JP4575583B2 - Metal coated fiber material - Google Patents

Metal coated fiber material Download PDF

Info

Publication number
JP4575583B2
JP4575583B2 JP2000373051A JP2000373051A JP4575583B2 JP 4575583 B2 JP4575583 B2 JP 4575583B2 JP 2000373051 A JP2000373051 A JP 2000373051A JP 2000373051 A JP2000373051 A JP 2000373051A JP 4575583 B2 JP4575583 B2 JP 4575583B2
Authority
JP
Japan
Prior art keywords
fiber material
conductive fiber
fabric
woven fabric
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000373051A
Other languages
Japanese (ja)
Other versions
JP2001226873A (en
Inventor
進 高木
茂和 織田
博夫 岸本
英正 新家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2000373051A priority Critical patent/JP4575583B2/en
Publication of JP2001226873A publication Critical patent/JP2001226873A/en
Application granted granted Critical
Publication of JP4575583B2 publication Critical patent/JP4575583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、合成繊維表面に金属被覆を形成した、電磁波遮蔽材やグランディング材などの導電材として用いられる導電性繊維材料に関するものである。
【0002】
【従来の技術】
電子機器からの電磁波の漏洩を防止する目的で導電性布帛がよく用いられる。その中でもポリエステル、ナイロンなどの高分子材料からなる合成繊維布帛上に金属被覆させた材料は繊維自身が有する可撓性と金属が有する電磁波遮蔽性を併せ持つものでガスケット材、テープ材として電子機器に組み込まれている。
【0003】
近年電子機器の小型化、高周波化が進むに伴い電磁波遮蔽材料やグランディング材などの導電材もその厚みが薄く、高周波域での高シールド性能が求められてきている。厚みが薄く、高シールド性と言う点では金属箔や高分子フィルムに蒸着またはスパッタリング法で金属被覆を施した材料があるが電磁波遮蔽材料や導電材に求められる耐久性、可撓性および柔軟性に欠ける。
【0004】
実開昭64−30899には扁平形状断面を有する金属メッキ繊維と熱融着バインダー繊維とが該バインダー繊維の融着により一体に接合された不織布から成る電磁波遮蔽シールド状物が記載されている。しかし、熱融着バインダー繊維を用いて加熱圧着し、シールド性を向上させているので布帛の柔軟性が損なわれ、しかも、製造工程が増えるためにコスト的にも高いものになってしまう。
【0005】
特開平8−291432には扁平非真円形状断面を有する金属モノフィラメントを10本以上の繊維からなる芯糸に螺旋状に巻きつけてなる複合糸条を用いた、柔軟可撓で電磁波遮蔽性を有する織物が紹介されている。しかし、シールド性を得るには金属モノフィラメントの含有率を上げなくてはならず、繊維自身の柔軟性を損なうばかりかコスト的にも高いものとなってしまう。
【0006】
【発明が解決しようとする課題】
本発明はこのような現状に鑑みて行われたもので、繊維本来の柔軟可撓性を損なうこと無く、広帯域にわたり高シールド性能を維持する電磁波遮蔽材やグランディング材などの導電材として用いられる導電性繊維材料を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、第一に、多数の扁平単糸からなると共に平均扁平率が1.2乃至8.0である熱可塑性繊維マルチフィラメント糸によって構成される織物であって、経糸の織物表面占有率が60%より大きいが90%より小さく、緯糸の織物表面占有率が90%より大きいが120%より小さい織物の全体に導電性金属を被覆することを特徴とする電磁波遮蔽用導電性繊維材料である。
本発明は、第2に、多数の扁平単糸からなると共に平均扁平率が1.2乃至8.0である熱可塑性繊維マルチフィラメント糸によって構成される織物であって、経糸の織物表面占有率が60%より大きいが90%より小さく、緯糸の織物表面占有率が90%より大きいが120%より小さい織物の全体に導電性金属を被覆することを特徴とする電磁波遮蔽用導電性繊維材料の製造方法である
【0008】
本発明において布帛としては織物が特に好ましく、布帛に用いられるマルチフィラメント糸を構成する扁平単糸の平均扁平率は1.5〜5.0であることが好ましい。布帛に用いられるマルチフィラメントの平均扁平率は1.2乃至8.0であるが1.2乃至1.7であることが好ましい。織物を構成する経糸の織物表面占有率は60%より大きいが90%より小さく、緯糸の織物表面占有率は90%より大きいが120%より小さい。また織物のカバーファクターは1000〜3000であることが特に好ましく、そして、熱可塑性合成繊維としてはポリエステルが特に好ましい。
【0009】
【発明の実施の形態】
本発明は、扁平単糸から成るマルチフィラメント糸を用いて成る布帛に金属被覆層を形成して成る導電性繊維材料である。
この様な扁平単糸から成るマルチフィラメント糸を用いた布帛としては、織物、編物、不織布など特に限定されるものではないが、導電性繊維材料の厚みや、高いシールド性能の得易さ、及び加工性の点から織物が好ましい。
【0010】
織物を製織する場合、扁平単糸から成るマルチフィラメント糸を、経糸単独、緯糸単独、或いは、経糸、緯糸両方に用いても良い。更に、全て扁平糸を用いても良い。また、織り組織は平織り、綾織、朱子織、及び、これらの織り方を応用したものなど、特に限定されるものではないが、機械的特性、糸ほつれ性、地薄な面から平織物が好ましい。
【0011】
本発明の導電性繊維材料に用いる、扁平単糸の平均扁平率は、図1に示すように単糸の扁平断面に外接する長方形を描いたとき、この長方形の長辺Lを短辺Sで割った値をいい、その平均扁平率は通常1.5〜5、好ましくは2〜4である。平均扁平率が5より大きくなると製糸性、及び、製織性が損なわれ、1.5以下であると導電材の柔軟性が損なわれる。その為には、扁平単糸に外接する長方形の長辺Lは通常10〜50μm、好ましくは20〜40μmの範囲である。また、扁平単糸に外接する長方形の短辺Sは通常2〜30μm、好ましくは6〜20μmの範囲である。単糸繊度は通常1〜10デニール(以下dと表記する)、好ましくは2〜5dである。1d未満になると破断しやすく、製造加工が難しく成る。10dを越えると布帛が硬くなり、柔軟性が得られにくくなる虞がある。本発明の扁平単糸から成るマルチフィラメント糸総繊度は通常10〜100d、好ましくは20〜80dの範囲である。
【0012】
単糸断面の形状は楕円、矩形、W型、瓢箪型など特に限定されるものではないが、W型や、瓢箪型など、単糸同士が重なりやすい形状であることが好ましい。重なることにより布帛の表面が平滑になり、また、布帛厚みが小さくなり、柔軟性が向上し、且つ、高い電磁波遮蔽効果が得られやすい。
【0013】
また、布帛を構成するマルチフィラメントの平均扁平率は、図2に示すようにマルチフィラメントの扁平断面に外接する長方形を描いたとき、この長方形の長辺lを短辺sで割った値をいい、1.2乃至8.0であることが好ましい。平均扁平率が1.2より小さいと布帛の厚みが大きくなり、布帛の柔軟性が損なわれる虞があり、更には、電磁波遮蔽性が悪くなる虞がある。また、平均扁平率が8.0より大きくなると、製織性が損なわれたり、また、電磁波遮蔽性が悪くなる虞がある。
【0014】
本発明で言う織物表面占有率とは、図4に示すように織物において、
経糸の織物表面占有率(%)=経糸の幅(A)/経糸ピッチ(B)×100緯糸の織物表面占有率(%)=緯糸の幅(C)/緯糸ピッチ(D)×100で表されるものであり、本発明では、経糸の織物表面占有率が60乃至90%で、且つ、緯糸の織物占有率が90乃至120である織物を用いた導電性繊維材料が好ましい。
【0015】
経糸の織物表面占有率が60%以下になるとスリップが起きやすく成りシールド性が悪くなる虞がある。また、90%以上になると緯糸が扁平状になりにくくなり、布帛厚みが大きくなったり、シールド性が悪くなる虞がある。
また、糸の織物表面被覆率が90%以下になると織物の交点の空隙が大きくなりスリップが起きやすく、シールド性が悪くなる虞がある。120%以上になると、布帛の厚みが厚くなったり、メッキ液の浸透が妨げられ均一にメッキすることが困難になる虞がある。
また、織物を構成する糸の織物表面占有率を上記の範囲にするために、織物にカレンダー掛け処理を行ってもよい。
【0016】
本発明の導電性繊維材料に用いられる熱可塑性合成繊維は、ポリエチレンテレフタレート繊維等のポリエステル繊維、ナイロン6繊維、ナイロン66繊維などのポリアミド繊維、アクリル繊維など特に限定はされないが、加工性、耐久性などの点からポリエステル繊維が好ましい。
本発明の扁平単糸を製造する方法としてはカレンダー法や溶融紡糸法などが挙げられるが、均一な扁平単糸を得るには溶融紡糸法が好ましい。
【0017】
本発明の導電性繊維材料が織物基材に金属被膜を形成したものである場合は、織物のカバーファクターが1000〜3000、特に、1500〜2500の範囲が好ましい。
カバーファクターが1000以下だと布帛の空隙が多くなるため高シールド性が得られにくくなる。また、3000以上になると、製織性が悪くなるばかりか柔軟性が損なわれ、更にメッキ液が織物内部に浸透しにくくなり、メッキ加工性やメッキ被膜の耐久性に悪影響を及ぼす。
ここで言う織物のカバーファクターとは、経糸総繊度をD1、経糸密度をN1とし、緯糸総繊度をD2、緯糸密度をN2とすると、(D1)1/2 ×N1+(D2)1/2 ×N2で表される。(糸繊度はデニール、糸密度は本/吋)
【0018】
本発明の扁平単糸から成るマルチフィラメント糸を用いた布帛を金属被覆する方法としては、スパッタリング、真空蒸着、電気メッキ、無電解メッキなど、従来公知の方法を用いることができるが、導電性の点から無電解メッキによる方法が好ましい。無電解メッキは通常公知の手法で行われ、触媒付与後化学メッキ処理からなる。触媒付与工程には塩化錫溶液による感受性化の後、塩化パラジウム溶液による活性化を行なう方法と錫パラジウムコロイドによる一液性触媒を付与した後、コロイド表面層の錫イオンを除去し触媒として有効なパラジウムを露出させる方法等があるが特に限定されない。化学メッキ処理における化学メッキ浴および処理条件については、従来実施されている公知条件を用いることができる。化学メッキ浴は通常金属塩、還元剤、緩衝剤、pH調整剤等からなる。導電性金属としては銀、銅、ニッケル、コバルト、錫などがあり、特に限定はされないが、メッキ浴の安定性、操作の容易性から銅およびニッケルから選ばれることが好ましい。形成する金属メッキ被膜層の厚さは0.05〜5μm範囲にあることが好ましい。0.1μmより小さいと十分な表面導通性が得られず、5μmより大きいと表面導通効果はもはや向上せず該繊維材料の風合いも柔軟性が損なわれたものになってしまう。
【0019】
金属被覆の程度は厚みよりも単位面積あたりの析出量や表面抵抗で表現することが多い。本発明の場合、金属析出量は5〜50g/m2 、好ましくは10〜30g/m2 の範囲がよく、表面抵抗値は0.001〜1Ω/□、好ましくは0.01〜0.1Ω/□の範囲がよい。
【0020】
【実施例】
以下に実施例を示した本発明の導電性繊維材料を説明するが、本発明は何らこれらに限定されるものではない。
尚、実施例中の評価は下記のように行った。
1.表面導電性
測定方法は抵抗値測定器(三菱化学株式会社製 ロレスターMP)を用い、四端子四探針測定法(JIS−K−7194)により表面抵抗値を測定した。単位はΩ/□。
2.電磁波遮蔽性
▲1▼10MHz〜1GHz領域
測定方法は関西電子工業振興センターの生駒電波測定所の考案による測定セルと類似のものを作成し、トラッキングジェネレーター付スペクトラムアナライザー(AGILENTテクノロジー社製 HP8591EM)により10MHz〜1GHz発振を前述測定セル受信部にて測定サンプルを経て受信し、スペクトラムアナライザーで計量した。単位はdB。
▲2▼1GHz〜15GHz領域
MIL−STD−285を参考にした、内部にアンテナを備えた鉄製のシールド箱を作成し測定した。この方法はシールド箱の一面に開口部を設け試料を貼って、試料を挟んで内部アンテナと対向するシールド箱外側のアンテナで透過する電波を測定する。送受信アンテナとしてエムコ社製ダブルリジッドホーンアンテナEMCO3115、シグナルジェネレータとしてアジレントテクノロジー(株)社製シンセサイズドシグナルジェネレータHP83731Aを用い同社製スペクトラムアナライザーHP8563Eにて計量した。単位はdB。
3.柔軟可撓性
布帛の柔軟可撓性をJIS−L−1096A法(45℃カンチレバー法)に準じて評価した。単位はmm。
【0021】
〔実施例1〕
経糸に50デニール(以下dと表す)−24フィラメント(以下fを表す)のレギュラーポリエステルマルチフィラメント加工糸、緯糸に長辺35μm、短辺15μmのW型断面糸(旭化成工業株式会社製 テクノファイン)から成る75d−36fのポリエステルマルチフィラメント糸からなる平織物を、精練プレセット後アルカリ加水分解により10%の減量加工を行い、経糸密度123本/吋、緯糸密度84本/吋、カバーファクター1597の布帛を得た。
引き続き、塩化パラジウム0.3g/L、塩化第一錫30g/L、36%塩酸300ml/Lを含む40℃の水溶液に浸漬後、水洗した。続いて、酸濃度0.1Nのホウ弗化水素酸に浸漬後、水洗した。次に硫酸銅7.5g/L、37%ホルマリン30ml/L、ロッシェル塩85g/Lから成る無電解銅メッキ液に浸漬後、水洗した。続いて、スルファミン酸ニッケル300g/L、ホウ酸30g/L、塩化ニッケル15g/L、pH3.7の電気ニッケルメッキ液に、電流密度5A/dm2 で浸漬しニッケルを積層させた後水洗した。布帛には、銅25g/m2 、ニッケル5g/m2 の金属被覆層が形成された。評価結果を表1に示す。
【0022】
〔実施例2〕
経糸に長辺35μm、短辺15μmのW型断面糸(旭化成工業株式会社製 テクノファイン)から成る30d−10fのポリエステルマルチフィラメント糸、緯糸に長辺35μm、短辺15μmのW型異型断面糸(旭化成工業株式会社製テクノファイン)から成る50d−30fのポリエステルマルチフィラメント糸を用いた平織物を、精練プレセット後アルカリ加水分解により10%の減量加工を行い、経糸密度149本/吋、緯糸密度138本/吋、カバーファクター1792の布帛を得た。
引き続き、塩化パラジウム0.3g/L、塩化第一錫30g/L、36%塩酸300ml/Lを含む水溶液に浸漬後、水洗した。続いて、酸濃度0.1Nのホウ弗化水素酸に浸漬後、水洗した。次に硫酸銅7.5g/L、37%ホルマリン30ml/L、ロッシェル塩85g/Lから成る無電解銅メッキ液に浸漬後、水洗した。続いて、スルファミン酸ニッケル300g/L、ホウ酸30g/L、塩化ニッケル15g/L、pH3.7の電気ニッケルメッキ液に、電流密度5A/dm2 で浸漬しニッケルを積層させた後水洗した。布帛には、銅20g/m2 、ニッケル5g/m2 の金属被覆層が形成された。評価結果を表1に示す。
【0023】
〔比較例1〕
経糸と緯糸に50d−36fのレギュラーポリエステルマルチフィラメント加工糸を用いた平織物を、精練プレセット後アルカリ加水分解により10%の減量加工を行い、経糸密度164本/吋、緯糸密度104本/吋、カバーファクター1895の布帛を得た。引き続き、塩化パラジウム0.3g/L、塩化第一錫30g/L、36%塩酸300ml/Lを含む水溶液に浸漬後、水洗した。続いて、酸濃度0.1Nのホウ弗化水素酸に浸漬後、水洗した。次に硫酸銅7.5g/L、37%ホルマリン30ml/L、ロッシェル塩85g/Lから成る無電解銅メッキ液に浸漬後、水洗した。続いて、スルファミン酸ニッケル300g/L、ホウ酸30g/L、塩化ニッケル15g/L、pH3.7の電気ニッケルメッキ液に、電流密度5A/dm2 で浸漬しニッケルを積層させた後水洗した。布帛には、銅20g/m2 、ニッケル5g/m2 の金属被覆層が形成された。評価結果を表1に示す。
【0024】
【表1】

Figure 0004575583
【0025】
【発明の効果】
以上のように、平均扁平率が1.5〜5である扁平単糸から成るマルチフィラメント糸を用い、用いられるマルチフィラメント糸の扁平率が1.0〜8.0である布帛に金属被覆層を形成して成る導電製繊維材料は、表面が緻密、均一で平滑な金属被膜層を有し、薄厚で繊維の柔軟可撓性を損なうこと無く、広い周波数域にわたり高い電磁波遮蔽性能を示す。
【図面の簡単な説明】
【図1】扁平率算出のための概念図の例である。
【図2】マルチフィラメント糸の扁平率算出のための顕微鏡写真に基づく概念図である。
【図3】本発明の実施例の織物の表面顕微鏡写真である。
【図4】本発明の経糸及び緯糸の被覆率を示す概略図である。
【符号の説明】
1…単糸
2…経糸マルチフィラメント
3…緯糸マルチフィラメント
A…経糸マルチフィラメントの幅
B…経糸のピッチ
C…緯糸マルチフィラメントの幅
D…緯糸のピッチ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive fiber material used as a conductive material such as an electromagnetic shielding material or a grounding material, in which a metal coating is formed on the surface of a synthetic fiber.
[0002]
[Prior art]
Conductive fabrics are often used for the purpose of preventing leakage of electromagnetic waves from electronic devices. Among these, materials coated with metal on a synthetic fiber fabric made of a polymer material such as polyester and nylon have both the flexibility of the fiber itself and the electromagnetic wave shielding property of the metal. It has been incorporated.
[0003]
In recent years, with the progress of miniaturization and high frequency of electronic devices, conductive materials such as electromagnetic shielding materials and grounding materials are also thin, and high shielding performance in a high frequency region has been demanded. In terms of thinness and high shielding properties, there are materials with metal foil or metal film deposited on the metal foil or polymer film by sputtering or sputtering, but the durability, flexibility and flexibility required for electromagnetic shielding materials and conductive materials Lack.
[0004]
Japanese Utility Model Laid-Open No. 64-30899 describes an electromagnetic wave shielding shield-like material comprising a nonwoven fabric in which metal-plated fibers having a flat cross section and heat-bonding binder fibers are joined together by fusion of the binder fibers. However, the heat-bonding binder fiber is used for heat-bonding to improve the shielding property, so that the flexibility of the fabric is impaired, and the manufacturing process is increased, resulting in high cost.
[0005]
In JP-A-8-291432, a flexible, flexible and electromagnetic shielding property using a composite yarn formed by spirally winding a metal monofilament having a flat non-circular cross section around a core yarn composed of 10 or more fibers. The fabric we have is introduced. However, in order to obtain shielding properties, the content of the metal monofilament must be increased, which not only impairs the flexibility of the fiber itself but also increases the cost.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such a current situation, and is used as a conductive material such as an electromagnetic shielding material or a grounding material that maintains high shielding performance over a wide band without impairing the inherent flexibility and flexibility of the fiber. An object is to provide a conductive fiber material.
[0007]
[Means for Solving the Problems]
A first aspect of the present invention is a woven fabric composed of a thermoplastic multifilament yarn composed of a large number of flat single yarns and having an average flatness ratio of 1.2 to 8.0, and a woven fabric surface occupation ratio of warps A conductive fiber material for shielding electromagnetic waves, characterized in that the entire surface of a woven fabric having a surface area of 90% but smaller than 120% is coated with a conductive metal. is there.
Secondly, the present invention is a woven fabric composed of a multi-filament yarn made of thermoplastic fibers having a number of flat single yarns and having an average flatness ratio of 1.2 to 8.0, and the occupancy ratio of the warp to the fabric surface A conductive fiber material for shielding electromagnetic waves, characterized in that a conductive metal is coated on the entire woven fabric having a surface area ratio of greater than 60% but smaller than 90% and a weft yarn surface area greater than 90% but smaller than 120%. It is a manufacturing method .
[0008]
In the present invention, the fabric is particularly preferably a fabric, and the average flatness of the flat single yarn constituting the multifilament yarn used in the fabric is preferably 1.5 to 5.0 . The average flatness of the multifilament used in the fabric is 1.2 to 8.0 , but preferably 1.2 to 1.7. The fabric surface occupancy of the warp constituting the fabric is greater than 60% but less than 90%, and the fabric surface occupancy of the weft is greater than 90% but less than 120%. The cover factor of the fabric is particularly preferably from 1000 to 3000, and, particularly preferred polyester thermoplastic synthetic fibers.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a conductive fiber material formed by forming a metal coating layer on a fabric made of multifilament yarn made of flat single yarn.
The fabric using multifilament yarns composed of such flat single yarns is not particularly limited to woven fabrics, knitted fabrics, nonwoven fabrics, etc., but the thickness of the conductive fiber material, the ease of obtaining high shielding performance, and A fabric is preferable from the viewpoint of processability.
[0010]
When weaving a woven fabric, a multifilament yarn made of flat single yarn may be used as a single warp, a single weft, or both a warp and a weft. Further, flat yarns may all be used. Further, the weaving structure is not particularly limited, such as plain weave, twill weave, satin weave, and those applying these weaving methods, but plain weave is preferable from the viewpoint of mechanical properties, yarn fraying property, and thin surface. .
[0011]
The average flatness of the flat single yarn used in the conductive fiber material of the present invention is such that when a rectangle circumscribing the flat cross section of the single yarn is drawn as shown in FIG. The average flatness is usually 1.5 to 5, preferably 2 to 4. When the average flatness is greater than 5, the yarn-making property and the weaving property are impaired, and when it is 1.5 or less, the flexibility of the conductive material is impaired. For this purpose, the long side L of the rectangle circumscribing the flat single yarn is usually in the range of 10 to 50 μm, preferably 20 to 40 μm. Moreover, the rectangular short side S circumscribing a flat single yarn is 2-30 micrometers normally, Preferably it is the range of 6-20 micrometers. The single yarn fineness is usually 1 to 10 denier (hereinafter referred to as d), preferably 2 to 5d. If it is less than 1d, it will be easy to fracture | rupture and manufacturing processing will become difficult. If it exceeds 10d, the fabric becomes hard and flexibility may not be obtained. The total fineness of the multifilament yarn comprising the flat single yarn of the present invention is usually in the range of 10 to 100d, preferably 20 to 80d.
[0012]
The shape of the cross section of the single yarn is not particularly limited, such as an ellipse, a rectangle, a W shape, and a saddle shape, but it is preferable that the single yarn has a shape that can easily overlap with each other, such as a W shape and a saddle shape. By overlapping, the surface of the fabric becomes smooth, the thickness of the fabric is reduced, the flexibility is improved, and a high electromagnetic shielding effect is easily obtained.
[0013]
Further, the average flatness of the multifilament constituting the fabric is a value obtained by dividing the long side l of the rectangle by the short side s when a rectangle circumscribing the flat cross section of the multifilament is drawn as shown in FIG. 1.2 to 8.0 is preferable. The average aspect ratio is increased is less and fabric thickness than 1.2, there is a fear that the flexibility of the fabric is impaired, and further, there is a possibility that electromagnetic wave shielding property is deteriorated. On the other hand, when the average flatness is greater than 8.0, weaving property may be impaired, and electromagnetic wave shielding properties may be deteriorated.
[0014]
The fabric surface occupancy referred to in the present invention is the fabric as shown in FIG.
Woven fabric surface occupancy (%) = warp width (A) / warp pitch (B) x 100 weft fabric surface occupancy (%) = weft width (C) / weft pitch (D) x 100 In the present invention, a conductive fiber material using a woven fabric having a warp woven fabric surface occupancy ratio of 60 to 90% and a weft woven fabric occupation ratio of 90 to 120 is preferable.
[0015]
If the occupancy ratio of the warp fabric surface is 60% or less, slipping tends to occur and the shielding property may be deteriorated. On the other hand, when it is 90% or more, the weft is not easily flattened, and the fabric thickness may be increased or the shielding property may be deteriorated.
Further, there is a possibility that the weft yarns of the fabric surface coverage tends to occur is the void at the intersection of the fabric is increased slip below 90%, the shielding property is deteriorated. If it is 120% or more, the thickness of the fabric may increase, or the plating solution may be prevented from penetrating, so that uniform plating may be difficult.
Moreover, in order to make the occupancy ratio of the yarn constituting the woven fabric within the above range, the woven fabric may be calendered.
[0016]
The thermoplastic synthetic fiber used for the conductive fiber material of the present invention is not particularly limited, such as polyester fiber such as polyethylene terephthalate fiber, polyamide fiber such as nylon 6 fiber, nylon 66 fiber, acrylic fiber, etc., but processability and durability Polyester fibers are preferred from the standpoint of the above.
Examples of the method for producing the flat single yarn of the present invention include a calendering method and a melt spinning method. The melt spinning method is preferable for obtaining a uniform flat single yarn.
[0017]
When the conductive fiber material of the present invention has a metal film formed on a woven substrate, the cover factor of the woven fabric is preferably in the range of 1000 to 3000, particularly 1500 to 2500.
If the cover factor is 1000 or less, the voids of the fabric increase, making it difficult to obtain high shielding properties. On the other hand, when it is 3000 or more, not only the weaving property is deteriorated, but also the flexibility is impaired, and the plating solution is less likely to penetrate into the fabric, which adversely affects the plating processability and the durability of the plating film.
The cover factor of the woven fabric referred to here is (D1) 1/2 × N1 + (D2) 1/2 × where D1 is the total warp fineness, N1 is the warp density, D2 is the total weft fineness, and N2 is the weft density. Represented by N2. (The yarn fineness is denier and the yarn density is book / 本)
[0018]
As a method for metallizing a fabric using multifilament yarns composed of flat single yarns of the present invention, conventionally known methods such as sputtering, vacuum deposition, electroplating, electroless plating, etc. can be used. From the point of view, a method by electroless plating is preferable. Electroless plating is usually performed by a known method, and consists of chemical plating treatment after catalyst application. In the catalyst application process, after sensitization with a tin chloride solution, activation with a palladium chloride solution and a one-part catalyst with a tin-palladium colloid are applied, and then the tin ions on the colloid surface layer are removed and effective as a catalyst. There is a method of exposing palladium, but it is not particularly limited. As the chemical plating bath and the processing conditions in the chemical plating process, conventionally known conditions can be used. The chemical plating bath usually comprises a metal salt, a reducing agent, a buffering agent, a pH adjusting agent and the like. Examples of the conductive metal include silver, copper, nickel, cobalt, and tin, and are not particularly limited. However, the conductive metal is preferably selected from copper and nickel in view of the stability of the plating bath and the ease of operation. The thickness of the metal plating film layer to be formed is preferably in the range of 0.05 to 5 μm. If it is smaller than 0.1 μm, sufficient surface conductivity cannot be obtained, and if it is larger than 5 μm, the surface conduction effect is no longer improved, and the texture of the fiber material is also impaired in flexibility.
[0019]
The degree of metal coating is often expressed in terms of precipitation per unit area and surface resistance rather than thickness. In the case of the present invention, the metal deposition amount is 5 to 50 g / m 2 , preferably 10 to 30 g / m 2 , and the surface resistance value is 0.001 to 1Ω / □, preferably 0.01 to 0.1Ω. The range of / □ is good.
[0020]
【Example】
Hereinafter, the conductive fiber material of the present invention will be described with reference to examples, but the present invention is not limited to these.
In addition, evaluation in an Example was performed as follows.
1. As the surface conductivity measurement method, a resistance value measuring device (Lorestar MP manufactured by Mitsubishi Chemical Corporation) was used, and the surface resistance value was measured by a four-terminal four-probe measurement method (JIS-K-7194). The unit is Ω / □.
2. Electromagnetic wave shielding (1) 10MHz to 1GHz range measurement method is similar to the measurement cell devised by Ikoma Radio Measurement Station of Kansai Electronics Industry Promotion Center, and 10MHz by spectrum analyzer with tracking generator (HP8591EM manufactured by AGILENT Technology). ˜1 GHz oscillation was received through the measurement sample at the measurement cell receiver and weighed with a spectrum analyzer. The unit is dB.
{Circle around (2)} An iron shield box with an antenna inside was created and measured with reference to the 1 GHz to 15 GHz region MIL-STD-285. In this method, an opening is provided on one surface of a shield box, a sample is pasted, and radio waves transmitted through an antenna outside the shield box facing the internal antenna with the sample interposed therebetween are measured. A double rigid horn antenna EMCO3115 manufactured by Emco Corporation was used as a transmission / reception antenna, and a synthesized signal generator HP83731A manufactured by Agilent Technology Co., Ltd. was used as a signal generator. The unit is dB.
3. The soft flexibility of the soft flexible fabric was evaluated according to the JIS-L-1096A method (45 ° C. cantilever method). The unit is mm.
[0021]
[Example 1]
Regular polyester multifilament processed yarn of 50 denier (hereinafter referred to as d) -24 filament (hereinafter referred to as f) for warp, W-shaped cross-sectional yarn of 35 μm long side and 15 μm short side (Technofine manufactured by Asahi Kasei Kogyo Co., Ltd.) A plain woven fabric made of polyester multifilament yarn of 75d-36f is subjected to scouring pre-setting and subjected to a 10% weight reduction process by alkaline hydrolysis to give a warp density of 123 / 吋, a weft density of 84 / 吋, and a cover factor of 1597. A fabric was obtained.
Subsequently, it was immersed in an aqueous solution at 40 ° C. containing 0.3 g / L of palladium chloride, 30 g / L of stannous chloride, and 300 ml / L of 36% hydrochloric acid, and then washed with water. Subsequently, it was immersed in borohydrofluoric acid having an acid concentration of 0.1 N and then washed with water. Next, it was immersed in an electroless copper plating solution composed of copper sulfate 7.5 g / L, 37% formalin 30 ml / L, and Rochelle salt 85 g / L, and then washed with water. Subsequently, the nickel sulfamate was immersed in an electric nickel plating solution of 300 g / L of boric acid, 30 g / L of boric acid, 15 g / L of nickel chloride, and pH 3.7 at a current density of 5 A / dm 2 to deposit nickel, and then washed with water. A metal coating layer of copper 25 g / m 2 and nickel 5 g / m 2 was formed on the fabric. The evaluation results are shown in Table 1.
[0022]
[Example 2]
30d-10f polyester multifilament yarn made of W-shaped cross-section yarn (Technofine manufactured by Asahi Kasei Kogyo Co., Ltd.) with a long side of 35 μm and a short side of 15 μm. Asahi Kasei Kogyo Co., Ltd. Technofine) plain fabric using 50d-30f polyester multifilament yarn is scoured and preset to 10% weight loss by alkaline hydrolysis, warp density 149 yarns / 吋, weft density A fabric having 138 pieces / cm2 and a cover factor of 1792 was obtained.
Subsequently, it was immersed in an aqueous solution containing 0.3 g / L of palladium chloride, 30 g / L of stannous chloride, and 300 ml / L of 36% hydrochloric acid, and then washed with water. Subsequently, it was immersed in borohydrofluoric acid having an acid concentration of 0.1 N and then washed with water. Next, it was immersed in an electroless copper plating solution composed of copper sulfate 7.5 g / L, 37% formalin 30 ml / L, and Rochelle salt 85 g / L, and then washed with water. Subsequently, the nickel sulfamate was immersed in an electric nickel plating solution of 300 g / L of boric acid, 30 g / L of boric acid, 15 g / L of nickel chloride, and pH 3.7 at a current density of 5 A / dm 2 to deposit nickel, and then washed with water. A metal coating layer of copper 20 g / m 2 and nickel 5 g / m 2 was formed on the fabric. The evaluation results are shown in Table 1.
[0023]
[Comparative Example 1]
A plain fabric using 50d-36f regular polyester multifilament processed warp and weft is subjected to 10% weight reduction by alkaline hydrolysis after scouring preset, warp density 164 / 本, weft density 104 / 吋A fabric having a cover factor of 1895 was obtained. Subsequently, it was immersed in an aqueous solution containing 0.3 g / L of palladium chloride, 30 g / L of stannous chloride, and 300 ml / L of 36% hydrochloric acid, and then washed with water. Subsequently, it was immersed in borohydrofluoric acid having an acid concentration of 0.1 N and then washed with water. Next, it was immersed in an electroless copper plating solution composed of copper sulfate 7.5 g / L, 37% formalin 30 ml / L, and Rochelle salt 85 g / L, and then washed with water. Subsequently, the nickel sulfamate was immersed in an electric nickel plating solution of 300 g / L of boric acid, 30 g / L of boric acid, 15 g / L of nickel chloride, and pH 3.7 at a current density of 5 A / dm 2 to deposit nickel, and then washed with water. A metal coating layer of copper 20 g / m 2 and nickel 5 g / m 2 was formed on the fabric. The evaluation results are shown in Table 1.
[0024]
[Table 1]
Figure 0004575583
[0025]
【The invention's effect】
As described above, a metal coating layer is applied to a fabric having a flatness of 1.0 to 8.0 using a multifilament yarn made of flat single yarn having an average flatness ratio of 1.5 to 5. The conductive fiber material formed by forming has a dense, uniform and smooth metal coating layer, is thin, and exhibits high electromagnetic shielding performance over a wide frequency range without impairing the flexibility of the fiber.
[Brief description of the drawings]
FIG. 1 is an example of a conceptual diagram for calculating an aspect ratio.
FIG. 2 is a conceptual diagram based on a micrograph for calculating the flatness of a multifilament yarn.
FIG. 3 is a surface micrograph of a fabric according to an example of the present invention.
FIG. 4 is a schematic view showing the coverage of the warp and weft of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Single yarn 2 ... Warp multifilament 3 ... Weft multifilament A ... Warp multifilament width B ... Warp pitch C ... Weft multifilament width D ... Weft pitch

Claims (10)

多数の扁平単糸からなると共に平均扁平率が1.2乃至8.0である熱可塑性繊維マルチフィラメント糸によって構成される織物であって、経糸の織物表面占有率が60%より大きいが90%より小さく、緯糸の織物表面占有率が90%より大きいが120%より小さい織物と該織物全体に導電性金属を被覆して形成した金属被覆層からなることを特徴とする電磁波遮蔽用導電性繊維材料A woven fabric composed of a multifilament yarn made of thermoplastic fibers having a large number of flat single yarns and an average flatness ratio of 1.2 to 8.0, wherein the occupancy ratio of the warp yarn surface is greater than 60% but 90% A conductive fiber for shielding electromagnetic waves, characterized by comprising a woven fabric having a smaller weft yarn surface occupancy ratio of more than 90% but less than 120% and a metal coating layer formed by coating the entire woven fabric with a conductive metal. Material . 扁平単糸の平均扁平率が1.5から5.0である請求項1記載の電磁波遮蔽用導電性繊維材料。The conductive fiber material for shielding electromagnetic waves according to claim 1 , wherein the average flatness of the flat single yarn is 1.5 to 5.0. 織物のカバーファクターが1000乃至3000であることを特徴とする請求項1または2記載の電磁波遮蔽用導電性繊維材料。The conductive fiber material for shielding electromagnetic waves according to claim 1 or 2 , wherein the cover factor of the woven fabric is 1000 to 3000. 熱可塑性繊維がポリエステルであることを特徴とする請求項1〜3いずれか1項記載の電磁波遮蔽用導電性繊維材料。The conductive fiber material for electromagnetic wave shielding according to any one of claims 1 to 3 , wherein the thermoplastic fiber is polyester. 多数の扁平単糸からなると共に平均扁平率が1.2乃至8.0である熱可塑性繊維マルチフィラメント糸によって構成される織物であって、経糸の織物表面占有率が60%より大きいが90%より小さく、緯糸の織物表面占有率が90%より大きいが120%より小さい織物の全体に導電性金属を被覆することを特徴とする電磁波遮蔽用導電性繊維材料の製造方法A woven fabric composed of a multifilament yarn made of thermoplastic fibers having a large number of flat single yarns and an average flatness ratio of 1.2 to 8.0, wherein the occupancy ratio of the warp yarn surface is greater than 60% but 90% A method for producing a conductive fiber material for electromagnetic wave shielding, characterized in that a conductive metal is coated on the entire woven fabric which is smaller and has a weft weaving surface area of greater than 90% but smaller than 120% . 扁平単糸の平均扁平率が1.5乃至5.0である請求項5記載の電磁波遮蔽用導電性繊維材料の製造方法。 6. The method for producing a conductive fiber material for shielding electromagnetic waves according to claim 5, wherein the average flatness of the flat single yarn is 1.5 to 5.0. 織物のカバーファクターが1000乃至3000であることを特徴とする請求項5または6記載の電磁波遮蔽用導電性繊維材料の製造方法The method for producing a conductive fiber material for shielding electromagnetic waves according to claim 5 or 6 , wherein the cover factor of the woven fabric is 1000 to 3000. 熱可塑性繊維がポリエステルであることを特徴とする請求項5〜7のいずれか1項記載の電磁波遮蔽用導電性繊維材料の製造方法The method for producing a conductive fiber material for shielding electromagnetic waves according to any one of claims 5 to 7, wherein the thermoplastic fiber is polyester. 導電性金属の被覆が無電解メッキによる被覆である請求項5〜8のいずれか1項記載の電磁波遮蔽用導電性繊維材料の製造方法。The method for producing a conductive fiber material for shielding electromagnetic waves according to any one of claims 5 to 8, wherein the conductive metal coating is a coating by electroless plating. 請求項1〜4のいずれか1項記載の電磁波遮蔽用導電性繊維材料からなる電磁波遮蔽材。 An electromagnetic shielding material comprising the conductive fiber material for shielding electromagnetic waves according to any one of claims 1 to 4 .
JP2000373051A 1999-12-07 2000-12-07 Metal coated fiber material Expired - Fee Related JP4575583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373051A JP4575583B2 (en) 1999-12-07 2000-12-07 Metal coated fiber material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34821099 1999-12-07
JP11-348210 1999-12-07
JP2000373051A JP4575583B2 (en) 1999-12-07 2000-12-07 Metal coated fiber material

Publications (2)

Publication Number Publication Date
JP2001226873A JP2001226873A (en) 2001-08-21
JP4575583B2 true JP4575583B2 (en) 2010-11-04

Family

ID=26578698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373051A Expired - Fee Related JP4575583B2 (en) 1999-12-07 2000-12-07 Metal coated fiber material

Country Status (1)

Country Link
JP (1) JP4575583B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910419B2 (en) * 2012-08-29 2016-04-27 コニカミノルタ株式会社 Flexible heating element
JP2015183345A (en) * 2014-03-26 2015-10-22 ウラセ株式会社 Electric conductive slit yarn and method for producing the same
JP7425478B2 (en) 2020-04-27 2024-01-31 名古屋メッキ工業株式会社 Plated fiber cloth for electromagnetic shielding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4511576Y1 (en) * 1965-12-26 1970-05-22
JPS62187023A (en) * 1986-02-13 1987-08-15 東レ株式会社 Metallic composite fiber sheet-shaped article
JPH062270A (en) * 1992-06-15 1994-01-11 Kanebo Ltd Iridescent-tone structure
JPH07252773A (en) * 1994-03-08 1995-10-03 Oike Ind Co Ltd Sputtered woven fabric having interactive rainbow colors
JP2000303302A (en) * 1999-02-08 2000-10-31 Asahi Chem Ind Co Ltd Foundation cloth for metal plating and metal plated woven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4511576Y1 (en) * 1965-12-26 1970-05-22
JPS62187023A (en) * 1986-02-13 1987-08-15 東レ株式会社 Metallic composite fiber sheet-shaped article
JPH062270A (en) * 1992-06-15 1994-01-11 Kanebo Ltd Iridescent-tone structure
JPH07252773A (en) * 1994-03-08 1995-10-03 Oike Ind Co Ltd Sputtered woven fabric having interactive rainbow colors
JP2000303302A (en) * 1999-02-08 2000-10-31 Asahi Chem Ind Co Ltd Foundation cloth for metal plating and metal plated woven fabric

Also Published As

Publication number Publication date
JP2001226873A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
JP3903457B2 (en) Conductive fabric
EP0917419B1 (en) Conductive gasket material and method of manufacture thereof
US4439768A (en) Metallized sheet form textile microwave screening material, and the method of use
EP2458952B1 (en) Electromagnetic shielding sheet
US6924244B2 (en) Metal coated fiber materials
CN110983764B (en) Conductive aromatic polyamide fiber with composite metal coating structure
JP6293407B2 (en) Magnetic field shielding material
CN108025527B (en) Conductive member
JP2000273762A (en) Base fabric for electromagnetic wave-shielding material and electromagnetic wave-shielding material using the same
KR101004282B1 (en) Plating method of conductive fabric for Using Electromagnetic interference shield
JP2003533000A (en) Multi-layer electrode
JP4575583B2 (en) Metal coated fiber material
CN1175139C (en) Cold layer-laminated fabric and method for fabricating the same
WO2007069803A1 (en) Camouflage textile with non-electrolytic plated fiber
KR101664857B1 (en) Conductive yarn and method for preparing the same
US20020016119A1 (en) Electromagnetic wave shielding material
JP3070467U (en) Metal coated fiber material
JP4298946B2 (en) Electromagnetic shielding material
RU2338021C1 (en) Metallised material ''nanotex''
JP2000208984A (en) Electromagnetic wave shielding material and manufacture thereof
CN109371668A (en) A kind of electromagnetic shielding anti-radiation electric conduction cloth
KR102496017B1 (en) High-frequency EMI shielding material with high flexibility and manufacturing thereof
JP3069015U (en) Electromagnetic wave shielding material
JP2004276443A (en) Conductive fibrous material
JP2001358497A (en) Electromagnetic-wave shielding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4575583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees