JP4578009B2 - Method for producing nitrogen-containing inorganic compound - Google Patents

Method for producing nitrogen-containing inorganic compound Download PDF

Info

Publication number
JP4578009B2
JP4578009B2 JP2001076658A JP2001076658A JP4578009B2 JP 4578009 B2 JP4578009 B2 JP 4578009B2 JP 2001076658 A JP2001076658 A JP 2001076658A JP 2001076658 A JP2001076658 A JP 2001076658A JP 4578009 B2 JP4578009 B2 JP 4578009B2
Authority
JP
Japan
Prior art keywords
nitrogen
inorganic compound
raw material
containing inorganic
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001076658A
Other languages
Japanese (ja)
Other versions
JP2002274818A (en
Inventor
満之 大柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP2001076658A priority Critical patent/JP4578009B2/en
Publication of JP2002274818A publication Critical patent/JP2002274818A/en
Application granted granted Critical
Publication of JP4578009B2 publication Critical patent/JP4578009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、窒素含有無機化合物の製造方法に関する。本発明にいう窒素含有無機化合物とは、少なくとも窒素原子を含有する無機化合物であって、合金又は金属間化合物も包含する。
【0002】
【従来技術】
従来、AlON等の窒素含有無機化合物は、原料粉末を非酸化性雰囲気中で外部加熱方式にて加熱することにより合成されている。この方法によれば、不純物の少ない化合物を製造することができる。ところが、外部加熱方式では、高価な雰囲気炉が必要であることに加え、加熱に比較的長時間を要し、連続的な生産が困難であることから、コスト面又は効率面において必ずしも工業的規模での生産に最適な方法とは言えない。
【0003】
一方、高融点化合物の合成又は急速加熱・急速冷却が必要とされる化合物の合成に燃焼合成反応が採用されている。この方法では、局部的には通常2000℃を超える高温をつくりだすことができるので、外部加熱による高温反応では合成することが困難な物質の製造にも適している。
【0004】
これまでに提案されている燃焼合成反応では、一般に成分元素の粉末混合物を押し固めた圧粉体試料を調製し、必要に応じて反応ガスを充填した高圧容器中で試料の一端に着火することによって反応を開始させる。粉末混合物内においては、燃焼波の伝播によって連鎖的に反応が進行するとともに自己発熱により合成反応が維持され、数分単位の短時間で化合物の形成が行われる。このように、燃焼合成反応では、ごく短時間のうちに各種のセラミックス又は金属間化合物を合成することが可能である。
【0005】
【発明が解決しようとする課題】
しかしながら、燃焼合成反応では、生成反応熱の小さい原料の組合せによる合成反応(例えば、AlON等を合成する反応系)では、反応の開始又は維持が困難である。また、仮に反応したとしても未反応物が多量に残存する。
【0006】
しかも、燃焼合成反応では、高圧容器等の設備を必要とするため、装置又は製造のためのコストが高くつくという問題もある。
【0007】
従って、本発明は、より容易かつ確実に窒素含有無機化合物を製造することを主な目的とする。
【0008】
【課題を解決するための手段】
本発明者は、かかる従来技術の問題点を解決するために鋭意研究を重ねた結果、特定手段による製法が上記目的を達成できることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、下記の窒素含有無機化合物の製造方法に係るものである。
【0010】
1.窒素供給材を含む原料を用いて窒素含有無機化合物を製造する方法であって、当該原料を誘導加熱コイル内に装填し、誘導加熱を利用した合成反応によって窒素含有無機化合物を生成させることを特徴とする窒素含有無機化合物の製造方法。
【0011】
2.誘導加熱コイル内に原料を装填するに際し、原料を炭素質材料で被覆する前記項1記載の製造方法。
【0012】
3.窒素含有無機化合物が、Al、Ti及びGaの少なくとも1種を含む前記項1又は2記載の製造方法。
【0013】
4.窒素含有無機化合物が、AlN、AlON、SiAlON及びTiONの少なくとも1種を含む前記項1又は2記載の製造方法。
【0014】
5.前記項1〜4のいずれかの製造方法で得られるAlON。
【0015】
6.γ−AlONが95重量%以上である前記項5記載のAlON。
【0016】
【発明の実施の形態】
本発明の窒素含有無機化合物の製造方法は、窒素供給材を含む原料を用いて窒素含有無機化合物を製造する方法であって、当該原料を誘導加熱コイル内に装填し、誘導加熱を利用した合成反応によって窒素含有無機化合物を生成させることを特徴とする。
【0017】
原料に含まれる窒素供給材としては、窒素を含むものであれば限定的でなく、公知の窒素含有無機化合物の製法で採用されている材料を使用することもできる。本発明では、特に、窒素を含む無機化合物(金属間化合物を含む。以下同じ。)を用いることが好ましい。具体的には、窒化アルミニウム(AlN)、窒化ホウ素(BN)等の窒化物を用いることができる。これらは、最終製品の種類等に応じて適宜採択すれば良い。
【0018】
窒素供給材以外の原料は、目的とする窒素含有無機化合物の種類に応じて適宜決定すれば良い。例えば、AlON(γ−AlON)を製造する場合は、窒化アルミニウム(AlN)と酸化アルミニウム(Al23)との組合せを原料として採用すれば良い。また、SiAlONを製造する場合は、窒化アルミニウムと酸化ケイ素(SiO2)との組合せを採用できる。AlN−TiB2を製造する場合は、アルミニウム、水素化チタン(TiH2)及び窒化ホウ素の組合せを適用すれば良い。AlN−Al2OCを製造する場合は、AlN、Al23及び炭素(C)の組合せを採用すれば良い。
【0019】
原料中における窒素供給材の使用割合は、反応生成物が目的とする窒素含有無機化合物となるように決定すれば良い。例えば、窒化アルミニウムと酸化アルミニウムとの組合せを採用してγ−AlONを製造しようとする場合は、AlON:Al23をモル比で3:7〜4:6程度とすれば良い。
【0020】
原料の形態は限定的ではないが、通常は粉末状で使用することが望ましい。この場合、平均粒径は、最終の目的物、その用途等にもよるが、通常は0.5〜100μm程度とすることが好ましい。
【0021】
原料は、ブレンダー、ミキサー、ボールミル、振動ミル等の公知の装置によって混合することもできる。混合は乾式混合又は湿式混合のいずれの方式でも良い。湿式混合の場合は、アルコール、トルエン、アセトン等の溶剤を使用することができる。また、湿式混合の場合は、混合後に原料を乾燥することが好ましい。
【0022】
原料を誘導加熱コイル内に装填する場合、そのままの状態で装填することもできるが、必要に応じて予め原料を造粒したり、あるいは予め成形することもできる。造粒する場合は、公知の条件に従って実施すれば良い。また、成形する場合は、例えば30〜300MPa程度の圧力で冷間成形して圧粉体とすれば良い。
【0023】
また、本発明では、原料を誘導加熱コイル内に装填するに当たり、原料(好ましくは原料全体)を炭素質材料で被覆することが望ましい。これによって、より効率的に反応を進行させることができる。同時に、実質的に原料を還元性雰囲気に置くことができ、酸化を防止する場合に好適である。炭素質材料で被覆する方法は特に限定されない。例えば、炭素質材料粉末で原料を覆ったり、炭素質材料からなるシートで原料を包むようにしても良い。また、炭素質材料からなる容器に原料を充填し、開口部を炭素質材料からなる蓋材で閉じても良い。炭素質材料としては、例えばカーボン材(カーボンシート、カーボン紙等)のような公知の材料を使用することができる。
【0024】
本発明では、炭素質材料で原料を被覆した後、さらに鋳物砂で覆うことが好ましい。これにより、大気中への放熱を抑制し、熱効率の向上を図ることができる。鋳物砂としては、例えば天然ケイ砂、人造ケイ砂、粘土、ベントナイト等の公知のものが使用できる。
【0025】
原料を誘導加熱コイル内に装填した後、誘導加熱を利用した合成反応によって窒素含有無機化合物を生成させる。本発明では、誘導加熱は、少なくとも、反応の開始用(原料への着火用)及び反応の持続のための熱補給用に利用される。後者の場合は、合成反応を生ずるように所定の組成に配合された原料から目的とする反応生成物が生成する際に生じる反応熱と併用して利用されることとなる。
【0026】
合成反応は、誘導加熱による着火で開始され、誘導電流の調整によって制御された熱量で保持される。この場合、原料は、最も効率良く電流を通電できる位置に配置されることが望ましい。例えば、誘導コイル内(特に誘導コイル内の中心部)に設置することが好ましい。
【0027】
本発明では、合成反応は一般的には約5分程度以内に完了するので、焼結による化合物粒子の粒成長は実質的に無視できるほど小さい。このため、高靭性の微粒子構造窒素含有無機化合物を製造する際にも、その粒成長阻止のための添加剤の配合を不要とすることができる。
【0028】
本発明方法を実施するための誘導加熱コイル及びその周辺装置(高周波電源等)は公知のものを利用することができる。本発明では、加熱を誘導加熱コイルで実施することによって、雰囲気制御を不要とすることができる結果、大気中で加熱できるため、高圧容器、密閉炉等を不要にできる。もちろん、必要に応じて、これらを使用することもできる。例えば、密閉炉と組み合わせて不活性ガス雰囲気、真空雰囲気、窒素ガス雰囲気等に制御することもできる。
【0029】
加熱に際し、高周波電源の設定条件も合成反応できる限り特に限定されない。
例えば、周波数60〜120kHz程度、出力電圧50〜200V程度、出力電流100〜200A程度とすることにより実施できる。また、本発明では、高周波電源は可変電源とすることが好ましい。
【0030】
反応生成物は、そのまま取り出して使用できるが、必要に応じて粉砕処理に供しても良い。粉砕処理は、例えばボールミル、振動ミル、遊星ミル等の公知の装置を用いて実施することができる。
【0031】
本発明方法で製造された窒素含有無機化合物は、それぞれ化合物の種類に応じた既存の用途に好適に用いることができる。例えば、耐熱性構造材料、透明性耐火物、耐熱性光学材料、炉材又はその周辺部材等に用いることができる。
【0032】
本発明方法を適用できる窒素含有無機化合物は、特に限定されない。Al、Ti及びGaの少なくとも1種を含む化合物が好適である。特に、AlN、AlON、SiAlON及びTiONの少なくとも1種を含む化合物が好ましい。より具体的には、例えばAlON、SiAlON、TiON、AlN−GaN、BN−AlN、AlN−AlON、AiN−TiN、AlNーTiB2、Al−Al2OC等が挙げられる。
【0033】
【発明の効果】
本発明の製造方法では、誘導加熱方式を採用するので、例えばAlNとAl23のような発熱量の小さな組合せであっても、高圧容器等を用いることなく、合成反応をより確実に開始・進行させることにより、従来品と同程度又はそれ以上の材料を製造することができる。
【0034】
また、誘導加熱方式を採用することにより、反応時間の短縮化、装置の簡易化等が実現できる結果、製造コストの低減を図ることができる。
【0035】
特に、原料全体を炭素質材料で被覆する場合には、熱効率を高めることができるとともに、還元性雰囲気の形成効果、反応生成物の取り扱い性、不純物の反応生成物への混入防止効果等を達成することもできる。これらも品質向上あるいは製造コストの低減化に寄与することができる。
【0036】
加えて、反応時間の短縮化が可能であるため、合成反応による粒成長を未然に抑制ないし防止することができる。従って、靭性等の機械的強度向上のための添加剤を使用しなくても、所望の靭性等を確実に達成することができる。
【0037】
【実施例】
以下に実施例を示し、本発明の特徴をより一層明確にする。但し、本発明の範囲は、実施例の範囲に限定されるものではない。
【0038】
実施例1
原料として、平均粒径6μmの窒化アルミニウム(AlN)粉末及び粒径25μm以下のα−アルミナ(Al23)粉末からなる混合粉末を用いた。この混合粉末のAlN:Al23比(モル比)は35:65とした。図1に示すような黒鉛円盤(底部)とカーボンシート(側面)で組み立てられた円筒型容器に混合粉末を充填し、容器開口部を黒鉛円盤で閉塞した。次いで、図2に示すように、混合粉末が前記容器に充填してなる試料をアルミナ製円筒型ルツボ(絶縁体容器)内に設置し、容器外面全体を十分な量の鋳物砂で包被した。アルミナ製円筒型ルツボの周囲には、図2のように、高周波電源に接続された高周波誘導加熱コイルが設置されている。
【0039】
次いで、上記コイルに通電することにより誘導加熱を行い、合成反応させ、反応生成物を得た。加熱のための電力は、出力電圧85V、電流170A及び周波数70kHzとし、高周波の印加時間(高周波電流の通電時間)は300秒とした。
【0040】
得られた反応生成物についてX線回折分析を行った。その結果を図3に示す。
これにより反応生成物の構成相を同定したところ、95重量%以上のγ−AlON含有率を有するAlONであることが確認された。また、光学顕微鏡による観察の結果、粒子の異常成長は認められなかった。
【図面の簡単な説明】
【図1】実施例1で用いた炭素質材料からなる容器の構成図である。
【図2】実施例1で用いた誘導加熱装置の概要図である。
【図3】実施例1で得られた反応生成物のX線回折分析の結果を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a nitrogen-containing inorganic compound. The nitrogen-containing inorganic compound referred to in the present invention is an inorganic compound containing at least a nitrogen atom, and includes an alloy or an intermetallic compound.
[0002]
[Prior art]
Conventionally, nitrogen-containing inorganic compounds such as AlON have been synthesized by heating raw material powder in a non-oxidizing atmosphere by an external heating method. According to this method, a compound with few impurities can be produced. However, in the external heating method, an expensive atmospheric furnace is required, and since heating requires a relatively long time and continuous production is difficult, it is not always an industrial scale in terms of cost or efficiency. It is not the best method for production.
[0003]
On the other hand, a combustion synthesis reaction is employed for the synthesis of a high melting point compound or the synthesis of a compound that requires rapid heating / cooling. Since this method can locally produce a high temperature exceeding 2000 ° C., it is also suitable for producing a substance that is difficult to synthesize by a high-temperature reaction by external heating.
[0004]
In the combustion synthesis reactions that have been proposed so far, a green compact sample is generally prepared by compacting a powder mixture of component elements, and if necessary, one end of the sample is ignited in a high-pressure vessel filled with a reaction gas. To start the reaction. In the powder mixture, the reaction proceeds in a chain by propagation of the combustion wave and the synthesis reaction is maintained by self-heating, and the compound is formed in a short time of several minutes. As described above, in the combustion synthesis reaction, it is possible to synthesize various ceramics or intermetallic compounds in a very short time.
[0005]
[Problems to be solved by the invention]
However, in a combustion synthesis reaction, it is difficult to start or maintain the reaction in a synthesis reaction (for example, a reaction system for synthesizing AlON or the like) using a combination of raw materials having a small generated reaction heat. Moreover, even if it reacts, a large amount of unreacted substances remain.
[0006]
In addition, since the combustion synthesis reaction requires equipment such as a high-pressure vessel, there is a problem that the cost for the apparatus or the production is high.
[0007]
Accordingly, the main object of the present invention is to produce a nitrogen-containing inorganic compound more easily and reliably.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the problems of the prior art, the present inventor has found that a production method using a specific means can achieve the above object, and has completed the present invention.
[0009]
That is, the present invention relates to the following method for producing a nitrogen-containing inorganic compound.
[0010]
1. A method for producing a nitrogen-containing inorganic compound using a raw material containing a nitrogen supply material, wherein the raw material is loaded into an induction heating coil, and the nitrogen-containing inorganic compound is generated by a synthesis reaction using induction heating. A method for producing a nitrogen-containing inorganic compound.
[0011]
2. The manufacturing method according to Item 1, wherein the raw material is coated with a carbonaceous material when the raw material is loaded into the induction heating coil.
[0012]
3. Item 3. The method according to Item 1 or 2, wherein the nitrogen-containing inorganic compound contains at least one of Al, Ti, and Ga.
[0013]
4). Item 3. The method according to Item 1 or 2, wherein the nitrogen-containing inorganic compound contains at least one of AlN, AlON, SiAlON, and TiON.
[0014]
5). AlON obtained by the manufacturing method in any one of said claim | item 1-4.
[0015]
6). Item 6. The AlON according to Item 5, wherein γ-AlON is 95% by weight or more.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a nitrogen-containing inorganic compound of the present invention is a method for producing a nitrogen-containing inorganic compound using a raw material containing a nitrogen supply material, and the raw material is loaded in an induction heating coil and synthesized using induction heating. A nitrogen-containing inorganic compound is produced by the reaction.
[0017]
The nitrogen supply material contained in the raw material is not limited as long as it contains nitrogen, and a material employed in a known method for producing a nitrogen-containing inorganic compound can also be used. In the present invention, it is particularly preferable to use an inorganic compound containing nitrogen (including an intermetallic compound; the same applies hereinafter). Specifically, nitrides such as aluminum nitride (AlN) and boron nitride (BN) can be used. These may be appropriately selected according to the type of the final product.
[0018]
The raw materials other than the nitrogen supply material may be appropriately determined according to the type of the target nitrogen-containing inorganic compound. For example, when manufacturing AlON (γ-AlON), a combination of aluminum nitride (AlN) and aluminum oxide (Al 2 O 3 ) may be employed as a raw material. When SiAlON is produced, a combination of aluminum nitride and silicon oxide (SiO 2 ) can be employed. In the case of producing AlN—TiB 2 , a combination of aluminum, titanium hydride (TiH 2 ), and boron nitride may be applied. When producing AlN—Al 2 OC, a combination of AlN, Al 2 O 3 and carbon (C) may be employed.
[0019]
What is necessary is just to determine the usage-amount of the nitrogen supply material in a raw material so that a reaction product may become the target nitrogen-containing inorganic compound. For example, when γ-AlON is to be manufactured by using a combination of aluminum nitride and aluminum oxide, the molar ratio of AlON: Al 2 O 3 may be about 3: 7 to 4: 6.
[0020]
The form of the raw material is not limited, but it is usually desirable to use it in powder form. In this case, the average particle size is usually about 0.5 to 100 μm, although it depends on the final target product and its application.
[0021]
The raw materials can be mixed by a known apparatus such as a blender, a mixer, a ball mill, or a vibration mill. Mixing may be either dry mixing or wet mixing. In the case of wet mixing, a solvent such as alcohol, toluene, or acetone can be used. In the case of wet mixing, it is preferable to dry the raw material after mixing.
[0022]
When the raw material is loaded into the induction heating coil, the raw material can be loaded as it is, but the raw material can be pre-granulated or molded in advance as necessary. What is necessary is just to implement according to well-known conditions, when granulating. Moreover, when shape | molding, what is necessary is just to cold-mold by the pressure of about 30-300 Mpa, for example, and just to make it a green compact.
[0023]
In the present invention, it is desirable to coat the raw material (preferably the entire raw material) with a carbonaceous material when the raw material is loaded into the induction heating coil. As a result, the reaction can proceed more efficiently. At the same time, the raw material can be substantially placed in a reducing atmosphere, which is suitable for preventing oxidation. The method for coating with the carbonaceous material is not particularly limited. For example, the raw material may be covered with a carbonaceous material powder, or the raw material may be wrapped with a sheet made of a carbonaceous material. Alternatively, a container made of a carbonaceous material may be filled with a raw material, and the opening may be closed with a lid made of a carbonaceous material. As the carbonaceous material, for example, a known material such as a carbon material (carbon sheet, carbon paper, etc.) can be used.
[0024]
In this invention, after coat | covering a raw material with a carbonaceous material, it is preferable to cover with casting sand further. Thereby, the thermal radiation to the atmosphere can be suppressed and the thermal efficiency can be improved. As the foundry sand, for example, known silica sand, artificial silica sand, clay, bentonite and the like can be used.
[0025]
After the raw material is loaded into the induction heating coil, a nitrogen-containing inorganic compound is generated by a synthesis reaction using induction heating. In the present invention, induction heating is used at least for starting the reaction (for igniting the raw material) and for supplying heat for maintaining the reaction. In the latter case, it is used in combination with the reaction heat generated when the target reaction product is produced from the raw materials blended in a predetermined composition so as to cause the synthesis reaction.
[0026]
The synthesis reaction starts with ignition by induction heating and is held at a heat quantity controlled by adjusting the induction current. In this case, it is desirable that the raw material be disposed at a position where current can be supplied most efficiently. For example, it is preferable to install in the induction coil (particularly in the central part of the induction coil).
[0027]
In the present invention, since the synthesis reaction is generally completed within about 5 minutes, the grain growth of the compound particles by sintering is so small that it can be substantially ignored. For this reason, also when manufacturing a highly tough fine particle structure nitrogen-containing inorganic compound, the mixing | blending of the additive for the grain growth prevention can be made unnecessary.
[0028]
A well-known thing can be utilized for the induction heating coil for implementing this invention method, and its peripheral devices (high frequency power supply etc.). In the present invention, by performing the heating with the induction heating coil, the atmosphere control can be made unnecessary. As a result, since heating can be performed in the air, a high-pressure vessel, a closed furnace, or the like can be made unnecessary. Of course, these can also be used as needed. For example, an inert gas atmosphere, a vacuum atmosphere, a nitrogen gas atmosphere, or the like can be controlled in combination with a closed furnace.
[0029]
In heating, the setting conditions of the high frequency power source are not particularly limited as long as the synthesis reaction can be performed.
For example, it can be implemented by setting the frequency to about 60 to 120 kHz, the output voltage to about 50 to 200 V, and the output current to about 100 to 200 A. In the present invention, the high frequency power supply is preferably a variable power supply.
[0030]
The reaction product can be taken out and used as it is, but may be subjected to a pulverization treatment if necessary. The pulverization treatment can be performed using a known device such as a ball mill, a vibration mill, a planetary mill, or the like.
[0031]
The nitrogen-containing inorganic compound produced by the method of the present invention can be suitably used for existing applications depending on the type of compound. For example, it can be used for a heat-resistant structural material, a transparent refractory, a heat-resistant optical material, a furnace material, or a peripheral member thereof.
[0032]
The nitrogen-containing inorganic compound to which the method of the present invention can be applied is not particularly limited. A compound containing at least one of Al, Ti and Ga is preferred. In particular, a compound containing at least one of AlN, AlON, SiAlON, and TiON is preferable. More specifically, for example AlON, SiAlON, TiON, AlN- GaN, BN-AlN, AlN-AlON, AiN-TiN, AlN over TiB 2, Al-Al 2 OC and the like.
[0033]
【The invention's effect】
In the production method of the present invention, since the induction heating method is adopted, even if a combination of small calorific values such as AlN and Al 2 O 3 is used, the synthesis reaction can be started more reliably without using a high-pressure vessel or the like. -By making it progress, it is possible to produce a material equivalent to or higher than that of conventional products.
[0034]
In addition, by adopting the induction heating method, the reaction time can be shortened, the apparatus can be simplified, and the like. As a result, the manufacturing cost can be reduced.
[0035]
In particular, when the entire raw material is coated with a carbonaceous material, the thermal efficiency can be increased and the effect of forming a reducing atmosphere, the handling of reaction products, the effect of preventing impurities from being mixed into the reaction products, etc. are achieved. You can also These can also contribute to quality improvement or reduction of manufacturing cost.
[0036]
In addition, since the reaction time can be shortened, grain growth due to the synthesis reaction can be suppressed or prevented in advance. Therefore, the desired toughness and the like can be reliably achieved without using an additive for improving the mechanical strength such as toughness.
[0037]
【Example】
Examples are given below to further clarify the features of the present invention. However, the scope of the present invention is not limited to the scope of the examples.
[0038]
Example 1
As a raw material, a mixed powder composed of an aluminum nitride (AlN) powder having an average particle diameter of 6 μm and an α-alumina (Al 2 O 3 ) powder having a particle diameter of 25 μm or less was used. The mixed powder had an AlN: Al 2 O 3 ratio (molar ratio) of 35:65. A cylindrical container assembled with a graphite disk (bottom) and a carbon sheet (side) as shown in FIG. 1 was filled with the mixed powder, and the container opening was closed with the graphite disk. Next, as shown in FIG. 2, a sample obtained by filling the container with mixed powder was placed in an alumina cylindrical crucible (insulator container), and the entire outer surface of the container was covered with a sufficient amount of foundry sand. . As shown in FIG. 2, a high frequency induction heating coil connected to a high frequency power supply is installed around the alumina cylindrical crucible.
[0039]
Next, induction heating was performed by energizing the coil, and a synthesis reaction was performed to obtain a reaction product. The power for heating was an output voltage of 85 V, a current of 170 A, and a frequency of 70 kHz, and a high frequency application time (high frequency current energization time) was 300 seconds.
[0040]
The obtained reaction product was subjected to X-ray diffraction analysis. The result is shown in FIG.
As a result, the constituent phase of the reaction product was identified and confirmed to be AlON having a γ-AlON content of 95% by weight or more. As a result of observation with an optical microscope, no abnormal growth of particles was observed.
[Brief description of the drawings]
1 is a configuration diagram of a container made of a carbonaceous material used in Example 1. FIG.
2 is a schematic diagram of an induction heating apparatus used in Example 1. FIG.
3 is a graph showing the results of X-ray diffraction analysis of the reaction product obtained in Example 1. FIG.

Claims (6)

窒素を含む無機化合物からなる窒素供給材を含む原料を用いて窒素含有無機化合物を製造する方法であって、当該原料を誘導加熱コイル内に装填し、誘導加熱を利用した合成反応によって窒素含有無機化合物を生成させることを特徴とする窒素含有無機化合物の製造方法。 Nitrogen using a raw material containing nitrogen supply material made of an inorganic compound containing a method for producing a nitrogen-containing inorganic compound, loading the material into the induction heating coil, a nitrogen-containing inorganic by utilizing synthesis reaction induction heating A method for producing a nitrogen-containing inorganic compound, comprising producing a compound. 誘導加熱コイル内に原料を装填するに際し、原料を炭素質材料で被覆する請求項1記載の製造方法。The method according to claim 1, wherein the raw material is coated with a carbonaceous material when the raw material is loaded into the induction heating coil. 誘導加熱コイル内に原料を装填するに際し、原料を炭素質材料で被覆し、さらに鋳物砂で覆う請求項1記載の製造方法。The manufacturing method according to claim 1, wherein when the raw material is loaded into the induction heating coil, the raw material is coated with a carbonaceous material and further covered with foundry sand. 誘導加熱を利用した合成反応を大気中で行う請求項1〜3のいずれかに記載の製造方法。The manufacturing method in any one of Claims 1-3 which perform the synthetic reaction using induction heating in air | atmosphere. 窒素含有無機化合物が、Al、Ti及びGaの少なくとも1種を含む請求項1〜4のいずれかに記載の製造方法。The manufacturing method in any one of Claims 1-4 in which a nitrogen-containing inorganic compound contains at least 1 sort (s) of Al, Ti, and Ga. 窒素含有無機化合物が、AlN、AlON、SiAlON及びTiONの少なくとも1種を含む請求項1〜5のいずれかに記載の製造方法。The manufacturing method according to any one of claims 1 to 5, wherein the nitrogen-containing inorganic compound contains at least one of AlN, AlON, SiAlON, and TiON.
JP2001076658A 2001-03-16 2001-03-16 Method for producing nitrogen-containing inorganic compound Expired - Fee Related JP4578009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076658A JP4578009B2 (en) 2001-03-16 2001-03-16 Method for producing nitrogen-containing inorganic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076658A JP4578009B2 (en) 2001-03-16 2001-03-16 Method for producing nitrogen-containing inorganic compound

Publications (2)

Publication Number Publication Date
JP2002274818A JP2002274818A (en) 2002-09-25
JP4578009B2 true JP4578009B2 (en) 2010-11-10

Family

ID=18933556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076658A Expired - Fee Related JP4578009B2 (en) 2001-03-16 2001-03-16 Method for producing nitrogen-containing inorganic compound

Country Status (1)

Country Link
JP (1) JP4578009B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220353B2 (en) * 2007-04-12 2013-06-26 独立行政法人科学技術振興機構 Self-propagating high-temperature synthesis method
JP5569844B2 (en) * 2010-08-23 2014-08-13 国立大学法人東北大学 Aluminum nitride wire manufacturing method and aluminum nitride wire manufacturing apparatus
JP5586018B2 (en) * 2010-08-23 2014-09-10 国立大学法人東北大学 Aluminum nitride particle manufacturing method and aluminum nitride particle manufacturing apparatus
JP5565729B2 (en) * 2010-08-23 2014-08-06 国立大学法人東北大学 Aluminum nitride-based particle manufacturing method and aluminum nitride-based particle manufacturing apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678472A (en) * 1979-12-01 1981-06-27 Tokuyama Soda Kk Manufacture of sialon sintered body
JPS62256702A (en) * 1986-04-30 1987-11-09 Murata Mfg Co Ltd Production of non-oxidized powder
JPS63103807A (en) * 1986-10-15 1988-05-09 ステンカー・コーポレーシヨン Continuous manufacture of high purity, superfine aluminum nitride by carbon-nitration of alumina
JPS63156073A (en) * 1986-12-03 1988-06-29 コーニング グラス ワークス Nitirde base sintered ceramic body and manufacture
JPH01230779A (en) * 1987-11-13 1989-09-14 Toshiba Ceramics Co Ltd Production of aluminum nitride
JPH06321642A (en) * 1993-03-30 1994-11-22 Elf Atochem Sa Preparation of powder for light transmitting gamma oxyaluminum nitride ceramics and said powder
JPH07277727A (en) * 1994-04-15 1995-10-24 Nippon Steel Corp Production of aluminum oxynitride powder
JPH08508000A (en) * 1992-01-10 1996-08-27 ザ・ダウ・ケミカル・カンパニー Method for producing ultrafine aluminum nitride powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678472A (en) * 1979-12-01 1981-06-27 Tokuyama Soda Kk Manufacture of sialon sintered body
JPS62256702A (en) * 1986-04-30 1987-11-09 Murata Mfg Co Ltd Production of non-oxidized powder
JPS63103807A (en) * 1986-10-15 1988-05-09 ステンカー・コーポレーシヨン Continuous manufacture of high purity, superfine aluminum nitride by carbon-nitration of alumina
JPS63156073A (en) * 1986-12-03 1988-06-29 コーニング グラス ワークス Nitirde base sintered ceramic body and manufacture
JPH01230779A (en) * 1987-11-13 1989-09-14 Toshiba Ceramics Co Ltd Production of aluminum nitride
JPH08508000A (en) * 1992-01-10 1996-08-27 ザ・ダウ・ケミカル・カンパニー Method for producing ultrafine aluminum nitride powder
JPH06321642A (en) * 1993-03-30 1994-11-22 Elf Atochem Sa Preparation of powder for light transmitting gamma oxyaluminum nitride ceramics and said powder
JPH07277727A (en) * 1994-04-15 1995-10-24 Nippon Steel Corp Production of aluminum oxynitride powder

Also Published As

Publication number Publication date
JP2002274818A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP3847331B2 (en) Aluminum nitride, aluminum nitride-containing solid solution and aluminum nitride composite prepared by combustion synthesis
US4073845A (en) High density high strength S13 N4 ceramics prepared by pressureless sintering of partly crystalline, partly amorphous S13 N4 powder
US5710382A (en) Aluminum nitride, aluminum nitride containing solid solutions and aluminum nitride composites prepared by combustion synthesis and sintered bodies prepared therefrom
TW201829299A (en) Method for producing high-purity silicon nitride powder
JPH1149572A (en) Ceramic composite particles and their production
JP4578009B2 (en) Method for producing nitrogen-containing inorganic compound
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JP3475614B2 (en) Silicon diimide
JPS6210954B2 (en)
JPH01264973A (en) Production of sintered body of beta-sialon
JP2000087108A (en) Manufacture of cemented carbide
KR100321294B1 (en) Preparation of carbide or boride ceramic powder by self-propagation high temparature synthesis
JPS5934676B2 (en) Method for producing a reaction fired product containing β′-Sialon as the main component
JP2539857B2 (en) Method for synthesizing silicon carbide powder
JP2612016B2 (en) Method for producing low oxygen aluminum nitride powder
SU1074402A3 (en) Method of producing silicon nitride-base articles
JP2543353B2 (en) Method for producing silicon nitride based sintered body
EP1344759A2 (en) Process for preparing WC cemented carbide
Low Combustion synthesis of zirconium boride ceramics
JP3839514B2 (en) Silicon nitride sintered body and method for producing the same
JPH09235165A (en) Production of sintered compact of silicon nitride
JP2803827B2 (en) Manufacturing method of high density and high hardness ceramics sintered body
Davidchuk et al. Some Characteristic Features of Formation of Ceramics Based on Composite Powders SiC―Si3N4―Si2N2O
Rhine et al. Silicon nitride ceramic matrix for CMCs from silane derived Si powders and preceramic polymers
JPH0967167A (en) Silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4578009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees