JP4581126B2 - X-ray diffraction analysis method and X-ray diffraction analysis apparatus - Google Patents

X-ray diffraction analysis method and X-ray diffraction analysis apparatus Download PDF

Info

Publication number
JP4581126B2
JP4581126B2 JP2005066097A JP2005066097A JP4581126B2 JP 4581126 B2 JP4581126 B2 JP 4581126B2 JP 2005066097 A JP2005066097 A JP 2005066097A JP 2005066097 A JP2005066097 A JP 2005066097A JP 4581126 B2 JP4581126 B2 JP 4581126B2
Authority
JP
Japan
Prior art keywords
ray
sample
diffracted
wavelength
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005066097A
Other languages
Japanese (ja)
Other versions
JP2006250642A (en
Inventor
健次 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005066097A priority Critical patent/JP4581126B2/en
Priority to PCT/JP2005/018047 priority patent/WO2006095467A1/en
Publication of JP2006250642A publication Critical patent/JP2006250642A/en
Application granted granted Critical
Publication of JP4581126B2 publication Critical patent/JP4581126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、多結晶体、歪みや欠陥を有する部材等の不均一な結晶構造をもつ試料の局所構造情報を備えるX線回折図形を取得するためのX線回折分析方法およびX線回折分析装置に関する。   The present invention relates to an X-ray diffraction analysis method and an X-ray diffraction analysis apparatus for obtaining an X-ray diffraction pattern having local structure information of a sample having a non-uniform crystal structure such as a polycrystal, a member having a strain or a defect. About.

X線回折法は、X線を結晶性の試料に照射したときに生じる回折X線を検出することにより、その試料の結晶構造に対応するX線回折図形を得る技術である。X線回折図形は、目的や使用する装置に応じてさまざまな形式で取得されることが知られている。例えば、通常の粉末X線回折計では回折角度と回折X線強度が組となったデータの形で取得され、横軸に回折角をとり縦軸に回折X線強度をとったグラフで表現される。デバイ・シェラーカメラ等では、回折X線の強度が濃淡として現れた写真としてX線回折図形が取得される。   The X-ray diffraction method is a technique for obtaining an X-ray diffraction pattern corresponding to the crystal structure of a sample by detecting diffraction X-rays generated when the crystalline sample is irradiated with X-rays. It is known that X-ray diffraction patterns are acquired in various formats depending on the purpose and the apparatus used. For example, in a normal powder X-ray diffractometer, it is acquired in the form of a set of diffraction angle and diffraction X-ray intensity data, and is represented by a graph with the horizontal axis representing the diffraction angle and the vertical axis representing the diffraction X-ray intensity. The In a Debye-Scherrer camera or the like, an X-ray diffraction pattern is acquired as a photograph in which the intensity of diffracted X-rays appears as shading.

一般的に粉末(多結晶体)を対象として用いる粉末X線回折法は、均一で且つランダムな配向をもつ試料の結晶構造を知ることを目的としている。したがって、複数の回折スポット(回折X線強度が強いところ、回折X線強度プロファイルではピークとしてあらわれる)を収集してその強度や相互の幾何学的な位置関係を把握することが重要である。そのために、典型的には、試料を照らす入射X線としてX線管からの特性X線を用い、2軸ゴニオメータのいわゆるθ/2θ走査によって試料からの回折X線の強度の回折角依存性強度プロファイルを測定する。   In general, the powder X-ray diffraction method using powder (polycrystal) as a target is intended to know the crystal structure of a sample having a uniform and random orientation. Therefore, it is important to collect a plurality of diffraction spots (where the diffracted X-ray intensity is strong, which appears as a peak in the diffracted X-ray intensity profile) and to grasp the intensity and the geometrical positional relationship between them. Therefore, typically, characteristic X-rays from an X-ray tube are used as incident X-rays to illuminate the sample, and the diffraction angle-dependent intensity of the intensity of the diffracted X-rays from the sample by so-called θ / 2θ scanning with a two-axis goniometer Measure the profile.

一方、X線回折測定を目的に作られた試料ではない、いわゆる実試料は、例えば、異なる結晶構造が共存する、方位の異なる集合組織が含まれている、欠陥がある、負荷をあたえられたことによる結晶構造の歪みがある等の不均一な場合が多く、試料の各部位の局所的な結晶構造を知ることも重要となる。しかし、上述の一般的な粉末X線回折法で得られる情報は試料のうちの入射X線で照らされた領域の平均情報であるため、部位による結晶構造の差異についての情報を得ることはできない。   On the other hand, a so-called real sample that is not a sample made for the purpose of X-ray diffraction measurement includes, for example, a texture in which different crystal structures coexist, different orientations are included, is defective, and is loaded. In many cases, the crystal structure is non-uniform such as distortion of the crystal structure, and it is important to know the local crystal structure of each part of the sample. However, since the information obtained by the above general powder X-ray diffraction method is the average information of the region illuminated by the incident X-ray of the sample, it is not possible to obtain information on the difference in crystal structure depending on the part. .

そこで、試料に照射するX線のビームサイズを小さくして試料の各部位の情報を得る技術が提案された(非特許文献1)。確かに、微小なビームサイズの入射X線を用い、試料ステージのXY走査でX線照射領域を変え、各照射領域で従来の粉末X線回折法と同様に2軸ゴニオメータのθ/2θ走査による測定を行えば、試料の各部位の情報を得ることは可能である。しかし、一試料の測定に膨大な時間がかかってしまうという問題がある。例えば、試料上の1点分のX線回折図形を得るのに要する時間が一般的な粉末X線回折法による測定時間と同様の20〜30分程度であるとすれば、仮にもし試料上での測定点数が100×100の10000点であれば測定に約5000時間、すなわち約200日もかかることになる。   Therefore, a technique has been proposed in which the X-ray beam size irradiated on the sample is reduced to obtain information on each part of the sample (Non-Patent Document 1). Certainly, incident X-rays with a small beam size are used, the X-ray irradiation areas are changed by XY scanning of the sample stage, and each irradiation area is scanned by θ / 2θ scanning of a biaxial goniometer as in the conventional powder X-ray diffraction method. If measurement is performed, it is possible to obtain information on each part of the sample. However, there is a problem that it takes a long time to measure one sample. For example, if the time required to obtain an X-ray diffraction pattern for one point on the sample is about 20 to 30 minutes, which is the same as the measurement time by a general powder X-ray diffraction method, If the number of measurement points is 10,000 of 100 × 100, the measurement takes about 5000 hours, that is, about 200 days.

測定時間を短縮するために、最近では、一次元または二次元の位置敏感型検出器を用いて検出器の各素子で異なる回折角度の回折X線の情報を検出することにより、2軸ゴニオメータのθ/2θ走査を省略する技術が一般的となっている。しかし、試料の各部位の情報を得るために部位ごとに1点ずつ測定しなければならないことにはかわりがないため、試料の広い領域中の各部位の情報を得ようとすると測定点が多数となり依然として測定に長時間を要してしまう。   In order to shorten the measurement time, recently, by using a one-dimensional or two-dimensional position sensitive detector, each element of the detector detects information of diffracted X-rays having different diffraction angles. A technique in which θ / 2θ scanning is omitted is common. However, since it is not necessary to measure one point for each part in order to obtain information on each part of the sample, there are many measurement points when trying to obtain information on each part in a wide area of the sample. It still takes a long time to measure.

他方、試料を入射X線の光軸に対して垂直な軸のまわりで回転可能に支持し、位置敏感
型検出器を入射X線に対する散乱角(2θ角)を固定して設置し、試料と位置敏感型検出器との間にコリメータを配置することによって試料表面の被測定領域中の各部位と位置敏感型検出器の各検出素子とを一対一で対応付け、被測定領域全体を平行性のよい単色X線で照らして各部位からの回折X線をそれぞれ別の検出素子で検出することにより、試料上の測定点の走査を省略して試料のθ走査だけによって回折図形を得る技術も提案されている(特許文献1)。この技術では、一般的な粉末回折法で要する測定時間と同程度の時間で試料の各部位の結晶構造の情報を得ることができる。しかし、試料のθ走査の際に試料上の各部位と検出器上の各素子との対応付けがかわらないようにするために試料位置の厳密な調整が必要である。また、試料を回転させるために、試料とコリメータとの間に試料外形のサイズに相応の距離を必ずとる必要があるため、外形の大きな試料を測定しようとすると、装置もそれに応じて大きくする必要があり、また回折X線の検出効率も悪くなってしまう。測定中に試料を回転させても入射X線が被測定領域を照らし続けるようにするには、入射X線のビームサイズが大きくなければならないという問題もある。
Y. Chikaura, Y. Yoneda and G. Hildebrandt, "Polycrystal scattering topography", Journal of Applied Crystallography, vol.15, pp.48-54, 1982 ドイツ特許第4430615号公報(DE4430615C2)
On the other hand, the sample is supported so as to be rotatable about an axis perpendicular to the optical axis of the incident X-ray, and the position sensitive detector is installed with a fixed scattering angle (2θ angle) with respect to the incident X-ray. By placing a collimator between the position-sensitive detector and each part in the measurement area on the sample surface and each detection element of the position-sensitive detector, the entire measurement area is parallel. A technique to obtain diffraction patterns only by θ-scanning of the sample without scanning the measurement point on the sample by detecting the diffracted X-rays from each part with separate detection elements by illuminating with good monochromatic X-rays It has been proposed (Patent Document 1). With this technique, information on the crystal structure of each part of the sample can be obtained in a time comparable to the measurement time required for a general powder diffraction method. However, strict adjustment of the sample position is necessary so that the correspondence between each part on the sample and each element on the detector is not changed during the θ scan of the sample. In addition, in order to rotate the sample, it is necessary to take a distance corresponding to the size of the sample outer shape between the sample and the collimator. Therefore, if a sample with a large outer shape is to be measured, the apparatus needs to be enlarged accordingly. In addition, the detection efficiency of diffracted X-rays also deteriorates. There is another problem that the beam size of incident X-rays must be large so that incident X-rays continue to illuminate the region to be measured even if the sample is rotated during measurement.
Y. Chikaura, Y. Yoneda and G. Hildebrandt, "Polycrystal scattering topography", Journal of Applied Crystallography, vol.15, pp.48-54, 1982 German Patent No. 4430615 (DE4430615C2)

本発明は、不均一な結晶構造を有する試料の局所構造情報を備えるX線回折図形、特に二次元の回折X線強度分布画像を短時間で容易に取得することを可能とするX線回折分析方法を提供することを課題とする。また、そのようなX線回折分析方法を実施するための簡単な構成のX線回折分析装置を提供することも課題とする。   The present invention provides an X-ray diffraction analysis that makes it possible to easily acquire an X-ray diffraction pattern including local structure information of a sample having a non-uniform crystal structure, particularly a two-dimensional diffraction X-ray intensity distribution image in a short time. It is an object to provide a method. It is another object of the present invention to provide an X-ray diffraction analyzer having a simple configuration for carrying out such an X-ray diffraction analysis method.

前記第一の課題は、本発明により、単色の入射X線が試料表面の二次元位置敏感型検出器によって見込まれる被測定領域全体を照らすように試料を固定配置すること、試料と二次元位置敏感型検出器との間の距離を調節するための機構を用いて、試料表面に対して前記二次元位置敏感型検出器の検出器面が正対した位置で試料表面と前記検出器面との間の距離が2〜5mmとなるようにすること、試料で回折されて二次元位置敏感型検出器で検出される回折X線の入射X線に対する散乱角(回折角、入射X線の光軸と回折X線の光軸の間の角)が所望の角度になるように二次元位置敏感型検出器を固定配置すること、単色の入射X線を試料に照射したときに被測定領域内の異なる部位から出射する回折X線をそれぞれ二次元位置敏感型検出器の別々の検出素子で区別して検出し、各検出素子が検出した回折X線強度を各画素値とする二次元の回折X線画像を形成すること、単色の入射X線の光軸、試料、および二次元位置敏感型検出器を固定した状態で単色の入射X線の波長を所望の波長範囲内で変化させながら測定を行い、複数の波長値に対してそれぞれ二次元の回折X線画像を形成してそれらを波長値情報とともに一つのセットとして記録することを特徴とするX線回折分析方法によって解決される。
The first problem is that, according to the present invention, the sample is fixedly arranged so that the monochromatic incident X-rays illuminate the entire measurement region expected by the two-dimensional position sensitive detector on the sample surface, and the sample and the two-dimensional position. Using a mechanism for adjusting the distance to the sensitive detector, the sample surface, the detector surface, and the detector surface at a position where the detector surface of the two-dimensional position sensitive detector faces the sample surface. And the scattering angle (diffraction angle, incident X-ray light) of the diffracted X-rays diffracted by the sample and detected by the two-dimensional position-sensitive detector. The two-dimensional position sensitive detector is fixedly arranged so that the angle between the axis and the optical axis of the diffracted X-ray becomes a desired angle, and within the measurement area when the sample is irradiated with monochromatic incident X-rays. Two-dimensional position sensitive detector for diffracted X-rays emitted from different parts Forming a two-dimensional diffracted X-ray image having each pixel value as a diffracted X-ray intensity detected by each detecting element, distinguishing it with a separate detecting element, an optical axis of a monochromatic incident X-ray, a sample, and Measures while changing the wavelength of the incident X-ray of a single color within a desired wavelength range with a two-dimensional position sensitive detector fixed, and forms a two-dimensional diffraction X-ray image for each of multiple wavelength values. Then, they are solved by an X-ray diffraction analysis method characterized in that they are recorded as a set together with wavelength value information.

前記第二の課題は、単色の入射X線を波長可変且つ光軸固定に発生させるX線発生部が固定配置されていること、二次元に配列された複数の検出素子を備える二次元位置敏感型検出器を複数の散乱角度位置でそれぞれ測定中固定保持できること、前記入射X線が試料表面の前記二次元位置敏感型検出器により見込まれる被測定領域全体を照らすように、試料を測定中固定保持できること、前記試料と前記二次元位置敏感型検出器との間に前記被測定領域内の各部位から出射する回折X線の角度発散を制限する角度発散制限手段が設けられており、前記二次元位置敏感型検出器の各検出素子が前記被測定領域内の異なる部位から出射する回折X線をそれぞれ別々に検出すること、前記検出素子がそれぞれ検出した回折X線の強度を各画素値とする二次元の回折X線画像を形成すること、前記入射X線の光軸、前記試料、および前記二次元位置敏感型検出器を固定した状態で前記入射X線の波長範囲内の複数の波長値についてそれぞれ前記二次元の回折X線画像を形成し、それらの回折X線画像を波長値情報とともに一つの画像セットとして記録すること、試料と二次元位置敏感型検出器との間の距離を調節するための機構が設けられており、試料表面に対して前記二次元位置敏感型検出器の検出器面が正対した位置で試料表面と前記検出器面との間の距離が2〜5mmとなるようにすることを特徴とするX線回折分析装置によって解決される。
The second problem is that the X-ray generator for generating a single color incident X-ray with variable wavelength and fixed optical axis is fixedly arranged, and two-dimensional position sensitive with a plurality of detector elements arranged in two dimensions. The sample detector can be fixed and held during measurement at a plurality of scattering angle positions, and the sample is fixed during measurement so that the incident X-ray illuminates the entire measurement area expected by the two-dimensional position sensitive detector on the sample surface. An angle divergence limiting means for limiting the angle divergence of the diffracted X-rays emitted from each part in the measurement area is provided between the sample and the two-dimensional position sensitive detector. Each detection element of the three-dimensional position sensitive detector separately detects diffracted X-rays emitted from different parts in the measurement region, and the intensity of the diffracted X-ray detected by the detection element is set as each pixel value. You Forming a two-dimensional diffraction X-ray images, a plurality of wavelengths in the wavelength range of the optical axis of the incident X-ray, the sample, and the incident X-ray in a state in which the fixed two-dimensional position sensitive detector Forming two-dimensional diffracted X-ray images for each value, recording the diffracted X-ray images together with wavelength value information as one image set , and determining the distance between the sample and the two-dimensional position sensitive detector A mechanism for adjustment is provided, and the distance between the sample surface and the detector surface is 2 to 5 mm at a position where the detector surface of the two-dimensional position sensitive detector faces the sample surface. This is solved by an X-ray diffraction analyzer characterized in that

本発明に係るX線回折分析方法およびX線回折分析装置では、試料の被測定領域内の各部位から出射する回折X線を部位ごとに別々の検出素子で同時に測定するので、小さいビームサイズのX線を用いた技術では欠くことのできない被測定領域内の各部位の一点ずつの走査をしなくても、その走査を行ったのと同じ情報を取得することができる。したがって、そのような技術を用いる場合と比較して劇的に短い時間で一試料の測定を実施することができる。また、各検出素子で検出された回折X線強度がそのまま回折X線画像の各画素の画素値として記録されるので、局所的に異なる結晶構造が共存する、方位の異なる集合組織が含まれている、欠陥や歪がある等の不均一な試料についても、試料の格子面間隔に対応するデータである構造情報を、全体を平均した構造情報としてではなく部位ごとの個別の構造情報として二次元画像中の分布の形で簡単且つ迅速に取得することができる。さらに、回折X線強度のプロファイルの回折角度依存性ではなく波長依存性を利用することを基本とするので、測定中は試料も二次元位置敏感型検出器も動かす必要がない。そのため、通常のX線回折測定において用いられるような高精度の移動機構を一切必要としない簡単な構成のX線回折分析装置を実現できる。また、コンパクトな構造にしても測定中に試料周辺部と検出器周辺部とがぶつかる危険がない。さらに、測定の最中に試料の被測定領域内の各部位と二次元位置敏感型検出器の各検出素子との対応関係が変わってしまうという問題も生じることがない。入射X線と試料の被測定領域との関係も固定されているので、入射X線のビームサイズを大きめに見積もっておかなければ測定中に被測定領域全体を照らせなくなるという問題も生じない。本発明に係るX線回折分析装置では複数の散乱角度位置を測定に利用できるので、入射X線の使用可能な波長範囲が狭く限られている場合にも測定に用いる散乱角度を変えることによってさまざまな格子面についての構造情報を取得することが可能である。   In the X-ray diffraction analysis method and the X-ray diffraction analysis apparatus according to the present invention, since the diffracted X-rays emitted from each part in the measurement region of the sample are simultaneously measured by separate detection elements for each part, a small beam size is obtained. The same information as that of the scanning can be acquired without scanning one point at a time in each region in the measurement region, which is indispensable with the technique using X-rays. Therefore, the measurement of one sample can be carried out in a dramatically shorter time than when such a technique is used. In addition, since the diffracted X-ray intensity detected by each detection element is recorded as it is as the pixel value of each pixel of the diffracted X-ray image, it includes textures with different orientations in which locally different crystal structures coexist. Even for non-uniform samples such as defects and strains, the structure information, which is data corresponding to the lattice plane spacing of the sample, is not two-dimensionally expressed as individual structure information for each part, but as average structure information. It can be acquired easily and quickly in the form of a distribution in the image. Furthermore, since it is based on using the wavelength dependency rather than the diffraction angle dependency of the profile of the diffracted X-ray intensity, it is not necessary to move the sample or the two-dimensional position sensitive detector during the measurement. Therefore, it is possible to realize an X-ray diffraction analyzer having a simple configuration that does not require any highly accurate movement mechanism used in normal X-ray diffraction measurement. Further, even if the structure is compact, there is no risk of collision between the sample periphery and the detector periphery during measurement. Furthermore, there is no problem that the correspondence between each part in the measurement region of the sample and each detection element of the two-dimensional position sensitive detector changes during measurement. Since the relationship between the incident X-ray and the measured region of the sample is also fixed, there is no problem that the entire measured region cannot be illuminated during measurement unless the beam size of the incident X-ray is estimated to be large. In the X-ray diffraction analyzer according to the present invention, a plurality of scattering angle positions can be used for the measurement, and therefore, by changing the scattering angle used for the measurement even when the usable wavelength range of the incident X-ray is narrow and limited, It is possible to acquire structural information about a simple lattice plane.

本発明に係るX線回折分析方法において、単色の入射X線の波長を、所望の格子面についての回折スポットの回折X線強度の波長依存プロファイルの波長に対する広がりとほぼ同じ波長範囲で変化させ、少なくとも回折X線強度が最大となる波長、前記波長範囲の最長波長および最短波長の三つの波長値について二次元の回折X線画像を形成してそれらを波長値情報とともに一つのセットとして記録することにより、それらの画像の比較から観察対象とした格子面を有する結晶構造の分布を簡単に取得することができる。   In the X-ray diffraction analysis method according to the present invention, the wavelength of the monochromatic incident X-ray is changed in a wavelength range substantially the same as the spread of the diffraction X-ray intensity of the diffraction spot with respect to the wavelength of the desired grating plane with respect to the wavelength, Forming a two-dimensional diffracted X-ray image for at least three wavelengths, the wavelength at which the diffracted X-ray intensity is maximum, the longest wavelength and the shortest wavelength in the wavelength range, and recording them as a set together with wavelength value information Thus, the distribution of the crystal structure having the lattice plane to be observed can be easily obtained from the comparison of the images.

本発明に係るX線回折分析方法において、被測定領域の各部位から出射する回折X線の角度発散を角度発散制限手段で制限することによって被測定領域の異なる部位から出射する回折X線をそれぞれ二次元位置敏感型検出器の別々の検出素子で区別して検出するようにすれば、より高い位置分解能で試料の結晶構造分布画像を作成することができる。   In the X-ray diffraction analysis method according to the present invention, each of the diffracted X-rays emitted from different parts of the measurement region is controlled by limiting the angle divergence of the diffracted X-rays emitted from each part of the measurement region by the angle divergence limiting means. If the two-dimensional position-sensitive detectors are used for distinction and detection, a crystal structure distribution image of the sample can be created with higher position resolution.

本発明に係るX線回折分析方法において、単色の入射X線の入射角度が試料表面に対して0〜3度となるように試料位置を固定することにより、細長い線状の断面をもつ入射X線ビームを使用しても試料表面の広い領域を均一に照らすことが可能となる。   In the X-ray diffraction analysis method according to the present invention, by fixing the sample position so that the incident angle of the monochromatic incident X-ray is 0 to 3 degrees with respect to the sample surface, the incident X having an elongated linear cross section is obtained. Even when a line beam is used, it is possible to uniformly illuminate a wide area of the sample surface.

本発明に係るX線回折分析方法において、複数の散乱角度位置でそれぞれ同一の格子面間隔に対応する強度ピークを示す波長値を中心とする所望の波長範囲内の複数の波長値に対する二次元の回折X線画像のセットを形成し、それらの複数の画像セットを用いて試料の応力分布を表す二次元画像を作成すれば、試料の広い領域での応力分布を短時間で簡単に知ることができる。その際、応力測定にはできるだけ大きな散乱角度に回折スポットをもつ格子面を用いることが有利であるので、入射X線の入射角度が試料表面に対して0〜3度となるような薄膜配置の場合には、検出される回折X線の試料表面に対する出射角度が60度、90度、120度となる散乱角度位置を含む三つ以上の散乱角度位置でそれぞれ格子面間隔に対応する強度ピークを示す波長値を含む所望の波長範囲内の複数の波長値
に対する二次元の回折X線画像のセットを形成すると、試料・検出器面間距離を問題が生ずるほど大きくすることなしに回折X線画像セットの取得を行い、精度のよい応力分布画像を形成することができる。
In the X-ray diffraction analysis method according to the present invention, two-dimensional for a plurality of wavelength values within a desired wavelength range centered on a wavelength value indicating an intensity peak corresponding to the same lattice spacing at a plurality of scattering angle positions. By forming a set of diffracted X-ray images and creating a two-dimensional image representing the stress distribution of the sample using these multiple image sets, the stress distribution in a wide area of the sample can be easily known in a short time. it can. At that time, since it is advantageous to use a grating surface having a diffraction spot at a scattering angle as large as possible for stress measurement, a thin film arrangement in which the incident angle of incident X-rays is 0 to 3 degrees with respect to the sample surface. In some cases, the intensity peaks corresponding to the lattice plane spacing at three or more scattering angle positions including the scattering angle positions at which the exit angles of the detected diffracted X-rays to the sample surface are 60 degrees, 90 degrees, and 120 degrees, respectively. When a set of two-dimensional diffracted X-ray images for a plurality of wavelength values within a desired wavelength range including the indicated wavelength value is formed, the diffracted X-ray image is not increased so as to cause a problem. A set can be acquired and an accurate stress distribution image can be formed.

本発明に係るX線回折分析装置において、試料表面が水平に位置するように試料が固定配置されると、液体に浮いた析出物のような不安定な試料の測定の際に有利である。   In the X-ray diffraction analysis apparatus according to the present invention, if the sample is fixedly arranged so that the sample surface is positioned horizontally, it is advantageous when measuring an unstable sample such as a precipitate floating in a liquid.

本発明に係るX線回折分析装置において、試料表面に対する入射X線の入射角が0〜3度の範囲内の角度になるように試料が固定配置されると、細長い線状の断面をもつ入射X線ビームを使用しても試料表面の広い領域を均一に照らすことが可能となり有利である。その際、検出される回折X線の試料表面に対する出射角度が60〜120度の角度範囲内になるような複数の散乱角度位置でそれぞれ二次元位置敏感型検出器を測定中固定保持できることが望ましい。   In the X-ray diffraction analyzer according to the present invention, when the sample is fixedly arranged so that the incident angle of the incident X-ray with respect to the sample surface is in the range of 0 to 3 degrees, the incident light has an elongated linear cross section. Even when an X-ray beam is used, it is possible to uniformly illuminate a wide area of the sample surface, which is advantageous. At this time, it is desirable that the two-dimensional position-sensitive detector can be fixedly held during measurement at a plurality of scattering angle positions such that the exit angle of the detected diffracted X-rays with respect to the sample surface is within an angle range of 60 to 120 degrees. .

本発明に係るX線回折分析装置において、二次元位置敏感型検出器が任意の散乱角度位置でそれぞれ測定中固定保持され得ると、目的の格子面と使用可能な波長範囲に応じて自由に検出器位置を選択することができるので有利である。   In the X-ray diffraction analyzer according to the present invention, if the two-dimensional position sensitive detector can be fixedly held during measurement at any scattering angle position, it can be freely detected according to the target grating plane and the usable wavelength range. Advantageously, the vessel position can be selected.

本発明に係るX線回折分析装置において、試料と二次元位置敏感型検出器との間の距離を調節する機構が設けられていると、それぞれの散乱角度位置で最適な試料・検出器間距離を選択することができるので有利である。   In the X-ray diffraction analysis apparatus according to the present invention, when a mechanism for adjusting the distance between the sample and the two-dimensional position sensitive detector is provided, the optimum sample-detector distance at each scattering angle position is provided. Is advantageous.

本発明に係るX線回折分析装置において、試料の位置および傾きを微調整するための位置・傾角調整機構を有すると、試料のサイズや形状に応じて最適な状態で試料表面を入射X線で照らすことが可能となる。   In the X-ray diffraction analysis apparatus according to the present invention, when a position / tilt angle adjusting mechanism for finely adjusting the position and tilt of the sample is provided, the sample surface is irradiated with incident X-rays in an optimum state according to the size and shape of the sample. It can be illuminated.

以下に、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る多結晶体、歪みや欠陥を有する部材等の不均一な結晶構造を有する試料の局所構造情報を備えるX線回折図形を取得するためのX線回折分析方法では、まず、単色の入射X線が試料表面の所望の被測定領域全体を照射するように被測定領域の位置および入射X線に対する試料表面の傾きを決定し、試料を固定配置する。試料位置を固定した後、試料で回折されて検出器で検出される回折X線の入射X線に対する散乱角が所望の角度になる検出器角度位置に二次元位置敏感型検出器を配置し、固定する。ここでは試料位置を決定した後に、検出器位置を決定することを想定しているが、これを逆にしてもかまわない。試料と検出器を固定した後、試料に単色の入射X線を照射し、回折X線強度の測定を行う。被測定領域を二次元位置敏感型検出器を構成する各検出素子に対応して複数の部位に分割して考えると、被測定領域内の異なる部位から出射する回折X線はそれぞれ別々の検出素子で区別して検出される。回折X線強度を検出後、各検出素子が検出した回折X線強度をそれぞれの画素値とする二次元の回折X線画像を形成し、記録する。さらに、単色の入射X線の光軸、試料、および二次元位置敏感型検出器は固定したままで、入射X線の波長を所望の波長範囲内で変化させて、同様に回折X線強度の検出、二次元の回折X線画像の形成、記録を行うことを繰り返す。このようにして、単色の入射X線の波長を所望の範囲で順次変化させながら特定の波長の入射X線に対して回折X線強度測定を行い、それぞれ二次元の回折X線画像を形成して記録することにより、異なる波長値に対する二次元の回折X線画像を波長値情報とともに一つのセットとして記録することができる。入射X線の波長を変えて測定を繰り返す際に、試料および二次元位置敏感型検出器および試料表面の入射X線によって照らされる領域は固定されていて動くことがないので、すべての回折X線画像についてある特定の画素はある特定の試料部位に対応している。したがって
、これらの回折X線画像のセットからそれぞれの部位による結晶構造の違いの情報を例えば画像の明暗のコントラストとして得ることができる。
In the X-ray diffraction analysis method for obtaining an X-ray diffraction pattern having local structure information of a sample having a non-uniform crystal structure such as a polycrystalline body, a member having strain or a defect according to the present invention, The position of the measurement region and the inclination of the sample surface with respect to the incident X-ray are determined so that the incident X-ray irradiates the entire desired measurement region on the sample surface, and the sample is fixedly arranged. After fixing the sample position, a two-dimensional position sensitive detector is arranged at the detector angular position where the scattering angle of the diffracted X-ray diffracted by the sample and detected by the detector with respect to the incident X-ray becomes a desired angle, Fix it. Here, it is assumed that the detector position is determined after the sample position is determined, but this may be reversed. After fixing the sample and the detector, the sample is irradiated with monochromatic incident X-rays, and the diffraction X-ray intensity is measured. When the measurement area is divided into a plurality of parts corresponding to the respective detection elements constituting the two-dimensional position sensitive detector, the diffracted X-rays emitted from different parts in the measurement area are separately detected elements. Are detected separately. After detecting the diffracted X-ray intensity, a two-dimensional diffracted X-ray image is formed and recorded with the diffracted X-ray intensity detected by each detection element as the respective pixel value. Further, the optical axis of the monochromatic incident X-ray, the sample, and the two-dimensional position-sensitive detector are fixed, and the wavelength of the incident X-ray is changed within the desired wavelength range, and the diffraction X-ray intensity is similarly changed. Repeat detection, formation of a two-dimensional diffraction X-ray image, and recording. In this way, diffracted X-ray intensity measurement is performed on incident X-rays of a specific wavelength while sequentially changing the wavelength of monochromatic incident X-rays within a desired range, and a two-dimensional diffraction X-ray image is formed respectively. Recording two-dimensional diffracted X-ray images for different wavelength values together with wavelength value information can be recorded as one set. When the measurement is repeated while changing the wavelength of the incident X-ray, the region illuminated by the sample and the two-dimensional position-sensitive detector and the incident X-ray on the sample surface is fixed and does not move. A specific pixel in the image corresponds to a specific sample site. Therefore, information on the difference in crystal structure depending on each part can be obtained from the set of these diffracted X-ray images, for example, as the contrast of light and dark images.

本発明に係るX線回折分析方法では、多くの場合1つまたはいくつかの特定の格子面に対応する回折スポットに着目し、その回折スポットに対応する波長の入射X線に対して試料内のある部位は明るく別の部位は暗いといったコントラストをもつ回折X線強度像を取得する。試料上の位置と画像の各画素とが1対1に対応しているので、画像の明暗から試料のどの部位に注目した格子面をもつ結晶構造が存在するのかを容易に知ることができる。   In the X-ray diffraction analysis method according to the present invention, in many cases, attention is paid to a diffraction spot corresponding to one or several specific grating planes, and an incident X-ray having a wavelength corresponding to the diffraction spot is reflected in the sample. A diffracted X-ray intensity image having a contrast such that a certain part is bright and another part is dark is acquired. Since the position on the sample and each pixel of the image have a one-to-one correspondence, it is possible to easily know which part of the sample has a crystal structure having a lattice plane from the brightness of the image.

上述の被測定領域とは、試料表面を二次元の面としてみたときに、二次元位置敏感型検出器が見込む領域、すなわち二次元位置敏感型検出器によって検出され得る回折X線が出射する地点が形成する領域のことをさしている。すなわち、入射X線が試料内部に侵入して試料内部で回折X線が発生し、その回折X線が試料表面から出射するときに、試料表面を二次元の面としてみたときの被測定領域内のいずれかの部位から出射する回折X線だけが検出器で検出される。また、その出射部位(出射位置)が回折X線の発生位置と判断される。その際、試料内での実際の発生位置と出射位置との試料面上でのずれは検出器の分解能に対して無視できる程度の誤差にすぎないので無視することができる。被測定領域は、検出手段として用いる二次元位置敏感型検出器の検出器面(すべての検出素子の検出面によって形成される二次元の面)とほぼ同じ大きさであり、例えば二次元位置敏感型検出器の検出器面が10mm角であれば被測定領域もまたほぼ10mm角となる。したがって、この場合には入射X線は10mm角よりも広い領域を一度に均一に照らすように試料に対する入射角度を決められる必要がある。有利には、入射角度が試料表面に対して0〜3度程度の低角となるように試料位置を固定するとよい。このように試料表面に対して低角の入射角度で入射X線を照射する配置は、基板上に準備された薄膜を基板の影響をうけずに低バックグラウンドで測定する技術として知られており、薄膜配置と呼ばれる。本発明に係るX線回折分析方法に薄膜配置を適用する場合には、バックグラウンドを下げることにもまして、細長い線状の断面をもつ入射X線ビームでも試料表面の広い領域を均一に照らすことができるという点で効用が大きい。ただし、低角であるといっても、必ず3度より小さい角度でなければならないというものではない。0度〜3度の角度範囲にあることを基本として考えてはいるが、被測定領域の大きさと入射X線ビーム断面の大きさの関係、バックグラウンドの影響、検出器を試料に近接させて配置する場合には検出器位置と入射X線光路との関係等を考慮して、被測定領域全体を照らすという最低限の条件を満たすように決定すればよい。   The above-mentioned measurement target region is a region expected by the two-dimensional position sensitive detector when the sample surface is viewed as a two-dimensional surface, that is, a point where diffracted X-rays that can be detected by the two-dimensional position sensitive detector are emitted. Refers to the area formed by That is, when incident X-rays enter the sample and diffracted X-rays are generated inside the sample, and the diffracted X-rays are emitted from the sample surface, the sample surface is viewed as a two-dimensional surface. Only the diffracted X-rays emitted from any one of the regions are detected by the detector. Further, the emission part (exit position) is determined as the generation position of the diffracted X-ray. At that time, the deviation between the actual generation position and the emission position in the sample on the sample surface is only an error that can be ignored with respect to the resolution of the detector, and can be ignored. The area to be measured is approximately the same size as the detector surface of a two-dimensional position sensitive detector used as a detection means (a two-dimensional surface formed by the detection surfaces of all detection elements), for example, two-dimensional position sensitive If the detector surface of the mold detector is 10 mm square, the area to be measured is also approximately 10 mm square. Therefore, in this case, it is necessary to determine the incident angle with respect to the sample so that incident X-rays uniformly illuminate a region wider than 10 mm square at a time. Advantageously, the sample position may be fixed so that the incident angle is a low angle of about 0 to 3 degrees with respect to the sample surface. This arrangement of irradiating the sample surface with incident X-rays at a low incident angle is known as a technique for measuring a thin film prepared on a substrate with a low background without being affected by the substrate. , Called a thin film arrangement. When the thin film arrangement is applied to the X-ray diffraction analysis method according to the present invention, a wide area of the sample surface is uniformly illuminated even by an incident X-ray beam having an elongated linear cross section, rather than lowering the background. The utility is great in that it can be. However, even if it is a low angle, it does not necessarily mean that the angle must be smaller than 3 degrees. Although it is basically considered that the angle is in the range of 0 to 3 degrees, the relationship between the size of the region to be measured and the size of the cross section of the incident X-ray beam, the influence of the background, and the detector close to the sample In the case of the arrangement, the relationship between the detector position and the incident X-ray optical path may be taken into consideration so as to satisfy the minimum condition of illuminating the entire measurement region.

試料表面と検出器面との間の距離(試料・検出器間距離)は近ければ近いほど回折X線を効率よく検出し、短時間で測定を実施することができるが、近接した配置でないと測定ができないというものではない。したがって、この距離は二次元位置敏感型検出器およびそれに付属した角度発散制限手段等の検出部が入射X線をさえぎらない範囲で最も試料表面に近接した位置を基準とするが、装置の他の部材との位置関係、他の散乱角度位置での測定とのデータ比較上の問題等を考慮してそれより離れた位置を選んでもよい。使用する装置の構造、試料の形状やサイズにもよるが、試料表面に対して検出器面がほぼ正対した位置で2〜5mm程度、この位置から被測定領域と同一面内に入射X線の光軸に対して垂直に延在する中心軸線のまわりで二次元位置敏感型検出器位置を約±30度動かした位置で12〜15mm程度が試料表面と二次元位置敏感型検出器の検出器面との間の距離の目安である。ただし、それより離れたら測定が行えないというものではない。また、蛍光X線と回折X線とで強度の距離依存性が異なることを利用して、蛍光X線が強いバックグラウンドとなって好ましくない影響を与えるときにはあえて距離を遠ざけてもよい。   The closer the distance between the sample surface and the detector surface (distance between the sample and the detector), the more efficiently the diffracted X-ray can be detected and the measurement can be performed in a short time. It does not mean that it cannot be measured. Therefore, this distance is based on the position closest to the sample surface within the range where the detection unit such as the two-dimensional position sensitive detector and the angle divergence limiting means attached thereto does not block the incident X-ray. In consideration of the positional relationship with the member, problems in data comparison with measurements at other scattering angle positions, and the like, a position farther than that may be selected. Depending on the structure of the device used and the shape and size of the sample, the detector surface is approximately 2 to 5 mm from the sample surface. Detection of the sample surface and the two-dimensional position sensitive detector is about 12 to 15 mm at a position where the position of the two-dimensional position sensitive detector is moved about ± 30 degrees around the central axis extending perpendicular to the optical axis of the sample. This is a measure of the distance to the surface. However, it does not mean that measurement cannot be performed if it is further away. Further, by utilizing the fact that the distance dependency of the intensity differs between fluorescent X-rays and diffracted X-rays, the distance may be increased when the fluorescent X-rays have a strong background and have an undesirable effect.

一つの検出素子が異なる部位から出射した回折X線を一緒に検出することがないように
するためには、各検出素子について回折X線の光軸に平行な成分だけを選択的にとりだす手段、例えば回折X線の角度発散を抑制する角度発散制限手段、を用いるとよい。
In order to prevent one detection element from detecting diffracted X-rays emitted from different parts together, means for selectively extracting only the component parallel to the optical axis of the diffracted X-ray for each detection element; For example, angle divergence limiting means for suppressing the angle divergence of diffracted X-rays may be used.

入射X線としてどのような波長範囲の単色X線を用いることができるかは、第一に、X線発生部がどのような波長範囲で単色X線を発生させ得るかによって決まる。大気による吸収、光学系や窓材によるロス等を考えると、一般的な放射光ビームラインや実験室系のX線発生装置で利用できるのは、波長が0.31nm程度より短い(X線エネルギーが4keV程度より高い)単色X線である。ただし、これより波長の長い単色X線を発生させる手段があればそのような長波長の単色X線を利用することも考えられる。第二に、検出部の構成要素も重要な決定要因である。合成石英製キャピラリを集合させたキャピラリプレートを角度発散制限手段として用いる場合には短波長側の限界は0.095nm(X線エネルギーが13keV)程度を目安と考えるとよい。これよりも短波長のX線を使用すると回折X線がキャピラリプレートの壁部を透過してしまい、キャピラリプレートが角度発散制限手段としての用を果たさなくなってしまう。合成石英に金コーティングを施す等の処置を行えばこれよりも短波長の入射X線を使用することも可能となる。このように、角度発散制限手段の材質をも考慮して入射X線の波長を決定する必要がある。また、入射X線の波長(すなわち回折X線の波長)が短くなると検出素子の検出感度が低下することも考慮にいれなければならない。以上のことから、通常の装置構成で入射X線として利用できる単色X線の波長範囲はエネルギーにして4〜13keVの範囲であると考えておくとよい。さらに、その範囲内でも、試料の構成成分によって、吸収端波長より長い波長の単色X線を入射X線として用いて蛍光X線の発生を抑制する(すなわち、検出されるX線強度に占めるバックグラウンドの割合を低下させる)ことが望ましい。例えば、鉄鋼試料では、鉄の吸収端0.1743nm(7111eV)よりも短い波長の入射X線を照射すると鉄から発生する蛍光X線が強いバックグラウンドとなる。したがって、このような試料では事実上測定には0.1743nmよりも長波長の入射X線を用いることとなる。   What wavelength range of monochromatic X-rays can be used as incident X-rays depends first on what wavelength range the X-ray generator can generate monochromatic X-rays. Considering absorption by the atmosphere, loss due to optical systems and window materials, etc., a wavelength that is shorter than about 0.31 nm can be used with a general synchrotron beam line or a laboratory X-ray generator (X-ray energy) (Monochrome x-rays are higher than about 4 keV). However, if there is a means for generating a monochromatic X-ray having a longer wavelength than this, the use of such a long-wavelength monochromatic X-ray may be considered. Second, the components of the detector are also an important determinant. When a capillary plate in which synthetic quartz capillaries are assembled is used as the angle divergence limiting means, the limit on the short wavelength side may be considered to be about 0.095 nm (X-ray energy is 13 keV). If X-rays having a shorter wavelength are used, the diffracted X-rays pass through the wall of the capillary plate, and the capillary plate can no longer serve as angle divergence limiting means. If treatment such as applying a gold coating to synthetic quartz is performed, incident X-rays with shorter wavelengths can be used. Thus, it is necessary to determine the wavelength of the incident X-ray in consideration of the material of the angle divergence limiting means. Also, it must be taken into account that the detection sensitivity of the detection element decreases as the wavelength of incident X-rays (that is, the wavelength of diffracted X-rays) becomes shorter. From the above, it is preferable to consider that the wavelength range of monochromatic X-rays that can be used as incident X-rays in a normal apparatus configuration is in the range of 4 to 13 keV in terms of energy. Furthermore, even within that range, depending on the constituent components of the sample, the generation of fluorescent X-rays is suppressed by using a monochromatic X-ray having a wavelength longer than the absorption edge wavelength as the incident X-ray (that is, the back occupied in the detected X-ray intensity) It is desirable to reduce the ground ratio). For example, in an iron and steel sample, when an incident X-ray having a wavelength shorter than the iron absorption edge of 0.1743 nm (7111 eV) is irradiated, the fluorescent X-ray generated from the iron becomes a strong background. Therefore, in such a sample, incident X-rays having a wavelength longer than 0.1743 nm are practically used for measurement.

実際に測定する際に用いる入射X線の波長範囲は、観察しようとする試料の結晶構造と測定に用いる散乱角度(すなわち二次元位置敏感型検出器の配置角度)によって決まる。すなわち、所望の格子面についての回折スポットの回折X線強度プロファイルの波長に対する広がりよりも大きな波長範囲(回折X線強度がバックグラウンドレベルである波長から回折スポットに対応する回折X線強度ピークをはさんで再び回折X線強度がバックグラウンドレベルにおちつく波長まで)を一つの測定における単色の入射X線の波長掃引範囲(波長を変化させる範囲)とする。その範囲内で、少なくとも、回折X線強度が最大となる波長、前記波長範囲の最長波長および最短波長の三つの波長値について二次元の回折X線画像を形成してセットとして記録する。実際には、この三点を含むように所望の間隔で波長をステップ掃引しながらそれぞれの波長値に対して回折X線画像を取得する。それらの少なくとも三つの画像を比較することにより、どの部位が目的とした格子面(結晶構造)を有するかを明らかにすることができる。   The wavelength range of incident X-rays used for actual measurement is determined by the crystal structure of the sample to be observed and the scattering angle used for measurement (that is, the arrangement angle of the two-dimensional position sensitive detector). That is, a wavelength range that is larger than the spread of the diffraction spot with respect to the wavelength of the diffraction spot for the desired grating plane (the diffraction X-ray intensity peak corresponding to the diffraction spot from the wavelength at which the diffraction X-ray intensity is at the background level) Then, the wavelength sweep range (the range in which the wavelength is changed) of the monochromatic incident X-ray in one measurement is defined as the wavelength at which the diffraction X-ray intensity falls to the background level again. Within that range, a two-dimensional diffraction X-ray image is formed and recorded as a set with respect to at least three wavelengths: the wavelength at which the diffraction X-ray intensity is maximum, the longest wavelength in the wavelength range, and the shortest wavelength. In practice, a diffraction X-ray image is acquired for each wavelength value while stepping the wavelength at desired intervals so as to include these three points. By comparing these at least three images, it is possible to clarify which part has the intended lattice plane (crystal structure).

ある散乱角度位置で一つないし複数の回折スポットについての回折X線画像のセットを取得した後、別の回折角度位置に検出器位置を移動させて再び上記の手順で回折X線画像のセットを取得してもよい。複数の散乱角度位置で回折X線画像セットを取得すれば、入射X線の使用可能な波長範囲が限られていてある散乱角度位置での測定では取得できない格子面についての情報を含んだ回折X線画像セットをも取得することが可能となる。検出器位置を例えば散乱角90度の位置に選ぶことしかできない場合には、目的とする格子面の間隔に対応する波長が使用可能な波長範囲内にないために測定を断念しなければならない場合もあり得る。しかし、複数の検出器位置を選択可能であれば、回折角度を変えることにより、入射X線の波長範囲が狭く限定されている場合にも、目的の格子面での回折を生じさせ検出することが可能となる。   After obtaining a set of diffracted X-ray images for one or more diffraction spots at a certain scattering angle position, the detector position is moved to another diffraction angle position and the set of diffracted X-ray images is again obtained by the above procedure. You may get it. If a diffraction X-ray image set is acquired at a plurality of scattering angle positions, a diffraction X including information on a grating plane that cannot be acquired by measurement at a scattering angle position where the usable wavelength range of incident X-rays is limited. A line image set can also be acquired. If the detector position can only be selected at a scattering angle of 90 degrees, for example, the wavelength corresponding to the target lattice spacing is not within the usable wavelength range, and the measurement must be given up There is also a possibility. However, if multiple detector positions can be selected, the diffraction angle can be changed to detect and detect diffraction on the target grating surface even when the wavelength range of incident X-rays is narrowly limited. Is possible.

複数の散乱角度についてそれぞれ所望の回折スポットに関する回折X線画像セットを収集することにより、それらの画像セットから応力分布の二次元画像を形成することも可能である。本発明に係るX線回折分析方法では入射X線の光軸も試料も固定であるので、入射角は固定したままで検出器の位置を複数変えて複数の回折角度について測定を行うことになる。それによってそれぞれ取得された回折X線画像セットから回折スポットを与える波長ピークの変化量の試料上での分布に対応した二次元画像を形成する。波長ピークの変化量の分布を試料面の法線と測定された格子面の法線との間の角度(通常ψ角と呼ぶ)への依存性として整理することにより、応力の分布を得ることができる。測定に用いる散乱角度は、試料表面に対する入射X線の入射角が0〜3度の薄膜配置の場合には、検出される回折X線の試料表面に対する出射角度が60〜120度程度の範囲内の角度となるように少なくとも三つ(例えば出射角度が60度、90度、120度の三つ)を選ぶことを目安とするとよい。もちろんより多くの角度を用いて測定を行ってもよい。装置の構成しだいでこれよりも幅広く角度を変えることも可能であるが、多くの場合には試料と検出器の干渉をさけるために検出される回折X線の試料表面に対する出射角度が90度からはなれると試料・検出器間距離を遠ざける必要がでてくるため、空間分解能も効率も悪くなってしまうことを考慮に入れる必要がある。それだけでなく、種々の補正が必要となる場合もある。一方、装置の構成上の理由や、使用可能な入射X線の波長と試料との関係等の理由で60〜120度の出射角度範囲よりも狭い範囲しか利用できない場合には、その中でできるだけ広い散乱角度範囲から少なくとも三つの散乱角度を選ぶようにする。   By collecting diffracted X-ray image sets for a desired diffraction spot for each of a plurality of scattering angles, it is also possible to form a two-dimensional image of the stress distribution from those image sets. In the X-ray diffraction analysis method according to the present invention, since the optical axis of the incident X-ray and the sample are fixed, the measurement is performed for a plurality of diffraction angles by changing the position of the detector while keeping the incident angle fixed. . As a result, a two-dimensional image corresponding to the distribution on the sample of the change amount of the wavelength peak that gives the diffraction spot is obtained from each of the acquired diffraction X-ray image sets. Obtain the stress distribution by organizing the distribution of the change in wavelength peak as a dependency on the angle between the normal of the sample surface and the measured lattice plane (usually called the ψ angle). Can do. The scattering angle used for the measurement is within a range in which the angle of emission of detected diffracted X-rays with respect to the sample surface is about 60 to 120 degrees in the case of a thin film arrangement where the incident angle of X-rays with respect to the sample surface is 0 to 3 degrees. It is preferable to select at least three (e.g., three of the emission angles of 60 degrees, 90 degrees, and 120 degrees) so that the angles are equal to each other. Of course, the measurement may be performed using more angles. Depending on the configuration of the apparatus, it is possible to change the angle more widely than this, but in many cases the angle of emission of the diffracted X-rays detected with respect to the sample surface from 90 degrees is avoided in order to avoid interference between the sample and the detector. Since it is necessary to increase the distance between the sample and the detector, it is necessary to take into account that the spatial resolution and efficiency are deteriorated. In addition, various corrections may be required. On the other hand, if only a range narrower than the emission angle range of 60 to 120 degrees can be used for reasons such as the configuration of the apparatus and the relationship between the wavelength of the usable incident X-rays and the sample, etc. At least three scattering angles are selected from a wide scattering angle range.

図1は、本発明に係るX線回折分析装置の概念図である。本発明に係るX線回折分析装置はX線発生部1、試料部2、検出部3を有している。X線発生部1は、単色のX線を発生させることが可能であり、且つその波長を連続的に変えることができる。また、出射するX線の光軸は波長に依存せずに常に一致する。   FIG. 1 is a conceptual diagram of an X-ray diffraction analyzer according to the present invention. The X-ray diffraction analyzer according to the present invention includes an X-ray generation unit 1, a sample unit 2, and a detection unit 3. The X-ray generator 1 can generate monochromatic X-rays and can change the wavelength continuously. Further, the optical axis of the emitted X-ray always coincides without depending on the wavelength.

試料部2は、試料4と試料4を測定中固定保持する試料支持部5とを備えている。試料4は、X線発生部1で発生させられた単色の入射X線6が試料4の表面の所望の被測定領域A全体を照らすように、試料支持部5によって固定保持される。   The sample unit 2 includes a sample 4 and a sample support unit 5 that holds the sample 4 fixedly during measurement. The sample 4 is fixedly held by the sample support unit 5 so that the monochromatic incident X-rays 6 generated by the X-ray generation unit 1 illuminate the entire desired measurement area A on the surface of the sample 4.

検出部3は、二次元に配列された複数の検出素子からなる二次元位置敏感型検出器7と、試料4で発生して試料表面の被測定領域A内の各部位から出射する回折X線10の角度発散を制限することによって被測定領域A内の異なる部位から出射する回折X線10を二次元位置敏感型検出器7の別々の検出素子で区別して検出できるようにするコリメータ(例えば合成石英製キャピラリを集合させたキャピラリプレート、リソグラフィ技術により軽金属に同様の加工を施したもの)等の角度発散制限手段8と、二次元位置敏感型検出器7および角度発散制限手段8を測定中固定保持する検出器支持部9とを有する。図1には示されていないが、検出部3は、各検出素子で検出した回折X線強度を各画素値とする二次元の回折X線画像を形成して記録するための画像形成記録部も有している。単色の入射X線6の光軸と、試料4の位置と、二次元位置敏感型検出器7および角度発散制限手段8の位置とを固定した状態で入射X線6の波長を所望の範囲で変えながら測定を行うことによって、この画像形成記録部が各波長値に対してそれぞれ二次元の回折X線画像を形成し、それらを入射X線6の波長値の情報とともに一つの画像セットとして記録する。   The detection unit 3 includes a two-dimensional position sensitive detector 7 including a plurality of detection elements arranged two-dimensionally, and diffracted X-rays generated from the sample 4 and emitted from each part in the measurement area A on the sample surface. By limiting the angular divergence of 10, a collimator (for example, a synthesis) that enables diffracted X-rays 10 emitted from different parts in the region A to be measured to be detected separately by separate detection elements of the two-dimensional position sensitive detector 7. Angle divergence limiting means 8 such as a capillary plate in which quartz capillaries are assembled, light metal subjected to the same processing by lithography technology), a two-dimensional position sensitive detector 7 and angle divergence limiting means 8 are fixed during measurement. And a detector support 9 for holding. Although not shown in FIG. 1, the detection unit 3 forms and records a two-dimensional diffracted X-ray image having the diffracted X-ray intensity detected by each detecting element as each pixel value. Also have. The wavelength of the incident X-ray 6 is set within a desired range with the optical axis of the monochromatic incident X-ray 6, the position of the sample 4, and the positions of the two-dimensional position sensitive detector 7 and the angle divergence limiting means 8 being fixed. By performing measurement while changing, this image forming recording unit forms a two-dimensional diffraction X-ray image for each wavelength value, and records them as one image set together with the wavelength value information of incident X-ray 6 To do.

X線発生部1は、多くの場合、連続X線源とモノクロメータ等の単色化手段とから構成される。連続X線源としては、放射光を用いることが好適である。しかしながら、強力な回転対陰極X線源など、他のX線源を用いてX線発生部1を構成することも可能である。図1に示す装置では、X線発生部1は、試料表面に平行な方向に長く試料表面と交差する方向に短い線状断面を有する単色の入射X線6を発生させる。試料表面に対して0〜3度程度の低角で入射X線6が入射する薄膜配置を採用することにより、このような線状の断面をもつ入射X線6でも試料表面の広い領域を均一に照らすことができる。   In many cases, the X-ray generator 1 is composed of a continuous X-ray source and monochromatization means such as a monochromator. As the continuous X-ray source, it is preferable to use synchrotron radiation. However, it is also possible to configure the X-ray generator 1 using another X-ray source such as a powerful rotating anti-cathode X-ray source. In the apparatus shown in FIG. 1, an X-ray generator 1 generates monochromatic incident X-rays 6 having a linear cross section that is long in a direction parallel to the sample surface and short in a direction intersecting the sample surface. By adopting a thin film arrangement in which incident X-rays 6 are incident at a low angle of about 0 to 3 degrees with respect to the sample surface, even in the case of incident X-rays 6 having such a linear cross section, a wide area on the sample surface can be made uniform Can be illuminated.

検出器支持部9は、入射X線6の光軸および回折X線10の光軸を含む面内の複数の散乱角度位置で二次元位置敏感型検出器7を固定保持することができる。図1には代表として二つの散乱角度に対応する検出部の配置D1、D2が示されている。ここで、検出器支持部9は複数の予め定められた散乱角度位置にだけ検出器を固定配置できるような機構を有していればよい。薄膜配置を採用する場合には、検出される回折X線10の試料表面に対する出射角度が少なくとも60度、90度、120度の三つとなるような散乱角度位置で二次元位置敏感型検出器7を測定中固定保持できることが望ましい。しかし、さまざまな試料の測定を行うためには、所望の散乱角度範囲内、薄膜配置の場合には好ましくは検出される回折X線10の出射角度が60〜120度となるような散乱角度範囲内のすべての散乱角度位置に検出器を固定配置できるような機構をもつとよい。薄膜配置の場合の60〜120度という出射角度範囲は厳密にこの範囲でなければならないというものではないが、試料4と検出器との間の距離を大きく離さなくても、入射X線6を遮ったり部材間の接触を生じたりすることなく測定が行える角度範囲である。ただし、測定中に検出器位置を変更することはないので、検出器位置を変えるための機構は手動のものでよい。   The detector support unit 9 can fix and hold the two-dimensional position sensitive detector 7 at a plurality of scattering angle positions in a plane including the optical axis of the incident X-ray 6 and the optical axis of the diffracted X-ray 10. FIG. 1 shows, as a representative, arrangements D1 and D2 of detection units corresponding to two scattering angles. Here, the detector support section 9 only needs to have a mechanism that can fix the detector only at a plurality of predetermined scattering angle positions. When the thin film arrangement is adopted, the two-dimensional position sensitive detector 7 has a scattering angle position where the emission angles of the detected diffracted X-rays 10 with respect to the sample surface are at least 60 degrees, 90 degrees, and 120 degrees. It is desirable to be able to fix and hold during measurement. However, in order to measure various samples, within the desired scattering angle range, preferably in the case of a thin film arrangement, the scattering angle range is such that the exit angle of the detected diffracted X-ray 10 is 60 to 120 degrees. It is desirable to have a mechanism that can fix the detectors at all scattering angle positions. The emission angle range of 60 to 120 degrees in the case of the thin film arrangement does not have to be strictly within this range, but the incident X-ray 6 can be obtained without greatly separating the distance between the sample 4 and the detector. It is an angle range in which measurement can be performed without blocking or causing contact between members. However, since the detector position is not changed during the measurement, the mechanism for changing the detector position may be manual.

それぞれの散乱角度位置で入射X線6をさえぎらない範囲で可能な限り検出器を試料4に近接させた最適な検出器配置を実現するために、試料4の表面と二次元位置敏感型検出器7の検出器面との間の距離(試料・検出器間距離)を変更できるような機構を検出器支持部9が備えていると有利である。これもまた手動の機構でよい。   In order to realize an optimum detector arrangement in which the detector is as close as possible to the sample 4 within the range where the incident X-rays 6 are not blocked at the respective scattering angle positions, the surface of the sample 4 and the two-dimensional position sensitive detector are used. It is advantageous if the detector support portion 9 is provided with a mechanism that can change the distance between the seven detector surfaces (distance between the sample and the detector). This can also be a manual mechanism.

試料支持部5は、入射X線6が試料4の被測定領域A全体を適切に照らすように試料表面の位置および角度を微調整するための位置・傾角調整機構を有していると有利である。ただし、この位置・傾角調整機構はあくまでも入射X線6と被測定領域Aとの位置関係を最適化するための機構である。本発明では測定中は試料4を一切動かさないので、通常のX線回折測定で入射角θを変えながら測定を行うために用いられる機構とはまったく異なるものである。したがって、手動の調整機構で十分である。   It is advantageous that the sample support 5 has a position / tilt angle adjustment mechanism for finely adjusting the position and angle of the sample surface so that the incident X-ray 6 appropriately illuminates the entire measurement area A of the sample 4. is there. However, this position / tilt angle adjusting mechanism is merely a mechanism for optimizing the positional relationship between the incident X-ray 6 and the measurement region A. In the present invention, since the sample 4 is not moved at all during the measurement, it is completely different from the mechanism used for performing the measurement while changing the incident angle θ in the normal X-ray diffraction measurement. Therefore, a manual adjustment mechanism is sufficient.

図1に示す装置では、試料表面が水平に位置するように試料4を固定配置することを想定している。このような配置にすることによって、液体中の析出物のような不安定な試料をも取り扱うことが可能となる。   In the apparatus shown in FIG. 1, it is assumed that the sample 4 is fixedly arranged so that the sample surface is positioned horizontally. Such an arrangement makes it possible to handle unstable samples such as precipitates in the liquid.

二次元位置敏感型検出器7としては、多素子の半導体検出器、X線検出能力を有するCCDカメラ、CMOSイメージセンサー等を用いることができる。X線を直接検出することができるCCDカメラあるいはCMOSイメージセンサーでは、発生する電荷量から検出したX線のエネルギーを決定することにより、回折X線と蛍光X線を区別することも可能となる。他方、X線を直接検出するのではなく、X線によって発光するシンチレータを有し、そのシンチレータの発光を検知するような検出器であっても本発明を実施するうえではなんら問題はない。   As the two-dimensional position sensitive detector 7, a multi-element semiconductor detector, a CCD camera having an X-ray detection capability, a CMOS image sensor, or the like can be used. In a CCD camera or a CMOS image sensor capable of directly detecting X-rays, it is possible to distinguish between diffracted X-rays and fluorescent X-rays by determining the detected X-ray energy from the amount of generated charges. On the other hand, there is no problem in carrying out the present invention even with a detector that has a scintillator that emits light by X-rays instead of directly detecting X-rays and detects the light emission of the scintillator.

画像形成記録部は、一般的にはコンピュータをその一部として有するが、コンピュータの機能をマイクロチップとして二次元位置敏感型検出器7に内蔵させて構成することも可能である。   The image forming / recording unit generally includes a computer as a part thereof, but may be configured by incorporating the function of the computer in the two-dimensional position sensitive detector 7 as a microchip.

本発明に係るX線回折分析装置の概念図である。1 is a conceptual diagram of an X-ray diffraction analyzer according to the present invention.

符号の説明Explanation of symbols

1 X線発生部
2 試料部
3 検出部
4 試料
5 試料支持部
6 単色の入射X線
7 二次元位置敏感型検出器
8 角度発散制限手段
9 検出器支持部
10 回折X線
A 被測定領域
D1、D2 検出器保持角度位置
DESCRIPTION OF SYMBOLS 1 X-ray generation part 2 Sample part 3 Detection part 4 Sample 5 Sample support part 6 Monochromatic incident X-ray 7 Two-dimensional position sensitive detector 8 Angular divergence restricting means 9 Detector support part 10 Diffracted X-ray A Measurement area D1 , D2 Detector holding angular position

Claims (12)

不均一な結晶構造を有する試料の局所構造情報を備えるX線回折図形を取得するためのX線回折分析方法において、
単色の入射X線が試料表面の二次元位置敏感型検出器によって見込まれる被測定領域全体を照らすように試料を固定配置すること、
試料と二次元位置敏感型検出器との間の距離を調節するための機構を用いて、試料表面に対して前記二次元位置敏感型検出器の検出器面が正対した位置で試料表面と前記検出器面との間の距離が2〜5mmとなるようにすること、
試料で回折されて二次元位置敏感型検出器で検出される回折X線の入射X線に対する散乱角が所望の角度になるように二次元位置敏感型検出器を固定配置すること、
単色の入射X線を試料に照射したときに被測定領域内の異なる部位から出射する回折X線を二次元位置敏感型検出器の別々の検出素子でそれぞれ区別して検出し、各検出素子が検出した回折X線強度を各画素値とする二次元の回折X線画像を形成すること、
単色の入射X線の光軸、試料、および二次元位置敏感型検出器を固定した状態で単色の入射X線の波長を所望の波長範囲内で変化させながら測定を行い、複数の波長値に対してそれぞれ二次元の回折X線画像を形成してそれらを波長値情報とともに一つのセットとして記録することを特徴とするX線回折分析方法。
In an X-ray diffraction analysis method for obtaining an X-ray diffraction pattern having local structure information of a sample having a non-uniform crystal structure,
Fixing the sample so that the monochromatic incident X-rays illuminate the entire measurement area expected by the two-dimensional position sensitive detector on the sample surface;
Using a mechanism for adjusting the distance between the sample and the two-dimensional position sensitive detector, the detector surface of the two-dimensional position sensitive detector is opposed to the sample surface with respect to the sample surface. The distance from the detector surface is 2-5 mm;
Fixing the two-dimensional position sensitive detector so that the scattering angle of the diffracted X-ray diffracted by the sample and detected by the two-dimensional position sensitive detector with respect to the incident X-ray becomes a desired angle;
Diffraction X-rays emitted from different parts in the measurement area when the sample is irradiated with monochromatic incident X-rays are detected separately by the separate detection elements of the two-dimensional position sensitive detector, and each detection element detects them. Forming a two-dimensional diffracted X-ray image with each diffracted X-ray intensity as a pixel value;
Perform measurement while changing the wavelength of the monochromatic incident X-ray within the desired wavelength range while fixing the optical axis of the monochromatic incident X-ray, the sample, and the two-dimensional position sensitive detector. An X-ray diffraction analysis method comprising: forming two-dimensional diffraction X-ray images for each and recording them as a set together with wavelength value information.
単色の入射X線の波長を、所望の格子面についての回折スポットの回折X線強度の波長依存プロファイルの波長に対する広がりと同じ波長範囲内で変化させること、少なくとも回折X線強度が最大となる波長、前記波長範囲の最長波長および最短波長の三つの波長値について二次元の回折X線画像を形成してそれらを波長値情報とともに一つのセットとして記録することを特徴とする、請求項1に記載のX線回折分析方法。   Changing the wavelength of the monochromatic incident X-ray within the same wavelength range as the wavelength-dependent profile of the diffracted X-ray intensity of the diffraction spot on the desired grating plane, at least the wavelength at which the diffracted X-ray intensity is maximized The two-dimensional diffraction X-ray image is formed for the three wavelength values of the longest wavelength and the shortest wavelength in the wavelength range, and these are recorded as one set together with the wavelength value information. X-ray diffraction analysis method. 被測定領域の各部位から出射する回折X線の角度発散を角度発散制限手段で制限することにより、被測定領域の異なる部位から出射する回折X線をそれぞれ二次元位置敏感型検出器の別々の検出素子で区別して検出することを特徴とする、請求項1または請求項2に記載のX線回折分析方法。   By restricting the angle divergence of the diffracted X-rays emitted from each part of the measurement region by the angle divergence limiting means, the diffracted X-rays emitted from different parts of the measurement region are respectively separated by the two-dimensional position sensitive detectors. The X-ray diffraction analysis method according to claim 1, wherein the detection is performed by distinguishing with a detection element. 単色の入射X線の入射角度が試料表面に対して0〜3度となるように試料位置を固定することを特徴とする、請求項1〜3のいずれか一項に記載のX線回折分析方法。   The X-ray diffraction analysis according to any one of claims 1 to 3, wherein the sample position is fixed so that an incident angle of monochromatic incident X-rays is 0 to 3 degrees with respect to the sample surface. Method. 複数の散乱角度位置でそれぞれ同一の格子面間隔に対応する強度ピークを示す波長値を中心とする所望の波長範囲内の複数の波長値に対する二次元の回折X線画像のセットを形成し、それらの複数の画像セットを用いて試料の応力分布を表す二次元画像を作成することを特徴とする、請求項1〜4のいずれか一項に記載のX線回折分析方法。   Forming a set of two-dimensional diffraction X-ray images for a plurality of wavelength values within a desired wavelength range centered on a wavelength value indicating an intensity peak corresponding to the same lattice spacing at a plurality of scattering angle positions, and 5. The X-ray diffraction analysis method according to claim 1, wherein a two-dimensional image representing a stress distribution of a sample is created using the plurality of image sets. 単色の入射X線の入射角度が試料表面に対して0〜3度となるように試料位置を固定すること、検出される回折X線の試料表面に対する出射角度が60度、90度、120度となる散乱角度位置を含む三つ以上の散乱角度位置でそれぞれ所望の波長範囲内の複数の波長値に対する二次元の回折X線画像のセットを形成し、それらの複数の画像セットを用いて試料の応力分布を表す二次元画像を作成することを特徴とする、請求項1〜3のいずれか一項に記載のX線回折分析方法。   The sample position is fixed so that the incident angle of monochromatic incident X-rays is 0 to 3 degrees with respect to the sample surface, and the outgoing angles of detected diffracted X-rays with respect to the sample surface are 60 degrees, 90 degrees, and 120 degrees. A set of two-dimensional diffraction X-ray images for a plurality of wavelength values within a desired wavelength range is formed at three or more scattering angle positions including a scattering angle position to be a sample, and a sample is formed using the plurality of image sets. The X-ray diffraction analysis method according to any one of claims 1 to 3, wherein a two-dimensional image representing a stress distribution is created. 不均一な結晶構造を有する試料の局所構造情報を備えるX線回折図形を取得するためのX線回折分析装置において、
単色の入射X線を波長可変且つ光軸固定に発生させるX線発生部が固定配置されていること、
二次元に配列された複数の検出素子を備える二次元位置敏感型検出器を複数の散乱角度位置でそれぞれ測定中固定保持できること、
前記入射X線が試料表面の前記二次元位置敏感型検出器により見込まれる被測定領域全体を照らすように、試料を測定中固定保持できること、
前記試料と前記二次元位置敏感型検出器との間に前記被測定領域内の各部位から出射する回折X線の角度発散を制限する角度発散制限手段が設けられており、前記二次元位置敏感型検出器の各検出素子が前記被測定領域内の異なる部位から出射する回折X線をそれぞれ別々に検出すること、
前記検出素子がそれぞれ検出した回折X線の強度を各画素値とする二次元の回折X線画像を形成すること、
前記入射X線の光軸、前記試料、および前記二次元位置敏感型検出器を固定した状態で前記入射X線の波長範囲内の複数の波長値についてそれぞれ前記二次元の回折X線画像を形成し、それらの回折X線画像を波長値情報とともに一つの画像セットとして記録すること
試料と二次元位置敏感型検出器との間の距離を調節するための機構が設けられており、試料表面に対して前記二次元位置敏感型検出器の検出器面が正対した位置で試料表面と前記検出器面との間の距離が2〜5mmとなるようにすることを特徴とするX線回折分析装置。
In an X-ray diffraction analyzer for acquiring an X-ray diffraction pattern having local structure information of a sample having a non-uniform crystal structure,
An X-ray generation unit for generating a monochromatic incident X-ray with a variable wavelength and a fixed optical axis;
A two-dimensional position sensitive detector having a plurality of detection elements arranged in two dimensions can be fixedly held during measurement at a plurality of scattering angle positions, respectively.
The sample can be held fixed during measurement so that the incident X-rays illuminate the entire measurement area expected by the two-dimensional position sensitive detector on the sample surface;
Angle divergence limiting means is provided between the sample and the two-dimensional position sensitive detector to limit the angle divergence of the diffracted X-rays emitted from each part in the measurement area. Each detecting element of the mold detector separately detects diffracted X-rays emitted from different parts in the measured region;
Forming a two-dimensional diffracted X-ray image having each pixel value as the intensity of the diffracted X-ray detected by the detection element;
The optical axis of the incident X-ray, the sample, and a plurality of diffracted X-ray images of each of the two-dimensional for wavelength values in the wavelength range of the incident X-ray in a state in which the fixed two-dimensional position sensitive detector Forming and recording those diffracted X-ray images together with wavelength value information as one image set ;
A mechanism for adjusting the distance between the sample and the two-dimensional position sensitive detector is provided, and the sample is positioned at the position where the detector surface of the two-dimensional position sensitive detector faces the sample surface. An X-ray diffraction analyzer characterized in that a distance between a surface and the detector surface is 2 to 5 mm .
試料表面が水平に位置するように前記試料が固定配置されることを特徴とする、請求項7に記載のX線回折分析装置。   8. The X-ray diffraction analyzer according to claim 7, wherein the sample is fixedly arranged so that the sample surface is positioned horizontally. 試料表面に対する前記入射X線の入射角が0〜3度の範囲内の角度になるように前記試料が固定配置されることを特徴とする、請求項7または請求項8に記載のX線回折分析装置。   The X-ray diffraction according to claim 7 or 8, wherein the sample is fixedly arranged so that an incident angle of the incident X-ray with respect to the sample surface is an angle within a range of 0 to 3 degrees. Analysis equipment. 前記二次元位置敏感型検出器が任意の散乱角度位置でそれぞれ測定中固定保持され得ることを特徴とする、請求項7〜9のいずれか一項に記載のX線回折分析装置。   The X-ray diffraction analyzer according to any one of claims 7 to 9, wherein the two-dimensional position sensitive detector can be fixedly held during measurement at an arbitrary scattering angle position. 前記試料の位置および傾きを微調整するための位置・傾角調整機構が設けられていることを特徴とする、請求項7〜10のいずれか一項に記載のX線回折分析装置。 Wherein the position and inclination angle adjustment mechanism for finely adjusting the position and inclination of the sample is provided, X-rays diffraction analysis apparatus according to any one of claims 7-10. 二次元位置敏感型検出器で検出される回折X線の試料面に対する出射角度が60〜120度の範囲内になるような複数の散乱角度位置でそれぞれ前記二次元位置敏感型検出器が測定中固定保持され得ることを特徴とする、請求項9に記載のX線回折分析装置。
The two-dimensional position sensitive detector is measuring at a plurality of scattering angle positions such that the output angle of the diffracted X-rays detected by the two-dimensional position sensitive detector is within a range of 60 to 120 degrees. The X-ray diffraction analyzer according to claim 9, wherein the X-ray diffraction analyzer can be fixedly held.
JP2005066097A 2005-03-09 2005-03-09 X-ray diffraction analysis method and X-ray diffraction analysis apparatus Expired - Fee Related JP4581126B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005066097A JP4581126B2 (en) 2005-03-09 2005-03-09 X-ray diffraction analysis method and X-ray diffraction analysis apparatus
PCT/JP2005/018047 WO2006095467A1 (en) 2005-03-09 2005-09-22 X-ray diffraction analyzing method and analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066097A JP4581126B2 (en) 2005-03-09 2005-03-09 X-ray diffraction analysis method and X-ray diffraction analysis apparatus

Publications (2)

Publication Number Publication Date
JP2006250642A JP2006250642A (en) 2006-09-21
JP4581126B2 true JP4581126B2 (en) 2010-11-17

Family

ID=36953073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066097A Expired - Fee Related JP4581126B2 (en) 2005-03-09 2005-03-09 X-ray diffraction analysis method and X-ray diffraction analysis apparatus

Country Status (2)

Country Link
JP (1) JP4581126B2 (en)
WO (1) WO2006095467A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145854B2 (en) * 2007-10-16 2013-02-20 富士通株式会社 Sample analyzer, sample analysis method, and sample analysis program
JP5437180B2 (en) * 2010-06-29 2014-03-12 株式会社リガク Wavelength classification X-ray diffractometer
EP2818851B1 (en) * 2013-06-26 2023-07-26 Malvern Panalytical B.V. Diffraction Imaging
US9022651B2 (en) * 2013-07-12 2015-05-05 Bruker Axs, Inc. X-ray diffraction-based defective pixel correction method using an active pixel array sensor
US10444169B2 (en) * 2016-05-24 2019-10-15 Bruker Axs, Inc. Two-dimensional X-ray detector position calibration and correction with diffraction pattern

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196542A (en) * 1987-10-09 1989-04-14 Hitachi Ltd Analysis of crystal structure
JPH0574907A (en) * 1991-06-19 1993-03-26 Nec Corp X-ray diffraction microscopic method
JPH05107203A (en) * 1991-10-15 1993-04-27 Jeol Ltd X-ray apparatus for evaluating surface condition of sample
JPH0735706A (en) * 1993-07-19 1995-02-07 Natl Inst For Res In Inorg Mater Thin film x-ray diffraction equipment employing x-ray tube optical system
JPH1164121A (en) * 1997-08-11 1999-03-05 Toyota Motor Corp X-ray stress measuring method
JP2000292379A (en) * 1999-04-12 2000-10-20 Rigaku Corp X-ray diffraction device and measuring method of x-ray locking curve
JP2002333409A (en) * 2001-05-09 2002-11-22 Shimadzu Corp X-ray stress measuring device
JP2005083999A (en) * 2003-09-10 2005-03-31 National Institute For Materials Science X-ray diffraction microscope apparatus and x-ray diffraction measuring method by the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196542A (en) * 1987-10-09 1989-04-14 Hitachi Ltd Analysis of crystal structure
JPH0574907A (en) * 1991-06-19 1993-03-26 Nec Corp X-ray diffraction microscopic method
JPH05107203A (en) * 1991-10-15 1993-04-27 Jeol Ltd X-ray apparatus for evaluating surface condition of sample
JPH0735706A (en) * 1993-07-19 1995-02-07 Natl Inst For Res In Inorg Mater Thin film x-ray diffraction equipment employing x-ray tube optical system
JPH1164121A (en) * 1997-08-11 1999-03-05 Toyota Motor Corp X-ray stress measuring method
JP2000292379A (en) * 1999-04-12 2000-10-20 Rigaku Corp X-ray diffraction device and measuring method of x-ray locking curve
JP2002333409A (en) * 2001-05-09 2002-11-22 Shimadzu Corp X-ray stress measuring device
JP2005083999A (en) * 2003-09-10 2005-03-31 National Institute For Materials Science X-ray diffraction microscope apparatus and x-ray diffraction measuring method by the same

Also Published As

Publication number Publication date
JP2006250642A (en) 2006-09-21
WO2006095467A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US7551719B2 (en) Multifunction X-ray analysis system
US6385289B1 (en) X-ray diffraction apparatus and method for measuring X-ray rocking curves
TWI392866B (en) Appratus and method for inspection of a sample
JP7308233B2 (en) Small-angle X-ray scattering meter
US8076640B2 (en) Method and device for measuring electron diffraction of a sample
CN102959387B (en) Fluorescent X-ray analysis device and method
US20200158667A1 (en) X-ray diffraction and x-ray spectroscopy method and related apparatus
KR101594794B1 (en) X-ray diffraction apparatus and x-ray diffraction measurement method
EP1672361B1 (en) X-ray diffraction microscope and x-ray diffraction measurement method using x-ray diffraction microscope
KR20130112001A (en) X-ray topography apparatus
JP4581126B2 (en) X-ray diffraction analysis method and X-ray diffraction analysis apparatus
KR101231731B1 (en) Multifunction x-ray analysis system
US7564947B2 (en) Tomographic energy dispersive X-ray diffraction apparatus comprising an array of detectors of associated collimators
JP2009002805A (en) Small angle/wide angle x-ray measuring device
JP4674352B2 (en) Titanium oxide analysis method and titanium oxide analyzer for carrying out this method
Bauch et al. Innovative Analysis of X‐ray Microdiffraction Images on Selected Applications of the Kossel Technique
WO2014041675A1 (en) X-ray imaging device and x-ray imaging method
JP4604242B2 (en) X-ray diffraction analyzer and X-ray diffraction analysis method
JP2003294659A (en) X-ray analysis apparatus
JP3968452B2 (en) X-ray analyzer
WO2023203856A1 (en) Semiconductor inspecting device, semiconductor inspecting system, and semiconductor inspecting method
JPH09145641A (en) Method and device for evaluating crystallinity of single crystal
JPH08334480A (en) X-ray fluorescence analytical device
CN110779940A (en) Divergent beam two-dimensional X-ray diffraction
JPH05215698A (en) Method and apparatus for analyzing crystal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

R150 Certificate of patent or registration of utility model

Ref document number: 4581126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees