JP4582976B2 - Method and fuel cell system for reducing carbon monoxide concentration - Google Patents

Method and fuel cell system for reducing carbon monoxide concentration Download PDF

Info

Publication number
JP4582976B2
JP4582976B2 JP2001301040A JP2001301040A JP4582976B2 JP 4582976 B2 JP4582976 B2 JP 4582976B2 JP 2001301040 A JP2001301040 A JP 2001301040A JP 2001301040 A JP2001301040 A JP 2001301040A JP 4582976 B2 JP4582976 B2 JP 4582976B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
gas
reaction
raw material
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001301040A
Other languages
Japanese (ja)
Other versions
JP2003104703A (en
Inventor
倫明 足立
貴美香 石月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2001301040A priority Critical patent/JP4582976B2/en
Publication of JP2003104703A publication Critical patent/JP2003104703A/en
Application granted granted Critical
Publication of JP4582976B2 publication Critical patent/JP4582976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は一酸化炭素および水素を含有する原料ガスから一酸化炭素を選択的に酸化することにより原料ガス中の一酸化炭素濃度を低減する方法およびその方法を用いた燃料電池システムに関する。
【0002】
【従来の技術】
燃料電池は燃料の燃焼反応による自由エネルギー変化を直接電気エネルギーとして取り出せるため、高い効率が得られるという特徴がある。さらに有害物質を排出しないことも相俟って、様々な用途への展開が図られている。特に固体高分子形燃料電池は、出力密度が高く、コンパクトで、しかも低温で作動するのが特徴である。
【0003】
一般的に燃料電池用の燃料ガスとしては水素を主成分とするガスが用いられるが、その原料には天然ガス、LPG、ナフサ、灯油等の炭化水素、メタノール、エタノール等のアルコール、およびジメチルエーテル等のエーテル等が用いられる。
しかし、これらの原料中には水素以外の元素も存在するため、燃料電池への燃料ガス中に炭素由来の不純物が混入することは避けられない。中でも一酸化炭素は燃料電池の電極触媒として使われている白金系貴金属を被毒するため、燃料ガス中に一酸化炭素が存在すると充分な発電特性が得られなくなる。特に低温作動させる燃料電池ほど一酸化炭素吸着は強く、被毒を受けやすい。このため固体高分子形燃料電池を用いたシステムでは燃料ガス中の一酸化炭素の濃度が低減されていることが必要不可欠である。
【0004】
一酸化炭素濃度を低減させる方法としては、原料を改質して得られた改質ガス中の一酸化炭素を水蒸気と反応させ、水素と二酸化炭素に転化する方法、いわゆる水性ガスシフト反応を用いることが考えられるが、通常、この方法では0.1〜1vol%程度までしか一酸化炭素濃度を低減することができない。しかし、燃料電池電極に用いられる触媒の一酸化炭素耐性は用いられる金属種にも依るが、燃料電池が効率よく作動するためには燃料ガス中の一酸化炭素濃度は100volppm以下であることが望ましく、水性ガスシフト反応のみでは不充分である。
そこで、水性ガスシフト反応により0.1〜1vol%程度にまで下げた一酸化炭素濃度をさらに低減することが求められる。
【0005】
【発明が解決しようとする課題】
一酸化炭素濃度をさらに低減する方法としては、一酸化炭素を吸着分離する方法や膜分離する方法が考えられる。しかし、これらの方法では得られる水素純度は高いものの、装置コストが高く、装置サイズも大きくなるという問題があり、現実的でない。
【0006】
これに対し化学的な方法はより現実的な方法である。化学的方法としては、一酸化炭素をメタン化する方法、酸化して二酸化炭素に転化する方法などが考えられる。しかし、前者のメタン化する方法では燃料電池の燃料となる水素をロスすることから、効率的には適当ではない。従って、後者の一酸化炭素を酸化して二酸化炭素とする方法を採用するのが適当である。この方法においてポイントとなるのは、大過剰に存在する水素中に微量ないし少量混在する一酸化炭素を選択的に酸化処理できるかである。
本発明者らはかかる課題について鋭意研究した結果、本発明を完成したものである
【0007】
【課題を解決するための手段】
すなわち、本発明の第1は、一酸化炭素および水素を含有する原料ガスから一酸化炭素濃度を低減する方法であって、該原料ガスに酸素含有ガスを加え、無機酸化物にルテニウムを担持した触媒の存在下に酸化反応を行なう第一工程、および無機酸化物にルテニウムおよび白金を担持した触媒の存在下に酸化反応を行なう第二工程の少なくとも二段階の酸化工程により、一酸化炭素を選択的に酸化して該原料ガスから一酸化炭素濃度を低減する方法に関する。
【0008】
本発明の第1においては、前記第二工程の前に酸素含有ガスを追加供給することが好ましい。
また本発明の第1においては、酸素と原料ガス中の一酸化炭素の比がモル比で0.5〜3であることが好ましい。
また本発明の第1においては、原料ガスが炭化水素、アルコールまたはエーテルを脱硫反応、改質反応および水性ガスシフト反応することにより得られたものであることが好ましい。
また本発明の第1においては、原料ガス中の一酸化炭素濃度が0.1〜2vol%であることが好ましい。
また本発明の第1においては、酸化処理後の生成ガス中の一酸化炭素濃度が100volppm以下であることが好ましい。
【0009】
本発明の第2は、炭化水素、アルコールおよびエーテルから選ばれる燃料を脱硫処理、改質反応および水性ガスシフト反応を行って得られる一酸化炭素および水素を含有する原料ガスに酸素含有ガスを加え、無機酸化物にルテニウムを担持した触媒の存在下に酸化反応を行なう第一工程および無機酸化物にルテニウムおよび白金を担持した触媒の存在下に酸化反応を行なう第二工程からなる二段階酸化工程により得られる燃料ガスを陰極側燃料として供給することを特徴とする燃料電池システムに関する。
【0010】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の第1は、一酸化炭素および水素を含有する原料ガスから一酸化炭素濃度を低減する方法であって、該原料ガスに酸素含有ガスを加え、無機酸化物にルテニウムを担持した触媒の存在下に酸化反応を行なう第一工程、および無機酸化物にルテニウムおよび白金を担持した触媒の存在下に酸化反応を行なう第二工程の少なくとも二段階の酸化工程により、一酸化炭素を選択的に酸化して該原料ガスから一酸化炭素濃度を低減する方法に関する。
【0011】
一酸化炭素および水素を含有する原料ガスとしては、通常、燃料電池用の燃料ガスの出発原料(原燃料)として用いられる炭化水素、あるいはアルコールやエーテル等の含酸素炭化水素等を各種方法により改質反応を行って得られる水素を主成分とするガスが用いられる。
原燃料としては、天然ガス、LPG、ナフサ、灯油、ガソリンまたはこれらに相当する各種溜分や、メタン、エタン、プロパン、ブタン等の炭化水素、メタノール、エタノール等の各種アルコール、およびジメチルエーテル等のエーテル等が用いられる。
【0012】
前記原燃料を改質する方法としては、特に限定されるものではなく、水蒸気改質方法、部分酸化改質方法、オートサーマルリフォーミング等の各種方法が挙げられる。本発明においてはこれらのいずれの方法も採用することができる。
【0013】
なお、硫黄を含んでいる原燃料をそのまま改質工程に供給してしまうと、改質触媒が被毒を受け、改質触媒の活性が発現せず、また寿命も短くなるため、改質反応に先だって、原燃料を脱硫処理しておくことが好ましい。
脱硫反応の条件は、原燃料の状態および硫黄含有量によって異なるため一概には言えないが、通常、反応温度は常温〜450℃が好ましく、特に常温〜300℃が好ましい。反応圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。SVは原料が液体の場合では、0.01〜15h-1が好ましく、0.05〜5h-1がさらに好ましく、0.1〜3h-1が特に好ましい。また気体原料の場合では、100〜10000h-1が好ましく、200〜5000h-1がさらに好ましく、300〜2000h-1が特に好ましい。
【0014】
また改質反応条件も必ずしも限定されるものではないが、通常、反応温度は400〜1,000℃が好ましく、特に500〜850℃が好ましい。反応圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。SVは0.01〜40h-1が好ましく、特に0.1〜10h-1が好ましい。
改質反応により得られるガス(改質ガス)は、主成分として水素を含むものの、他の成分としては、一酸化炭素、二酸化炭素、水蒸気等が含有される。
【0015】
本発明においては、原料ガスとして前記改質ガスを直接用いることも可能であるが、かかる改質ガスを予め前処理して一酸化炭素濃度をある程度低減させたものを用いてもよい。
かかる前処理としては、改質ガス中の一酸化炭素濃度を低減させるため、改質ガス中の一酸化炭素を水蒸気と反応させ、水素と二酸化炭素に転化する方法、いわゆる水性ガスシフト反応が挙げられる。水性ガスシフト反応以外の前処理としては、一酸化炭素を吸着分離する方法、あるいは膜分離する方法等が挙げられる。
【0016】
本発明においては、改質ガス中の一酸化炭素を低減し、かつ水素を増やすためにも、改質ガスをさらに水性ガスシフト反応したものを原料ガスとするのが好ましく、これにより一酸化炭素濃度の低減をより効果的にすることができる。
水性ガスシフト反応は改質ガスの組成等によって、必ずしも反応条件は限定されるものではないが、通常、反応温度は120〜500℃が好ましく、特に150〜450℃が好ましい。反応圧力は常圧〜1MPaが好ましく、特に常圧〜0.2MPaが好ましい。SVは100〜50,000h-1が好ましく、特に300〜10,000h-1が好ましい。
【0017】
本発明において用いる原料ガスは、一酸化炭素および水素を含有するものであるが、一酸化炭素濃度は、通常0.1〜2vol%、好ましくは0.5〜1vol%である。一方、水素濃度は通常40〜85vol%、好ましくは50〜75vol%である。また、一酸化炭素および水素以外の成分として、例えば窒素、二酸化炭素等が含まれていても良い。
【0018】
本発明においては、原料ガスから一酸化炭素を酸化反応により除去するためには酸素含有ガスを原料ガスに加える。酸素含有ガスは少なくとも前段の第一工程の前に原料ガスに導入するが、後段の第二工程の前にも追加導入することもできる。
酸素含有ガスとしては、特に限定されないが、空気や酸素が挙げられる。
導入する酸素含有ガスは、全酸素量と原料ガス中の一酸化炭素の濃度比(モル比)が0.5〜3.0の範囲とすることが好ましく、特に0.5〜2.0が好ましい。前記濃度比が0.5より小さい場合は、化学量論的に酸素が足りないため一酸化炭素との酸化反応が十分に進行しない。また、前記濃度比が3.0より大きい場合は、水素の酸化により、水素濃度の低下、水素の酸化熱により反応温度の上昇、メタンの生成などの副反応が起こりやすくなるため好ましくない。
【0019】
本発明における2段階の酸化反応においては、前段には無機酸化物にルテニウム(Ru)を担持した触媒、後段には無機酸化物にルテニウム(Ru)および白金(Pt)を担持した触媒を用いるのが重要である。。
前段及び後段の触媒において担体として用いられる無機酸化物としては、特に限定するものではないが、それぞれ個別に、各種アルミナ、シリカ、チタニア、等の単独酸化物や、モルデナイトや各種ゼオライトに代表されるシリカアルミナなどの複合酸化物、または塩基性酸化物等を用いることができる。
無機酸化物の形状、大きさ、成型方法についても、特に限定されるものではない。また成型時に適度なバインダーを添加して成形性を高めてもよい。
【0020】
前段および後段の触媒に担持するRuの担持量は、それぞれ個別に、0.05〜5.0質量%、好ましくは0.1〜1.0質量%、さらに好ましくは0.1〜0.3質量%である。
後段の触媒に担持するPtの担持量は、0.01〜1.0質量%、好ましくは0.01〜0.5質量%、さらに好ましくは0.01〜0.1質量%である。
後段における触媒中のRu/Pt質量比は、10/1〜1/10、好ましくは5/1〜1/1、さらに好ましくは5/1〜2/1である。
【0021】
前段の触媒においては、担持する金属としてRu以外に、第二成分としてパラジウム(Pd)あるいはロジウム(Rh)を添加しても良い。また後段の触媒に担持する金属としてRuおよびPt以外に、第三成分としてPdを添加しても良い。
【0022】
本発明において、触媒の形状は特に限定するものではなく、球状、ハニカム状、ワイヤーメッシュ状等の各種形状のものを用いることができる。
触媒の調製方法も特に限定するものではなく、通常の含浸法、イオン交換法など公知の方法を用いることができる。例えば含浸法を用いた場合、通常、塩化物、硝酸塩、各種有機酸塩など、具体的には塩化ルテニウム、塩化白金酸のような化合物を、水、エタノール、アセトンなどの溶媒に溶解させ、担体に含浸させた後、乾燥、焼成、還元処理を行なうことで実施できる。
【0023】
第一工程および第二工程における一酸化炭素の酸化反応の際の反応圧力は、燃料電池システムの経済性、安全性等も考慮し、常圧〜1MPaの範囲が好ましく、特に常圧〜0.2MPaが好ましい。反応温度としては、一酸化炭素濃度を低下させる温度であれば、特に限定はないが、低温では反応速度が遅くなり、高温では選択性が低下するため、通常は80〜350℃が好ましく、特に100〜300℃が好ましい。GHSVは過剰に高すぎると一酸化炭素の酸化反応が進行しにくくなり、一方低すぎると装置が大きくなりすぎるため、1,000〜50,000h-1の範囲が好ましく、特に3,000〜30,000h-1の範囲が好ましい。第一工程および第二工程における反応器の形態は特に限定するものではないが、例えば、流通式固定床反応器を用いることができる。反応器の形状としては、円筒状、平板上などそれぞれのプロセスの目的に応じた公知のいかなる形状を取ることができる。
【0024】
本発明の方法により、出発原料ガスの一酸化炭素濃度を100volppm以下、好ましくは50volppm以下、最も好ましくは10volppm以下にまで低減することができる。そのため、本発明の方法により得られる一酸化炭素濃度が低減された燃料ガスは、燃料電池の電極に用いられている貴金属系触媒の被毒、劣化を抑制し、発電効率を高く保ちながら、長寿命を維持することが可能となる。
【0025】
本発明の第2は、炭化水素、アルコールおよびエーテルから選ばれる燃料を脱硫処理、改質反応および水性ガスシフト反応を行って得られる一酸化炭素および水素を含有する原料ガスに酸素含有ガスを加え、無機酸化物にルテニウムを担持した触媒の存在下に酸化反応を行なう第一工程および無機酸化物にルテニウムおよび白金を担持した触媒の存在下に酸化反応を行なう第二工程からなる二段階酸化反応を行って得られる燃料ガスを陰極側燃料として供給することを特徴とする燃料電池システムに関する。
【0026】
本発明の燃料電池システムを以下に説明する。
図1は、本発明の燃料電池システムの一例を示す概略図である。
燃料タンク3内の原燃料は燃料ポンプ4を経て脱硫器5に流入する。この時、必要であれば選択酸化反応器11からの水素含有ガスを添加できる。脱硫器5内には例えば銅−亜鉛系あるいはニッケル−亜鉛系の収着剤などを充填することができる。脱硫器5で脱硫された原燃料は水タンク1から水ポンプ2を経た水と混合した後、気化器6に導入され、改質器7に送り込まれる。
【0027】
改質器7は加温用バーナー18で加温される。加温用バーナー18の燃料には主に燃料電池17のアノードオフガスを用いるが必要に応じて燃料ポンプ4から吐出される燃料を補充することもできる。改質器7に充填する触媒としてはニッケル系、ルテニウム系、ロジウム系などの触媒を用いることができる。
この様にして製造された水素と一酸化炭素を含有する原料ガスは高温シフト反応器9および低温シフト反応器10により改質反応が行われる。高温シフト反応器9には鉄−クロム系触媒、低温シフト反応器10には銅−亜鉛系触媒等の触媒が充填されている。
【0028】
高温シフト反応器9および低温シフト反応器10により改質されたガスは、次に選択酸化反応器11に導かれる。選択酸化反応器11は前段と後段の2工程になっており、前段には無機酸化物にルテニウムを担持した触媒が、後段には無機酸化物にルテニウムおよび白金を担持した触媒が充填されている。改質ガスは空気ブロアー8から供給される空気と混合され、前記触媒の存在下に一酸化炭素の選択酸化が行われ、一酸化炭素濃度は燃料電池の特性に影響を及ぼさない程度まで低減される。
【0029】
固体高分子形燃料電池17はアノード12、カソード13、固体高分子電解質14からなり、アノード側には上記の方法で得られた一酸化炭素濃度が低減された高純度の水素を含有する燃料ガスが、カソード側には空気ブロアー8から送られる空気が、それぞれ必要であれば適当な加湿処理を行なったあと(加湿装置は図示していない)導入される。
この時、アノードでは水素ガスがプロトンとなり電子を放出する反応が進行し、カソードでは酸素ガスが電子とプロトンを得て水となる反応が進行する。これらの反応を促進するため、それぞれ、アノードには白金黒、活性炭担持のPt触媒あるいはPt−Ru合金触媒などが、カソードには白金黒、活性炭担持のPt触媒などが用いられる。通常アノード、カソードの両触媒とも、必要に応じてポリテトラフロロエチレン、低分子の高分子電解質膜素材、活性炭などと共に多孔質触媒層に成形される。
【0030】
次いでNafion(デュポン社製)、Gore(ゴア社製)、Flemion(旭硝子社製)、Aciplex(旭化成社製)等の商品名で知られる高分子電解質膜の両側に前述の多孔質触媒層を積層しMEA(Membrane Electrode Assembly)が形成される。さらにMEAを金属材料、グラファイト、カーボンコンポジットなどからなるガス供給機能、集電機能、特にカソードにおいては重要な排水機能等を持つセパレータで挟み込むことで燃料電池が組み立てられる。電気負荷15はアノード、カソードと電気的に連結される。
アノードオフガスは加温用バーナー18において消費される。カソードオフガスは排気口16から排出される。
【0031】
【発明の効果】
本発明の方法により、一酸化炭素および水素を含有する原料ガスから一酸化炭素を選択的に酸化するため、生成燃料ガス中の一酸化炭素濃度は100volppm以下、好ましくは50volppm以下、特に好ましくは10volppm以下に低減されるため、得られる燃料ガスは特に固体高分子形燃料電池を用いた燃料電池システムとして好適に採用できる。
【0032】
【実施例】
以下に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0033】
(実施例1)
1〜2mm球に成型したアルファアルミナ5.0gおよび塩化ルテニウム0.013gを26.65mlのエタノールに溶解させた溶液に投入し、3時間攪拌しながら含浸し、ろ別した後、空気雰囲気下、120℃で15時間、次に700℃で3時間水素処理して触媒(1)を得た。担持されたルテニウム量は0.04質量%であった。
次に1〜2mm球に成型したアルファアルミナ5.0g、塩化ルテニウム0.042gおよびヘキサクロロ白金酸六水和物0.004gを106.6mlのエタノールに溶解させた溶液に投入し、3時間攪拌しながら含浸し、ろ別した後、空気雰囲気下、120℃で15時間、次に700℃で3時間水素処理して触媒(2)を得た。担持されたルテニウム量は0.13質量%、白金量は0.03質量%であった。
【0034】
1段目の反応管にルテニウム担持触媒(1)3.0cm3を充填し、2段目の反応管にルテニウム−白金担持触媒(2)3.0cm3を充填し、水素気流中、350℃で1時間還元した後、一酸化炭素除去反応評価を行った。
試験ガスとしては、灯油を水蒸気改質し、水性ガスシフト反応して得られた原料ガスに酸素を加えたものを用いた。試験ガス中には、水素58vol%、一酸化炭素0.5vol%、二酸化炭素18vol%、酸素0.5vol%、水21vol%が含まれていた。
反応評価条件は常圧、GHSV=10,000h-1、試験ガス中の一酸化炭素濃度6000ppm(ドライベース)の条件で、20時間後の生成ガス中の一酸化炭素濃度の極小値およびその時の反応温度を表1に示した。
【0035】
(比較例1)
1段目および2段目ともにルテニウム担持触媒(1)3.0cm3をそれぞれ充填し、実施例1と同様に一酸化炭素除去反応評価を行った。
【0036】
(比較例2)
1段目および2段目ともにルテニウム−白金担持触媒(2)3.0cm3をそれぞれ充填し、実施例1と同様に一酸化炭素除去反応評価を行った。
【0037】
(比較例3)
1段目にルテニウム−白金担持触媒(2)3.0cm3を充填し、2段目にルテニウム担持触媒(1)3.0cm3を充填し、実施例1と同様に一酸化炭素除去反応評価を行った。
【0038】
【表1】

Figure 0004582976
【0039】
(実施例2)
図1の燃料電池システムにおいて、実施例1で得られた触媒(1)および触媒(2)を選択酸化反応器にそれぞれ前段と後段の2段階に充填し、灯油を原燃料とした発電試験を行なった。20時間の運転中、選択酸化反応器が正常に作動し、触媒の活性低下は認められなかった。燃料電池も正常に作動し電気負荷15も順調に運転された。
【図面の簡単な説明】
【図1】本発明の燃料電池システムの一例を示す概略図である。
【符号の説明】
1 水タンク
2 水ポンプ
3 燃料タンク
4 燃料ポンプ
5 脱硫器
6 気化器
7 改質器
8 空気ブロアー
9 高温シフト反応器
10 低温シフト反応器
11 選択酸化反応器
12 アノード
13 カソード
14 固体高分子電解質
15 電気負荷
16 排気口
17 固体高分子形燃料電池
18 加温用バーナー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing carbon monoxide concentration in a raw material gas by selectively oxidizing carbon monoxide from a raw material gas containing carbon monoxide and hydrogen, and a fuel cell system using the method.
[0002]
[Prior art]
A fuel cell has a feature that high efficiency can be obtained because a free energy change caused by a combustion reaction of fuel can be directly taken out as electric energy. In addition to the fact that it does not emit harmful substances, it is being developed for various uses. In particular, solid polymer fuel cells are characterized by high power density, compactness, and operation at low temperatures.
[0003]
In general, as a fuel gas for a fuel cell, a gas containing hydrogen as a main component is used, and the raw materials thereof include natural gas, hydrocarbons such as LPG, naphtha and kerosene, alcohols such as methanol and ethanol, and dimethyl ether. Of ether or the like is used.
However, since elements other than hydrogen exist in these raw materials, it is inevitable that impurities derived from carbon are mixed in the fuel gas to the fuel cell. Among these, carbon monoxide poisons platinum-based noble metals used as electrode catalysts for fuel cells. Therefore, if carbon monoxide is present in the fuel gas, sufficient power generation characteristics cannot be obtained. In particular, a fuel cell operated at a low temperature has a stronger carbon monoxide adsorption and is more susceptible to poisoning. Therefore, in a system using a polymer electrolyte fuel cell, it is indispensable that the concentration of carbon monoxide in the fuel gas is reduced.
[0004]
As a method for reducing the concentration of carbon monoxide, a method in which carbon monoxide in the reformed gas obtained by reforming the raw material is reacted with water vapor and converted into hydrogen and carbon dioxide, so-called water gas shift reaction is used. However, normally, this method can reduce the carbon monoxide concentration only to about 0.1 to 1 vol%. However, although the carbon monoxide resistance of the catalyst used for the fuel cell electrode depends on the metal species used, the carbon monoxide concentration in the fuel gas is preferably 100 volppm or less in order for the fuel cell to operate efficiently. The water gas shift reaction alone is not sufficient.
Therefore, it is required to further reduce the carbon monoxide concentration lowered to about 0.1 to 1 vol% by the water gas shift reaction.
[0005]
[Problems to be solved by the invention]
As a method for further reducing the carbon monoxide concentration, a method of adsorptive separation of carbon monoxide and a method of membrane separation can be considered. However, although the hydrogen purity obtained by these methods is high, there are problems that the apparatus cost is high and the apparatus size is large, which is not practical.
[0006]
On the other hand, the chemical method is a more realistic method. As a chemical method, a method of methanating carbon monoxide, a method of oxidizing to carbon dioxide, and the like can be considered. However, the former method of methanation is not suitable in terms of efficiency because hydrogen used as fuel for the fuel cell is lost. Therefore, it is appropriate to employ the method of oxidizing the latter carbon monoxide to carbon dioxide. The point in this method is whether carbon monoxide mixed in a trace amount or a small amount in hydrogen present in a large excess can be selectively oxidized.
As a result of intensive studies on such problems, the present inventors have completed the present invention.
[Means for Solving the Problems]
That is, the first of the present invention is a method for reducing the concentration of carbon monoxide from a raw material gas containing carbon monoxide and hydrogen, wherein an oxygen-containing gas is added to the raw material gas, and ruthenium is supported on the inorganic oxide. Carbon monoxide is selected by at least two stages of oxidation processes: a first process that performs an oxidation reaction in the presence of a catalyst, and a second process that performs an oxidation reaction in the presence of a catalyst in which ruthenium and platinum are supported on an inorganic oxide. The present invention relates to a method of reducing the concentration of carbon monoxide from the raw material gas by oxidizing in general.
[0008]
In the first aspect of the present invention, it is preferable to additionally supply an oxygen-containing gas before the second step.
In the first aspect of the present invention, the molar ratio of oxygen to carbon monoxide in the raw material gas is preferably 0.5-3.
In the first aspect of the present invention, the raw material gas is preferably obtained by subjecting hydrocarbon, alcohol or ether to desulfurization reaction, reforming reaction and water gas shift reaction.
In the first aspect of the present invention, the carbon monoxide concentration in the raw material gas is preferably 0.1 to 2 vol%.
In the first aspect of the present invention, the carbon monoxide concentration in the product gas after the oxidation treatment is preferably 100 volppm or less.
[0009]
In the second aspect of the present invention, an oxygen-containing gas is added to a raw material gas containing carbon monoxide and hydrogen obtained by subjecting a fuel selected from hydrocarbons, alcohols and ethers to desulfurization treatment, reforming reaction and water gas shift reaction, A two-step oxidation process comprising a first step in which an oxidation reaction is carried out in the presence of a catalyst carrying ruthenium on an inorganic oxide and a second step in which an oxidation reaction is carried out in the presence of a catalyst carrying ruthenium and platinum on an inorganic oxide. The present invention relates to a fuel cell system in which the obtained fuel gas is supplied as a cathode side fuel.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
A first aspect of the present invention is a method for reducing the concentration of carbon monoxide from a raw material gas containing carbon monoxide and hydrogen, wherein an oxygen-containing gas is added to the raw material gas and a ruthenium-supported catalyst is supported on an inorganic oxide. The carbon monoxide is selectively selected by at least two stages of oxidation processes including a first process in which oxidation reaction is performed in the presence and a second process in which oxidation reaction is performed in the presence of a catalyst in which ruthenium and platinum are supported on an inorganic oxide. The present invention relates to a method for reducing the carbon monoxide concentration from the raw material gas by oxidation.
[0011]
As a raw material gas containing carbon monoxide and hydrogen, hydrocarbons used as starting materials (raw fuels) for fuel gas for fuel cells or oxygen-containing hydrocarbons such as alcohols and ethers are modified by various methods. A gas mainly containing hydrogen obtained by conducting a quality reaction is used.
The raw fuel includes natural gas, LPG, naphtha, kerosene, gasoline or various equivalents thereof, hydrocarbons such as methane, ethane, propane and butane, various alcohols such as methanol and ethanol, and ethers such as dimethyl ether. Etc. are used.
[0012]
The method for reforming the raw fuel is not particularly limited, and various methods such as a steam reforming method, a partial oxidation reforming method, and autothermal reforming can be used. Any of these methods can be employed in the present invention.
[0013]
If the raw fuel containing sulfur is supplied to the reforming process as it is, the reforming catalyst will be poisoned, the activity of the reforming catalyst will not be expressed, and the life will be shortened. Prior to this, it is preferable to desulfurize the raw fuel.
The conditions for the desulfurization reaction vary depending on the state of the raw fuel and the sulfur content, and thus cannot be generally stated, but the reaction temperature is usually preferably from room temperature to 450 ° C, particularly preferably from room temperature to 300 ° C. The reaction pressure is preferably from normal pressure to 1 MPa, and particularly preferably from normal pressure to 0.2 MPa. SV is preferably 0.01 to 15 h −1 , more preferably 0.05 to 5 h −1 , and particularly preferably 0.1 to 3 h −1 when the raw material is liquid. In the case of a gas material, preferably 100~10000H -1, more preferably 200~5000h -1, 300~2000h -1 is particularly preferred.
[0014]
Further, although the reforming reaction conditions are not necessarily limited, usually, the reaction temperature is preferably 400 to 1,000 ° C, particularly preferably 500 to 850 ° C. The reaction pressure is preferably from normal pressure to 1 MPa, and particularly preferably from normal pressure to 0.2 MPa. SV is preferably 0.01 to 40 h −1 , particularly preferably 0.1 to 10 h −1 .
The gas (reformed gas) obtained by the reforming reaction contains hydrogen as a main component, but other components include carbon monoxide, carbon dioxide, water vapor, and the like.
[0015]
In the present invention, it is possible to directly use the reformed gas as a raw material gas, but it is also possible to use a gas obtained by pretreating the reformed gas in advance to reduce the carbon monoxide concentration to some extent.
Examples of such pretreatment include a method of reacting carbon monoxide in the reformed gas with water vapor to convert it into hydrogen and carbon dioxide in order to reduce the concentration of carbon monoxide in the reformed gas, so-called water gas shift reaction. . Examples of the pretreatment other than the water gas shift reaction include a method of adsorptive separation of carbon monoxide or a method of membrane separation.
[0016]
In the present invention, in order to reduce carbon monoxide in the reformed gas and increase hydrogen, it is preferable that the reformed gas is further subjected to a water gas shift reaction as a raw material gas, whereby the carbon monoxide concentration Can be made more effective.
The reaction conditions for the water gas shift reaction are not necessarily limited depending on the composition of the reformed gas and the like, but the reaction temperature is usually preferably 120 to 500 ° C, and particularly preferably 150 to 450 ° C. The reaction pressure is preferably from normal pressure to 1 MPa, and particularly preferably from normal pressure to 0.2 MPa. SV is preferably 100~50,000h -1, especially 300~10,000H -1 are preferred.
[0017]
The raw material gas used in the present invention contains carbon monoxide and hydrogen, and the carbon monoxide concentration is usually 0.1 to 2 vol%, preferably 0.5 to 1 vol%. On the other hand, the hydrogen concentration is usually 40 to 85 vol%, preferably 50 to 75 vol%. Moreover, nitrogen, carbon dioxide, etc. may be contained as components other than carbon monoxide and hydrogen, for example.
[0018]
In the present invention, an oxygen-containing gas is added to the source gas in order to remove carbon monoxide from the source gas by an oxidation reaction. The oxygen-containing gas is introduced into the raw material gas at least before the first step of the preceding stage, but can be additionally introduced before the second step of the latter stage.
Although it does not specifically limit as oxygen-containing gas, Air and oxygen are mentioned.
The oxygen-containing gas to be introduced preferably has a concentration ratio (molar ratio) of carbon monoxide in the raw material gas of 0.5 to 3.0, particularly 0.5 to 2.0. preferable. When the concentration ratio is less than 0.5, oxygen is not stoichiometrically sufficient, so that the oxidation reaction with carbon monoxide does not proceed sufficiently. On the other hand, when the concentration ratio is greater than 3.0, side reactions such as a decrease in hydrogen concentration due to hydrogen oxidation, a rise in reaction temperature due to the heat of oxidation of hydrogen, and methane formation are likely to occur.
[0019]
In the two-stage oxidation reaction in the present invention, a catalyst having ruthenium (Ru) supported on an inorganic oxide is used in the former stage, and a catalyst having ruthenium (Ru) and platinum (Pt) supported on the inorganic oxide is used in the latter stage. is important. .
The inorganic oxide used as a support in the former and latter catalysts is not particularly limited, but is individually represented by individual oxides such as various types of alumina, silica, titania, mordenite and various types of zeolite. A composite oxide such as silica alumina or a basic oxide can be used.
The shape, size, and molding method of the inorganic oxide are not particularly limited. Further, an appropriate binder may be added at the time of molding to improve the moldability.
[0020]
The amount of Ru supported on the first and second catalysts is 0.05 to 5.0% by mass, preferably 0.1 to 1.0% by mass, and more preferably 0.1 to 0.3%, individually. % By mass.
The amount of Pt supported on the latter catalyst is 0.01 to 1.0% by mass, preferably 0.01 to 0.5% by mass, and more preferably 0.01 to 0.1% by mass.
The Ru / Pt mass ratio in the catalyst in the latter stage is 10/1 to 1/10, preferably 5/1 to 1/1, and more preferably 5/1 to 2/1.
[0021]
In the former stage catalyst, palladium (Pd) or rhodium (Rh) may be added as a second component in addition to Ru as a supported metal. Further, in addition to Ru and Pt as the metal supported on the subsequent catalyst, Pd may be added as a third component.
[0022]
In the present invention, the shape of the catalyst is not particularly limited, and various shapes such as a spherical shape, a honeycomb shape, and a wire mesh shape can be used.
The method for preparing the catalyst is not particularly limited, and a known method such as a normal impregnation method or an ion exchange method can be used. For example, when an impregnation method is used, a carrier such as chloride, nitrate, various organic acid salts, specifically, a compound such as ruthenium chloride or chloroplatinic acid is dissolved in a solvent such as water, ethanol, acetone, etc. After impregnating, it can be carried out by drying, firing and reducing treatment.
[0023]
The reaction pressure at the time of the oxidation reaction of carbon monoxide in the first step and the second step is preferably in the range of normal pressure to 1 MPa, particularly in consideration of the economy and safety of the fuel cell system. 2 MPa is preferred. The reaction temperature is not particularly limited as long as it lowers the carbon monoxide concentration. However, the reaction rate is slow at low temperatures and the selectivity decreases at high temperatures. 100-300 degreeC is preferable. If GHSV is too high, the oxidation reaction of carbon monoxide will not proceed easily. On the other hand, if it is too low, the apparatus will be too large. Therefore, the range of 1,000 to 50,000 h −1 is preferred, particularly 3,000 to 30. A range of 1,000,000 -1 is preferred. Although the form of the reactor in the first step and the second step is not particularly limited, for example, a flow-type fixed bed reactor can be used. The shape of the reactor may be any known shape depending on the purpose of each process, such as a cylindrical shape or a flat plate.
[0024]
By the method of the present invention, the carbon monoxide concentration of the starting material gas can be reduced to 100 volppm or less, preferably 50 volppm or less, and most preferably 10 volppm or less. For this reason, the fuel gas with reduced carbon monoxide concentration obtained by the method of the present invention suppresses poisoning and deterioration of the noble metal catalyst used for the electrode of the fuel cell and maintains a high power generation efficiency while maintaining a long power generation efficiency. The lifetime can be maintained.
[0025]
In the second aspect of the present invention, an oxygen-containing gas is added to a raw material gas containing carbon monoxide and hydrogen obtained by subjecting a fuel selected from hydrocarbons, alcohols and ethers to desulfurization treatment, reforming reaction and water gas shift reaction, A two-step oxidation reaction comprising a first step in which an oxidation reaction is carried out in the presence of a catalyst carrying ruthenium on an inorganic oxide and a second step in which an oxidation reaction is carried out in the presence of a catalyst carrying ruthenium and platinum on an inorganic oxide. The present invention relates to a fuel cell system that supplies a fuel gas obtained as a cathode side fuel.
[0026]
The fuel cell system of the present invention will be described below.
FIG. 1 is a schematic view showing an example of a fuel cell system of the present invention.
The raw fuel in the fuel tank 3 flows into the desulfurizer 5 through the fuel pump 4. At this time, if necessary, the hydrogen-containing gas from the selective oxidation reactor 11 can be added. The desulfurizer 5 can be filled with, for example, a copper-zinc-based or nickel-zinc-based sorbent. The raw fuel desulfurized by the desulfurizer 5 is mixed with water from the water tank 1 through the water pump 2, then introduced into the vaporizer 6 and fed into the reformer 7.
[0027]
The reformer 7 is heated by a heating burner 18. As the fuel for the heating burner 18, the anode off gas of the fuel cell 17 is mainly used, but the fuel discharged from the fuel pump 4 can be supplemented as necessary. As the catalyst filled in the reformer 7, a nickel-based, ruthenium-based, or rhodium-based catalyst can be used.
The raw material gas containing hydrogen and carbon monoxide produced in this way undergoes a reforming reaction by the high temperature shift reactor 9 and the low temperature shift reactor 10. The high temperature shift reactor 9 is filled with an iron-chromium catalyst, and the low temperature shift reactor 10 is filled with a catalyst such as a copper-zinc catalyst.
[0028]
The gas reformed by the high temperature shift reactor 9 and the low temperature shift reactor 10 is then led to the selective oxidation reactor 11. The selective oxidation reactor 11 has two steps, a first stage and a second stage. The first stage is filled with a catalyst in which ruthenium is supported on an inorganic oxide, and the second stage is filled with a catalyst in which ruthenium and platinum are supported on an inorganic oxide. . The reformed gas is mixed with the air supplied from the air blower 8, and carbon monoxide is selectively oxidized in the presence of the catalyst, and the carbon monoxide concentration is reduced to a level that does not affect the characteristics of the fuel cell. The
[0029]
The polymer electrolyte fuel cell 17 includes an anode 12, a cathode 13, and a solid polymer electrolyte 14, and a fuel gas containing high-purity hydrogen with a reduced carbon monoxide concentration obtained by the above method on the anode side. However, the air sent from the air blower 8 is introduced to the cathode side after appropriate humidification treatment (a humidifier is not shown) if necessary.
At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds at the anode, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds at the cathode. In order to promote these reactions, platinum black and Pt catalyst or Pt-Ru alloy catalyst supported on activated carbon are used for the anode, and platinum black and Pt catalyst supported on activated carbon are used for the cathode. Usually, both the anode and cathode catalysts are formed into a porous catalyst layer together with polytetrafluoroethylene, a low molecular weight polymer electrolyte membrane material, activated carbon, and the like as necessary.
[0030]
Next, the aforementioned porous catalyst layer is laminated on both sides of a polymer electrolyte membrane known by a trade name such as Nafion (DuPont), Gore (Gore), Flemion (Asahi Glass), Aciplex (Asahi Kasei). Then, a MEA (Membrane Electrode Assembly) is formed. Further, the fuel cell is assembled by sandwiching the MEA with a separator having a gas supply function, a current collecting function, particularly an important drainage function in the cathode, and the like made of a metal material, graphite, carbon composite and the like. The electric load 15 is electrically connected to the anode and the cathode.
The anode off gas is consumed in the heating burner 18. The cathode off gas is discharged from the exhaust port 16.
[0031]
【The invention's effect】
In order to selectively oxidize carbon monoxide from the raw material gas containing carbon monoxide and hydrogen by the method of the present invention, the concentration of carbon monoxide in the produced fuel gas is 100 volppm or less, preferably 50 volppm or less, particularly preferably 10 volppm. Since it is reduced to the following, the obtained fuel gas can be suitably used particularly as a fuel cell system using a polymer electrolyte fuel cell.
[0032]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0033]
Example 1
A solution prepared by dissolving 5.0 g of alpha alumina molded into a 1 to 2 mm sphere and 0.013 g of ruthenium chloride in 26.65 ml of ethanol was impregnated with stirring for 3 hours, filtered, and then in an air atmosphere. Hydrogenation was performed at 120 ° C. for 15 hours and then at 700 ° C. for 3 hours to obtain a catalyst (1). The amount of supported ruthenium was 0.04% by mass.
Next, 5.0 g of alpha alumina molded into a 1 to 2 mm sphere, 0.042 g of ruthenium chloride and 0.004 g of hexachloroplatinic acid hexahydrate were added to a solution of 106.6 ml of ethanol and stirred for 3 hours. The catalyst (2) was obtained by impregnating and filtering, followed by hydrogen treatment in an air atmosphere at 120 ° C. for 15 hours and then at 700 ° C. for 3 hours. The amount of supported ruthenium was 0.13% by mass, and the amount of platinum was 0.03% by mass.
[0034]
Filled ruthenium supported catalyst (1) 3.0 cm 3 in a reaction tube of the first stage, the ruthenium to the reaction tube at the second stage - supported platinum catalyst (2) 3.0 cm 3 was charged, in a hydrogen stream, 350 ° C. Then, the carbon monoxide removal reaction was evaluated.
As the test gas, a gas obtained by steam reforming kerosene and adding oxygen to a raw material gas obtained by a water gas shift reaction was used. The test gas contained 58 vol% hydrogen, 0.5 vol% carbon monoxide, 18 vol% carbon dioxide, 0.5 vol% oxygen, and 21 vol% water.
The reaction evaluation conditions were normal pressure, GHSV = 10,000 h −1 , carbon monoxide concentration in the test gas of 6000 ppm (dry base), the minimum value of the carbon monoxide concentration in the product gas after 20 hours, and at that time The reaction temperature is shown in Table 1.
[0035]
(Comparative Example 1)
The first and second stages were each filled with 3.0 cm 3 of a ruthenium-supported catalyst (1), and the carbon monoxide removal reaction was evaluated in the same manner as in Example 1.
[0036]
(Comparative Example 2)
Ruthenium-platinum supported catalyst (2) (3.0 cm 3 ) was filled in both the first and second stages, and the carbon monoxide removal reaction was evaluated in the same manner as in Example 1.
[0037]
(Comparative Example 3)
Ruthenium-platinum-supported catalyst (2) (3.0 cm 3 ) is filled in the first stage, and ruthenium-supported catalyst (1) (3.0 cm 3 ) is filled in the second stage. Went.
[0038]
[Table 1]
Figure 0004582976
[0039]
(Example 2)
In the fuel cell system of FIG. 1, the power generation test using kerosene as the raw fuel is carried out by filling the selective oxidation reactor with the catalyst (1) and the catalyst (2) obtained in Example 1 respectively in the first and second stages. I did it. During the operation for 20 hours, the selective oxidation reactor operated normally and no decrease in the activity of the catalyst was observed. The fuel cell also operated normally and the electric load 15 was operated smoothly.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a fuel cell system of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water tank 2 Water pump 3 Fuel tank 4 Fuel pump 5 Desulfurizer 6 Vaporizer 7 Reformer 8 Air blower 9 High temperature shift reactor 10 Low temperature shift reactor 11 Selective oxidation reactor 12 Anode 13 Cathode 14 Solid polymer electrolyte 15 Electric load 16 Exhaust port 17 Polymer electrolyte fuel cell 18 Heating burner

Claims (5)

一酸化炭素および水素を含有する原料ガスから一酸化炭素濃度を低減する方法であって、該原料ガスに酸素含有ガスを酸素と原料ガス中の一酸化炭素の比がモル比で0.5〜2となるように加え、無機酸化物にルテニウムを担持した触媒の存在下に酸化反応を行なう第一工程、次いで酸素含有ガスを追加供給し、無機酸化物にルテニウムおよび白金をRu/Pt質量比5/1〜2/1で担持した触媒の存在下に酸化反応を行なう第二工程の少なくとも二段階の酸化工程からなり、第一工程および第二工程において、反応圧力が常圧〜1MPa、反応温度が100〜300℃、GHSVが1,000〜50,000h −1 の条件下で一酸化炭素を選択的に酸化して該原料ガスから一酸化炭素濃度を低減する方法。A method for reducing the concentration of carbon monoxide from a raw material gas containing carbon monoxide and hydrogen, wherein an oxygen-containing gas is added to the raw material gas at a molar ratio of oxygen to carbon monoxide in the raw material gas of 0.5 to In addition, the first step of performing an oxidation reaction in the presence of a catalyst in which ruthenium is supported on an inorganic oxide is added, and then an oxygen-containing gas is additionally supplied. Ru / Pt mass ratio of ruthenium and platinum to the inorganic oxide It consists of at least two stages of oxidation processes of a second process in which an oxidation reaction is carried out in the presence of a catalyst supported at 5/1 to 2/1. In the first process and the second process, the reaction pressure is normal pressure to 1 MPa. A method of selectively oxidizing carbon monoxide under conditions of a temperature of 100 to 300 ° C. and a GHSV of 1,000 to 50,000 h −1 to reduce the carbon monoxide concentration from the raw material gas. 原料ガスが炭化水素、アルコールまたはエーテルを脱硫反応、改質反応および水性ガスシフト反応することにより得られたものであることを特徴とする請求項1に記載の方法。The method according to claim 1, wherein the raw material gas is obtained by subjecting hydrocarbon, alcohol or ether to desulfurization reaction, reforming reaction and water gas shift reaction. 原料ガス中の一酸化炭素濃度が0.1〜2vol%であることを特徴とする請求項1または2に記載の方法。The method according to claim 1 or 2 , wherein the concentration of carbon monoxide in the raw material gas is 0.1 to 2 vol%. 酸化処理後の生成ガス中の一酸化炭素濃度が100volppm以下であることを特徴とする請求項1〜のいずれかの項に記載の方法。The method according to any one of claims 1 to 3 , wherein the concentration of carbon monoxide in the product gas after the oxidation treatment is 100 volppm or less. 炭化水素、アルコールおよびエーテルから選ばれる燃料を脱硫処理、改質反応および水性ガスシフト反応を行って得られる一酸化炭素および水素を含有する原料ガスに酸素含有ガスを酸素と原料ガス中の一酸化炭素の比がモル比で0.5〜2となるように加え、無機酸化物にルテニウムを担持した触媒の存在下に酸化反応を行なう第一工程、次いで酸素含有ガスを追加供給し、無機酸化物にルテニウムおよび白金をRu/Pt質量比5/1〜2/1で担持した触媒の存在下に酸化反応を行なう第二工程からなる一酸化炭素の二段階酸化反応を行って得られる燃料ガスを陰極側燃料として供給することを特徴とする燃料電池システム。Hydrocarbons, desulfurized fuel selected from alcohols and ethers, reforming and water gas shift carbon monoxide feed gas containing oxygen gas oxygen and the raw material gas to the containing carbon monoxide and hydrogen obtained by performing the reaction ratio is added to a 0.5 to 2 molar ratio, the first step of performing an oxidation reaction in the presence of a catalyst supporting ruthenium on an inorganic oxide, and then add supplying an oxygen-containing gas, inorganic oxides A fuel gas obtained by carrying out a two-step oxidation reaction of carbon monoxide comprising a second step in which an oxidation reaction is carried out in the presence of a catalyst carrying ruthenium and platinum at a Ru / Pt mass ratio of 5/1 to 2/1. A fuel cell system, characterized in that it is supplied as a cathode side fuel.
JP2001301040A 2001-09-28 2001-09-28 Method and fuel cell system for reducing carbon monoxide concentration Expired - Fee Related JP4582976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301040A JP4582976B2 (en) 2001-09-28 2001-09-28 Method and fuel cell system for reducing carbon monoxide concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301040A JP4582976B2 (en) 2001-09-28 2001-09-28 Method and fuel cell system for reducing carbon monoxide concentration

Publications (2)

Publication Number Publication Date
JP2003104703A JP2003104703A (en) 2003-04-09
JP4582976B2 true JP4582976B2 (en) 2010-11-17

Family

ID=19121518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301040A Expired - Fee Related JP4582976B2 (en) 2001-09-28 2001-09-28 Method and fuel cell system for reducing carbon monoxide concentration

Country Status (1)

Country Link
JP (1) JP4582976B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032605A (en) * 2003-07-07 2005-02-03 Sony Corp Carbon monoxide remover, fuel cell, and fuel cell device
KR100552697B1 (en) * 2003-11-13 2006-02-20 삼성에스디아이 주식회사 Metal oxide-carbon composite catalyst support and fuel cell comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133702A (en) * 1994-10-31 1996-05-28 Aqueous Res:Kk Carbon monoxide removing device and method therefor
JPH10302821A (en) * 1997-04-25 1998-11-13 Toshiba Corp Carbon monoxide reducing device for solid high polymer fuel cell and its operating method
JPH11310402A (en) * 1998-04-27 1999-11-09 Toyota Motor Corp Carbon monoxide concentration reducing system, carbon monoxide concentration reduction, and production of carbon monoxide selectively oxidative catalyst
JP2000044204A (en) * 1998-07-29 2000-02-15 Matsushita Electric Ind Co Ltd Hydrogen purifying device
JP2001068136A (en) * 1999-08-25 2001-03-16 Osaka Gas Co Ltd Solid high-polymer fuel cell system and operating method therefor
JP2001226107A (en) * 2000-02-18 2001-08-21 Ishikawajima Harima Heavy Ind Co Ltd Device and method for selectively removing co

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133702A (en) * 1994-10-31 1996-05-28 Aqueous Res:Kk Carbon monoxide removing device and method therefor
JPH10302821A (en) * 1997-04-25 1998-11-13 Toshiba Corp Carbon monoxide reducing device for solid high polymer fuel cell and its operating method
JPH11310402A (en) * 1998-04-27 1999-11-09 Toyota Motor Corp Carbon monoxide concentration reducing system, carbon monoxide concentration reduction, and production of carbon monoxide selectively oxidative catalyst
JP2000044204A (en) * 1998-07-29 2000-02-15 Matsushita Electric Ind Co Ltd Hydrogen purifying device
JP2001068136A (en) * 1999-08-25 2001-03-16 Osaka Gas Co Ltd Solid high-polymer fuel cell system and operating method therefor
JP2001226107A (en) * 2000-02-18 2001-08-21 Ishikawajima Harima Heavy Ind Co Ltd Device and method for selectively removing co

Also Published As

Publication number Publication date
JP2003104703A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP4897434B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP5105937B2 (en) Method for reducing carbon monoxide concentration
US8093178B2 (en) Catalyst for reducing carbon monoxide concentration
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4080225B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP5204633B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP4210130B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4582976B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP2003265956A (en) Catalyst for selectively oxidizing carbon monoxide, method of reducing concentration of carbon monoxide, and fuel cell system
JP4037122B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP4567930B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP2007167828A (en) Catalyst for selectively oxidizing carbon monoxide, method for decreasing concentration of carbon monoxide and fuel cell system
JP4011886B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP2004223415A (en) Catalyst for selective oxidation of carbon monoxide, method for decreasing carbon monoxide concentration, and fuel cell system
JP5537232B2 (en) Method for reducing carbon monoxide concentration, hydrogen production apparatus, and fuel cell system
JP4881078B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP5041781B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP2003284950A (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing concentration of carbon monoxide, and fuel battery system
JP4820711B2 (en) Method for evaluating selective oxidation ability of catalyst and method for producing high concentration hydrogen-containing gas
JP5117014B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP5462686B2 (en) Method for producing hydrocarbon desulfurization agent, hydrocarbon desulfurization method, fuel gas production method, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees