JP4583558B2 - スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法 - Google Patents

スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法 Download PDF

Info

Publication number
JP4583558B2
JP4583558B2 JP2000217940A JP2000217940A JP4583558B2 JP 4583558 B2 JP4583558 B2 JP 4583558B2 JP 2000217940 A JP2000217940 A JP 2000217940A JP 2000217940 A JP2000217940 A JP 2000217940A JP 4583558 B2 JP4583558 B2 JP 4583558B2
Authority
JP
Japan
Prior art keywords
membrane element
spiral membrane
spiral
raw water
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000217940A
Other languages
English (en)
Other versions
JP2002028454A (ja
Inventor
雅明 安藤
勝視 石井
悟 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000217940A priority Critical patent/JP4583558B2/ja
Priority to EP01306085A priority patent/EP1174177A3/en
Priority to US09/907,762 priority patent/US6733675B2/en
Publication of JP2002028454A publication Critical patent/JP2002028454A/ja
Application granted granted Critical
Publication of JP4583558B2 publication Critical patent/JP4583558B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、逆浸透膜分離装置、限外濾過膜分離装置、精密濾過膜分離装置等の膜分離装置に用いられるスパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法に関する。
【0002】
【従来の技術】
近年、浄水処理および排水処理への膜分離技術の適用が広がり、従来困難であった液質への膜分離技術の応用がなされている。特に、膜分離技術を用いた産業排水の回収および再利用が強く求められている。
【0003】
このような膜分離に使用される膜エレメントの形態としては、単位体積当たりの膜面積(体積効率)の点から中空糸型膜エレメントが多く使用されている。しかし、中空糸型膜エレメントは、膜が折れやすく、膜が折れると、原水が透過水に混ざり、分離性能が低下するという欠点を有している。
【0004】
そこで、中空糸型膜エレメントに代えて、スパイラル型膜エレメントを適用することが提案されている。このスパイラル型膜エレメントは、中空糸型膜エレメントと同様に単位体積当たりの膜面積を大きくとれ、しかも分離性能を維持でき、信頼性が高いという利点を有している。
【0005】
【発明が解決しようとする課題】
排水は多くの懸濁物質、コロイド性物質または溶存性物質を含むため、このような排水に膜分離を行うと、これらの懸濁物質、コロイド性物質または溶存性物質が汚染物質として膜面に堆積し、水の透過速度の低下を引き起こす。特に、全量濾過を行う場合においては汚染物質が膜面に堆積しやすく、水の透過速度の低下が顕著であり、安定した濾過運転を続けることが困難である。
【0006】
膜面への汚染物質の堆積を防止するためには、クロスフロー濾過が行われる。
このクロスフロー濾過は、原水を膜面に対して平行に流すことにより、膜面と流体との界面で生じる剪断力を利用して膜面への汚染物質の堆積を防止するものである。このようなクロスフロー濾過においては、汚染物質の膜面への堆積を防ぐために充分な膜面線速を得ることが必要であり、そのためには充分な流量の原水を膜面に対して平行に流す必要がある。しかしながら、膜面に平行に流す原水の流量を大きくすると、スパイラル型膜エレメント当たりの回収率が低くなるうえ、原水を供給するポンプが大きいものとなり、システムコストも非常に大きくなる。
【0007】
一方、膜面に堆積した汚染物質を逆流洗浄により取り除くことも行われる。逆流洗浄は、中空糸型膜エレメントでは一般的に行われている。
【0008】
スパイラル型膜エレメントへの逆流洗浄の適用は、例えば特公平6−98276号公報に提案されている。しかし、従来のスパイラル型膜エレメントの分離膜は、背圧強度が低いため、逆流洗浄において分離膜に背圧が加わると、分離膜が破損するおそれがある。そのため、上記の公報によると、スパイラル型膜エレメントに0.1〜0.5kg/cm2 (0.01〜0.05MPa)という低い背圧で逆流洗浄を行うことが好ましいとされている。
【0009】
しかし、本発明者の実験によると、スパイラル型膜エレメントにおいてこのような背圧で逆流洗浄を行った場合、汚染物質の除去を充分に行うことが困難であり、長時間にわたって高い透過流束を維持することはできなかった。
【0010】
一方、本発明者は、特開平10−225626号公報に背圧強度が2kgf/cm2 以上の分離膜の構造および製造方法を提案している。しかしながら、このような背圧強度を有する分離膜を用いてスパイラル型膜エレメントを作製した場合に、実際にどのような背圧で逆流洗浄を行うことが可能となるか、また、どのような範囲の背圧で逆流洗浄を行った場合に長期間にわたって高い透過流束を維持できるかについては十分に検証されていなかった。さらに、上記のような背圧強度の高い分離膜を有するスパイラル型膜エレメントの運転方法およびこのようなスパイラル型膜エレメントを備えたスパイラル型膜モジュールの運転方法については検証されていなかった。
【0011】
このような背圧強度の高い分離膜を用いた場合でも、最適な洗浄条件および洗浄方法を適用しかつ最適な運転方法により濾過運転を行わなければ、スパイラル型膜エレメントおよびスパイラル型膜モジュールにおいて長期間にわたって透過流束の低下を生じることなく安定した濾過運転を続けることができない。
【0012】
本発明の目的は、長期間にわたって高い透過流束を維持しつつ低コストで安定した濾過運転を行うことができるスパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法を提供することである。
【0013】
【課題を解決するための手段および発明の効果】
本発明に係るスパイラル型膜エレメントの運転方法は、有孔中空管の外周面に袋状の分離膜が巻回されてなるとともに第1および第2の端部を有し、0.05MPaよりも高く0.3MPa以下の背圧で逆流洗浄が可能なスパイラル型膜エレメントの運転方法であって、濾過運転時にスパイラル型膜エレメントの第1の端部から原液を供給するとともに有孔中空管の少なくとも一方の開口端から透過液を取り出し、逆流洗浄時に有孔中空管の少なくとも一方の開口端から洗浄液を導入してスパイラル型膜エレメントの第1および第2の端部の少なくとも一方から洗浄液を排出させることにより0.05MPaよりも高く0.3MPa以下の背圧で分離膜を逆流洗浄し、逆流洗浄時または逆流洗浄後にスパイラル型膜エレメントの第2の端部から原液を導入してスパイラル型膜エレメント内で原液を濾過運転時と逆方向に流すとともにスパイラル型膜エレメントの第1の端部から導出し、濾過運転または逆流洗浄を一時的に停止してスパイラル型膜エレメントを液中に浸漬した状態で所定時間保持するものである。
【0014】
本発明に係るスパイラル型膜エレメントの運転方法においては、スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持することにより、スパイラル型膜エレメントの膜面に付着した汚染物質を剥離させ、スパイラル型膜エレメントの膜機能を回復させることが可能となる。それにより、信頼性が高く安定した運転を行うことが可能となる。このような操作は、特に設備を必要とせず容易に行うことができるとともに、洗浄用薬品を用いることなく汚染物質を剥離させることができるため、低コストでの実施が可能である。
【0015】
本発明に係るスパイラル型膜エレメントの運転方法の第1の態様として、濾過運転を停止してスパイラル型膜エレメントを液中に浸漬した状態で所定時間保持してもよい。
【0016】
この場合、原液がスパイラル型膜エレメントの第1の端部から供給されるとともに、濾過が行われ、汚染物質がスパイラル型膜エレメントの膜面で捕捉される。
【0017】
さらに、濾過運転を停止してスパイラル型膜エレメントを液中に所定時間浸漬することにより、濾過運転に伴いスパイラル型膜エレメントの膜面に付着した汚染物質を剥離させることが可能となる。
【0018】
なお、上記のスパイラル型膜エレメントの運転方法において、常時または定期的に一部の原液をスパイラル型膜エレメントの軸方向に流してもよい。それにより、膜面上に働く剪断力により原液中の汚染物質がスパイラル型膜エレメントの膜面に付着することを抑制でき、より安定した運転を行うことが可能となる。
【0019】
スパイラル型膜エレメント内を軸方向に流した原液の少なくとも一部を再びスパイラル型膜エレメントの供給側に戻すことが好ましい。このように原液を循環させることにより、高い回収率で透過液を得ることが可能となる。
【0020】
本発明に係るスパイラル型膜エレメントの運転方法の第2の態様として、逆流洗浄を停止してスパイラル型膜エレメントを液中に浸漬した状態で所定時間保持してもよい。
【0021】
逆流洗浄時には、洗浄液が有孔中空管の少なくとも一方の開口端から導入される。その洗浄液は、有孔中空管の外周面から袋状の分離膜の内部に導出され、その分離膜を濾過時と逆方向に透過する。それにより、分離膜が逆流洗浄され、分離膜の膜面に堆積した汚染物質が分離膜から剥離される。
【0022】
この場合、0.05MPaよりも高く0.3MPa以下の背圧で分離膜を逆流洗浄するので、短時間に必要量の洗浄液を流すことができる。それにより、分離膜の膜面に堆積した汚染物質を効果的に除去することができる。その結果、膜面に汚染物質が堆積しやすい全量濾過においても、長期間にわたって高い透過流束を維持しつつ安定した濾過運転を行うことが可能となる。
【0023】
このように、濾過を安定して行うことができるため、効率よく透過液を得ることが可能となる。また、原液を供給するポンプに大きなものを用いる必要がなく、システムの規模を小さくすることが可能となる。それにより、システムコストが低減される。
【0024】
さらに、逆流洗浄を停止してスパイラル型膜エレメントを液中に所定時間浸漬することにより、濾過に伴いスパイラル型膜エレメントの膜面に付着した汚染物質をより効果的に剥離させることが可能となる。
【0025】
上記の第1の態様において、スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持した後、濾過運転を再開してもよい。この場合、スパイラル型膜エレメントを液中に所定時間浸漬することにより、スパイラル型膜エレメントの膜面に付着した汚染物質を剥離させることができるため、再開した濾過運転において、高い信頼性および安定性が得られる。
【0026】
あるいは、スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持した後、逆流洗浄してもよい。この場合、スパイラル型膜エレメントを液中に所定時間浸漬した後に逆流洗浄を行うため、スパイラル型膜エレメントの膜面に付着した汚染物質を容易にかつ確実に剥離させることが可能となる。それにより、信頼性が高く安定した濾過運転を行うことが可能となる。
【0027】
また、上記の第2の態様において、スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持した後、逆流洗浄を再開してもよい。この場合、スパイラル型膜エレメントを液中に所定時間浸漬した後に逆流洗浄を行うため、スパイラル型膜エレメントの膜面に付着した汚染物質を容易にかつ確実に剥離させることが可能となる。それにより、信頼性が高く安定した濾過運転を行うことが可能となる。
【0028】
あるいは、スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持した後、濾過運転を行ってもよい。この場合、スパイラル型膜エレメントを液中に所定時間浸漬することにより、スパイラル型膜エレメントの膜面に付着した汚染物質を剥離させることができるため、浸漬後の濾過運転において、高い信頼性および安定性が得られる。
【0029】
また、上記の第1および第2の態様において、逆流洗浄と並行してまたは逆流洗浄後に圧力容器の原液入口および原液出口を通してスパイラル型膜エレメントの第1の端部および第2の端部から濾過運転時の原液の供給方向と同方向および逆方向に順に原液を供給してスパイラル型膜エレメント内で原液を軸方向に流すとともに軸方向に流した原液を圧力容器の外部に取り出してもよい。この場合、スパイラル型膜エレメントの全体に分布した汚染物質を均一に除去して外部へ排出することが可能となる。
【0030】
さらに、スパイラル型膜エレメントを液中に浸漬する際に、殺菌作用または汚染物質剥離作用を有する薬品を含む液をスパイラル型膜エレメントに供給し、薬品を含む液中にスパイラル型膜エレメントを浸漬してもよい。これにより、スパイラル型膜エレメントの膜面において繁殖した雑菌を殺菌することが可能になるか、またはスパイラル型膜エレメントの膜面に付着した汚染物質をより効果的かつ確実に剥離させることが可能となる。
【0031】
本発明に係るスパイラル型膜モジュールの運転方法は、1または複数のスパイラル型膜エレメントが原液入口を有する圧力容器内に収容されてなるスパイラル型膜モジュールの運転方法であって、スパイラル型膜エレメントは、有孔中空管の外周面に袋状の分離膜が巻回されてなるとともに第1および第2の端部を有し、0.05MPaよりも高く0.3MPa以下の背圧で逆流洗浄が可能であり、濾過運転時にスパイラル型膜エレメントの第1の端部から原液を供給するとともに有孔中空管の少なくとも一方の開口端から透過液を取り出し、逆流洗浄時に有孔中空管の少なくとも一方の開口端から洗浄液を導入してスパイラル型膜エレメントの第1および第2の端部の少なくとも一方から洗浄液を排出させることにより0.05MPaよりも高く0.3MPa以下の背圧で分離膜を逆流洗浄し、逆流洗浄時または逆流洗浄後にスパイラル型膜エレメントの第2の端部から原液を導入してスパイラル型膜エレメント内で原液を濾過運転時と逆方向に流すとともにスパイラル型膜エレメントの第1の端部から導出し、濾過運転または逆流洗浄を一時的に停止して圧力容器内に液を封入した状態で所定時間保持するものである。
【0032】
本発明に係るスパイラル型膜モジュールの運転方法においては、圧力容器内に液を封入してスパイラル型膜エレメントを液中に浸漬することにより、スパイラル型膜エレメントの膜面に付着した汚染物質を剥離させ、スパイラル型膜エレメントの膜機能を回復させることが可能となる。それにより、スパイラル型膜モジュールにおいて、信頼性が高く安定した運転を行うことが可能となる。このような操作は、特に設備を必要とせず容易に行うことができ、低コストでの実施が可能である。
【0033】
液は、殺菌作用または汚染物質剥離作用を有する薬品を含んでもよい。これにより、スパイラル型膜エレメントの膜面において繁殖した雑菌を殺菌することが可能になるか、またはスパイラル型膜エレメントの膜面に付着した汚染物質をより効果的かつ確実に剥離させることが可能となる。
【0034】
分離膜は多孔性シート材の一面に透過性膜体が接合されてなり、透過性膜体は多孔性シート材の一面に投錨状態で接合されてなってもよい。このような分離膜においては、多孔性シート材と透過性膜体との接合が強化され、分離膜の背圧強度が向上する。それにより、0.05MPaよりも高く0.3MPa以下の背圧でスパイラル型膜エレメントの分離膜の破損を生じることなく十分に逆流洗浄することが可能となる。
【0035】
特に、分離膜の背圧強度は0.2MPa以上であることが好ましい。これにより、高い背圧での逆流洗浄が可能となり、膜洗浄を十分に行うことによって長期間安定した膜分離処理を行うことができる。
【0036】
特に、多孔性シート材は合成樹脂からなる織布、不織布、メッシュ状ネットまたは発泡焼結シートからなることが好ましい。
【0037】
さらに、多孔性シート材は、厚みが0.08mm以上0.15mm以下でかつ密度が0.5g/cm3 以上0.8g/cm3 以下の不織布からなることが好ましい。
【0038】
これにより、0.2MPa以上の背圧強度を得るとともに、補強シートとしての強度を確保しつつ、透過抵抗の増大および透過性膜体の剥離を防止することができる。
【0039】
【発明の実施の形態】
図1は本発明の一実施の形態におけるスパイラル型膜モジュールの例を示す模式的な断面図である。
【0040】
図1に示すように、スパイラル型膜モジュール100は、圧力容器(耐圧容器)10内にスパイラル型膜エレメント1が収納されてなる。圧力容器10は、筒形ケース11および1対の端板12a,12bにより構成される。一方の端板12aには原水入口13が形成され、他方の端板12bには原水出口15が形成されている。また、他方の端板12bの中央部には透過水出口14が設けられている。なお、圧力容器の構造は図1の構造に限定されず、後述するような筒形ケースに原水入口および原水出口が設けられたサイドエントリ形状の圧力容器を用いてもよい。
【0041】
外周面の一端部近傍にパッキン17が取り付けられたスパイラル型膜エレメント1を筒形ケース11内に装填し、筒形ケース11の両方の開口端をそれぞれ端板12a,12bで封止する。集水管5の一方の開口端は端板12bの透過水出口14に嵌合され、他方の開口端にはエンドキャップ16が装着される。圧力容器10の内部空間は、パッキン17により第1の液室18と第2の液室19とに分離される。
【0042】
スパイラル型膜モジュール100の原水入口13は、配管25を通して原水タンク500に接続されている。配管25にはバルブ30aが介挿されており、さらに、このバルブ30aの下流側に、バルブ30bが介挿された配管26が接続されている。一方、原水出口15には、バルブ30cが介挿された配管27が接続されており、さらにバルブ30dが介挿された配管27aが配管27のバルブ30c上流側に接続されている。この配管27aを介して原水出口15は原水タンク500に接続される。透過水出口14には、バルブ30eが介挿された配管28が接続されており、このバルブ30eの上流側に、バルブ30fが介挿された配管29が接続されている。
【0043】
図5は、図1のスパイラル型膜モジュールに用いられるスパイラル型膜エレメントの一部切欠き斜視図である。
【0044】
図5に示すように、スパイラル型膜エレメント1は、合成樹脂のネットからなる透過水スペーサ3の両面に分離膜2を重ね合わせて3辺を接着することにより封筒状膜(袋状膜)4を形成し、その封筒状膜4の開口部を集水管5に取り付け、合成樹脂のネットからなる原水スペーサ6とともに集水管5の外周面にスパイラル状に巻回することにより構成される。スパイラル型膜エレメント1の外周面は外装材で被覆される。
【0045】
このスパイラル型膜エレメント1においては、後述する構造を有する分離膜2を用いることにより、0.05〜0.3MPaの背圧で逆流洗浄を行うことが可能となる。
【0046】
図2および図3は、本発明に係るスパイラル型膜モジュールの運転方法の一例を示す模式的断面図である。本例の運転方法においては図1のスパイラル型膜モジュールを用いており、図2は濾過時の運転方法を示し、図3は洗浄時の運転方法を示す。
【0047】
図2に示すように、濾過時には、配管25のバルブ30aおよび配管28のバルブ30eを開くとともに、配管26のバルブ30b、配管27のバルブ30c、配管27aのバルブ30dおよび配管29のバルブ30fを閉じる。
【0048】
原水タンク500から取水された原水7は、配管25を通して原水入口13から圧力容器10の内部に供給される。スパイラル型膜モジュール内において、供給された原水7は原水入口13から圧力容器10の第1の液室18に導入され、さらに、スパイラル型膜エレメント1の一端部からスパイラル型膜エレメント1の内部に供給される。
【0049】
図5に示すように、スパイラル型膜エレメント1において、一方の端面側から供給された原水7は、原水スペーサ6に沿って集水管5と平行な方向(軸方向)に他方の端面側に向かって直線状に流れる。原水7が原水スペーサ6に沿って流れる過程で、原水側と透過水側の圧力差によって原水7の一部が分離膜2を透過する。この透過水8が透過水スペーサ3に沿って集水管5の内部に流れ込み、集水管5の端部から排出される。一方、分離膜2を透過しなかった残りの原水7aは、スパイラル型膜エレメント1の他方の端面側から排出される。
【0050】
集水管5の端部から排出された透過水8は、図2に示すように、透過水出口14から配管28を通して圧力容器10の外部へ取り出される。一方、スパイラル型膜エレメント1の他方の端面側から排出された原水7aは、第2の液室19に導出される。この場合、原水出口15に接続された配管27のバルブ30cおよび配管27aのバルブ30dを閉じているため、スパイラル型膜エレメント1における分離膜2の透過が促進されて全量濾過が行われる。
【0051】
上記のような濾過過程で、原水中に含まれる懸濁物質、コロイド性物質または溶存性物質が汚染物質としてスパイラル型膜エレメント1の分離膜2の膜面に堆積する。特に、全量濾過においては分離膜2の膜面に汚染物質が堆積しやすい。
このような汚染物質の堆積は水の透過速度の低下を引き起こすため、以下に示す洗浄を行って汚染物質を除去する。
【0052】
上記のスパイラル型膜モジュール100の濾過運転時において、一旦配管25のバルブ30aを閉じて原水7の供給を停止するとともに、透過水出口14からの透過水8の取り出しを停止する。このように濾過運転を一時停止し、圧力容器10内に原水7,7aおよび透過水8を封入した状態で所定時間保持する(液封入停止)。このようにして、所定時間液封入停止を行った後、再び配管25のバルブ30aを開いて原水7をスパイラル型膜エレメント1に供給するとともに、透過水出口14から透過水8を取り出し、濾過運転を再開する。なお、配管27のバルブ30cを開いて一部の原水7aを取り出しつつ濾過運転を行う場合においては、配管25のバルブ30aにあわせて配管27のバルブ30cを開閉する。
【0053】
以上のように、スパイラル型膜モジュールの運転期間においては、上記の濾過運転および液封入停止を繰り返して行う。
【0054】
濾過運転時に液封入停止されたスパイラル型膜モジュール100においては、スパイラル型膜エレメント1の分離膜の原水側の圧力と透過水側の圧力とがほぼ大気圧に保持されており、原水側および透過水側において液の流れが形成されない。このような液封入停止により、スパイラル型膜モジュールの連続濾過運転に伴ってスパイラル型膜エレメント1の膜面に付着した汚染物質を剥離させることができる。それにより、汚染物質の付着により低下したスパイラル型膜エレメント1の膜機能が回復する。
【0055】
なお、上記のような濾過運転時における液封入停止は定期的に行ってもよく、あるいは不定期的に行ってもよい。不定期的に行う例として、例えば、スパイラル型膜モジュールにおいて透過水流量に低下が見られた際に、液封入停止を行う。
【0056】
次に、図3に示すように、洗浄時には、まず配管25のバルブ30a、配管28のバルブ30eおよび配管27aのバルブ30dを閉じるとともに、配管26のバルブ30b、配管29のバルブ30fおよび配管27のバルブ30cを開き、逆流洗浄を行う。
【0057】
逆流洗浄時には、配管29および配管28を通して洗浄水21が透過水出口14から集水管5の開口端に供給され、洗浄水21が集水管5の内部に導入される。なお、洗浄水21としては、例えば透過水を用いる。集水管5の内部に導入された洗浄水21は、集水管5の外周面から分離膜2の内部へ導出され、濾過時と逆方向に分離膜2を透過する。この際に、分離膜2の膜面に堆積した汚染物質が分離膜2から剥離する。スパイラル型膜エレメント1の外周面は外装材で被覆されているので、分離膜2を透過した洗浄水21は、原水スペーサ6に沿ってスパイラル型膜エレメント1の内部を軸方向に流れ、スパイラル型膜エレメント1の両端部から第1の液室18および第2の液室19に排出される。さらに洗浄水21は、原水入口13および原水出口15から配管26および配管27を通してそれぞれ外部へ取り出される。
【0058】
この場合、分離膜2に0.05〜0.3MPaの背圧が加わるように透過水出口14側の圧力、原水入口13側の圧力および原水出口15側の圧力を設定する。それにより、短時間に必要量の洗浄水21を流すことができ、分離膜2の膜面に堆積した汚染物質を効果的に剥離させることが可能になる。また、剥離した汚染物質がスパイラル型膜エレメント1の端部から排出されるまでの間に原水スペーサ6に捕捉されるのを抑制し、汚染物質を効果的に除去することが可能となる。
【0059】
なお、本例においては原水入口13から取り出された洗浄水21の全量を排水として系外へ排出しているが、この洗浄水21の一部を排水として系外へ排出するとともに、一部を原水7として再利用してもよい。例えば、配管26のバルブ30bの下流側にさらに配管を設けるとともにこの配置を原水タンク500に接続することにより、洗浄水21の一部を原水タンク500に戻してもよい。
【0060】
また、本例においては原水出口15から取り出された洗浄水21の全量を排水として系外へ排出しているが、この洗浄水21の一部を排水として系外へ排出するとともに、一部を原水7として再利用してもよい。例えば、配管27のバルブ30cを開くとともに配管27aのバルブ30dを開き、洗浄水21の一部を配管27aを通して原水タンク500に戻してもよい。
【0061】
また、図3の例では、逆流洗浄時にスパイラル型膜エレメント1の両端部から洗浄水21が排出され、それぞれ原水入口13および原水出口15から配管26および配管27を通して外部に取り出されているが、洗浄水21がスパイラル型膜エレメント1の一端部から第1の液室18に排出され、原水入口13から配管26を通して外部に取り出されるように透過水出口14側の圧力および原水入口13側の圧力を設定してもよい。この場合、配管27のバルブ30cを閉じ、原水出口15を閉じておく。あるいは、洗浄水21がスパイラル型膜エレメント1の他端部から第2の液室19に排出され、原水出口15から配管27を通して外部に取り出されるように透過水出口14側の圧力および原水出口15側の圧力を設定してもよい。この場合、配管26のバルブ30bを閉じ、原水入口13を閉じておく。
【0062】
上記の逆流洗浄時に液封入停止を行ってもよい。この場合、配管26のバルブ30bを閉じて洗浄水21の排出を停止するとともに、集水管5への洗浄水21の導入を停止し、圧力容器10内に洗浄水21を封入した状態で所定時間保持する。このようにして、所定時間液封入停止を行った後、配管26のバルブ30bを開いて洗浄水21を排出するとともに、集水管5に洗浄水21を導入し、逆流洗浄を再開する。
【0063】
逆流洗浄時に液封入停止されたスパイラル型膜モジュール100においては、スパイラル型膜エレメント1の分離膜の原水側の圧力と透過水側の圧力とがほぼ大気圧に保持されており、原水側および透過水側において液の流れが形成されない。このような液封入停止により、スパイラル型膜エレメント1の膜面に付着した汚染物質をより効果的に剥離させることが可能となる。
【0064】
上記のようにして逆流洗浄を行った後、配管26のバルブ30bおよび配管29のバルブ30fを閉じるとともに配管25のバルブ30aを開く。それにより、原水タンク500から取水された原水31が配管25を通して原水入口13から圧力容器10内に供給され、第1の液室18に導入される。原水31は、スパイラル型膜エレメント1の一端部から内部に供給され、原水スペーサ6に沿ってスパイラル型膜エレメント1の内部を軸方向に流れた後、他端部から排出される。それにより、分離膜2から剥離した汚染物質が原水31とともにスパイラル型膜エレメント1の一端部から他端部へ押し流され、スパイラル型膜エレメント1の内部に残存する洗浄水21とともにスパイラル型膜エレメント1の他端部から第2の液室19に排出される。さらに、汚染物質は原水31とともに原水出口15から配管27を通して圧力容器10の外部へ取り出される。
【0065】
このように、逆流洗浄後に濾過時の原水の供給方向と同方向に原水31を流すフラッシングを行うことにより、スパイラル型膜エレメント1内で分離膜2から剥離した汚染物質を系外に速やかに排出することができる。それにより、分離膜2から剥離した汚染物質が再び分離膜2に付着することを防止することができる。
【0066】
上記のような洗浄時の運転方法によれば、濾過時に分離膜2に堆積した汚染物質を効果的に除去することが可能となるため、膜面に汚染物質が堆積しやすい全量濾過においても、長期間にわたって透過流束の低下を生じることなく安定して運転を行うことが可能となる。
【0067】
なお、本例においては逆流洗浄後に原水31を軸方向に流すフラッシングを行っているが、逆流洗浄前に原水31を軸方向に流すフラッシングを行ってもよい。この洗浄方法によれば、スパイラル型膜エレメント1の膜面に捕捉された汚染物質のほとんどがフラッシングにより除去され、さらに洗浄水21を導入することにより、スパイラル型膜エレメント1の膜面に残存する汚染物質を除去することができる。したがって、この場合においても、上記の逆流洗浄と同様の効果が得られる。
【0068】
あるいは、逆流洗浄と並行して原水31を軸方向に流すフラッシングを行ってもよい。例えば上記において、洗浄時に配管25,26,27,29のバルブ30a,30b,30c,30fを同時に開き、透過側から洗浄水21を供給するとともに原水側から原水31を供給してもよい。この場合、上記のように逆流洗浄後に原水31を流す場合に得られる効果と同様の効果が得られる。
【0069】
また、本例においては原水31を原水入口13から供給して原水出口15から取り出しているが、原水を原水出口15から供給して原水入口13から取り出し、スパイラル型膜エレメント1の内部において濾過時の原水の供給方向と逆方向に原水を流してもよい。この場合、上記のように濾過時の原水の供給方向と同方向に原水31を流す場合に得られる効果と同様の効果が得られる。
【0070】
なお、濾過時の原水の供給方向と同方向に原水を流す場合においては、特にスパイラル型膜エレメント1の第2の液室19に近い側に堆積した汚染物質を容易に除去して排出することが可能である。これに対し、濾過時の原水の供給方向と逆方向に原水を流す場合においては、特にスパイラル型膜エレメント1の第1の液室18に近い側に堆積した汚染物質を容易に除去して排出することが可能である。
【0071】
また、濾過時の原水の供給方向と同方向および逆方向に順に原水を流してもよい。この場合、スパイラル型膜エレメント1の全体に分布した汚染物質を均一に除去して排出することが可能となる。
【0072】
また、本例においては原水出口15から取り出された原水31の全量を排水として系外へ排出しているが、原水31の一部を排水として系外へ排出するとともに、一部を原水として再利用してもよい。例えば上記において、配管27のバルブ30cを開くとともに配管27aのバルブ30dを開き、原水31の一部を配管27aを通して原水タンク500に戻してもよい。
【0073】
以上のように、図2および図3に示す本例の運転方法によれば、スパイラル型膜エレメント1の膜面に堆積した汚染物質を充分に除去することができるため、図1のスパイラル型膜モジュール100において高い透過流束を維持しつつ安定して全量濾過を行い、効率よく透過水8を得ることが可能となる。この場合、全量濾過が行われるので、原水7を供給するポンプに大きなものを用いる必要がなく、システムの規模を小さくすることが可能となる。それにより、システムコストが低減される。
【0074】
上記のように、濾過運転時または逆流洗浄時においてスパイラル型膜モジュール100の液封入停止を行うことにより、スパイラル型膜エレメント1の膜面に付着した汚染物質を剥離させ、より信頼性が高く安定した運転を行うことが可能となる。このような液封入停止は、配管25,26のバルブ30a,30bの開閉操作等により行うことができるため、特に設備を必要とせず、操作が容易である。また、洗浄用薬品を含まない液を用いて汚染物質を剥離させることができるため、洗浄用薬品にかかるコストを削減でき、低コストでの実施が可能である。
【0075】
ここで、上記のスパイラル型膜モジュール100の濾過運転時または逆流洗浄時において液封入停止を行う時間は1分以上24時間以下とすることが好ましい。液封入停止が1分未満の場合、封入する時間が短いため、スパイラル型膜エレメント1の膜面から汚染物質を充分に剥離させることができない。また、液封入停止が24時間を超える場合、汚染物質の剥離効果がある程度を超えると向上しなくなるとともに、本来の目的の濾過運転時間が圧縮されるので適切でない。さらに、液の滞溜により雑菌等が繁殖するので好ましくない。
【0076】
また、上記のスパイラル型膜モジュール100の濾過運転時および逆流洗浄時における液封入停止において、圧力容器10内に封入する液は原水または透過水に限定されるものではない。原水または透過水以外の液、例えば、純水を封入してもよい。この場合、濾過運転時および逆流洗浄時において圧力容器10内に純水を供給し、この純水を圧力容器10内に封入する。このように純水を封入した場合においても、原水または透過水を封入した場合と同様、汚染物質をスパイラル型膜エレメント1の膜面から剥離させることができる。
【0077】
上記のスパイラル型膜モジュール100では、濾過運転中に液封入停止を行い、または逆流洗浄中に液封入停止を行っているが、液封入停止を行う時期は特に限定されるものではなく、運転期間中の上記以外の時期に行ってもよい。
【0078】
例えば、濾過運転後に液封入停止を行い、その直後に逆流洗浄を行ってもよい。あるいは、濾過運転後に液封入停止を行い、液封入停止後に原水によるフラッシングを行い、その後に濾過運転を再開してもよい。なお、フラッシングについては、逆流洗浄時において前述した方法と同様の方法により行う。また、逆流洗浄後に液封入停止を行い、その直後に濾過運転を再開してもよい。
【0079】
あるいは、濾過運転時または逆流洗浄時において液封入停止を行った後、さらに薬品を含む原水または透過水をスパイラル型膜モジュール100に供給し、スパイラル型膜エレメント1を薬品を含む液に浸漬(薬液浸漬)してもよい。この場合、殺菌作用または汚染物質剥離作用を有する薬品、例えば濃度10〜10000ppmの次亜塩素酸ナトリウム、濃度0.1〜10ppmのクロラミン、濃度10〜10000ppmの過酸化水素,pH1〜3の硫酸、pH1〜3の塩酸、pH10〜13の水酸化ナトリウム、濃度10〜10000ppmの過酢酸、濃度0.1〜50%のイソプロピルアルコール、濃度0.2〜2%のクエン酸または濃度0.2〜2%のシュウ酸を用いる。このようなスパイラル型膜エレメント1の薬液浸漬により、スパイラル型膜モジュール100内、特にスパイラル型膜エレメント1の膜面に付着した汚染物質をより効果的に剥離させることが可能になるとともに、雑菌の繁殖をより効果的に抑制することが可能となる。このような薬液浸漬を行った後、濾過運転または逆流洗浄を行う。
【0080】
図4は本発明に係るスパイラル型膜モジュールの運転方法の他の例を示す模式的断面図である。図4は濾過時の運転方法を示しており、本例においても図1のスパイラル型膜モジュール100を用いる。なお、本例における洗浄時の運転方法は、前述の図3の運転方法と同様である。
【0081】
図4に示すように、濾過時には、配管25のバルブ30a、配管28のバルブ30eおよび配管27aのバルブ30dを開くとともに、配管26のバルブ30b、配管27のバルブ30cおよび配管29のバルブ30fを閉じる。
【0082】
この場合、図2の例と同様、原水タンク500から取水された原水7は、配管25を通して原水入口13から圧力容器10の第1の液室18に導入される。さらに、原水7はスパイラル型膜エレメント1の一端部からスパイラル型膜エレメント1の内部に供給される。
【0083】
図5に示すように、スパイラル型膜エレメント1において、一部の原水は分離膜2を透過して集水管5の内部に流れ込み、透過水8として集水管5の端部から排出される。一方、分離膜2を透過しなかった残りの原水7aは、スパイラル型膜エレメント1の他方の端面側から排出される。
【0084】
集水管5の端部から排出された透過水8は、図4に示すように、透過水出口14から配管28を通して圧力容器10の外部へ取り出される。一方、スパイラル型膜エレメント1の他方の端面側から排出された原水7aは、第2の液室19に導出された後、原水出口15から配管27aを通して外部へ取り出され、原水タンク500に戻される。このように、本例においては、一部の原水7aを原水出口15から外部に取り出しつつスパイラル型膜モジュールにおいて濾過を行う。
それにより、スパイラル型膜エレメント1の外周面と圧力容器10の内周面との間の空隙における液の滞溜を抑制することが可能になる。また、スパイラル型膜エレメント1の内部において、一端部から他端部に向かう軸方向の原水の流れが形成されるため、原水中の汚染物質の沈降を抑制しつつ、汚染物質の一部を原水7aとともに圧力容器10の外部に排出することが可能となる。
【0085】
なお、上記においては常時バルブ30dを開いて原水7aを外部に取り出しているが、間欠的にバルブ30dを開いて原水7aを取り出してもよい。この場合においても、常時原水7aを取り出す場合と同様、分離膜2に汚染物質が付着するのを抑制することが可能となる。
【0086】
また、上記においては圧力容器の外部に取り出した原水7aの全量を原水タンク500に戻しているが、取り出した原水7aの一部を系外へ排出してもよい。
例えば、バルブ30dを開くとともにバルブ30cを開き、配管27を通して原水7aの一部を系外へ排出してもよい。
【0087】
本例においても、洗浄時には、図3に示す洗浄時の運転方法により高い背圧で逆流洗浄を行うとともに原水31の導入を行う。それにより、濾過時に分離膜2に堆積した汚染物質を効果的に除去することが可能となる。
【0088】
以上のように、本例における運転方法によれば、膜面に堆積した汚染物質の除去を充分に行うことができるため、長期間にわたって透過流束の低下を生じることなく安定して運転を行うことが可能となる。
【0089】
特に、本例においては、図4に示すように濾過時に一部の原水7aを圧力容器10の外部に取り出すことにより、原水中の汚染物質の膜面への沈降を抑制しつつ汚染物質の一部を原水7aとともに圧力容器10の外部に排出することが可能となるため、より安定した濾過運転を行うことが可能となる。この場合、原水出口15から外部へ取り出した原水7aを配管27aを通して循環させるため、高い回収率で透過水8を得ることが可能である。また、原水7を供給するポンプに大きなものを用いる必要がなく、システムの規模を小さくすることが可能となる。それにより、システムコストが低減される。
【0090】
また、この場合においても、図2において前述したように、スパイラル型膜モジュール100の濾過運転時に液封入停止を行う。それにより、スパイラル型膜モジュール100の連続濾過運転に伴ってスパイラル型膜エレメント1の膜面に付着した汚染物質を剥離させることができ、汚染物質の付着により低下したスパイラル型膜エレメント1の膜機能を回復させることができる。
【0091】
運転期間中に一定時間濾過運転を行った後、図3において前述した洗浄方法と同様の方法により、スパイラル型膜エレメント1の逆流洗浄を行う。
【0092】
上記の逆流洗浄時においても、図3において前述したように、洗浄水21を用いて液封入停止を行ってもよい。それにより、スパイラル型膜エレメント1の膜面に付着した汚染物質をより効果的に剥離させることが可能となる。
【0093】
上記のように、濾過運転時または逆流洗浄時においてスパイラル型膜モジュールの液封入停止を行うことにより、スパイラル型膜エレメント1の膜面に付着した汚染物質を剥離させ、より信頼性が高く安定した運転を行うことが可能となる。このような液封入停止は、配管25,26のバルブ30a,30b(図4)の開閉操作等により行うことができるため、特に設備を必要とせず、操作が容易である。また、洗浄用薬品を含まない液を用いて汚染物質を剥離させることができるため、洗浄用薬品にかかるコストを削減でき、低コストでの実施が可能である。なお、濾過運転時または逆流洗浄時における液封入停止の時間、液封入停止を行うタイミングおよび封入する液に関しては、図2および図3において前述した通りである。
【0094】
なお、上記においては、1本のスパイラル型膜エレメントを備えたスパイラル型膜モジュールの運転を行う場合について説明したが、本発明に係る運転方法は、複数のスパイラル型膜エレメントを備えたスパイラル型膜モジュールにおいても適用可能である。
【0095】
図6は本発明に係るスパイラル型膜モジュールの運転方法のさらに他の例を示す模式的断面図である。
【0096】
図6に示すように、本例のスパイラル型膜モジュール100は、圧力容器110内に複数のスパイラル型膜エレメント1が収容されてなる。圧力容器110は、筒形ケース111および1対の端板120a,120bにより構成される。筒形ケース111の底部には原水入口130が形成され、上部には原水出口131が形成されている。このように、圧力容器110はサイドエントリ形状を有する。原水出口131はエアー抜きにも用いられる。また、端板120a,120bの中央部には透過水出口140が設けられている。
【0097】
インターコネクタ116により集水管5が直列に連結された複数のスパイラル型膜エレメント1が筒形ケース111内に収容され、筒形ケース111の両方の開口端がそれぞれ端板120a,120bで封止される。なお、ここでは図5のスパイラル型膜エレメント1を用いている。両端部のスパイラル型膜エレメント1の集水管5の一端部が、アダプタ115を介してそれぞれ端板120a,120bの透過水出口140に嵌合される。各スパイラル型膜エレメント1の外周面の一端部近傍にはパッキン170が取り付けられており、このパッキン170により、圧力容器110の内部空間が複数の液室に分離される。
【0098】
スパイラル型膜モジュール100の原水入口130は、配管55を通して原水タンク500に接続されている。配管55にはバルブ60aが介挿されており、さらに、このバルブ30aの下流側にバルブ60bが介挿された配管56が接続されている。一方、原水出口131には、バルブ60cが介挿された配管57が接続されており、さらに、バルブ60dが介挿された配管57aが配管57のバルブ60c上流側に接続されている。この配管57aを介して原水出口131は原水タンク500に接続されている。端板120a側の透過水出口140には、バルブ60eが介挿された配管58aが接続されており、このバルブ60eの上流側に、バルブ60gが介挿された配管59aが接続されている。一方、端板120b側の透過水出口140には、バルブ60fが介挿された配管58bが接続されており、このバルブ60fの上流側に、バルブ60hが介挿された配管59bが接続されている。
【0099】
スパイラル型膜モジュール100の濾過時には、配管55のバルブ60a、配管58aのバルブ60eおよび配管58bのバルブ60fを開くとともに、配管56のバルブ60b、配管59aのバルブ60g、配管59bのバルブ60h、配管57のバルブ60cおよび配管57aのバルブ60dを閉じる。
【0100】
原水タンク500から取水された原水7は、配管55を通して原水入口130から圧力容器110の内部に供給される。スパイラル型膜モジュール100内において、原水入口130から供給された原水7は、端板120a側の端部に位置するスパイラル型膜エレメント1の一方の端面側からスパイラル型膜エレメント1の内部に導入される。このスパイラル型膜エレメント1においては、図5に示すように、一部の原水は分離膜2を透過して集水管5の内部に流れ込み、透過水8として集水管5の端部から排出される。一方、分離膜2を透過しなかった残りの原水7aは、他方の端面側から排出される。この排出された原水7aは、後段のスパイラル型膜エレメント1の一方の端面側からこのスパイラル型膜エレメント1の内部に導入され、前述と同様にして透過水8および原水7aに分離される。このように、直列に連結された複数のスパイラル型膜エレメント1の各々において膜分離が行われる。この場合、配管57のバルブ60cおよび配管57aのバルブ60dを閉じているため、図2の例と同様、各スパイラル型膜エレメント1において分離膜2の透過が促進されてスパイラル型膜モジュールにおいて全量濾過が行われる。
【0101】
上記のスパイラル型膜モジュール100の濾過運転時において、一旦原水7の供給を停止するとともに、透過水出口140からの透過水8の取り出しを停止する。このように濾過運転を一時停止し、圧力容器110内に原水7および透過水8を封入した状態で所定時間保持する。このようにして所定時間液封入停止を行った後、再び原水7を供給するとともに、透過水出口140から透過水8を取り出し、濾過運転を再開する。
【0102】
以上のように、図6のスパイラル型膜モジュール100の運転期間においては、図2および図3に示すスパイラル型膜モジュール100の運転方法と同様、濾過運転および液封入停止を繰り返して行う。
【0103】
濾過運転時に液封入停止されたスパイラル型膜モジュール100においては、各スパイラル型膜エレメント1において、分離膜の原水側の圧力と透過水側の圧力とが大気圧に保持されており、原水側および透過水側において液の流れが形成されない。このような液封入停止により、スパイラル型膜モジュール100の連続濾過運転に伴って各スパイラル型膜エレメント1の膜面に付着した汚染物質を剥離させることができる。それにより、汚染物質の付着により低下した各スパイラル型膜エレメント1の膜機能が回復する。
【0104】
上記の濾過過程で、原水中に含まれる汚染物質が各スパイラル型膜エレメント1の分離膜2の膜面に堆積する。特に、上記のように複数のスパイラル型膜エレメント1を備えたスパイラル型膜モジュール100において全量濾過を行うと、分離膜2の膜面に汚染物質が堆積しやすい。このような汚染物質の堆積は水の透過速度の低下を引き起こすため、以下に示す洗浄を行って汚染物質を除去する。
【0105】
洗浄時には、まず配管55のバルブ60a、配管58aのバルブ60e、配管58bのバルブ60fおよび配管57aのバルブ60dを閉じるとともに、配管56のバルブ60b、配管57のバルブ60c、配管59aのバルブ60gおよび配管59bのバルブ60hを開き、逆流洗浄を行う。
【0106】
逆流洗浄時、端板120a側においては、配管59aおよび配管58aを通して洗浄水21が透過水出口140から集水管5の一端部に供給される。また、端板120b側においては、配管59bおよび配管58bを通して洗浄水21が透過水出口140から集水管5の他端部に供給される。このようにして、洗浄水21が集水管5の両端部から集水管5の内部に導入される。集水管5の内部に導入された洗浄水21は、各スパイラル型膜エレメント1において集水管5の外周面から分離膜2の内部へ導出され、濾過時と逆方向に分離膜2を透過する。この際に、分離膜2の膜面に堆積した汚染物質が分離膜2から剥離する。分離膜2を透過した洗浄水21は、原水スペーサ6に沿ってスパイラル型膜エレメント1の内部を軸方向に流れ、各スパイラル型膜エレメント1の両端部から排出される。この排出された洗浄水21は、原水入口130および原水出口131から配管56および配管57を通してそれぞれ外部へ取り出される。
【0107】
この場合、各スパイラル型膜エレメント1の分離膜2に0.05〜0.3MPaの背圧が加わるように透過水出口140側の圧力、原水入口130側の圧力および原水出口131側の圧力を設定する。それにより、短時間に必要量の洗浄水21を流すことができ、分離膜2の膜面に堆積した汚染物質を効果的に剥離させることが可能になる。また、剥離した汚染物質が各スパイラル型膜エレメント1の端部から排出されるまでの間に原水スペーサ6に捕捉されるのを抑制し、汚染物質を効果的に除去することが可能となる。
【0108】
なお、本例においては原水入口130から取り出された洗浄水21の全量を排水として系外へ排出しているが、この洗浄水21の一部を排水として系外へ排出するとともに、一部を原水7として再利用してもよい。例えば配管56のバルブ60bの下流側にさらに配管を設けるとともにこの配置を原水タンク500に接続することにより、洗浄水21の一部を原水タンク500に戻してもよい。
【0109】
また、本例においては原水出口131から取り出された洗浄水21の全量を排水として系外へ排出しているが、この洗浄水21の一部を排水として系外へ排出するとともに、一部を原水7として再利用してもよい。例えば配管57のバルブ60cを開くとともに配管57aのバルブ60dを開き、洗浄水21の一部を配管57aを通して原水タンク500に戻してもよい。
【0110】
また、図6の例では、逆流洗浄時に、洗浄水21が原水入口130および原水出口131から配管56および配管57を通して外部に取り出されているが、洗浄水21が原水入口130から配管56を通して外部に取り出されるように透過水出口140側の圧力および原水入口130側の圧力を設定してもよい。この場合、配管57のバルブ60cを閉じ、原水出口131を閉じておく。あるいは、洗浄水21が原水出口131から配管57を通して外部に取り出されるように透過水出口140側の圧力および原水出口131側の圧力を設定してもよい。この場合、配管56のバルブ60bを閉じ、原水入口130を閉じておく。
【0111】
上記の逆流洗浄時に液封入停止を行ってもよい。この場合、集水管5への洗浄水21の導入を停止するとともに、洗浄水21の外部への排出を停止し、圧力容器110内に洗浄水21を封入した状態で所定時間保持する。このようにして所定時間液封入停止を行った後、再び集水管5に洗浄水21を導入するとともに、洗浄水21を外部へ排出させ、逆流洗浄を再開する。
【0112】
逆流洗浄時に液封入停止されたスパイラル型膜モジュール100の各スパイラル型膜エレメント1においては、分離膜の原水側の圧力と透過水側の圧力とがほぼ大気圧に保持されており、原水側および透過水側において液の流れが形成されない。このような液封入停止により、スパイラル型膜エレメント1の膜面に付着した汚染物質をより効果的に剥離させることが可能となる。
【0113】
上記のようにして逆流洗浄を行った後、配管56のバルブ60b、配管59aのバルブ60gおよび配管59bのバルブ60hを閉じるとともに、配管55のバルブ60aを開く。それにより、原水タンク500から取水された原水31が配管55を通して原水入口130から圧力容器110内に供給される。各スパイラル型膜エレメント1において、原水31はスパイラル型膜エレメント1の一端部から内部に導入され、原水スペーサ6に沿ってスパイラル型膜エレメント1の内部を軸方向に流れた後に他端部から排出される。それにより、分離膜2から剥離した汚染物質が原水31によりスパイラル型膜エレメント1の一端部から他端部へ押し流され、スパイラル型膜エレメント1の内部に残存する洗浄水21とともにスパイラル型膜エレメント1の他端部から排出される。さらに、汚染物質および洗浄水21は原水31とともに原水出口131から配管57を通して圧力容器110の外部へ取り出される。
【0114】
このように、逆流洗浄後に濾過時の原水の供給方向と同方向に原水31を流すフラッシングを行うことにより、各スパイラル型膜エレメント1内で分離膜2から剥離した汚染物質を系外に速やかに排出することができる。それにより、分離膜2から剥離した汚染物質が再び分離膜2に付着することを防止することができる。
【0115】
なお、本例においては逆流洗浄後に原水31を軸方向に流すフラッシングを行っているが、逆流洗浄前に原水31を軸方向に流すフラッシングを行ってもよい。この洗浄方法によれば、スパイラル型膜エレメント1の膜面に捕捉された汚染物質のほとんどがフラッシングにより除去され、さらに洗浄水21を導入することにより、スパイラル型膜エレメント1の膜面に残存する汚染物質を除去することができる。したがって、この場合においても、上記の逆流洗浄と同様の効果が得られる。
【0116】
あるいは、逆流洗浄と並行して原水31を軸方向に流してもよい。例えば上記において、洗浄時に配管55,56,57,59a,59bのバルブ60a,60b,60c,60g,60hを同時に開き、透過側から洗浄水21を供給するとともに原水側から原水31を供給してもよい。この場合、上記のように逆流洗浄後に原水31を流す場合に得られる効果と同様の効果が得られる。
【0117】
また、本例においては原水31を原水入口130から供給して原水出口131から取り出しているが、原水を原水出口131から供給して原水入口130から取り出し、各スパイラル型膜エレメント1の内部において濾過時の原水の供給方向と逆方向に原水を流してもよい。この場合、上記のように濾過時の原水の供給方向と同方向に原水31を流す場合に得られる効果と同様の効果が得られる。あるいは、濾過時の原水の供給方向と同方向および逆方向に順に原水を流してもよい。この場合、スパイラル型膜エレメント1の全体に分布した汚染物質を均一に除去して排出することが可能となる。
【0118】
また、本例においては原水出口131から取り出された原水31の全量を排水として系外へ排出しているが、この原水31の一部を排水として系外へ排出するとともに、一部を原水7として再利用してもよい。例えば上記において、配管57のバルブ60cを開くとともに配管57aのバルブ60dを開き、原水31の一部を配管57aを通して原水タンク500に戻してもよい。
【0119】
上記のような洗浄時における運転方法によれば、濾過時に分離膜2に堆積した汚染物質を効果的に除去することが可能となる。
【0120】
以上のように、本例における運転方法によれば、膜面に堆積した汚染物質の除去を充分に行うことができるため、汚染物質が膜面に堆積しやすい全量濾過においても高い透過流束を維持しつつ安定して運転を行い、効率よく透過水8を得ることが可能となる。この場合、全量濾過が行われるので、原水7を供給するポンプに大きなものを用いる必要がなく、システムの規模を小さくすることが可能となる。それにより、システムコストが低減される。
【0121】
なお、上記においては、図6のスパイラル型膜モジュール100を用いて図2の例のように全量濾過を行う場合について説明したが、図6のスパイラル型膜モジュール100を用いて図4の例のように一部の原水7aを圧力容器110の外部に取り出しつつ濾過を行ってもよい。
【0122】
例えば、図6のスパイラル型膜モジュールの濾過時において、常時または間欠的に配管57aのバルブ60dを開き、圧力容器110内に供給された原水7のうちスパイラル型膜エレメント1の分離膜2を透過しなかった一部の原水7aを原水出口131から配管57aを通して圧力容器110の外部に取り出し、原水タンク500に戻してもよい。それにより、各スパイラル型膜エレメント1の外周部と圧力容器110の内周面との間の空隙における液の滞溜を抑制することが可能になる。また、各スパイラル型膜エレメント1の内部において、一端部から他端部に向かう軸方向の原水の流れが形成されるため、原水中の汚染物質の沈降を抑制しつつ汚染物質の一部を原水7aとともに圧力容器の外部に排出することが可能となる。
【0123】
このような原水の一部を取り出しつつ濾過を行う運転方法によれば、長時間にわたって透過流束の低下を生じることなく、より安定して運転を行うことが可能となる。この場合、外部へ取り出した原水7aを配管57aを通して循環させるため、高い回収率で透過水8を得ることが可能である。また、原水7を供給するポンプに大きなものを用いる必要がなく、システムの規模を小さくすることが可能となる。それにより、システムコストが低減される。
【0124】
また、濾過運転時または逆流洗浄時においてスパイラル型膜モジュール100の液封入停止を行うことにより、各スパイラル型膜エレメント1の膜面に付着した汚染物質を剥離させ、より信頼性が高く安定した運転を行うことが可能となる。なお、この場合の濾過運転時または洗浄時における液封入停止のタイミング、液封入停止を行う時間および封入する液に関しては、図2および図3において前述した通りである。このような液封入停止は、特に設備を必要とせず、また、操作が容易である。さらに、洗浄用薬品を含まない液を用いて汚染物質を剥離させることができるため、洗浄用薬品にかかるコストを削減でき、低コストでの実施が可能である。
【0125】
図7は、図5のスパイラル型膜エレメントに用いられる分離膜の断面図である。分離膜2は、多孔性補強シート(多孔性シート材)2aの表面に実質的な分離機能を有する透過性膜体2bが密着一体化されて形成されている。
【0126】
透過性膜体2bは、1種類のポリスルホン系樹脂、あるいは2種類以上のポリスルホン系樹脂の混合物、さらにはポリスルホン系樹脂とポリイミド、フッ素含有ポリイミド樹脂等のポリマーとの共重合体、もしくは混合物から形成される。
【0127】
多孔性補強シート2aは、ポリエステル、ポリプロピレン、ポリエチレン、ポリアミド等を素材とする織布、不織布、メッシュ状ネット、発泡焼結シート等から形成されており、製膜性およびコストの面から不織布が好ましい。
【0128】
多孔性補強シート2aおよび透過性膜体2bは、透過性膜体2bを構成する樹脂成分の一部が多孔性補強シート2aの孔の内部に充填された投錨状態で接合されている。
【0129】
多孔性補強シート2aに裏打ちされた分離膜2の背圧強度は、0.2MPaを超え、0.4〜0.5MPa程度に向上した。なお、背圧強度の規定方法については後述する。
【0130】
多孔性補強シート2aとして不織布を用いて背圧強度を0.2MPa以上得るためには、不織布の厚みが0.08〜0.15mmであり、かつ密度が0.5〜0.8g/cm3 であることが好ましい。厚みが0.08mmより薄い場合または密度が0.5g/cm3 より小さい場合には、補強シートとしての強度が得られず、分離膜2の背圧強度を0.2MPa以上確保することが困難である。一方、厚みが0.15mmより厚くあるいは密度が0.8g/cm3 より大きい場合には、多孔性補強シート2aの濾過抵抗が大きくなったり、不織布(多孔性補強シート2a)への投錨効果が小さくなって透過性膜体2bと不織布との界面で剥離が起こりやすくなる。
【0131】
次に、上記の分離膜2の製造方法について説明する。まず、ポリスルホンに溶媒、非溶媒および膨潤剤を加えて加熱溶解し、均一な製膜溶液を調製する。ここで、ポリスルホン系樹脂は、下記の構造式(化1)に示すように、分子構造内に少なくとも1つの(−SO2 −)部位を有するものであれば特に限定されない。
【0132】
【化1】
Figure 0004583558
【0133】
ただし、Rは2価の芳香族、脂環族もしくは脂肪族炭化水素基、またはこれらの炭化水素基が2価の有機結合基で結合された2価の有機基を示す。
【0134】
好ましくは、下記の構造式(化2)〜(化4)で示されるポリスルホンが用いられる。
【0135】
【化2】
Figure 0004583558
【0136】
【化3】
Figure 0004583558
【0137】
【化4】
Figure 0004583558
【0138】
また、ポリスルホンの溶媒としては、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等を用いることが好ましい。さらに、非溶媒としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ポリエチレングリコール、グリセリン等の脂肪族多価アルコール、メタノール、エタノール、イソプロピルアルコール等の低級脂肪族アルコール、メチルエチルケトン等の低級脂肪族ケトンなどを用いることが好ましい。
【0139】
溶媒と非溶媒の混合溶媒中の非溶媒の含有量は、得られる混合溶媒が均一である限り特に制限されないが、通常5〜50重量%、好ましくは20〜45重量%である。
【0140】
多孔質構造の形成を促進し、または制御するために用いられる膨潤剤としては、塩化リチウム、塩化ナトリウム、硝酸リチウム等の金属塩、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸等の水溶性高分子またはその金属塩、ホルムアミド等が用いられる。混合溶媒中の膨潤剤の含有量は、製膜溶液が均一である限り特に制限されないが、通常1〜50重量%である。
【0141】
製膜溶液中のポリスルホンの濃度は、通常10〜30重量%が好ましい。30重量%を超えるときは、得られる多孔質分離膜の透水性が実用性に乏しくなり、10重量%より少ないときは、得られる多孔質分離膜の機械的強度が乏しくなり、充分な背圧強度を得ることができない。
【0142】
次に、上記の製膜溶液を不織布支持体上に製膜する。すなわち、連続製膜装置を使用し、不織布等の支持体シートを順次送り出し、その表面に製膜溶液を塗布する。塗布方法としてはナイフコータやロールコータ等のギャップコータを用いて製膜溶液を不織布支持体上に塗布する。例えば、ロールコータを使用する場合は、2本のロールの間に製膜溶液を溜め、不織布支持体上に製膜溶液を塗布すると同時に不織布の内部に充分含浸させ、その後低湿度雰囲気を通過させ、雰囲気中の微量水分を不織布上に塗布した液膜表面に吸収させ、液膜の表面層にミクロ相分離を起こさせる。その後、凝固水槽に浸漬し、液膜全体を相分離および凝固させ、さらに水洗槽で溶媒を洗浄除去する。これにより、分離膜2が形成される。
【0143】
このように、上記の分離膜2は背圧強度が高いため、図1および図6のスパイラル型膜エレメント1に用いた場合に0.05〜0.3MPaの背圧で逆流洗浄を行っても分離膜2の破損が生じることが防止される。
【0144】
【実施例】
以下の実施例1、実施例2および比較例においては、図7に示す構造を有する限外濾過膜を分離膜2として含むスパイラル型限外濾過膜エレメントを作製し、このスパイラル型限外濾過膜エレメントを備えた図1のスパイラル型膜モジュールを用いて連続通水濾過試験を行った。
【0145】
ここで、実施例1、実施例2および比較例のスパイラル型限外濾過膜エレメントに用いた限外濾過膜は、以下のようにして作製した。
【0146】
まずポリスルホン(アモコ社製、P−3500)を16.5重量部、N−メチル−2ピロリドンを50重量部、ジエチレングリコールを24.5重量部およびホルムアミドを1重量部で加熱溶解し、均一な製膜溶液を得た。そして、コータギャップを0.13mmに調整したロールコータを用いて厚み0.1mm、密度0.8g/cm3 のポリエステル製不織布の表面に製膜溶液を含浸塗布した。
【0147】
その後、相対湿度が25%、温度が30℃の雰囲気(低湿度雰囲気)中を所定の速度で通過させ、ミクロ相分離を生じさせた後、35℃の凝固水槽中に浸漬して脱溶媒および凝固させ、しかる後、水洗槽で残存溶媒を洗浄除去することにより分離膜2を得た。ここで、実施例1および実施例2の分離膜2は、ミクロ相分離時間(低湿度雰囲気を通過する時間)が4.5秒である。
【0148】
上記のようにして作製した限外濾過膜の透水量は1700L/m2 ・hrであり、背圧強度は0.3MPaであり、平均分子量100万のポリエチレンオキサイドの阻止率は99%であった。
【0149】
なお、背圧強度は直径47mmの膜を背圧強度ホルダ(有孔直径23mm)にセットし、多孔性補強シート2a側より水圧を徐々に加え、透過性膜体2bが多孔性補強シート2aから剥離するか、または透過性膜体2bと多孔性補強シート2aとが同時に破裂するときの圧力で規定される。
【0150】
また、ポリエチレンオキサイドの阻止率は、濃度500ppmのポリエチレンオキサイド溶液を圧力1kgf/cm2 にて透過させ、原液および透過液の濃度から下式により求めた。
【0151】
阻止率(%)[1−(透過液濃度/原液濃度)]×100
このようにして作製した限外濾過膜を備えたスパイラル型膜モジュールの連続通水濾過試験について、以下で説明する。
【0152】
実施例1、実施例2および比較例で用いたスパイラル型限外濾過膜エレメントの仕様を表1に示す。
【0153】
【表1】
Figure 0004583558
【0154】
[実施例1]
実施例1では、工業用水(pH6〜8、水温15〜30℃)を原水としてスパイラル型限外濾過膜エレメントに供給し、連続通水濾過実験を行った。3日に1回濾過を停止し、逆流洗浄後に逆流洗浄に用いた洗浄液中に1時間浸漬した。逆流洗浄では、洗浄液として透過水を用い、0.2MPaの背圧で60L/分の洗浄液を供給した。運転条件を表2に示す。
【0155】
【表2】
Figure 0004583558
【0156】
[実施例2]
実施例2では、実施例1と同様に、工業用水(pH6〜8、水温15〜30℃)を原水としてスパイラル型限外濾過膜エレメントに供給し、連続通水濾過実験を行った。10日に1回濾過を停止し、逆流洗浄後に洗浄液中に1時間浸漬した。逆流洗浄では、洗浄液として次亜塩素酸ナトリウムを含む透過水を用い、0.2MPaの背圧で60L/分の洗浄液を供給した。封入液は、次亜塩素酸ナトリウムを含む透過水である。運転条件を表3に示す。
【0157】
【表3】
Figure 0004583558
【0158】
[比較例]
比較例では、実施例1,2と同様に、工業用水(pH6〜8、水温15〜30℃)を原水としてスパイラル型限外濾過膜エレメントに供給し、連続通水濾過実験を行った。ただし、比較例では、逆流洗浄後に濾過を停止しての液中での浸漬は行わなかった。運転条件を表4に示す。
【0159】
【表4】
Figure 0004583558
【0160】
図8は実施例1、実施例2および比較例のスパイラル型膜モジュールの膜間差圧の経時変化を示す図である。実施例1では、3日に1回逆流洗浄後に逆流洗浄液中に1時間浸漬状態にする運転を行った結果、膜間差圧の上昇が抑えられ、膜間差圧0.1MPa以下での連続運転が可能であった。
【0161】
実施例2では、10日に1回、100ppmの次亜塩素酸ナトリウムを含む逆流洗浄液中に1時間浸漬状態にする運転を行った結果、膜間差圧の上昇がさらに抑えられ、膜間差圧0.06MPa以下での連続運転が可能であった。実施例2において、実施例1よりも低い膜間差圧で運転することができたのは、殺菌作用のある次亜塩素酸ナトリウムで洗浄した効果により膜面上での微生物の繁殖が抑えられたためであると考えられる。
【0162】
これに対して、比較例では、濾過を停止して液中での浸漬は行わなかったので、急激な膜間差圧の上昇が生じ、連続運転の継続が不可能であった。
【0163】
以上の実施例1,2および比較例において示すように、スパイラル型膜モジュールにおいて液封入停止を行うことにより、スパイラル型限外濾過膜エレメントの膜面に付着した汚染物質を剥離させ、膜間差圧の上昇を抑制することが可能となる。それにより、信頼性の高い安定した運転を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施の形態におけるスパイラル型膜モジュールの一例を示す模式的断面図である。
【図2】本発明に係るスパイラル型膜モジュールの運転方法の一例を示す模式的断面図である。
【図3】本発明に係るスパイラル型膜モジュールの運転方法の一例を示す模式的断面図である。
【図4】本発明に係るスパイラル型膜モジュールの運転方法の他の例を示す模式的断面図である。
【図5】図1のスパイラル型膜モジュールに用いられるスパイラル型膜エレメントの一部切欠き斜視図である。
【図6】本発明に係るスパイラル型膜モジュールの運転方法のさらに他の例を示す模式的断面図である。
【図7】図5のスパイラル型膜エレメントに用いられる分離膜の断面図である。
【図8】実施例1、実施例2および比較例のスパイラル型膜モジュールの膜間差圧の経時変化を示す図である。
【符号の説明】
1 スパイラル型膜エレメント
2 分離膜
3 透過水スペーサ
4 封筒状膜
5 集水管
6 原水スペーサ
7,31 原水
8 透過水
100 スパイラル型膜モジュール
10,110 圧力容器
13,130 原水入口
14,140 透過水出口
15,131 原水出口
21 洗浄水

Claims (12)

  1. 有孔中空管の外周面に袋状の分離膜が巻回されてなるとともに第1および第2の端部を有し、0.05MPaよりも高く0.3MPa以下の背圧で逆流洗浄が可能なスパイラル型膜エレメントの運転方法であって、濾過運転時に前記スパイラル型膜エレメントの前記第1の端部から原液を供給するとともに前記有孔中空管の少なくとも一方の開口端から透過液を取り出し、逆流洗浄時に前記有孔中空管の少なくとも一方の開口端から洗浄液を導入して前記スパイラル型膜エレメントの前記第1および第2の端部の少なくとも一方から洗浄液を排出させることにより0.05MPaよりも高く0.3MPa以下の背圧で前記分離膜を逆流洗浄し、前記逆流洗浄時または前記逆流洗浄後に前記スパイラル型膜エレメントの前記第2の端部から原液を導入して前記スパイラル型膜エレメント内で原液を前記濾過運転時と逆方向に流すとともに前記スパイラル型膜エレメントの前記第1の端部から導出し、前記濾過運転または逆流洗浄を一時的に停止して前記スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持することを特徴とするスパイラル型膜エレメントの運転方法。
  2. 前記濾過運転を停止して前記スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持することを特徴とする請求項1記載のスパイラル型膜エレメントの運転方法。
  3. 前記逆流洗浄を停止して前記スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持することを特徴とする請求項1記載のスパイラル型膜エレメントの運転方法。
  4. 前記スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持した後、前記濾過運転を再開することを特徴とする請求項2記載のスパイラル型膜エレメントの運転方法。
  5. 前記スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持した後、前記逆流洗浄することを特徴とする請求項2記載のスパイラル型膜エレメントの運転方法。
  6. 前記スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持した後、前記逆流洗浄を再開することを特徴とする請求項3記載のスパイラル型膜エレメントの運転方法。
  7. 前記スパイラル型膜エレメントを液中に浸漬した状態で所定時間保持した後、前記濾過運転を行うことを特徴とする請求項3記載のスパイラル型膜エレメントの運転方法。
  8. 前記逆流洗浄と並行してまたは前記逆流洗浄後に前記圧力容器の前記原液入口および前記原液出口を通して前記スパイラル型膜エレメントの前記第1の端部および前記第2の端部から前記濾過運転時の原液の供給方向と同方向および逆方向に順に原液を供給して前記スパイラル型膜エレメント内で原液を軸方向に流すとともに前記軸方向に流した原液を前記圧力容器の外部に取り出すことを特徴とする請求項1〜7のいずれかに記載のスパイラル型膜エレメントの運転方法。
  9. 前記スパイラル型膜エレメントを液中に浸漬する際に、殺菌作用または汚染物質剥離作用を有する薬品を含む液を前記スパイラル型膜エレメントに供給し、前記薬品を含む液中に前記スパイラル型膜エレメントを浸漬することを特徴とする請求項1〜8のいずれかに記載のスパイラル型膜エレメントの運転方法。
  10. 前記分離膜は多孔性シート材の一面に透過性膜体が接合されてなり、前記透過性膜体は前記多孔性シート材の一面に投錨状態で接合されたことを特徴とする請求項1〜8のいずれかに記載のスパイラル型膜エレメントの運転方法。
  11. 1または複数のスパイラル型膜エレメントが原液入口を有する圧力容器内に収容されてなるスパイラル型膜モジュールの運転方法であって、前記スパイラル型膜エレメントは、有孔中空管の外周面に袋状の分離膜が巻回されてなるとともに第1および第2の端部を有し、0.05MPaよりも高く0.3MPa以下の背圧で逆流洗浄が可能であり、濾過運転時に前記スパイラル型膜エレメントの前記第1の端部から原液を供給するとともに前記有孔中空管の少なくとも一方の開口端から透過液を取り出し、逆流洗浄時に前記有孔中空管の少なくとも一方の開口端から洗浄液を導入して前記スパイラル型膜エレメントの前記第1および第2の端部の少なくとも一方から洗浄液を排出させることにより0.05MPaよりも高く0.3MPa以下の背圧で前記分離膜を逆流洗浄し、前記逆流洗浄時または前記逆流洗浄後に前記スパイラル型膜エレメントの前記第2の端部から原液を導入して前記スパイラル型膜エレメント内で原液を前記濾過運転時と逆方向に流すとともに前記スパイラル型膜エレメントの前記第1の端部から導出し、前記濾過運転または逆流洗浄を一時的に停止して前記圧力容器内に液を封入した状態で所定時間保持することを特徴とするスパイラル型膜モジュールの運転方法。
  12. 前記液は、殺菌作用または汚染物質剥離作用を有する薬品を含むことを特徴とする請求項11記載のスパイラル型膜モジュールの運転方法。
JP2000217940A 2000-07-18 2000-07-18 スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法 Expired - Fee Related JP4583558B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000217940A JP4583558B2 (ja) 2000-07-18 2000-07-18 スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法
EP01306085A EP1174177A3 (en) 2000-07-18 2001-07-16 Spiral wound membrane element, spiral wound membrane module and treatment system employing the same as well as running method and washing method therefor
US09/907,762 US6733675B2 (en) 2000-07-18 2001-07-18 Spiral wound membrane element, spiral wound membrane module and treatment system employing the same as well as running method and washing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217940A JP4583558B2 (ja) 2000-07-18 2000-07-18 スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法

Publications (2)

Publication Number Publication Date
JP2002028454A JP2002028454A (ja) 2002-01-29
JP4583558B2 true JP4583558B2 (ja) 2010-11-17

Family

ID=18712973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217940A Expired - Fee Related JP4583558B2 (ja) 2000-07-18 2000-07-18 スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法

Country Status (1)

Country Link
JP (1) JP4583558B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793975B2 (ja) * 2005-02-14 2011-10-12 日東電工株式会社 超純水用膜モジュールの洗浄方法
JP2006281121A (ja) * 2005-04-01 2006-10-19 Ngk Insulators Ltd 清澄水の膜ろ過運転方法
CN103253728B (zh) * 2013-04-09 2015-04-29 广州中国科学院先进技术研究所 一种光催化-膜分离耦合工艺装置及其运行方法
CN108927000B (zh) * 2017-05-24 2023-07-28 佛山市顺德区美的饮水机制造有限公司 用于滤芯结构的泵头、滤芯结构及***

Also Published As

Publication number Publication date
JP2002028454A (ja) 2002-01-29

Similar Documents

Publication Publication Date Title
US6733675B2 (en) Spiral wound membrane element, spiral wound membrane module and treatment system employing the same as well as running method and washing method therefor
JP2003181247A (ja) スパイラル型膜エレメントを備えた処理システムおよびその運転方法
JP6003646B2 (ja) 膜モジュールの洗浄方法
WO2006116797A1 (en) Chemical clean for membrane filter
WO2006080482A1 (ja) 選択透過性膜モジュールの製造方法および選択透過性膜モジュール
WO2001066238A1 (fr) Procede de production d'eau epuree
JP2011125822A (ja) 膜モジュールの洗浄方法および造水装置
JP4583671B2 (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法および洗浄方法
JP2001029756A (ja) スパイラル型膜モジュールを用いた処理システムおよびその運転方法
JP5024158B2 (ja) 膜ろ過方法
JP4583558B2 (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法
JP2002028456A (ja) スパイラル型膜モジュールを用いた処理システムおよびその運転方法
JP4270644B2 (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法および洗浄方法
US20020060193A1 (en) Running method and treatment system for spiral wound membrane element and spiral wound membrane module
JP4437527B2 (ja) 膜ろ過モジュール
JP2002028455A (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法ならびにスパイラル型膜モジュール
JP4583557B2 (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法および洗浄方法
WO2011108589A1 (ja) 多孔質膜モジュールの洗浄方法および造水装置
JPH09299947A (ja) 逆浸透膜スパイラルエレメントおよびそれを用いた処理システム
JP2001179058A (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法ならびにスパイラル型膜モジュール
JP4215991B2 (ja) 膜モジュールおよびその運転方法
JP4454922B2 (ja) 中空糸型分離膜を用いた濾過装置の制御方法
JP4085151B2 (ja) 中空糸膜モジュールの洗浄方法
JP2000271461A (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法
JP4321927B2 (ja) スパイラル型膜エレメントを備えた処理システムおよびその運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4583558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees