JP4577459B2 - Sheet electrode structure - Google Patents

Sheet electrode structure Download PDF

Info

Publication number
JP4577459B2
JP4577459B2 JP31660397A JP31660397A JP4577459B2 JP 4577459 B2 JP4577459 B2 JP 4577459B2 JP 31660397 A JP31660397 A JP 31660397A JP 31660397 A JP31660397 A JP 31660397A JP 4577459 B2 JP4577459 B2 JP 4577459B2
Authority
JP
Japan
Prior art keywords
current collector
ethylene
methacrylic acid
acid copolymer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31660397A
Other languages
Japanese (ja)
Other versions
JPH11144737A (en
Inventor
長 鈴木
哲 丸山
剛 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP31660397A priority Critical patent/JP4577459B2/en
Publication of JPH11144737A publication Critical patent/JPH11144737A/en
Application granted granted Critical
Publication of JP4577459B2 publication Critical patent/JP4577459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【0001】
【発明の属する技術分野】
本発明は、電池、電気二重層キャパシタのシート状電極構造に関するものである。
【0002】
【従来の技術】
近年、リチウムイオン2次電池と称される負極活物質に炭素材料、酸化すず等を用いた2次電池が各種エレクトロニクス製品、電気自動車に大量に使用され又は使用が検討されている。この電池では、正負極活物質相互及び電極合剤層と金属集電体(銅、アルミニウム等)との結着剤として、特開平9−35707号公報に示されるようにポリフッ化ビニリデン(PVDF)が多用されてきた。
【0003】
PVDFは結晶性高分子で比較的耐薬品性に優れた高分子である。即ちPVDFを良く溶解させる溶媒もあるが、かといってどんな溶媒に溶解するわけでもなく、ふっ素樹脂のなかでは使いやすい樹脂のひとつであった。PVDFはリチウムイオン2次電池の電解液にはほとんど溶解しないのでリチウムイオン2次電池の電極の結着剤に多用されてきた。しかし、PVDFは結着性が十分ではなかった。
【0004】
この問題を解決するために、特開平9−35707号では負極集電体と負極合剤層との間に、炭素粉末が混入されたアクリル系共重合体を設けている。アクリル共重合体のうち、アクリル酸エステル・スチレン共重合体、アクリル酸エステル・メタクリル酸エステル共重合体の実施例が開示されている。このようなアクリル酸エステル共重合体は、アルカリによって、エステル結合が加水分解される。リチウムイオン2次電池は、低湿度下で製造されるので電池内部には殆ど水が存在しないが、微量には存在する。この微量の水が電池内部で電気分解されアルカリ(OH-1)を生成するので、アクリル酸エステル・メタクリル酸エステル共重合体は電池内部で加水分解され結着力が低下し、電池のサイクル特性が劣化すると考えられる。
【0005】
また、従来市販されている電池の殆どは、液体の溶媒に電解質塩を溶解させたいわゆる電解液を用いている。電解液を用いた電池は、内部抵抗が低いという長所があるが、反面、液漏れがしやすい、発火する危険性があるという問題点がある。このような問題点に対し溶媒を含まない電解質すなわち固体電解質の研究が長年行われてきた。例えば、高分子に電解質塩を相溶させた系が知られている。
但し、このような全く溶媒を含まない固体電解質(例えばポリエチレンオキシドにリチウム塩を相溶させたもの)は導電率が低く(10-4S・cm-1以下)、実用化に至っていない。
【0006】
これに対し高分子、電解質塩及び溶媒からなるゲル状の高分子固体電解質が近年脚光を浴びている。このようなゲル状の高分子固体電解質(以下、「ゲル電解質」と呼ぶ)は、導電率が液体のそれに近く10-3S・cm-1台の値を示すものもある。例えば、米国特許第5296318号には、フッ化ビニリデン(VDF)と8〜25重量%の6フッ化プロピレン(HFP)の共重合体に、リチウム塩が溶解した溶媒が20〜70重量%含まれているゲル電解質が開示されている。
この電解質の導電率は10-3S・cm-1に達する。上記米国特許第5296318号に記載されているPVDFは、VDFとHFPの共重合体であり、HFPがPVDFの結晶化度を低下させている。このようなVDF−HFP共重合体は、溶媒を多量に含むことが可能となり、またリチウム塩の結晶析出も抑制され、また機械的強度のあるゲル電解質を作製することができる。しかしながら、VDF−HFP共重合体はふっ素系高分子であるから結着性が不十分であり、集電体である金属(銅、アルミニウム等)と良く結着しなかった。これを改善するために、米国特許WO95/31836号では電極と同じ高分子で集電体をコーティングしたりエチレン−アクリル酸共重合体で集電体をコーティングして集電体と電極との結着性を改善することが提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、エチレン−アクリル酸共重合体を用いた電池は、サイクル特性が十分ではなかった。理由は明らかではないが、塗膜が硬くなりやすいことに起因していると考えられる。
【0008】
上記した米国特許WO95/31836号で示されたエチレン−アクリル酸共重合体を用いた電池の欠点を改良するために、本発明者らは、種々の高分子を検討した結果、本発明で示すエチレン−メタクリル酸共重合体のアイオノマー又はエチレン−メタクリル酸共重合体が結着性に優れ、かつ良好なサイクル特性を示すことを見い出した。
【0009】
本発明は、上記の点に鑑み、2次電池等に使用したときのサイクル特性を改善し、長寿命化を図ることのできるシート状電極構造を提供することを目的とする。
【0010】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明に係るシート状電極構造は、チレン−メタクリル酸共重合体のアイオノマーと導電性フィラーとからなる塗膜で金属集電体本体をコーティングした集電体と、フッ素系高分子を結着剤とする電極とが積層されたものである
【0015】
記シート状電極構造において、前記アイオノマーの陽イオンが、Li又はNa又はZn2+であるとよい。
【0017】
【発明の実施の形態】
以下、本発明に係るシート状電極構造の実施の形態を図面に従って説明する。
【0018】
図1において、1は集電体であり、アルミニウム箔、銅箔又はそれらのメッシュ等からなる金属集電体本体2の表面を塗膜3でコーティングしたものであり、この集電体1に電極4が積層、熱圧着され、全体としてシート状電極構造をなしている。
【0019】
リチウムイオン2次電池を構成するような場合、正極側の金属集電体本体2はアルミニウム箔又はそのメッシュ、負極側は銅箔又はそのメッシュがよく用いられる。
【0020】
前記塗膜3は、エチレン−メタクリル酸共重合体のアイオノマーと導電性フィラーとからなる。
【0021】
エチレン−メタクリル酸共重合体のアイオノマーは三井石油化学工業(株)より商品名「ケミパール(ポリオレフィン水性ディスパージョン)」、三井・デュポンポリケミカル(株)より「ハイミラン(アイオノマーレジン)」として上市されており、以下の(化学式1)にその構造が示される。
【化1】

Figure 0004577459
【0023】
エチレン−メタクリル酸共重合体のアイオノマーは、エチレン−メタクリル酸共重合体をNa+、Li+、Mg2+、Zn2+等で中和したものである。エチレン−メタクリル酸共重合体のアイオノマーは分子中にカルボキシル基があるため、金属(アルミニウム、銅、鉄等)、ナイロン、ガラス、紙、セロファン等に対し密着性が良い。また、機械的強度も優れている。
【0025】
これら高分子に導電性を付与するために導電性フィラー(カーボンブラック、炭素繊維、金属粉末、金属繊維等)を分散させたものを、金属集電体本体2表面にコーティングで形成させて集電体1とすることにより、電極4(電極合剤層)と集電体1の密着性が良くなり、後述するように、2次電池のサイクル寿命が著しく改善される。
【0026】
エチレン−メタクリル酸共重合体のアイオノマーと導電性フィラーとの分散は、固体状のエチレン−メタクリル酸共重合体のアイオノマーと導電性フィラーを熱熔融混練しても良いし、エチレン−メタクリル酸共重合体のアイオノマーを水に分散させたディスパージョンと導電性フィラーをボールミル等で分散させても良い。高分子と導電性フィラーとの組成は、高分子:導電性フィラー=90〜50wt%:10〜50wt%の範囲が導電性が良く集電体との密着性も良い。
【0027】
金属集電体本体2(たとえば、アルミニウム箔、銅箔等)上に上記高分子/導電性フィラーの混合組成物の塗膜3を形成させるには、組成物を熱熔融混練した場合は混練物を押し出し機で押し出しながら金属集電体本体2と熱圧着させても良いし、押し出し機で組成物を押し出して組成物をフィルムとし、その後、このフィルムと金属集電体本体2とを熱プレス、熱ロール等で熱圧着させて塗膜付き集電体1としても良い。組成物が水の分散物の場合は、スプレー、浸せき法等で塗膜3を金属集電体本体2上に形成させる。スプレー、浸せきした後は、水分を除去するために80℃以上で乾燥させる。
【0028】
電極4は、フッ素系高分子、例えばPVDFを結着剤として活物質、必要に応じて導電助剤を含むものである。この電極4は、ペースト状の電極塗料をドクターブレード、スプレー等で集電体1上に塗布し、溶剤を乾燥除去する。このようにしてできた金属集電体本体2/エチレン−メタクリル酸共重合体のアイオノマーと導電性フィラーからなる塗膜3/電極4は、各層相互の密着性をさらに上げるために熱を加えながら加圧しても良い。この工程は、熱プレス、熱ロール、オートクレーブ等を用いる。なお、PVDFの代替えとして、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−塩化3フッ化エチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレンフッ素ゴム、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレンフッ素ゴム、フッ化ビニリデン−テトラフルオロエチレン−パーフルオロアルキルビニルエーテルフッ素ゴム等のフッ素系高分子が使用可能である。
【0029】
リチウムイオン2次電池を構成するような場合、例えば、正極側の電極4は正極活物質としてLiCoO2を含み、負極側の電極4は負極活物質として黒鉛を含む。
【0030】
この実施の形態で示したように、エチレン−メタクリル酸共重合体のアイオノマーと導電性フィラーとからなる塗膜で金属集電体本体2をコーティングした集電体1を2次電池のシート状電極構造に用いると、これらの高分子は金属集電体本体(アルミニウム、銅等の金属)及びフッ素系高分子を結着剤としている電極合剤層との結着性に優れているため、2次電池のサイクル寿命が長くなる。また、電気二重層キャパシタに適用した場合にも長寿命化を図ることができる。
【0031】
【実施例】
以下、本発明の実施例をリチウムイオン2次電池を構成した場合を例にとり詳述する。
【0032】
[実施例1] エチレン−メタクリル酸共重合体のアイオノマーとして、三井石油化学(株)「ケミパールS−100」を用いた。ケミパールS−100はエチレン−メタクリル酸共重合体のNa+のアイオノマー微粒子を水に分散させたディスパージョンである。ケミパールS−100を47.4g、カーボンブラックHS−100{電気化学工業(株)製}5.49g、水20gを250mlの樹脂製のポットに、直径10mmのアルミナ製ボール321gと共に入れ、96r.p.mで3時間分散させて塗料を作製した。組成は、エチレン−メタクリル酸共重合体(アイオノマー):カーボンブラック=70:30wt%である。この塗料をさらに水で希釈し、金属集電体本体としてのアルミニウムのメッシュ及び銅のメッシュの両面にスプレーしドライヤーで乾燥させた。このメッシュをさらに100℃の乾燥庫で30分乾燥させ、塗膜付きの集電体を作製した。
【0033】
電極について、正極はLiCoO2、HS−100、PVDF等のフッ素系高分子からなるものをドクターブレード法で作製した。負極は、メソカーボンマイクロビーズ(MCMB)、HS−100、PVDF等のフッ素系高分子からなるものをドクターブレード法で作製した。セパレータは、PVDF、SiO2からなるものをドクターブレード法で作製した。正極、負極、セパレータ、集電体をそれぞれ適切な寸法にカットした。
【0034】
次に、正極側集電体としての塗膜付きアルミニウムメッシュと正極を積層し、熱プレスでラミネートした。ラミネート条件は120℃で、圧力35kgcm-2で3分間加圧した。負極側集電体としての塗膜付き銅メッシュと負極も同一条件でラミネートした。この正極と負極の間にセパレータを積層し、熱ロールでラミネートした。
【0035】
この積層体をアルミニウムラミネート袋に挿入し、電解液として1MのLiPF6/EC+DMC(但し、EC:エチレンカーボネート、DMC:ジメチルカーボネート)を注入し、開口部をヒートシールして、シート型リチウムイオン2次電池を作製した。この電池を0.5Cの電流で4.15Vまで充電後4.15Vで1.5時間保持した。放電は0.5Cの電流で2.80Vまで行った。この試験を繰り返した。図5曲線(イ)に示すように「ケミパールS−100」を用いた実施例1の電池はサイクル寿命が優れている。
【0036】
[参考実験例] エチレン−メタクリル酸共重合体として、東邦化学工業(株)製「ハイテックS−3121」を用いた。ハイテックS−3121はエチレン−メタクリル酸共重合体の微粒子を水に分散させたディスパージョンである。ハイテックS−3121とカーボンブラックHS−100{電気化学工業(株)製}をボールミルで3時間分散させて塗料を作製した。組成は、エチレン−メタクリル酸共重合体:カーボンブラック=70:30wt%である。以下実施例1と同様の方法で、エチレン−メタクリル酸共重合体/カーボンブラック組成物の塗膜を金属集電体本体としてのアルミニウムメッシュ及び銅メッシュ上に形成した。以下、実施例1と全く同様にシート型リチウムイオン2次電池の作製とサイクル試験を実施した。
【0037】
図5曲線(ロ)に示すように「ハイテックS−3121」を用いた参考実験例の電池はサイクル寿命が優れている。
【0038】
[比較例1] 米国特許W095/31836号に記載されているエチレン−アクリル酸共重合体とカーボンブラックの組成物で金属集電体本体をコーティングした。組成は実施例1と同一である。以下、実施例1と同様にシート型リチウムイオン2次電池を作製しサイクル試験を実施した。
【0039】
図5曲線(ハ)に示すように「エチレン−アクリル酸共重合体」を用いた比較例1の電池はサイクル寿命に劣っている。
【0040】
[比較例2] 特開平9−35707号に記載されているアクリル酸エステル・スチレン共重合体とカーボンブラックの組成物で金属集電体本体をコーティングした。組成は実施例1と同じである。以下、実施例1と同様にシート型リチウムイオン2次電池を作製しサイクル試験を実施した。
【0041】
図5曲線(ニ)に示すように「アクリル酸エステル・スチレン共重合体」を用いた比較例2の電池はサイクル寿命に劣っている。
【0042】
[比較例3] 特開平9−35707号に記載されているアクリル酸エステル・メタクリル酸エステル共重合体とカーボンブラックの組成物で金属集電体本体をコーティングした。組成は実施例1と同一である。以下、実施例1と同様にシート型リチウムイオン2次電池を作製しサイクル試験を実施した。
【0043】
図5曲線(ホ)に示すように「アクリル酸エステル・メタクリル酸エステル共重合体」を用いた比較例3の電池はサイクル寿命に劣っている。
【0044】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0045】
【発明の効果】
以上説明したように、本発明は、エチレン−メタクリル酸共重合体のアイオノマーと導電性フィラーとからなる塗膜で金属集電体本体をコーティングして塗膜付き集電体としている。このように、金属集電体本体、電極との密着性の良好なエチレン−メタクリル酸共重合体のアイオノマーを用いたことにより、サイクル寿命に優れたあるいは長寿命のリチウム2次電池用、電気二重層キャパシタ用の集電体及びシート状電極構造を得ることができる。
【図面の簡単な説明】
【図1】 本発明に係るシート状電極の実施の形態を示す概略断面図である。
【図2】 本発明の実施例のサイクル特性を比較例の場合と対比して示すグラフである。
【符号の説明】
1 集電体
2 金属集電体本体
3 塗膜
4 電極[0001]
BACKGROUND OF THE INVENTION
The present invention battery relates sheet over preparative shaped electrode structure for an electric double layer capacitor.
[0002]
[Prior art]
In recent years, secondary batteries using a carbon material, tin oxide, or the like as a negative electrode active material called a lithium ion secondary battery have been used or studied in large quantities in various electronic products and electric vehicles. In this battery, polyvinylidene fluoride (PVDF) is used as a binder between the positive and negative electrode active materials and between the electrode mixture layer and the metal current collector (copper, aluminum, etc.) as disclosed in JP-A-9-35707. Has been used extensively.
[0003]
PVDF is a crystalline polymer that is relatively excellent in chemical resistance. In other words, there is a solvent that dissolves PVDF well, but it does not dissolve in any solvent, and it is one of the resins that are easy to use among fluororesins. Since PVDF hardly dissolves in the electrolyte solution of a lithium ion secondary battery, it has been frequently used as a binder for electrodes of lithium ion secondary batteries. However, PVDF did not have sufficient binding properties.
[0004]
In order to solve this problem, JP-A-9-35707 provides an acrylic copolymer mixed with carbon powder between a negative electrode current collector and a negative electrode mixture layer. Among acrylic copolymers, examples of acrylic ester / styrene copolymers and acrylic ester / methacrylic ester copolymers are disclosed. In such an acrylate copolymer, an ester bond is hydrolyzed by an alkali. Lithium ion secondary batteries are manufactured under low humidity, so there is almost no water inside the batteries, but they are present in trace amounts. Since this trace amount of water is electrolyzed inside the battery to produce alkali (OH -1 ), the acrylic ester / methacrylic acid ester copolymer is hydrolyzed inside the battery and the binding power is lowered, and the cycle characteristics of the battery are reduced. It is thought to deteriorate.
[0005]
In addition, most of the batteries that are commercially available in the past use a so-called electrolytic solution in which an electrolyte salt is dissolved in a liquid solvent. A battery using an electrolytic solution has an advantage that the internal resistance is low. However, there is a problem that the battery easily leaks and there is a risk of ignition. In order to solve such problems, studies on electrolytes that do not contain a solvent, that is, solid electrolytes, have been conducted for many years. For example, a system in which an electrolyte salt is dissolved in a polymer is known.
However, such a solid electrolyte containing no solvent (for example, a lithium oxide mixed with polyethylene oxide) has a low electrical conductivity (10 −4 S · cm −1 or less) and has not yet been put into practical use.
[0006]
On the other hand, gel-like polymer solid electrolytes composed of a polymer, an electrolyte salt and a solvent have recently attracted attention. Some of these gel polymer solid electrolytes (hereinafter referred to as “gel electrolytes”) have a conductivity of 10 −3 S · cm −1 which is close to that of a liquid. For example, US Pat. No. 5,296,318 includes 20 to 70 wt% of a solvent in which a lithium salt is dissolved in a copolymer of vinylidene fluoride (VDF) and 8 to 25 wt% of propylene hexafluoride (HFP). A gel electrolyte is disclosed.
The conductivity of the electrolyte reaches 10 −3 S · cm −1 . PVDF described in the above-mentioned US Pat. No. 5,296,318 is a copolymer of VDF and HFP, and HFP reduces the crystallinity of PVDF. Such a VDF-HFP copolymer can contain a large amount of a solvent, suppresses crystal precipitation of a lithium salt, and can produce a gel electrolyte having mechanical strength. However, since the VDF-HFP copolymer is a fluorine-based polymer, the binding property is insufficient, and the VDF-HFP copolymer does not bind well to the metal (copper, aluminum, etc.) that is the current collector. In order to improve this, US Patent No. WO95 / 31836 coats the current collector with the same polymer as the electrode or coats the current collector with an ethylene-acrylic acid copolymer to bind the current collector to the electrode. It has been proposed to improve wearability.
[0007]
[Problems to be solved by the invention]
However, the battery using the ethylene-acrylic acid copolymer has insufficient cycle characteristics. The reason is not clear, but it is thought that it is caused by the fact that the coating film tends to become hard.
[0008]
In order to improve the drawbacks of the battery using the ethylene-acrylic acid copolymer shown in the above-mentioned US Patent No. WO95 / 31836, the present inventors have studied various polymers, and show the present invention. It has been found that an ionomer of an ethylene-methacrylic acid copolymer or an ethylene-methacrylic acid copolymer has excellent binding properties and exhibits good cycle characteristics.
[0009]
In view of the above problems, to improve the cycle characteristics when used in the secondary battery or the like, and to provide a Cie over preparative like electrode structure can of possible to extend the life of.
[0010]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0014]
[Means for Solving the Problems]
To achieve the above object, engagement Cie over preparative shaped electrode structure in the present invention, et styrene - coated with metallic current collector body with the coating consisting of an ionomer and a conductive filler of methacrylic acid copolymer A current collector and an electrode using a fluorine-based polymer as a binder are laminated .
[0015]
Prior carboxymethyl over preparative shaped electrode structure, the cation of said ionomer, may is Li + or Na + or Zn 2+.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
It will be described below with reference to drawings of embodiments of the engagement Resid over preparative shaped electrode structure to the present invention.
[0018]
In FIG. 1, reference numeral 1 denotes a current collector, which is obtained by coating the surface of a metal current collector body 2 made of aluminum foil, copper foil, or a mesh thereof with a coating film 3. 4 is laminated and thermocompression bonded to form a sheet-like electrode structure as a whole.
[0019]
When forming a lithium ion secondary battery, the metal current collector body 2 on the positive electrode side is often an aluminum foil or a mesh thereof, and the negative electrode side is often a copper foil or a mesh thereof.
[0020]
The coating film 3 comprises an ionomer of an ethylene-methacrylic acid copolymer and a conductive filler .
[0021]
Ionomer of ethylene-methacrylic acid copolymer is marketed by Mitsui Petrochemical Co., Ltd. under the trade name “Chemical (polyolefin aqueous dispersion)” and Mitsui DuPont Polychemical Co., Ltd. as “High Milan (Ionomer Resin)”. The structure is shown in the following (Chemical Formula 1).
[Chemical 1]
Figure 0004577459
[0023]
The ethylene-methacrylic acid copolymer ionomer is obtained by neutralizing an ethylene-methacrylic acid copolymer with Na + , Li + , Mg 2+ , Zn 2+ or the like. Since the ionomer of the ethylene-methacrylic acid copolymer has a carboxyl group in the molecule, it has good adhesion to metals (aluminum, copper, iron, etc.), nylon, glass, paper, cellophane and the like. Also, the mechanical strength is excellent.
[0025]
In order to impart conductivity to these polymers, a material in which a conductive filler (carbon black, carbon fiber, metal powder, metal fiber, etc.) is dispersed is formed on the surface of the metal current collector body 2 by coating to collect current. By using the body 1, the adhesion between the electrode 4 (electrode mixture layer) and the current collector 1 is improved, and the cycle life of the secondary battery is remarkably improved as will be described later.
[0026]
Ethylene - dispersion of the ionomer and a conductive filler of methacrylic acid copolymer, solid ethylene - to the ionomer and a conductive filler of methacrylic acid copolymers may be hot-melt kneading, an ethylene - methacrylic acid copolymerization A dispersion in which a combined ionomer is dispersed in water and a conductive filler may be dispersed by a ball mill or the like. As for the composition of the polymer and the conductive filler, the range of polymer: conductive filler = 90-50 wt%: 10-50 wt% has good conductivity and good adhesion to the current collector.
[0027]
In order to form the coating film 3 of the polymer / conductive filler mixed composition on the metal current collector body 2 (for example, aluminum foil, copper foil, etc.), when the composition is hot-melt kneaded, the kneaded product The metal current collector body 2 may be thermocompression-bonded while being extruded with an extruder, or the composition is extruded into a film with an extruder, and then the film and the metal current collector body 2 are hot-pressed. Alternatively, the current collector 1 with a coating film may be thermocompression bonded with a heat roll or the like. When the composition is a dispersion of water, the coating film 3 is formed on the metal current collector body 2 by spraying, dipping, or the like. After spraying and soaking, it is dried at 80 ° C. or higher to remove moisture.
[0028]
The electrode 4 contains a fluorine-based polymer, for example, PVDF as an active material, and a conductive aid as necessary. For this electrode 4, paste-like electrode paint is applied onto the current collector 1 with a doctor blade, spray, or the like, and the solvent is removed by drying. The thus obtained metal current collector body 2 / coating film 3 / electrode 4 made of an ionomer of ethylene-methacrylic acid copolymer and a conductive filler is heated while applying heat in order to further improve the adhesion between the layers. You may pressurize. This process uses a hot press, a hot roll, an autoclave, or the like. As an alternative to PVDF, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trichloroethylene copolymer, vinylidene fluoride-hexafluoropropylene fluororubber, vinylidene fluoride-tetrafluoroethylene-hexa Fluoropolymers such as fluoropropylene fluororubber and vinylidene fluoride-tetrafluoroethylene-perfluoroalkyl vinyl ether fluororubber can be used.
[0029]
When constituting a lithium ion secondary battery, for example, the positive electrode 4 includes LiCoO 2 as a positive electrode active material, and the negative electrode 4 includes graphite as a negative electrode active material.
[0030]
As shown in this embodiment, a current collector 1 in which a metal current collector body 2 is coated with a coating film made of an ethylene-methacrylic acid copolymer ionomer and a conductive filler is used as a sheet-like electrode of a secondary battery. When used in the structure, these polymers are excellent in binding properties with a metal current collector body (metal such as aluminum and copper) and an electrode mixture layer using a fluorine-based polymer as a binder. The cycle life of the secondary battery is extended. Also, when applied to an electric double layer capacitor, the life can be extended.
[0031]
【Example】
Hereinafter, a case where a lithium ion secondary battery is configured according to an embodiment of the present invention will be described in detail.
[0032]
Example 1 Mitsui Petrochemical Co., Ltd. “Chemical S-100” was used as an ionomer of an ethylene-methacrylic acid copolymer. Chemipearl S-100 is a dispersion in which Na + ionomer fine particles of an ethylene-methacrylic acid copolymer are dispersed in water. 47.4 g of Chemipearl S-100, 5.49 g of carbon black HS-100 {manufactured by Denki Kagaku Kogyo Co., Ltd.}, and 20 g of water were placed in a 250 ml resin pot together with 321 g of alumina balls having a diameter of 10 mm, and 96 r. A paint was prepared by dispersing for 3 hours at pm. The composition is ethylene-methacrylic acid copolymer (ionomer): carbon black = 70: 30 wt%. This paint was further diluted with water, sprayed on both sides of an aluminum mesh and a copper mesh as a metal current collector body, and dried with a dryer. This mesh was further dried in a drying cabinet at 100 ° C. for 30 minutes to produce a current collector with a coating film.
[0033]
Regarding the electrode, a positive electrode made of a fluorine-based polymer such as LiCoO 2 , HS-100, and PVDF was prepared by a doctor blade method. The negative electrode was made of a fluorine-based polymer such as mesocarbon microbeads (MCMB), HS-100, PVDF or the like by a doctor blade method. The separator was made of PVDF and SiO 2 by the doctor blade method. The positive electrode, the negative electrode, the separator, and the current collector were each cut into appropriate dimensions.
[0034]
Next, an aluminum mesh with a coating film as a positive electrode side current collector and a positive electrode were laminated and laminated by hot pressing. Lamination was performed at 120 ° C. and a pressure of 35 kgcm −2 for 3 minutes. A copper mesh with a coating film as a negative electrode side current collector and a negative electrode were laminated under the same conditions. A separator was laminated between the positive electrode and the negative electrode and laminated with a hot roll.
[0035]
This laminate is inserted into an aluminum laminate bag, 1M LiPF 6 / EC + DMC (however, EC: ethylene carbonate, DMC: dimethyl carbonate) is injected as an electrolyte, the opening is heat sealed, and sheet-type lithium ion 2 A secondary battery was produced. The battery was charged to 4.15 V with a current of 0.5 C and then held at 4.15 V for 1.5 hours. Discharging was performed at a current of 0.5C up to 2.80V. This test was repeated. As shown in the curve (a) of FIG. 5, the battery of Example 1 using “Chemical S-100” has an excellent cycle life.
[0036]
[Reference Experimental Example] “HITECH S-3121” manufactured by Toho Chemical Industry Co., Ltd. was used as the ethylene-methacrylic acid copolymer. Hitech S-3121 is a dispersion in which fine particles of an ethylene-methacrylic acid copolymer are dispersed in water. High-tech S-3121 and carbon black HS-100 {manufactured by Denki Kagaku Kogyo Co., Ltd.} were dispersed with a ball mill for 3 hours to prepare a paint. The composition is ethylene-methacrylic acid copolymer: carbon black = 70: 30 wt%. In the same manner as in Example 1, an ethylene-methacrylic acid copolymer / carbon black composition coating film was formed on an aluminum mesh and a copper mesh as a metal current collector body. Thereafter, a sheet-type lithium ion secondary battery was manufactured and a cycle test was performed in exactly the same manner as in Example 1.
[0037]
As shown in the curve (b) of FIG. 5, the battery of the reference experimental example using “HITEC S-3121” has excellent cycle life.
[0038]
Comparative Example 1 A metal current collector body was coated with a composition of an ethylene-acrylic acid copolymer and carbon black described in US Pat. No. W095 / 31836. The composition is the same as in Example 1. Thereafter, a sheet-type lithium ion secondary battery was produced in the same manner as in Example 1, and a cycle test was performed.
[0039]
As shown in the curve (c) of FIG. 5, the battery of Comparative Example 1 using the “ethylene-acrylic acid copolymer” is inferior in cycle life.
[0040]
[Comparative Example 2] A metal current collector body was coated with a composition of an acrylate ester / styrene copolymer and carbon black described in JP-A-9-35707. The composition is the same as in Example 1. Thereafter, a sheet-type lithium ion secondary battery was produced in the same manner as in Example 1, and a cycle test was performed.
[0041]
As shown in the curve (d) of FIG. 5, the battery of Comparative Example 2 using the “acrylic ester / styrene copolymer” is inferior in cycle life.
[0042]
[Comparative Example 3] A metal current collector body was coated with a composition of an acrylic ester / methacrylic ester copolymer and carbon black described in JP-A-9-35707. The composition is the same as in Example 1. Thereafter, a sheet-type lithium ion secondary battery was produced in the same manner as in Example 1, and a cycle test was performed.
[0043]
As shown by the curve (e) in FIG. 5, the battery of Comparative Example 3 using the “acrylic acid ester / methacrylic acid ester copolymer” is inferior in cycle life.
[0044]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.
[0045]
【The invention's effect】
As described above, according to the present invention , the metal current collector body is coated with a coating film made of an ionomer of an ethylene-methacrylic acid copolymer and a conductive filler to form a current collector with a coating film. As described above, by using an ionomer of an ethylene-methacrylic acid copolymer having good adhesion to the metal current collector body and the electrode, the lithium secondary battery having excellent cycle life or long life, A current collector and a sheet-like electrode structure for the multilayer capacitor can be obtained.
[Brief description of the drawings]
1 is a schematic sectional view showing an embodiment of the engagement Resid over preparative shaped electrode to the present invention.
FIG. 2 is a graph showing the cycle characteristics of an example of the present invention in comparison with a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Current collector 2 Metal current collector body 3 Coating film 4 Electrode

Claims (2)

チレン−メタクリル酸共重合体のアイオノマーと導電性フィラーとからなる塗膜で金属集電体本体をコーティングした集電体と、フッ素系高分子を結着剤とする電極とが積層されている、シート状電極構造。 Et styrene - a current collector coated with metallic current collector body with the coating consisting of an ionomer and a conductive filler of methacrylic acid copolymer, an electrode for the fluoropolymer and binder is laminated A sheet-like electrode structure. 前記アイオノマーの陽イオンが、Li又はNa又はZn2+である請求項記載のシート状電極構造。The cation of the ionomer, Li + or Na + or Zn 2+ a sheet-like electrode structure of claim 1, wherein.
JP31660397A 1997-11-04 1997-11-04 Sheet electrode structure Expired - Fee Related JP4577459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31660397A JP4577459B2 (en) 1997-11-04 1997-11-04 Sheet electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31660397A JP4577459B2 (en) 1997-11-04 1997-11-04 Sheet electrode structure

Publications (2)

Publication Number Publication Date
JPH11144737A JPH11144737A (en) 1999-05-28
JP4577459B2 true JP4577459B2 (en) 2010-11-10

Family

ID=18078920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31660397A Expired - Fee Related JP4577459B2 (en) 1997-11-04 1997-11-04 Sheet electrode structure

Country Status (1)

Country Link
JP (1) JP4577459B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553604A4 (en) * 2002-06-24 2008-08-27 Mitsubishi Plastics Inc Conductive resin film, collector and production methods therefore
JP6121325B2 (en) * 2011-07-29 2017-04-26 株式会社Uacj Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP2014137915A (en) * 2013-01-17 2014-07-28 Nippon Zeon Co Ltd Conductive adhesive composition for electrochemical element electrode
JP6122115B2 (en) * 2013-07-08 2017-04-26 三洋化成工業株式会社 Resin current collector material and resin current collector
WO2023223608A1 (en) * 2022-05-19 2023-11-23 ダイキン工業株式会社 Electrode and secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004689A1 (en) * 1994-08-02 1996-02-15 Rexham Graphics Inc. Current collector having a conductive primer layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199133A (en) * 1996-01-22 1997-07-31 Elf Atochem Japan Kk Electrode and secondary battery using it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004689A1 (en) * 1994-08-02 1996-02-15 Rexham Graphics Inc. Current collector having a conductive primer layer

Also Published As

Publication number Publication date
JPH11144737A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
CN113299876B (en) Pole piece and lithium ion battery
AU702636B2 (en) Material and method for low internal resistance LI-ION battery
JP4794619B2 (en) Method for producing positive electrode for lithium ion secondary battery, method for producing lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP4513822B2 (en) Electrode and electrochemical device
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
US20110269017A1 (en) Positive electrode for lithium secondary batteries and use thereof
JP3973003B2 (en) Sheet-type electrochemical element
JPH09289023A (en) Electrode binder solution, electrode mixture, electrode structure, and battery
JP5444781B2 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
TWI482340B (en) Electrode assembly of lithium secondary battery
KR20150071453A (en) An anode for a lithium ion secondary battery with high capacity properties
JP2014127417A (en) Method for collecting and reusing negative electrode active material of lithium ion battery
JP5412853B2 (en) Method for producing positive electrode of lithium secondary battery, positive electrode and lithium secondary battery
CN112736247A (en) Water-based composite binder, negative electrode slurry and preparation method thereof, negative electrode sheet, lithium ion battery cell, lithium ion battery pack and application thereof
JP4577459B2 (en) Sheet electrode structure
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
JP2004095306A (en) Non-aqueous electrolyte secondary battery
CN116666644A (en) Positive pole piece and lithium ion battery
JP4399882B2 (en) Solid electrolyte, lithium secondary battery and electric double layer capacitor
JP2019079755A (en) Negative electrode for non-aqueous electrolyte, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2007265889A (en) Electrode plate for nonaqueous electrolytic solution secondary battery, and its manufacturing method as well as nonaqueous electrolytic solution secondary battery
JP7428644B2 (en) Non-aqueous solvent electrolyte compositions for energy storage devices
JP4087478B2 (en) Electric double layer capacitor
JPH08250122A (en) Forming method for battery electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees