sheet due to plastic strain generated by locally heating the surface of the steel sheet using a gas burner or the like.
[0004]
Further, as shown in the lower part of FIG. 8, the thermal contraction is so-called squeezing heating, in which a gas burner or the like is used to heat the steel sheet from the front surface to the back surface and the portion is contracted.
In addition, this heating position may be linear or may be a pin-point dot.
[0005]
FIG. 9 is a diagram conceptually showing the prior art based on a bending method of a steel plate as an outer plate of a hull, and is a perspective view showing a state in which, for example, a wooden die 1 used for the bending processing is installed on a steel plate 2. is there.
As shown in this figure, in the prior art, first, the frame line of the hull outer plate (the line along this aggregate at the position where the aggregate of the outer plate is attached; the same applies hereinafter) is set as the target shape (desired shape). A large number (four in the figure) of the mold 1 is installed on the steel plate 2.
Next, the operator compares the shape of each mold 1 and the steel plate 2 by visual observation, and considers the difference between the shapes, for example, the gap (gap or difference) between the die 1 and the steel plate 2 to determine which position. Each heating position (heating point) is determined in consideration of whether the target shape is approached by heating.
Specifically, the die 1 is rolled along the frame line of the steel plate 2 in a vertical plane (the surface seen from the left side in FIG. 9), and at this time, the die 1 in each state is confirmed while checking the contact point with which the die 1 contacts. And the gap between the steel plate 2 and the steel plate 2 are determined.
[0006]
Thereafter, the heating wire is determined in consideration of how the heating points are connected to bring the steel plate 2 closer to the target shape, and the determined heating wire is marked on the surface of the steel plate 2 with chalk or the like. It is heated with a gas burner along the heating line.
[0007]
[Problems to be solved by the invention]
However, even a skilled engineer often uses angular deformations that are easy to understand visually to match the shape of the steel plate 2 to the target shape, that is, the mold 1, so that the surface of the steel plate cannot be finished smoothly. There was a problem.
In addition, in order to have the ability to rationally determine the heating wire, experience of about 5 years or more is required, and there is a problem that an inexperienced worker cannot obtain a predetermined curved surface.
Furthermore, there is a problem that even the steel plates as described above are becoming difficult to obtain due to a decrease in skilled engineers.
[0008]
The present invention has been made in view of the above circumstances, and a steel plate having a complicated curved surface shape such as a hull outer plate, to the same extent as a work performed by a skilled engineer even for an inexperienced worker. It aims at providing the manufacturing method of the metal plate which has a curved surface which can be processed into a target shape.
Another object of the present invention is to provide a metal plate having a smooth curved surface suitable for a hull outer plate or the like.
Furthermore, another object of the present invention is to provide an apparatus for producing a metal plate having a curved surface capable of automatically bending a steel plate having a complicated curved surface shape such as a hull outer plate into a target shape. It is said.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the following means are employed in the method for manufacturing a metal plate having a curved surface, the manufacturing apparatus thereof, and the metal plate having a curved surface according to the present invention.
That is, according to the method for producing a metal plate having a curved surface according to claim 1, angular deformation caused by applying heat to the surface of the metal plate and / or heat caused by applying heat from the surface of the metal plate to the back surface. In the method of manufacturing a metal plate having a curved surface that processes the metal plate into a target shape including a curved surface by using shrinkage, a processing curved surface that creates a difference between the target shape and the current shape of the metal plate is obtained. Using surface theory , At a plurality of points on the processed curved surface, a direction in which the curvature of the normal cross section that is an intersection line of the normal plane and the processed curved surface has a maximum curvature and a direction in which the minimum curvature is obtained; By connecting each direction with the minimum curvature, Machining surface Configure Cartesian coordinate system on top A curvature line is obtained, the curvature line is geometrically set on the metal plate having the current shape, and the heating line and / or the heating point is created along the curvature line. The heating line and / or the heating point is heated.
[0010]
In the method of manufacturing a metal plate having a curved surface, when heat is applied along a preset (designated) heating position (heating line and / or heating point), the steel plate has a desired shape. (Target shape) Will be approaching.
[0012]
Also, In the manufacturing method of the metal plate having this curved surface, Target shape And a curved surface created by the difference between the current shape of the metal plate and a curved surface of the current metal plate are subjected to curved surface analysis.
Curved surface analysis is to define a curvature line. From this curvature line, the "bending angle" created by the curvature line and the length of the curve (hereinafter referred to as "Girth length") can be obtained. .
Therefore, Target shape The curved surface created by the difference between the shape of the metal plate and the current metal plate, and the “bend angle” and “garth length” of each curved surface of the current metal plate, so that these angles and lengths can be balanced By processing the metal plate, a metal plate having a clean (smooth) curved surface can be manufactured.
That is, the heating position is uniquely set on the metal plate with respect to one curved surface shape.
[0013]
According to the method of manufacturing a metal plate having a curved surface according to claim 2, 1 In the method of manufacturing a metal plate having a curved surface, the heating line and / or the heating point may be created by rotating a normal plane around the normal line at an arbitrary point on the processing curved surface, Said cross section The direction of the maximum curvature and the direction of the minimum curvature are obtained from the change in the curvature of the same, and the determination of the direction of the maximum curvature and the direction of the minimum curvature is repeated for any other point in the same manner. By connecting the direction to become the minimum curvature direction ,in front A curvature line is obtained and geometrically projected onto the current shape of the metal plate to set the heating line and / or the heating point.
Further, according to the method for producing a metal plate having a curved surface according to claim 3, in the method for producing a metal plate having a curved surface according to claim 1 or 2, the curvature obtained using the curved surface theory. Obtaining the amount of change in the geometric amount of the angle and girth length on the processed curved surface based on an orthogonal coordinate system constituted by lines, and calculating the amount of heating that causes angular deformation and / or heat shrinkage from the amount of change, The heating line and / or the heating point is heated by the heating amount.
Moreover, according to the manufacturing method of the metal plate which has a curved surface of Claim 4, in the manufacturing method of the metal plate which has a curved surface of Claim 1 or Claim 2, the said curvature calculated | required using the said curved surface theory. Based on the Cartesian coordinate system composed of lines, the angle is accurately maintained by using the inverse transformation of the map, or the difference between the angle and the girth length on the processed curved surface is maintained by accurately maintaining the girth length. From the difference, the amount of heating that causes angular deformation and / or heat shrinkage is calculated from the difference, and the heating line and / or the heating point is heated by the amount of heating.
Moreover, according to the manufacturing method of the metal plate which has a curved surface of Claim 5, in the manufacturing method of the metal plate which has a curved surface in any one of Claims 1-4, the said angular deformation and / or heat | fever Heating along a heating line that causes shrinkage and / or a heating point that causes heat shrinkage is performed on the processed curved surface based on the difference between the mold made to the target shape and the shape of the current metal plate. It is characterized by being performed.
[0014]
In the manufacturing method of the metal plate having the curved surface, heat is applied to the heating position according to the difference between the mold made in accordance with the desired shape and the current shape of the metal plate.
[0015]
Claim 6 According to the method for producing a metal plate having a curved surface according to claim 1, Any one of Claim 4 In the method for producing a metal plate having a curved surface according to claim 1, Shape And / or heating wire causing heat shrinkage Cause and / or heat shrinkage The heating along the heating point is performed by obtaining the processing curved surface based on a difference between the target shape accumulated as data and the current shape of the metal plate measured by the three-dimensional shape measuring means. To do.
[0016]
In this method of manufacturing a metal plate having a curved surface, heat is applied to the heating position according to the difference between the desired shape accumulated as data and the current shape of the metal plate measured by the three-dimensional shape measuring means. Will be.
[0017]
Claim 7 According to the method for producing a metal plate having a curved surface according to claim 1, Any one of Claim 4 In the method for producing a metal plate having a curved surface according to claim 1, Shape And / or heating wire causing heat shrinkage Cause and / or heat shrinkage The heating along the heating point is the difference between the target shape accumulated as data and the current shape of the metal plate measured by the three-dimensional shape measuring means. And obtaining the processed curved surface based on From the heating condition optimization means that the relationship between heat input and deformation is stored as a database Seeking the amount of heating It is performed.
[0018]
In the manufacturing method of the metal plate having the curved surface, the difference between the desired shape accumulated as data and the current shape of the metal plate measured by the three-dimensional shape measuring means, and the relationship between the heat input amount and the deformation amount. Heat is applied to the heating position in accordance with a signal output based on the difference from the heating condition optimizing means stored as a database.
[0019]
According to the apparatus for producing a metal plate having a curved surface according to claim 8, angular deformation caused by applying heat to the surface of the metal plate and / or heat shrinkage caused by applying heat from the surface to the back surface of the metal plate. In a metal plate manufacturing apparatus having a curved surface that processes the metal plate into a target shape including a curved surface, a machining curved surface that is the difference between the target shape and the current shape is obtained, and curved surface theory is used. The , At a plurality of points on the processed curved surface, a direction in which the curvature of the normal cross section that is an intersection line of the normal plane and the processed curved surface has a maximum curvature and a direction in which the minimum curvature is obtained; By connecting each direction with the minimum curvature, Machining surface Configure Cartesian coordinate system on top Image creation processing means for obtaining a curvature line, geometrically setting the curvature line on the metal plate having the current shape, and creating a heating line and / or a heating point along the curvature line And a heating means for moving the created heating line and / or heating point to heat the metal plate, and the heating means on the heating line and / or heating point created by the image creation processing means. And a control means for outputting a heating signal so as to move and apply heat to the part.
According to the apparatus for manufacturing a metal plate having a curved surface according to claim 9, in the apparatus for manufacturing a metal plate having a curved surface according to claim 8, the image creation processing means is an arbitrary point on the processed curved surface. Rotate the normal plane around the normal, Said cross section The direction of the maximum curvature and the direction of the minimum curvature are obtained from the change in the curvature of the same, and the determination of the direction of the maximum curvature and the direction of the minimum curvature is repeated for any other point in the same manner. By connecting the direction to become the minimum curvature direction ,in front A curvature line is obtained and geometrically projected onto the current shape of the metal plate to set the heating line and / or the heating point.
Moreover, according to the manufacturing apparatus of the metal plate which has a curved surface of Claim 10, in the manufacturing apparatus of the metal plate which has a curved surface of Claim 8 or Claim 9, the said curvature calculated | required using the said curved surface theory. Comparison means for obtaining a change amount of the geometric amount of the angle and girth length on the machining curved surface with reference to an orthogonal coordinate system constituted by lines, and angular deformation and / or heat shrinkage from the change amount obtained by the comparison means Heating condition setting means for calculating a heating amount for causing heating, and the control means heats the heating line and / or the heating point by the heating means by the heating amount calculated by the heating condition setting means. Features.
Moreover, according to the manufacturing apparatus of the metal plate which has a curved surface of Claim 11, in the manufacturing apparatus of the metal plate which has a curved surface of Claim 8 or Claim 9, the said curvature calculated | required using the said curved surface theory. Based on the Cartesian coordinate system composed of lines, the angle is accurately maintained by using the inverse transformation of the map, or the difference between the angle and the girth length on the processed curved surface is maintained by accurately maintaining the girth length. And a heating condition setting means for calculating a heating amount that causes angular deformation and / or thermal shrinkage from the difference obtained by the comparing means, and the control means is the heating condition setting means. The heating line and / or the heating point is heated by the heating means by the calculated heating amount.
[0020]
In the apparatus for producing a metal plate having a curved surface, heat is applied from the heating means controlled by the control means to the heating position set by the image creation processing means.
That is, heat is automatically applied to the heating position set on the metal plate.
[0021]
Claim 12 According to the apparatus for producing a metal plate having a curved surface according to claim 1, Any one of claims 8 to 11 In the apparatus for producing a metal plate having a curved surface according to claim 1, a gap measuring means capable of measuring a difference between a mold made in accordance with the target shape and the current shape And the image creation processing means obtains the processed curved surface from a difference between the target shape measured by the gap measuring means and the current shape. It is characterized by that.
[0022]
In the manufacturing apparatus of the metal plate having the curved surface, the heating position set by the image creation processing means is controlled according to the difference between the mold made to a desired shape and the current shape of the metal plate. Heat is applied from the heating means controlled by the means.
That is, heat is automatically applied to the heating position set on the metal plate in accordance with the difference between the mold made to a desired shape and the current shape of the metal plate.
[0023]
Claim 13 According to the apparatus for producing a metal plate having a curved surface according to claim 1, Any one of claims 8 to 11 In the apparatus for manufacturing a metal plate having a curved surface according to claim 3, a three-dimensional shape measuring means capable of measuring the current shape three-dimensionally And the image creation processing means obtains the processed curved surface from a difference between the target shape and the current shape measured by the three-dimensional measuring means. It is characterized by that.
[0024]
In the manufacturing apparatus of the metal plate having the curved surface, the image creation processing unit sets the desired shape accumulated as data and the difference between the current shape of the metal plate measured by the three-dimensional shape measurement unit. Heat is applied to the heated position from the heating means controlled by the control means.
That is, heat is automatically applied to the heating position set on the metal plate according to the difference between the desired shape accumulated as data and the current shape of the metal plate measured by the three-dimensional shape measuring means. It is supposed to be.
[0025]
Claim 14 According to the apparatus for producing a metal plate having a curved surface according to claim 1, 10 or claim 11 In the manufacturing apparatus of the metal plate which has a curved surface as described in The heating condition setting means includes The relationship between heat input and deformation is stored as a database, Based on the database Heating condition optimization method that outputs heating amount according to the signal from the comparison means In steps It is characterized by being.
[0026]
In the manufacturing method of the metal plate having the curved surface, the difference between the desired shape accumulated as data and the current shape of the metal plate measured by the three-dimensional shape measuring means, and the relationship between the heat input amount and the deformation amount. In response to a signal output based on the difference from the heating condition optimization means stored as a database, heat is applied from the heating means controlled by the control means to the heating position set by the image creation processing means. Be able to.
That is, the heating condition optimization in which the difference between the desired shape accumulated as data and the current shape of the metal plate measured by the three-dimensional shape measuring means, and the relationship between the heat input amount and the deformation amount is accumulated as a database. According to a signal output from the means based on the difference, heat is automatically applied to the heating position set on the metal plate.
[0027]
Claim 15 According to the metal plate having a curved surface according to claim 1 to claim 7 Produced by the method for producing a metal plate according to any one of Board It is formed with a smooth free-form surface.
[0028]
No angular portions are formed on the front and back surfaces of the finished metal plate. Such a shape could not be made at all by conventional manual work.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As already described in the section of the prior art, when a steel plate (metal plate) is processed into a shape having a complicated curved surface, a heating wire that causes angular deformation and / or a heating wire that causes thermal shrinkage and If the position of the heating point is first known, even an inexperienced engineer can heat the steel plate to the heating position (heating line and / or heating point), thereby forming the target shape (desired shape). ) Can be easily approached. It is no exaggeration to say that the feature of the present invention is exactly this point.
[0030]
First, the features of the present invention will be conceptually described with reference to FIG.
a. The shape difference (processed curved surface) between the target shape and the member shape is taken.
b. Curved surface theory solution Analysis Go to find the heating position. In addition, the amount of change in the girth length of the processed curved surface is obtained, and a guideline for the amount of contraction of each heating wire is calculated from the amount of change in the girth length. Setting A means is used to determine the true shrinkage (inherent deformation) necessary for each heating wire and the amount of heating to be applied.
c. The heating position is mapped (projected) to the member shape.
d. Heat based on the heating position.
e. The above process is repeated to bring the member shape closer to the target shape.
[0031]
Next, the principle of bending heat processing of the steel sheet will be described. As shown in FIG. 2, the bending of the steel plate occurs in a direction (V direction) orthogonal to the heating line (U direction). Explaining this in detail, as shown in FIG. 8, there are angular deformation that occurs mainly by heating the surface of the steel sheet, and shrinkage that occurs by heating in the thickness direction up to the back surface of the steel sheet, depending on the amount of heating. However, these angular deformation and contraction do not occur independently, and heating that causes angular deformation simultaneously contracts, and heating that causes contraction also causes angular deformation at the same time.
[0032]
[Table 1]
Figure 0004585165
[0033]
If the heat input, angular deformation, lateral contraction, and longitudinal contraction are arranged based on the experimental results shown in Table 1, it can be said that angular deformation and lateral contraction are almost dominant. This is because the shrinkage in the transverse direction (V direction) is about three times as large as the shrinkage in the longitudinal direction (U direction), and the deformation that shrinks in the direction perpendicular to the heating line is dominant. It is.
From these deformation principles by heating, it is only necessary to heat in the direction orthogonal to the direction you want to bend, and the amount of heating (a method of changing the heating power with a constant heating speed, a method of changing the speed with a constant heating power, etc.) A desired process can be realized by selecting a heat process that causes angular deformation and a heat process that causes lateral contraction under control.
[0034]
As described above, in order to cause a deformation that balances the girth length and the angle, it is only necessary to heat in a direction orthogonal to the direction to be bent. At this time, as a heating method, when the difference in angle is larger than the difference in length, the main body is bent and heated to cause angular deformation with a small change in length, and the difference in angle is the difference in length. If it is smaller than the above, heating by the main part of the squeeze heating may be performed.
Such a relationship can be geometrically analyzed by using curved surface theory ("Curve curved surface modeling in CAD / CAM" written by Mamoru Hosaka, Tokyo Denki University Press).
That is, as shown in FIG. 3, a plane determined by a unit normal vector n set perpendicular to a point P on the curved surface and a unit tangent vector t for the point P on the curved surface is a normal plane. The intersection of this normal plane and the curved surface is called the normal section.
Then, when the normal plane is rotated around the normal line n with the differential of the normal cross section as the curvature, the relationship between the rotation angle θ and the curvature becomes as shown in the graph in the right half of FIG.
From this graph, it can be seen that the maximum curvature and the minimum curvature are shifted by π / 2 (= 90 °).
Actually, the point is slightly shifted in the direction in which the minimum curvature at the point P is generated (here, the angle θb), and the direction in which the minimum curvature at the point is generated is searched for in the same manner. An orthogonal coordinate system can be configured on the curved surface by repeating such operations and pasting a curvature line connecting the points having the minimum curvature on the curved surface. By pasting this Cartesian coordinate system on the “curved surface created by the difference between the target shape (desired shape) and the member shape (current metal plate shape)” and “curved surface of the member shape”, the angle and length Regarding the deformation of the shape that can be made by these deformations, the difference between the “curved surface created by the difference between the target shape and the member shape” and the “curved surface of the member shape” is obtained. From this difference, when the difference in angle is larger than the difference in length, analysis is performed to determine the heating position of the bending heating main body that causes angular deformation with a small change in length, and the difference in angle becomes the difference in length. When it is smaller than the above, an analysis for obtaining the heating position of the main body of the aperture heating is performed.
If heating is performed along this curvature line while controlling the angular deformation and shrinkage deformation, the steel sheet can be bent in the desired direction.
[0035]
Next, it is well known that when a curved surface is to be converted into a plane, such as when making a map, the angle, length, and area cannot be projected and developed simultaneously and accurately. For example, when the projection is developed while maintaining the angle, the scale is different between the central portion and the end portion. In other words, the center portion may be substantially unchanged, but the end portion needs to be enlarged (stretched).
On the other hand, when creating a curved surface from a plane, in the above-described development of maintaining the angle, the central portion may remain as it is, but the end portion must be contracted (shrinked).
The unfolding while maintaining this angle is actually the principle underlying the present drawing development method. Specifically, the current drawing development method was developed with reference to the development based on the Mercator orthographic projection. There is a background.
In this way, a technology that actually converts a ground surface with a curved surface into a map that is a flat surface, or reversely converts a map that is a flat surface into a ground surface with a curved surface. (Hereafter referred to as reverse map transformation) That is, a technique for analyzing a geometric model can be analyzed using a computer or the like, and is now a well-known technique.
As for map development, in the map development after the 1970s, in order to reduce the aforementioned distortion of angle, length, and area, the conventional macro-expansion (eg, Mercator projection) is changed to a micro-expansion (distortion distortion). It is being replaced by UTM (Universal Transverse Mercator Projection), which defines curved surfaces as a collection of minute curved surfaces to such an extent that errors can be ignored, and it is possible to develop with little distortion by using a computer or the like. It is now a well-known technique.
Therefore, using such a technique, when making a steel plate into a curved surface, it is necessary to “bend” or “shrink”, that is, heating that should cause “angular deformation” or “heat shrinkage” on the steel plate. The position of the line and / or the heating point can be set on the steel plate.
[0036]
In this way, as shown in the figure, the curved surface theory is created against the curved surface created by the difference between the desired shape and the current shape of the metal plate. Argument It is possible to set the position of the heating line and / or heating point on the steel plate that can cause angular deformation and thermal shrinkage, and repeat until there is no difference between the desired shape and the current shape of the metal plate The steel sheet can be bent into a desired shape.
Further, the worker can bend the steel sheet into a desired shape simply by applying heat to the preset heating position (position of heating line and / or heating point).
[0037]
The actual work procedure is as shown in FIGS. Although the primary bending press is illustrated in FIGS. 4 to 6, this operation may not be performed, and other bending presses may be added in advance if necessary.
The same members as those in the prior art are denoted by the same reference numerals.
4 to 6 are examples in which the steel plate 2 is to be processed into a dish shape.
[0038]
First, a desired shape is created and processed as CAD information (image) by the image creation processing means, and this image is processed as described above. Argument The heating position (heating line and / or heating point) is designated on the steel plate 2.
In the case of FIG. 4, a primary bending press is applied to the steel plate 2 to form a rough shape.
Then, for example, a wooden die 1 is applied to the inner side surface (concave surface) of the steel plate 2, and the operator visually confirms the gap between the target shape and the current shape of the steel plate 2.
The operator applies heat along a preset heating position in order to bring the shape of the steel plate 2 closer to the shape of the mold 1.
After the heat is applied, the operator visually confirms the gap between the target shape and the current shape of the steel plate 2 again.
Thus, the confirmation of the heat input according to the heating position and the current gap between the steel plate and the mold is repeatedly performed to bring the shape of the steel plate 2 closer to the target shape.
Here, the heating position is designated in advance, but the determination of the amount of heat to be applied is left to the operator.
That is, according to the gap between the shape of the steel plate 2 visually recognized by the worker and the target shape, the worker applies heat to the heating position specified on the steel plate 2 and gradually brings the steel plate 2 closer to the target shape. It will be followed.
[0039]
In this way, the heating position that has been set based on the experience and intuition of the skilled worker will be designated on the steel plate by geometric analysis in advance, so even an inexperienced worker can A steel plate can be sufficiently processed into a target shape.
Further, the heating position is determined by the target shape and is not affected by the experience or intuition of the operator, so that a substantially uniform product can be produced without causing a large difference in the finished product.
In the drawing, the black spot in the heating position designation is a drawing heating position for giving thermal contraction, a line like a contour line is a linear heating position for giving angular deformation, and a straight line extending from left to right is obtained by a primary bending press. The roller lines and the six parallel lines extending from the upper left to the lower right are frame lines.
[0040]
Next, the embodiment shown in FIG. 5 will be described. As in FIG. 4, a desired shape is created and processed as CAD information (image) by the image creation processing means, and this image is processed as described above. Argument The heating position (heating line and / or heating point) is designated on the steel plate 2.
In the case of FIG. 5, a primary bending press is applied to the steel plate 2 to form a rough shape.
And the shape of this steel plate 2 is measured by the three-dimensional shape measuring means 30 which can measure in three dimensions, and the gap between this measurement result and the target shape is displayed on a display (not shown) such as a display, for example. Display and visually communicate this gap to the operator.
The operator applies heat along a preset heating position in order to bring the shape of the steel plate 2 closer to the target shape.
After the heat is applied, the steel plate 2 is again measured by the three-dimensional shape measuring means 30, and the operator visually confirms the gap between the target shape displayed on the display and the current shape of the steel plate 2.
In this manner, the heat input according to the heating position and the confirmation work of the gap between the current steel plate and the target shape are repeatedly performed, and the shape of the steel plate is brought close to the target shape.
Here, as in the case shown in FIG. 4, the heating position is designated in advance, but the determination of the amount of heat to be applied is left to the operator.
In other words, according to the gap between the steel plate shape displayed on the display and the target shape, the worker applies heat to the heating position specified for the steel plate, and gradually brings the steel plate closer to the target shape. It will be.
[0041]
Thus, by using the three-dimensional shape measuring means 30, incidental operations such as production, installation, and removal of the mold 1 can be omitted, the cost can be reduced, and the operation time and operation can be reduced. Man-hours can be greatly reduced.
In addition, the heating position that has been set based on the experience and intuition of many years of experience is to be geometrically analyzed in advance and specified on the steel plate, so even inexperienced workers can fully A steel plate can be processed into a target shape.
Furthermore, since the heating position is determined by the target shape and does not depend on the experience or intuition of the operator, a substantially uniform product can be created without causing a large difference in the finished product.
In the drawing, the black spot in the heating position designation is a drawing heating position for giving thermal contraction, a line like a contour line is a linear heating position for giving angular deformation, and a straight line extending from left to right is obtained by a primary bending press. The roller lines and the six parallel lines extending from the upper left to the lower right are frame lines.
[0042]
Next, the embodiment shown in FIG. 6 will be described. Similar to FIGS. 4 and 5, a desired shape is created and processed as CAD information (image) by the image creation processing means, and this image is processed as described above. Theory It processes using reverse transformation and designates a heating position (a heating line and / or a heating point) on the steel plate 2.
In the case of FIG. 6, a primary bending press is applied to the steel plate 2 to form a rough shape.
And the shape of this steel plate 2 is measured by the three-dimensional shape measuring means 30 capable of measuring three-dimensionally, and the gap between this measurement result and the target shape obtained from the CAD information is displayed on a display device such as a display. (Not shown) to visually communicate this gap to the operator.
The measurement result by the three-dimensional shape measuring unit 30 is output to a heating condition optimizing unit (not shown) and compared with the heat input / deformation amount data stored in the heating condition optimizing unit. The comparison result is displayed as a heating condition (for example, the amount of heat input) on the above-described display or a display (not shown) such as a display prepared separately.
That is, the worker can confirm how much heat should be applied to which heating position on the display.
The operator adds only the amount of heat output from the heating condition optimizing means along the preset heating position in order to bring the shape of the steel plate 2 closer to the target shape.
After applying heat, the steel plate 2 is again measured by the three-dimensional shape measuring means 30, and the gap between the target shape displayed on the display and the current shape of the steel plate 2 and the heating condition optimizing means are output. The operator checks the amount of heat visually.
In this way, by repeatedly applying heat to the steel plate 2 by the designated amount of heat at the designated heating position and checking the gap between the current steel plate and the target shape, the shape of the steel plate is changed to the target shape. Move closer.
In the embodiment shown in FIG. 6, since the heating position and the heat input amount are designated, there is almost no place based on the judgment of the operator.
That is, the worker can quickly bring the steel plate closer to the target shape simply by adding the amount of heat displayed on the display to the heating position specified on the steel plate. Just I can go.
[0043]
In this way, by using the heating condition optimization means, it is possible to obtain information as to how much heat should be applied to which heating position, so that work efficiency can be improved and work time can be shortened. can do.
Further, by using the three-dimensional shape measuring means 30, it is possible to omit incidental operations such as production, installation, and removal of the mold 1 and to reduce costs, and to reduce the work time and the man-hours. It can be greatly reduced.
Furthermore, since the heating position set based on the experience and intuition of many years of experience is to be geometrically analyzed in advance and specified on the steel plate, even an inexperienced worker can fully A steel plate can be processed into a target shape.
Furthermore, since the heating position is determined by the target shape and does not depend on the experience and intuition of the operator, a substantially uniform product can be created without causing a large difference in the finished product. .
In the drawing, the black spot in the heating position designation is a drawing heating position for giving thermal contraction, a line like a contour line is a linear heating position for giving angular deformation, and a straight line extending from left to right is obtained by a primary bending press. The roller lines and the six parallel lines extending from the upper left to the lower right are frame lines.
[0044]
As described above, according to the method of the present invention, the steel plate can be gradually brought closer to the target shape gradually as shown in the lower part of FIG. Accordingly, the finished product is formed with a particularly smooth curved surface, and the propulsion resistance can be reduced, for example, when used for a hull skin.
On the other hand, as shown in the upper part of FIG. 7, the conventional method that relies solely on the experience and intuition of skilled workers gradually approaches the target shape, but many times past the target shape. Since it will be bent, the front and back surfaces of the finished product will be wavy.
As described above, there is a great difference in the shape of the finished product between the conventional method and the method according to the present invention.
In the graph shown in the lower part of FIG. 7, the solid line indicates that the embodiment according to FIGS. 4 and 5 is adopted, and the alternate long and short dash line indicates that the embodiment shown in FIG. 6 is adopted. . That is, as shown in FIG. 6, when the heating condition is designated, the target shape can be reached sooner.
[0045]
Further, the thermal bending process shown in FIGS. 4 to 6 can be mechanically automatically performed.
That is, in the embodiment shown in FIG. 4, the gap measuring means that can measure the gap between the current steel plate shape and the mold shape, and movable along the input heating position are applied, and heat is applied to the steel plate. It is possible to provide a heating unit that can be operated and a control unit that outputs a signal to move the heating unit according to the gap and apply heat to the part.
Thereby, while being able to release an operator from harsh work, a labor cost can be reduced and a cost can be reduced.
[0046]
Further, in the embodiment shown in FIG. 5, the comparison means for inputting the target shape stored as CAD information and the measurement result measured by the three-dimensional shape measurement means 30, and the movement along the inputted heating position are possible. A heating means capable of applying heat to the steel sheet, and a control means for moving the heating means in accordance with data from the comparison means and outputting a signal to apply heat to the part. it can.
Thereby, while being able to release an operator from harsh work, a labor cost can be reduced and a cost can be reduced.
[0047]
Further, in the embodiment shown in FIG. 6, the comparison means for inputting the target shape stored as CAD information and the measurement result measured by the three-dimensional shape measurement means 30, and the movement along the input heating position are possible. The heating means that can apply heat to the steel sheet, the relationship between the amount of heat input and the amount of deformation is stored as a database, and the heating condition optimization means that outputs the heating conditions according to the signal from the comparison means, and the heating Control means for outputting a signal so as to move the heating means in accordance with data from the condition optimization means and apply optimum heat to the part can be provided.
Thereby, while being able to release an operator from harsh work, a labor cost can be reduced and a cost can be reduced.
[0048]
In the above-described embodiment, the three-dimensional shape measuring unit 30 uses a camera, but the present invention is not limited to this, and for example, in the XY direction (that is, the horizontal direction). The cylinder is composed of a movable cylinder, a piston movable in the Z direction (vertical direction) within the cylinder, and a roller provided at the tip of the piston and rolling on a steel plate. May be.
That is, the roller may move on the steel plate together with the cylinder and the piston so that the three-dimensional shape of the steel plate can be grasped.
[0049]
In addition, the present invention is not applied only to the hull outer plate, but to a metal plate (for example, an aluminum or stainless steel plate) in the technical field such as nuclear power, aviation / space, automobile / train, etc. Is also applicable.
[0050]
【The invention's effect】
The method for manufacturing a metal plate having a curved surface, the apparatus for manufacturing the same, and the metal plate having a curved surface of the present invention have the following effects.
Claim 1 To claim 4 According to the method for manufacturing a metal plate having a curved surface, the steel plate approaches a desired shape if heat is applied along a preset (designated) heating position (heating line and / or heating point). Therefore, even an inexperienced worker can sufficiently process the steel plate into the target shape.
[0051]
further Because the heating position is determined one-on-one with respect to the target shape, it is not affected by the experience and intuition of the operator, and a substantially uniform product is created without causing a large difference in the finished product. There is an effect that can be.
[0052]
Claim 5 According to the method for manufacturing a metal plate having a curved surface described in the above, heat is applied to the heating position in accordance with the difference between the mold made to the target shape and the current shape of the metal plate. The deformation amount of the metal plate due to the applied heat amount can be confirmed on the spot, and the working situation can be immediately grasped.
[0053]
Claim 6 According to the method for manufacturing a metal plate having a curved surface described in the above, since the current shape of the metal plate is measured by the three-dimensional shape measuring means, ancillary operations such as mold production, installation, and removal are omitted. Thus, the cost can be reduced and the working time and the number of work steps can be greatly reduced.
[0054]
Claim 7 According to the method for producing a metal plate having a curved surface described in 1., since the worker can obtain information as to how much heat should be applied to which heating position, work efficiency can be improved, There is an effect that the time can be shortened.
[0055]
Claim 8 to 11 According to the apparatus for producing a metal plate having a curved surface described in (4), since heat is automatically applied to the heating position set on the metal plate, it is possible to release the worker from harsh work. In addition, the labor cost can be reduced and the cost can be reduced.
[0056]
Claim 12 According to the apparatus for producing a metal plate having a curved surface described in (4), since heat is automatically applied to the heating position set on the metal plate, it is possible to release the worker from harsh work. In addition, the labor cost can be reduced and the cost can be reduced.
[0057]
Claim 13 According to the apparatus for producing a metal plate having a curved surface described in 3, since the current shape of the metal plate is measured by the three-dimensional shape measuring means, ancillary operations such as mold production, installation, and removal are omitted. Can reduce costs, work time and man-hours can be greatly reduced, and workers can be released from harsh work, and labor costs can be reduced. Can be produced, and the cost can be reduced.
[0058]
Claim 14 According to the apparatus for manufacturing a metal plate having a curved surface, it is possible to obtain information as to how much heat should be applied to which heating position, so that work efficiency can be improved and work time can be shortened. In addition, the operator can be released from the harsh work, and the labor cost can be reduced, and the cost can be reduced.
[0059]
Claim 15 According to the metal plate having a curved surface described in (2), the front and back surfaces of the completed metal plate are formed with smooth curves, so that, for example, when used for a hull outer plate, the propulsion resistance is reduced. There is an effect that can be made.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the concept of the present invention.
FIG. 2 is an explanatory diagram for explaining the deformation in detail.
FIG. 3 is an explanatory diagram for explaining a curved surface theory applied to the present invention.
FIG. 4 is a diagram conceptually showing an embodiment of a metal plate bending method according to the present invention.
FIG. 5 is a diagram conceptually showing another embodiment of a metal plate bending method according to the present invention.
FIG. 6 is a diagram conceptually illustrating another embodiment of a metal plate bending method according to the present invention.
FIG. 7 is a diagram illustrating the difference between a skilled technician and a processing method according to the present invention.
FIG. 8 is an explanatory diagram for explaining generally performed angular deformation and thermal contraction.
FIG. 9 is a diagram conceptually showing the prior art based on a bending technique for a steel sheet as an outer plate of a hull, and is a perspective view showing a state in which a mold used for the bending process is installed on the steel sheet.
[Explanation of symbols]
Type 1
2 Steel plate (metal plate)
30 Three-dimensional shape measuring means

Claims (15)

金属板の表面に熱を加えることにより起こる角変形、および/または金属板の表面から裏面にかけて熱を加えることにより起こる熱収縮を用いて、前記金属板を曲面を含む目標形状に加工していく曲面を有する金属板の製造方法において、
前記金属板の前記目標形状と現在の形状との差がつくる加工曲面を求め、
曲面理論を用いて、該加工曲面上における複数の点で、法平面と該加工曲面との交線である法断面の曲率が最大曲率となる方向と最小曲率となる方向とを求めて、最大曲率となる方向と最小曲率となる方向とをそれぞれ結ぶことで、前記加工曲面上に直交座標系を構成する曲率線を求めて、前記現在の形状である前記金属板の上に前記曲率線を幾何学的に設定して、該曲率線に沿って前記加熱線および/または加熱点を作成し、
該作成した前記加熱線および/または加熱点を加熱することを特徴とする曲面を有する金属板の製造方法。
The metal plate is processed into a target shape including a curved surface using angular deformation caused by applying heat to the surface of the metal plate and / or heat shrinkage caused by applying heat from the front surface to the back surface of the metal plate. In the method of manufacturing a metal plate having a curved surface,
Find a processing curved surface that creates the difference between the target shape of the metal plate and the current shape,
Using the curved surface theory, at a plurality of points on the processed curved surface, the direction in which the curvature of the normal section, which is the intersection of the normal plane and the processed curved surface, has the maximum curvature and the direction in which the minimum curvature is obtained, By connecting the direction of curvature and the direction of minimum curvature, respectively, a curvature line constituting an orthogonal coordinate system is obtained on the processed curved surface , and the curvature line is formed on the metal plate having the current shape. Geometrically set to create the heating line and / or heating point along the curvature line;
A method for producing a metal plate having a curved surface, wherein the created heating line and / or heating point is heated.
前記加熱線および/または加熱点の作成は、前記加工曲面上の任意の一点で法平面を法線周りに回転させて、前記法断面の曲率の変化から、最大曲率となる方向と最小曲率となる方向を求め、同様に他の任意の点について最大曲率となる方向と最小曲率となる方向を求めることを繰り返し、求めた最大曲率となる方向と最小曲率となる方向とをそれぞれ結ぶことで、前記曲率線を求め、前記現在の形状である前記金属板の上に幾何学的に投影して、前記加熱線および/または加熱点を設定することを特徴とする請求項1に記載の曲面を有する金属板の製造方法。The heating line and / or the heating point is created by rotating the normal plane around the normal line at an arbitrary point on the processing curved surface, and from the change in the curvature of the normal section , the direction of the maximum curvature and the minimum curvature By repeatedly determining the direction that becomes the maximum curvature and the direction that becomes the minimum curvature for other arbitrary points, and connecting the direction that becomes the maximum curvature and the direction that becomes the minimum curvature, respectively , seeking pre SL line of curvature, wherein on the metal plate as a current shape geometrically projected curved surface according to claim 1, characterized in that to set the heating lines and / or heating point The manufacturing method of the metal plate which has this. 前記曲面理論を用いて求めた前記曲率線によって構成される直交座標系を基準にした前記加工曲面における角度およびガース長さの幾何量の変化量を求め、該変化量から角変形および/または熱収縮を起こさせる加熱量を算出し、該加熱量だけ、前記加熱線および/または加熱点を加熱することを特徴とする請求項1または請求項2に記載の曲面を有する金属板の製造方法。  The amount of change in the geometric amount of the angle and girth length on the processed curved surface based on an orthogonal coordinate system constituted by the curvature line obtained using the curved surface theory is obtained, and angular deformation and / or heat is determined from the amount of change. The method for manufacturing a metal plate having a curved surface according to claim 1 or 2, wherein a heating amount causing shrinkage is calculated, and the heating line and / or the heating point is heated by the heating amount. 前記曲面理論を用いて求めた前記曲率線によって構成される直交座標系を基準に、地図の逆変換を用いて角度を正確に保持し、若しくは、ガース長さを正確に保持して前記加工曲面における角度およびガース長さの差異を幾何学的に求め、該差異から角変形および/または熱収縮を起こさせる加熱量を算出し、該加熱量だけ、前記加熱線および/または加熱点を加熱することを特徴とする請求項1または請求項2に記載の曲面を有する金属板の製造方法。  Based on the orthogonal coordinate system formed by the curvature line obtained using the curved surface theory, the angle is accurately maintained by using the inverse transformation of the map, or the girth length is accurately maintained and the processed curved surface The difference in angle and girth length is obtained geometrically, the amount of heating causing angular deformation and / or heat shrinkage is calculated from the difference, and the heating line and / or heating point is heated by the amount of heating. The method for producing a metal plate having a curved surface according to claim 1 or 2. 前記角変形および/または熱収縮を起こさせる加熱線、および/または熱収縮を起こさせる加熱点に沿う加熱は、前記目標形状に合わせて作られた型と、現在の金属板の形状との差に基づいて前記加工曲面を求めて行われることを特徴とする請求項1から請求項4のいずれかに記載の曲面を有する金属板の製造方法。  The heating line that causes the angular deformation and / or heat shrinkage and / or the heating along the heating point that causes the heat shrinkage is the difference between the mold made to the target shape and the shape of the current metal plate. The method for producing a metal plate having a curved surface according to any one of claims 1 to 4, wherein the processing curved surface is obtained based on the method. 前記角変形および/または熱収縮を起こさせる加熱線、および/または熱収縮を起こさせる加熱点に沿う加熱は、データとして蓄積された前記目標形状と、三次元形状計測手段により計測された現在の金属板の形状との差に基づいて前記加工曲面を求めて行われることを特徴とする請求項1から請求項4のいずれかに記載の曲面を有する金属板の製造方法。  The heating line that causes the angular deformation and / or heat shrinkage and / or the heating along the heating point that causes the heat shrinkage are the target shape accumulated as data and the current shape measured by the three-dimensional shape measuring means. The method for producing a metal plate having a curved surface according to any one of claims 1 to 4, wherein the processing curved surface is obtained based on a difference from a shape of the metal plate. 前記角変形および/または熱収縮を起こさせる加熱線、および/または熱収縮を起こさせる加熱点に沿う加熱は、データとして蓄積された前記目標形状と、三次元形状計測手段により計測された現在の金属板の形状との差に基づいて前記加工曲面を求めるとともに、入熱量と変形量との関係がデータベースとして蓄積された加熱条件最適化手段から加熱量を求めて行われることを特徴とする請求項1から請求項4のいずれかに記載の曲面を有する金属板の製造方法。  The heating line that causes the angular deformation and / or heat shrinkage and / or the heating along the heating point that causes the heat shrinkage are the target shape accumulated as data and the current shape measured by the three-dimensional shape measuring means. The processing curved surface is obtained based on the difference from the shape of the metal plate, and the relationship between the heat input amount and the deformation amount is obtained by obtaining the heating amount from the heating condition optimizing means stored as a database. The manufacturing method of the metal plate which has a curved surface in any one of Claims 1-4. 金属板の表面に熱を加えることにより起こる角変形、および/または金属板の表面から裏面にかけて熱を加えることにより起こる熱収縮を用いて、前記金属板を曲面を含む目標形状に加工していく曲面を有する金属板の製造装置において、
前記目標形状と前記現在の形状との差がつくる加工曲面を求め、
曲面理論を用いて、該加工曲面上における複数の点で、法平面と該加工曲面との交線である法断面の曲率が最大曲率となる方向と最小曲率となる方向とを求めて、最大曲率となる方向と最小曲率となる方向とをそれぞれ結ぶことで、前記加工曲面上に直交座標系を構成する曲率線を求めて、前記現在の形状である前記金属板の上に前記曲率線を幾何学的に設定して、該曲率線に沿って加熱線および/または加熱点を作成する画像作成処理手段と、
該作成した前記加熱線および/または加熱点上を移動し、前記金属板を加熱する加熱手段と、
前記加熱手段を前記画像作成処理手段で作成した前記加熱線および/または加熱点上で移動させるとともにその部位に熱を加えるように加熱信号を出力する制御手段と、を具備することを特徴とする曲面を有する金属板の製造装置。
The metal plate is processed into a target shape including a curved surface using angular deformation caused by applying heat to the surface of the metal plate and / or heat shrinkage caused by applying heat from the front surface to the back surface of the metal plate. In an apparatus for producing a metal plate having a curved surface,
Find a machining curved surface created by the difference between the target shape and the current shape,
Using the curved surface theory, at a plurality of points on the processed curved surface, the direction in which the curvature of the normal section, which is the intersection of the normal plane and the processed curved surface, has the maximum curvature and the direction in which the minimum curvature is obtained, By connecting the direction of curvature and the direction of minimum curvature, respectively, a curvature line constituting an orthogonal coordinate system is obtained on the processed curved surface , and the curvature line is formed on the metal plate having the current shape. Image creation processing means for geometrically setting and creating a heating line and / or a heating point along the curvature line;
Heating means for moving the created heating line and / or heating point and heating the metal plate;
Control means for moving the heating means on the heating line and / or the heating point created by the image creation processing means and outputting a heating signal so as to apply heat to the part. An apparatus for producing a metal plate having a curved surface.
前記画像作成処理手段は、前記加工曲面上の任意の一点で法平面を法線周りに回転させて、前記法断面の曲率の変化から、最大曲率となる方向と最小曲率となる方向を求め、同様に他の任意の点について最大曲率となる方向と最小曲率となる方向を求めることを繰り返し、求めた最大曲率となる方向と最小曲率となる方向とをそれぞれ結ぶことで、前記曲率線を求め、前記現在の形状である前記金属板の上に幾何学的に投影して、前記加熱線および/または加熱点を設定することを特徴とする請求項8に記載の曲面を有する金属板の製造装置。The image creation processing means rotates the normal plane around the normal at an arbitrary point on the processed curved surface, and determines the direction of the maximum curvature and the direction of the minimum curvature from the change in curvature of the normal section , Similarly repeated to seek direction of maximum curvature become direction and the minimum curvature for any other point, and a direction in which the calculated maximum curvature become direction and the minimum curvature was by connecting each front SL line of curvature The metal plate having a curved surface according to claim 8, wherein the heating line and / or the heating point are set by geometrically projecting onto the metal plate having the current shape. Manufacturing equipment. 前記曲面理論を用いて求めた前記曲率線によって構成される直交座標系を基準にした前記加工曲面における角度およびガース長さの幾何量の変化量を求める比較手段と、
該比較手段で求めた前記変化量から角変形および/または熱収縮を起こさせる加熱量を算出する加熱条件設定手段を備え、
前記制御手段は、前記加熱条件設定手段で算出した前記加熱量だけ、前記加熱手段によって前記加熱線および/または加熱点を加熱させることを特徴とする請求項8または請求項9に記載の曲面を有する金属板の製造装置。
Comparing means for obtaining a change amount of the geometric amount of the angle and the girth length on the processing curved surface with reference to an orthogonal coordinate system constituted by the curvature line obtained using the curved surface theory;
Heating condition setting means for calculating a heating amount that causes angular deformation and / or heat shrinkage from the amount of change obtained by the comparison means;
The curved surface according to claim 8 or 9, wherein the control means causes the heating means to heat the heating line and / or the heating point by the heating amount calculated by the heating condition setting means. An apparatus for producing a metal plate.
前記曲面理論を用いて求めた前記曲率線によって構成される直交座標系を基準に、地図の逆変換を用いて角度を正確に保持し、若しくは、ガース長さを正確に保持して前記加工曲面における角度およびガース長さの差異を幾何学的に求める比較手段と、
該比較手段で求めた前記差異から角変形および/または熱収縮を起こさせる加熱量を算出する加熱条件設定手段を備え、
前記制御手段は、前記加熱条件設定手段で算出した前記加熱量だけ、前記加熱手段によって前記加熱線および/または加熱点を加熱させることを特徴とする請求項8または請求項9に記載の曲面を有する金属板の製造装置。
Based on the orthogonal coordinate system formed by the curvature line obtained using the curved surface theory, the angle is accurately maintained by using the inverse transformation of the map, or the girth length is accurately maintained and the processed curved surface A comparison means for geometrically determining the difference in angle and girth length at
Heating condition setting means for calculating the amount of heating that causes angular deformation and / or heat shrinkage from the difference obtained by the comparison means,
The curved surface according to claim 8 or 9, wherein the control means causes the heating means to heat the heating line and / or the heating point by the heating amount calculated by the heating condition setting means. An apparatus for producing a metal plate.
前記目標形状に合わせて作られた型と、前記現在の形状との差を計測することができるギャップ計測手段を備え、
前記画像作成処理手段は、該ギャップ計測手段で計測した前記目標形状と前記現在の形状との差から前記加工曲面を求めることを特徴とする請求項8から請求項11のいずれかに記載の曲面を有する金属板の製造装置。
Gap measuring means capable of measuring the difference between the mold made to match the target shape and the current shape,
The curved surface according to any one of claims 8 to 11, wherein the image creation processing means obtains the processed curved surface from a difference between the target shape measured by the gap measuring means and the current shape. An apparatus for manufacturing a metal plate.
前記現在の形状を三次元的に計測することのできる三次元形状計測手段を備え、
前記画像作成処理手段は、前記目標形状と前記三次元計測手段で計測した前記現在の形状との差から前記加工曲面を求めることを特徴とする請求項8から請求項11のいずれかに記載の曲面を有する金属板の製造装置。
Comprising a three-dimensional shape measuring means capable of three-dimensionally measuring the current shape;
The said image creation process means calculates | requires the said processed curved surface from the difference of the said target shape and the said present shape measured by the said three-dimensional measuring means, The Claim 1 characterized by the above-mentioned. An apparatus for producing a metal plate having a curved surface.
前記加熱条件設定手段は、入熱量と変形量との関係がデータベースとして蓄積され、該データべースに基づいて前記比較手段からの信号に応じて加熱量を出力する加熱条件最適化手段であることを特徴とする請求項10または請求項11に記載の曲面を有する金属板の製造装置。  The heating condition setting means is a heating condition optimization means for storing the relationship between the heat input amount and the deformation amount as a database and outputting the heating amount according to a signal from the comparison means based on the database. The manufacturing apparatus of the metal plate which has a curved surface of Claim 10 or Claim 11 characterized by the above-mentioned. 請求項1から請求項7のいずれかに記載の金属板の製造方法で製造され、
該金属板が滑らかな自由曲面で形成されていることを特徴とする曲面を有する金属板。
It is manufactured by the method for manufacturing a metal plate according to any one of claims 1 to 7,
A metal plate having a curved surface, wherein the metal plate is formed with a smooth free-form surface.
JP2002235957A 2002-08-13 2002-08-13 Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface Expired - Fee Related JP4585165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235957A JP4585165B2 (en) 2002-08-13 2002-08-13 Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235957A JP4585165B2 (en) 2002-08-13 2002-08-13 Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface

Publications (2)

Publication Number Publication Date
JP2004074200A JP2004074200A (en) 2004-03-11
JP4585165B2 true JP4585165B2 (en) 2010-11-24

Family

ID=32020292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235957A Expired - Fee Related JP4585165B2 (en) 2002-08-13 2002-08-13 Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface

Country Status (1)

Country Link
JP (1) JP4585165B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013920A (en) * 2015-06-22 2015-11-04 大连理工大学 Machining method for assisting line heating forming of ship hull plate by utilizing electromagnetic force
KR20210033729A (en) 2019-09-19 2021-03-29 삼성중공업 주식회사 Curved plate manufacturing system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733950B2 (en) * 2004-09-21 2011-07-27 新日本製鐵株式会社 Linear heating deformation method of steel sheet
JP4795700B2 (en) * 2005-02-22 2011-10-19 三菱重工業株式会社 Bending method, metal plate, heating position determination program, and heating position determination device
JP4899039B2 (en) * 2005-03-22 2012-03-21 国立大学法人九州工業大学 Method of obtaining flat plate processing information and flat plate processing method
CN100366358C (en) * 2005-09-16 2008-02-06 王引 Making process of curved surface with hole/column
KR100911498B1 (en) 2007-05-30 2009-08-07 삼성중공업 주식회사 Determination system of heating shape and position for triangle heating and method thereof
KR100907761B1 (en) 2007-05-31 2009-07-15 삼성중공업 주식회사 Hull shell surface processing system and method
JP4963094B2 (en) * 2007-09-11 2012-06-27 独立行政法人産業技術総合研究所 Work support device
JP5095531B2 (en) * 2008-07-08 2012-12-12 三星重工業株式会社 System and method for evaluating processing completeness of curved member
KR101086382B1 (en) 2008-09-03 2011-11-23 삼성중공업 주식회사 Determination Apparatus of Constraints position for curved steel sheet forming and method thereof
KR101036660B1 (en) * 2008-12-09 2011-05-25 삼성중공업 주식회사 Line heating system for initial imposed deformation condition and method thereof
KR101246065B1 (en) 2010-11-25 2013-03-26 삼성중공업 주식회사 Determination system of heating shape and position for triangle heating and method thereof
JP6653572B2 (en) * 2015-12-28 2020-02-26 川崎重工業株式会社 Deformation processing support system and deformation processing support method
CN106931936B (en) * 2017-03-10 2019-05-31 广东工业大学 A kind of hull complexity outside plate formingspace angular deformation amount calculating method and device
JP6859164B2 (en) * 2017-04-06 2021-04-14 川崎重工業株式会社 Deformation processing support system and deformation processing support method
KR102070160B1 (en) * 2019-07-24 2020-01-28 기득산업 주식회사 System For Forming A Curved Surface On A Plate With Position Control Function And Method Thereof
KR102070155B1 (en) * 2019-07-24 2020-01-28 기득산업 주식회사 System For Forming A Curved Surface On A Plate
KR102070158B1 (en) * 2019-07-24 2020-01-28 기득산업 주식회사 System For Forming A Curved Surface On A Plate
CN115506577A (en) * 2022-10-18 2022-12-23 上海建工二建集团有限公司 Adjustable template suitable for multi-curved-surface concrete structure and construction method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094044A (en) * 1998-09-17 2000-04-04 Nkk Corp Method for bending plate by linear heating
JP2003211230A (en) * 2001-11-16 2003-07-29 Ihi Marine United Inc Method for calculating heating procedure of linear heating

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2924354B2 (en) * 1991-09-18 1999-07-26 石川島播磨重工業株式会社 Method of bending steel sheet by linear heating
JP2626496B2 (en) * 1993-08-26 1997-07-02 石川島播磨重工業株式会社 Method of bending metal plate by linear heating
JPH1058052A (en) * 1996-08-20 1998-03-03 Nkk Corp Method for bending plate by linear heating
JP3849189B2 (en) * 1996-11-13 2006-11-22 石川島播磨重工業株式会社 Bending method of metal plate by linear heating
JP3277366B2 (en) * 1997-02-10 2002-04-22 株式会社神戸製鋼所 Metal plate processing management system
JP3727784B2 (en) * 1997-09-29 2005-12-14 三菱重工業株式会社 Method and apparatus for determining heating points and heating lines in steel plate bending
JP3524727B2 (en) * 1997-09-24 2004-05-10 三菱重工業株式会社 Automatic plate bending equipment by high frequency induction heating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094044A (en) * 1998-09-17 2000-04-04 Nkk Corp Method for bending plate by linear heating
JP2003211230A (en) * 2001-11-16 2003-07-29 Ihi Marine United Inc Method for calculating heating procedure of linear heating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013920A (en) * 2015-06-22 2015-11-04 大连理工大学 Machining method for assisting line heating forming of ship hull plate by utilizing electromagnetic force
CN105013920B (en) * 2015-06-22 2017-06-23 大连理工大学 A kind of processing method of the outer printed line thermoforming of utilization electromagnetic force auxiliary hull
KR20210033729A (en) 2019-09-19 2021-03-29 삼성중공업 주식회사 Curved plate manufacturing system

Also Published As

Publication number Publication date
JP2004074200A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4585165B2 (en) Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface
CN101368823B (en) Evaluation system and method for processing precision of bending part
RU2568228C2 (en) Method of incremental part surfacing with sequential covering surfaces
KR20080105522A (en) Formation system for curved plates in ship and method therof
JP4795700B2 (en) Bending method, metal plate, heating position determination program, and heating position determination device
US5463558A (en) Method for designing a binder ring surface for a sheet metal part
KR100783417B1 (en) Curved surface forming method of a steel plate for a ship using a multi-point press
JP5001330B2 (en) Curved member measurement system and method
JP5095531B2 (en) System and method for evaluating processing completeness of curved member
KR102203916B1 (en) A Hot Forming Method for plate
KR100288414B1 (en) Apparatus and method for determining heating point and heating line during bending of steel sheet
WO2022191301A1 (en) Calculation method for heating plan, program, recording medium, device, deformation method, plate deformation device, and production method for deformed plate
Neugebauer et al. Roller Hemming Simulation: State of the art and application limits
KR102061900B1 (en) A Hot Forming Method for plate
JP3380028B2 (en) Profile control method of pipe surface by force control robot
KR101042056B1 (en) Curved surface forming method of a steel plate using a variable type of metal mold
US10744549B2 (en) Method of verifying operating command, method of controlling machining device, recording medium recorded with operating-command verification program, and operating-command verification system
JP5173971B2 (en) Bending method, metal plate, heating position determination program and apparatus
JP4471412B2 (en) How to select the expanded shape of a metal plate for bending
JP2005228260A (en) Distortion distribution calculation method for shaping plate material to objective curved surface
JP3085272U (en) High performance machine with reduced setup time for programmed sheet bending
JP4899039B2 (en) Method of obtaining flat plate processing information and flat plate processing method
KR102665036B1 (en) A system and method that forms the curved shell of the hull
KR102641784B1 (en) A system and method that forms the curved shell of the hull
Li et al. Study on Tool Path Design for a Novel Incremental Sheet Metal Bending Process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100604

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees