JP2015183345A - Electric conductive slit yarn and method for producing the same - Google Patents

Electric conductive slit yarn and method for producing the same Download PDF

Info

Publication number
JP2015183345A
JP2015183345A JP2014063774A JP2014063774A JP2015183345A JP 2015183345 A JP2015183345 A JP 2015183345A JP 2014063774 A JP2014063774 A JP 2014063774A JP 2014063774 A JP2014063774 A JP 2014063774A JP 2015183345 A JP2015183345 A JP 2015183345A
Authority
JP
Japan
Prior art keywords
conductive
yarn
fabric
warp
woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014063774A
Other languages
Japanese (ja)
Inventor
知明 針井
Tomoaki Harii
知明 針井
敦士 増田
Atsushi Masuda
敦士 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Urase Co Ltd
Fukui Prefecture
Original Assignee
Urase Co Ltd
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Urase Co Ltd, Fukui Prefecture filed Critical Urase Co Ltd
Priority to JP2014063774A priority Critical patent/JP2015183345A/en
Publication of JP2015183345A publication Critical patent/JP2015183345A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electric conductive slit yarn whose electric resistance is capable of being set low and which can maintain stable electric characteristics even when being subjected to a deformation due to an elongation and to provide a method for producing the same.SOLUTION: The electric conductive slit yarn is formed so as to have a yarn width of 0.5 mm-5 mm by slitting an electric conductive fabric woven with warp and weft so that it contains three or more of the warp. The wiring resistance value before and after it is deformed by 5% due to an elongation in a yarn length direction is 10 Ω/cm or less and the volatility is within 3%. Thus, the electric conductive slit yarn has stable electric characteristics at the time of making it into a product such as clothing and when the product is used.

Description

本発明は、伸長変形時において安定した電気特性を有する導電性スリットヤーン及びその製造方法に関する。   The present invention relates to a conductive slit yarn having stable electrical characteristics during elongation deformation and a method for manufacturing the same.

近年、ウエアラブルコンピュータに代表される電子機器と織編物とを融合させた各種製品開発が進められている。ウエアラブルコンピュータを衣料品に取り付ける場合、着用者の体形や動作等に起因して、着用する衣料品に少なくとも5%程度、大きい場合は10%程度の伸長変形が生じることから、一般的な電子機器に用いられている導電材料ではこうした伸長変形に対応していないため、衣料用の織編物に取り付けることは困難である。   2. Description of the Related Art In recent years, various product developments in which electronic devices represented by wearable computers and woven and knitted fabrics are integrated are being developed. When a wearable computer is attached to a clothing item, due to the wearer's body shape, movement, etc., the clothing item to be worn is at least about 5%, and if it is larger, about 10% is stretched and deformed. Since the conductive material used in the above does not cope with such elongation deformation, it is difficult to attach to a woven or knitted fabric for clothing.

衣料品以外の工業製品においても、フレキシブルなシート材である織編物と電気伝達部材を一体化した材料が要望されているが、一体化した製品の製造及びその使用時に生じる伸長変形を考慮しなければならない。そのため、一体化した製品の電気伝達部材の電気特性について製品性能の保証又は耐久性の確保が要請されているが、実際には織編物と電気伝達部材を一体化した製品の実用化は困難な状況にある。   In industrial products other than clothing, there is a demand for a material that integrates a woven or knitted fabric, which is a flexible sheet material, and an electric transmission member. I must. Therefore, it is required to guarantee the product performance or ensure the durability of the electrical characteristics of the electrical transmission member of the integrated product, but in practice it is difficult to put the product into which the woven / knitted fabric and the electrical transmission member are integrated. Is in the situation.

例えば、電気伝達部材として最も一般的な導電繊維は銅等の金属繊維であるが、多くの金属繊維は伸長性が乏しく5%の伸長で破断して導電性が無くなる。また、5%以上伸長可能な金属繊維の場合は、伸長に反比例して断面積が減少するため、電気抵抗値が5%以上増加して、伸長変形の前後で同等の電気特性を維持することは難しいのが現状である。   For example, the most common conductive fiber as an electrical transmission member is a metal fiber such as copper, but many metal fibers have poor extensibility and break at 5% elongation and lose conductivity. In the case of metal fibers that can be stretched by 5% or more, the cross-sectional area decreases in inverse proportion to the stretching, so that the electrical resistance value increases by 5% or more and maintains the same electrical characteristics before and after stretching deformation. Is currently difficult.

金属繊維以外の導電糸としては、導電性カーボンブラックや金属粉等の導電性粒子を熱可塑性ポリマー全体に分散させた導電繊維、もしくは導電性成分を非導電性ポリマーで完全に包みこんだ芯鞘型複合繊維又は導電性成分が繊維表面に露出したタイプの複合繊維、非導電性繊維に金属メッキ処理を施した導電繊維等が提案されている(非特許文献1)。こうした導電性繊維に伸長性を付与した例としては、特許文献1には、導電性カーボンブラックを熱可塑性ポリマーに含有した導電性ポリマーとPTTとを複合紡糸し、導電性カーボンブラック含有量、PTTの繊維横断面積占有率、繊維の伸長回復率を適正なものとすることにより、優れた除電性能とストレッチ性を兼ね備え、製糸性の安定な導電性ポリエステル繊維を得る点が記載されている。   As conductive yarns other than metal fibers, conductive fibers in which conductive particles such as conductive carbon black and metal powder are dispersed throughout the thermoplastic polymer, or a core sheath in which a conductive component is completely encased in a non-conductive polymer. A type composite fiber or a type of composite fiber in which a conductive component is exposed on the fiber surface, a conductive fiber obtained by subjecting a nonconductive fiber to metal plating, and the like have been proposed (Non-Patent Document 1). As an example of imparting extensibility to such conductive fibers, Patent Document 1 discloses that a conductive polymer containing conductive carbon black in a thermoplastic polymer and PTT are composite-spun, and the conductive carbon black content, PTT, It is described that by making the fiber cross-sectional area occupation ratio and the fiber elongation recovery rate appropriate, it is possible to obtain a conductive polyester fiber having excellent static elimination performance and stretchability and having a stable yarn forming property.

伸長変形可能な導電性素材としては、様々な素材が提案されており、例えば、特許文献2には、導電性繊維をニット構造体にする方法が記載されており、特許文献3では、導電性素材をカラミ織りしたテープ等の方法が記載されている。また、特許文献4では金属被膜を有する導電性メッシュ織物をテープ状にカットした材料が提案されており、特許文献5では、表面を導電化処理したガラス繊維を織物とし、その表面を樹脂加工した電磁波シールドテープが提案されている。   Various materials have been proposed as conductive materials that can be stretched and deformed. For example, Patent Document 2 describes a method of forming conductive fibers into a knit structure, and Patent Document 3 discloses conductive materials. A method such as a tape woven with calami material is described. Further, Patent Document 4 proposes a material obtained by cutting a conductive mesh fabric having a metal coating into a tape shape, and Patent Document 5 uses glass fiber whose surface is conductively treated as a fabric, and the surface is processed with a resin. An electromagnetic shielding tape has been proposed.

特開2003−313727号公報JP 2003-313727 A 実開平6−059488号公報Japanese Utility Model Publication No. 6-059488 特開平10−163674号公報Japanese Patent Laid-Open No. 10-163684 特許第5020405号公報Japanese Patent No. 5020405 特開平2−069000号公報Japanese Patent Laid-Open No. 2-069000

堀照夫監修、「FUTURE TEXTILES」、2006年2月、繊維社企画出版、74頁〜77頁(第1章5-14 導電性繊維の体積抵抗率制御)Supervised by Teruo Hori, “FUTURE TEXTILES”, February 2006, Textile Company Publishing, pages 74-77 (Chapter 1, 5-14 Volume resistivity control of conductive fibers)

特許文献1に記載された導電繊維では、電気抵抗が低く、かつこれらの繊維は伸長変形に伴い電気抵抗が著しく増加するため伸長変形の前後で同等の電気特性を維持することは困難である。特許文献2に記載された導電性素材では、導電性繊維をニット構造体にした場合編み構造の特性である優れた伸縮性が発揮でき、20%以上の大変形も可能な構造である反面、小さい伸長変形時から編地の形状が変化するためそれに伴い編地を形成する導電性繊維間の接触面積が大きく変化するので編地としての電気特性の変化が大きくなってしまう課題がある。   In the conductive fiber described in Patent Document 1, the electrical resistance is low, and these fibers significantly increase in electrical resistance with elongation deformation, so it is difficult to maintain the same electrical characteristics before and after the elongation deformation. In the conductive material described in Patent Document 2, when conductive fibers are made into a knit structure, excellent stretchability, which is a characteristic of the knitted structure, can be exhibited, and a large deformation of 20% or more is possible. Since the shape of the knitted fabric changes from the time of a small stretch deformation, the contact area between the conductive fibers forming the knitted fabric is greatly changed accordingly. Therefore, there is a problem that the change in electrical characteristics as the knitted fabric becomes large.

また、特許文献3に記載された導電性素材では、絡み織りの場合、絡みを構成するたて糸を緻密に配列することは不可能となるため、細幅にスリットして導電糸として使用する場合に繊維軸方向での幅変動が大きくなるため安定した電気特性を得ることは困難である。特許文献4に記載された導電性素材では、開口率の大きい合成繊維モノフィラメントを基材としているため、伸長変形時に安定した電気特性を得ることは困難となる。特許文献5に記載された導電性素材では、伸びのあるガラス繊維織物を構成するには、たて糸およびよこ糸に使用するガラス繊維をかなり湾曲した状態で織り込む必要があり、細幅でスリットして導電糸として用いる場合に繊維軸方向での幅変動が大きくなるため安定した電気特性を得ることが困難である。   In addition, in the conductive material described in Patent Document 3, in the case of entanglement weaving, it is impossible to densely arrange the warp yarns constituting the entanglement. Since the width variation in the fiber axis direction becomes large, it is difficult to obtain stable electrical characteristics. In the conductive material described in Patent Document 4, since a synthetic fiber monofilament having a large aperture ratio is used as a base material, it is difficult to obtain stable electrical characteristics during elongation deformation. In the conductive material described in Patent Document 5, it is necessary to weave glass fibers used for warp and weft yarns in a considerably curved state in order to form a stretched glass fiber fabric. When used as a yarn, the width variation in the fiber axis direction becomes large, and it is difficult to obtain stable electrical characteristics.

そこで、本発明は、電気抵抗を低く設定可能であるとともに伸長変形時においても安定した電気特性を維持することができる導電性スリットヤーン及びその製造方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a conductive slit yarn that can set an electric resistance low and can maintain stable electric characteristics even at the time of expansion and deformation, and a manufacturing method thereof.

本発明に係る導電性スリットヤーンは、経糸及び緯糸により織成された導電性布帛を当該経糸を3本以上含む幅でスリットして0.5mm〜5mmの糸幅に形成されており、糸長方向に5%伸長変形する前後の線抵抗値が10Ω/cm以下で、かつその変動率が3%以内である。さらに、前記導電性布帛は、少なくとも経糸に紡績糸が用いられており、メッキ処理による金属層が形成されている。さらに、前記導電性布帛は、経糸及び緯糸の繊度の比が0.5〜1.5であり、経糸及び緯糸の織密度の比が0.7〜1.3である。   The conductive slit yarn according to the present invention is formed to have a yarn width of 0.5 mm to 5 mm by slitting a conductive fabric woven from warps and wefts with a width including three or more warps. The line resistance value before and after being deformed by 5% in the direction is 10 Ω / cm or less, and the variation rate is within 3%. Further, the conductive fabric uses a spun yarn at least as a warp, and has a metal layer formed by plating. Further, the conductive fabric has a warp / weft fineness ratio of 0.5 to 1.5 and a warp / weft weave density ratio of 0.7 to 1.3.

本発明に係る導電性スリットヤーンの製造方法は、絶縁性繊維からなる経糸及び緯糸により布帛を織成し、得られた前記布帛表面に金属メッキ処理を施して金属層を形成することで電気抵抗が1Ω/m2以下の導電性布帛を作成し、得られた前記導電性布帛を経糸方向に沿って経糸を3本以上含む幅でスリットして0.5mm〜5mmの糸幅に形成する。さらに、少なくとも経糸に紡績糸を用いて前記布帛を織成する。 In the method for producing a conductive slit yarn according to the present invention, a fabric is woven with warps and wefts made of insulating fibers, and a metal layer is formed on the obtained fabric surface to form an electric resistance of 1Ω. / M 2 or less conductive fabric is prepared, and the obtained conductive fabric is slit with a width including three or more warps along the warp direction to form a yarn width of 0.5 mm to 5 mm. Further, the fabric is woven using spun yarn at least as the warp.

本発明は、上記のような構成を有することで、電気抵抗を低く設定可能であるとともに伸長変形時においても安定した電気特性を維持することができる。   By having the above-described configuration, the present invention can set the electrical resistance low, and can maintain stable electrical characteristics even during expansion deformation.

実施例及び比較例で得られた導電性スリットヤーンの電気特性を示す表である。It is a table | surface which shows the electrical property of the electroconductive slit yarn obtained by the Example and the comparative example.

以下、本発明に係る実施形態について詳しく説明する。本発明に係る導電性スリットヤーンは、経糸及び緯糸により織成された導電性布帛を当該経糸を3本以上含む幅でスリットして0.5mm〜5mmの糸幅に形成されており、糸長方向に5%伸長変形する前後の線抵抗値が10Ω/cm以下で、かつその変動率が3%以内である。   Hereinafter, embodiments according to the present invention will be described in detail. The conductive slit yarn according to the present invention is formed to have a yarn width of 0.5 mm to 5 mm by slitting a conductive fabric woven from warps and wefts with a width including three or more warps. The line resistance value before and after being deformed by 5% in the direction is 10 Ω / cm or less, and the variation rate is within 3%.

経糸及び緯糸により織成された導電性布帛をスリットして糸として用いることで、スリットヤーンを構成する経糸及び緯糸が織構造を形成するために互いに屈曲した状態となっており、こうした屈曲した状態を有することでスリットヤーンの糸長方向の伸長変形時に経糸自体の伸長を伴わずにスリットヤーンの伸長変形が可能となり、伸長変形の前後において導電性スリットヤーンの線抵抗値の変動を抑えることができる。   By slitting the conductive fabric woven with the warp and the weft and using it as the yarn, the warp and the weft constituting the slit yarn are bent to form a woven structure. When the slit yarn is stretched and deformed in the yarn length direction, the slit yarn can be stretched and deformed without stretching the warp yarn itself, and the fluctuation of the wire resistance value of the conductive slit yarn can be suppressed before and after the stretch deformation. it can.

そして、糸長方向に5%伸長変形する前後の線抵抗値が10Ω/cm以下で、かつその変動率が3%以内となっているので、電気信号を伝達するために必要となる線抵抗値を実現することができるとともに導電性スリットヤーンを用いた製品の製造工程及びその使用時に生じる伸長変形に対して安定した電気特性を維持することができる。特に、導電性スリットヤーンを形成する織構造を平織等の屈曲の多い織組織にすることや経糸の屈曲が大きくなるように経糸張力等の製織条件を工夫することにより、伸長性に優れた導電性スリットヤーンとして、糸長方向に10%伸長変形する前後の線抵抗値の変動率が5%以内に制御することも可能である。   And since the line resistance value before and after 5% stretching deformation in the yarn length direction is 10 Ω / cm or less and the variation rate is within 3%, the line resistance value required to transmit the electrical signal In addition, it is possible to maintain a stable electric characteristic against a manufacturing process of a product using a conductive slit yarn and an elongation deformation caused when the conductive slit yarn is used. In particular, by making the woven structure that forms the conductive slit yarn into a woven structure with many bends such as plain weave, and by devising the weaving conditions such as warp tension so that the warp bend becomes large, the conductive property with excellent extensibility As a characteristic slit yarn, it is possible to control the fluctuation rate of the line resistance value before and after being stretched and deformed by 10% in the yarn length direction within 5%.

また、経糸を3本以上含むことで、細幅にスリットした際に経糸のほつれを抑止することができる。経糸が2本以下では、得られたスリットヤーンがばらけやすくなり、安定した織構造を実現することが困難である。そして、経糸又は緯糸のいずれかの糸の太さや織密度が極端に異なる場合には、織構造がアンバランスとなって糸が外れやすくなる。そのため、経糸及び緯糸の繊度(太さ)の比を0.5〜1.5とし、織密度の比を0.7〜1.3とすることが好ましい。   Further, by including three or more warps, fraying of warps can be suppressed when slitting to a narrow width. When the number of warp yarns is two or less, the obtained slit yarn is likely to be scattered, and it is difficult to realize a stable woven structure. If the thickness or weave density of either the warp or the weft is extremely different, the woven structure becomes unbalanced and the yarn tends to come off. Therefore, it is preferable that the ratio of the fineness (thickness) of the warp and the weft is 0.5 to 1.5 and the ratio of the woven density is 0.7 to 1.3.

また、経糸を3本以上含む幅でスリットすることで、スリットヤーンの全長にわたって経糸が切断されずに存在するようになり、スリットヤーン全体の電気特性及び機械的特性がほぼ均一化して高品質のスリットヤーンが得られる。そして、導電性スリットヤーンの糸幅を0.5mm〜5mmに設定することで、通常の糸と同様に取り扱うことが可能となり、従来より糸により製造されている幅広い製品に用いることができる。   In addition, by slitting with a width including three or more warp yarns, the warp yarns exist without being cut over the entire length of the slit yarn, and the electrical and mechanical properties of the entire slit yarn are almost uniformized and high quality. A slit yarn is obtained. By setting the thread width of the conductive slit yarn to 0.5 mm to 5 mm, it can be handled in the same manner as a normal thread, and can be used for a wide range of products that have been conventionally manufactured with a thread.

本発明に係る導電性スリットヤーンを製造するために用いる導電性布帛としては、電気抵抗が1Ω/m2以下のものが好ましい。例えば、金属繊維、カーボン粒子混練や金属メッキにより導電性を付与した繊維等の導電性繊維を含む糸を用いて織成された布帛が挙げられる。こうした導電性繊維を含む糸を用いることで、線抵抗値を10Ω/cm以下とすることができる。金属繊維としては、ステンレス繊維、銅繊維、スズメッキ銅繊維等が挙げられる。こうした導電性繊維は、経糸又は緯糸のいずれか、又はその両方に使用して導電性布帛を構成することができる。経糸及び緯糸に導電性繊維を用いることで、経糸に含まれる導電性繊維が切断された場合にも、切断部分近傍の緯糸が隣接する経糸と電気的に接続しているので、電気的な導通状態が維持されて電気的な安定性を確保することができる。 The conductive fabric used for producing the conductive slit yarn according to the present invention preferably has an electrical resistance of 1 Ω / m 2 or less. For example, a fabric woven using a thread containing conductive fibers such as metal fibers, fibers imparted with carbon particle kneading or metal plating can be used. By using a thread containing such conductive fibers, the line resistance value can be 10 Ω / cm or less. Examples of the metal fiber include stainless steel fiber, copper fiber, tin-plated copper fiber, and the like. Such conductive fibers can be used for either warp or weft or both to form a conductive fabric. By using conductive fibers for the warp and weft, even when the conductive fibers contained in the warp are cut, the weft near the cut portion is electrically connected to the adjacent warp so The state is maintained and electrical stability can be ensured.

また、導電性布帛としては、絶縁性繊維からなる糸により織成された布帛に金属メッキにより導電性を付与した布帛が挙げられる。この場合、導電性布帛の表面に金属メッキにより形成された金属層が導通することで、線抵抗値を10Ω/cm以下とすることができる。金属メッキにより形成される金属層としては、導電性の高い銀、銅、ニッケル等が挙げられるが、線抵抗値を10Ω/cm以下とすることが可能であれば、特に限定されない。電気抵抗及び耐食性を考慮すれば、銅・ニッケルメッキによる金属層が好ましい。   Examples of the conductive fabric include a fabric in which conductivity is imparted by metal plating to a fabric woven with yarns made of insulating fibers. In this case, the metal resistance formed by metal plating on the surface of the conductive fabric is conducted, so that the line resistance value can be 10 Ω / cm or less. Examples of the metal layer formed by metal plating include highly conductive silver, copper, nickel, and the like, but are not particularly limited as long as the line resistance value can be 10 Ω / cm or less. Considering electric resistance and corrosion resistance, a metal layer made of copper / nickel plating is preferable.

金属メッキ処理を行う布帛としては、絶縁性繊維で金属メッキ処理が可能なものが好ましい。例えば、レーヨン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリアミド、アラミド、ポリエーテルエーテルケトン等が挙げられる。電気回路を構成する配線に使用される場合は、ハンダ処理等に対して耐熱性を有するアラミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ガラス、シリカ、バサルト、セルロース等の繊維が好ましい。   As the fabric for performing the metal plating treatment, an insulating fiber capable of metal plating treatment is preferable. For example, rayon, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyamide, aramid, polyether ether ketone and the like can be mentioned. When used for wiring constituting an electric circuit, fibers such as aramid, polyetheretherketone, polyimide, polyetherimide, glass, silica, basalt, and cellulose having heat resistance against soldering and the like are preferable.

金属メッキ処理を行う布帛に用いる糸としては、紡績糸が好ましい。紡績糸を用いて無電解メッキ処理を行う場合、紡績糸の内部までメッキ液が入り込みやすいため、紡績糸を構成する単糸フィラメントの表面にまで金属メッキを施すことができる。また、紡績の工程でのカード工程などで繊維表面にキンクバンドの微細なクラックが入ることで、メッキ処理した金属層がクラックに入り込んでアンカー効果により密着性が向上し、伸長変形時の線抵抗値の変動が抑えられる。紡績糸は、長繊維糸に比べて、糸内部の空隙が構造的に大きく、伸長変形に対するクッション性を有しており、伸長変形時の電気的安定性も得ることができる。   A spun yarn is preferred as the yarn used for the metal plating treatment. When electroless plating is performed using spun yarn, the plating solution can easily enter the spun yarn, so that the metal plating can be applied to the surface of the single yarn filament constituting the spun yarn. In addition, fine cracks of the kink band are formed on the fiber surface during the carding process in the spinning process, so that the plated metal layer enters the crack and the adhesion is improved by the anchor effect, so that the wire resistance during elongation deformation The fluctuation of the value is suppressed. The spun yarn has a structurally larger gap inside the yarn than the long fiber yarn, has a cushioning property against elongation deformation, and can also obtain electrical stability during elongation deformation.

また、紡績糸は、織構造における経糸及び緯糸の交錯だけでなく、隣接する経糸同士及び緯糸同士も紡績毛羽で絡み合うようになるため、スリット加工後の端部のほつれが少なくなり、糸としての安定性に優れ、そのため安定した電気特性を発現できる。このため、紡績糸は、結束構造よりも撚り構造で構成される紡績糸の方が好ましい。   In addition, the spun yarn not only crosses the warps and wefts in the woven structure, but also the adjacent warps and wefts become entangled with the spinning fluff, so that the frayed ends at the slit processing are reduced, Excellent stability, so that stable electrical characteristics can be expressed. For this reason, the spun yarn is preferably a spun yarn having a twisted structure rather than a bundled structure.

金属メッキ処理により作成した導電性布帛では、摩擦耐久性向上の目的で電気特性に影響を及ぼさない範囲で布帛表面にコーティング処理を施すことが好ましい。コーティング材料としては、例えば、ポリエチレン、エポキシ、塩化ビニル、ポリウレタン、アクリル等の樹脂が挙げられるが、耐摩耗性向上に寄与して電気特性を損なわない材料であればよく、特に限定されない。また、コーティング加工は、スリット加工後の切断部分のほつれを防止する効果も得られる。なお、コーティング剤に公知の添加剤を付与して様々な機能を持たせることも可能で、例えば難燃剤を追加することで導電性スリットヤーンに難燃性機能を付与することもできる。   In the conductive fabric prepared by metal plating treatment, it is preferable to perform coating treatment on the fabric surface within a range that does not affect the electrical characteristics for the purpose of improving friction durability. Examples of the coating material include resins such as polyethylene, epoxy, vinyl chloride, polyurethane, and acrylic, but any material that contributes to improvement of wear resistance and does not impair electrical characteristics is not particularly limited. Moreover, the coating process also has the effect of preventing fraying of the cut portion after the slit process. In addition, it is also possible to give a well-known additive to a coating agent, and to give various functions, for example, a flame retardant function can also be provided to an electroconductive slit yarn by adding a flame retardant.

特に、導電性布帛をアラミドやポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ガラス、シリカ、バサルト、セルロース等の耐熱性に優れた繊維で構成して金属メッキ処理後コーティング剤に難燃性を有する材料を使用することにより、耐熱性が高く難燃性の高い導電性スリットヤーンを作成することができる。この場合、200℃以上の温度環境下でも導電性スリットヤーンの熱収縮や熱膨張等の変形がほとんどなく、安定した品質を維持することができる。   In particular, the conductive fabric is composed of fibers having excellent heat resistance such as aramid, polyetheretherketone, polyimide, polyetherimide, glass, silica, basalt, and cellulose, and the coating agent after the metal plating treatment has flame retardancy. By using the material, a conductive slit yarn having high heat resistance and high flame retardancy can be produced. In this case, even under a temperature environment of 200 ° C. or higher, there is almost no deformation such as thermal shrinkage or thermal expansion of the conductive slit yarn, and stable quality can be maintained.

導電性スリットヤーンを作成する場合、導電性布帛を糸長方向に沿って経糸が3本以上含まれる幅で連続的に切断して作成する。切断幅は、作成された導電性スリットヤーンをそのまま使用する場合には0.5mm〜5mmに設定することが好ましく、撚糸等の糸加工を施す場合には5mmより大きい幅に切断して最終的に糸幅が0.5mm〜5mmとすることもできる。導電性スリットヤーンを用いてテキスタイル加工を行う場合は、繊維としての取り扱い性を考慮して糸幅を0.5mm〜2mmとすることが好ましい。   When producing the conductive slit yarn, the conductive fabric is produced by continuously cutting the conductive fabric with a width including three or more warps along the yarn length direction. When the produced conductive slit yarn is used as it is, the cutting width is preferably set to 0.5 mm to 5 mm. When the yarn processing such as twisted yarn is performed, the cutting width is finally cut to a width larger than 5 mm. Further, the yarn width may be 0.5 mm to 5 mm. When textile processing is performed using a conductive slit yarn, it is preferable to set the yarn width to 0.5 mm to 2 mm in consideration of handleability as a fiber.

導電性布帛を細幅にスリットする方法としては、金属刃やセラミック刃による切断方法、超音波による切断方法、レーザによる切断方法、熱溶融による切断方法等が挙げられる。   Examples of the method for slitting the conductive fabric into a narrow width include a cutting method using a metal blade or a ceramic blade, a cutting method using an ultrasonic wave, a cutting method using a laser, a cutting method using heat melting, and the like.

作成された導電性スリットヤーンは、通常の糸と同様の柔軟性を有しているため、通常の糸と同様に取り扱うことが可能であり、従来の織編物に織成又は編成して導電性織編物を製造することができ、織編物等の布帛の表面に縫製や接着等により取り付けて導電性織編物を構成することも可能である。   The produced conductive slit yarn has the same flexibility as normal yarn, so it can be handled in the same way as normal yarn, and is woven or knitted into a conventional woven or knitted fabric. A woven or knitted fabric can be manufactured, and the conductive woven or knitted fabric can also be configured by being attached to the surface of a fabric such as a woven or knitted fabric by sewing or bonding.

次に、実施例により本発明を具体的に説明する。なお、実施例中の電気特性の評価方法は次のとおりである。   Next, the present invention will be described specifically by way of examples. In addition, the evaluation method of the electrical property in an Example is as follows.

(線抵抗値)
1本の試料を15cm以上の長さにカットして、10個のサンプルを準備する。サンプルの一方の端部に一方の金属端子を接続するとともに他方の端部に50Ωの抵抗素子を介して他方の金属端子に接続し、両金属端子を電源に接続して直列回路を構成する。電源として、安定化電源(菊水電子工業株式会社製 PMC18-3)を用い、5Vの直流電圧を印加して50Ωの抵抗素子にかかる印加電圧をデジタルテスター(日置電機株式会社製 3801デジタルハイテスター)にて測定する。測定された電圧(E;V)及びサンプルの繊維長(L;cm)により、以下の式で電気抵抗値(Ω/cm)を算出する。線抵抗値(Ω/cm)は、算出した10個のサンプルの電気抵抗値の相加平均値とする。また、線抵抗変動係数は、測定された電気抵抗値の標準偏差及びその平均値である線抵抗値に基づいて以下の式により算出される。
電気抵抗値(Ω/cm)=(5−E)/((E/50)×L)
線抵抗変動係数=(電気抵抗値の標準偏差)/(線抵抗値)
(Line resistance value)
One sample is cut into a length of 15 cm or more to prepare 10 samples. One metal terminal is connected to one end of the sample, and the other end is connected to the other metal terminal via a 50Ω resistance element, and both metal terminals are connected to a power source to form a series circuit. Using a stabilized power supply (PMC18-3 manufactured by Kikusui Electronics Co., Ltd.) as the power supply, a digital tester (3801 digital high tester manufactured by Hioki Electric Co., Ltd.) applying a 5V DC voltage and applying a 50Ω resistance element. Measure with Based on the measured voltage (E; V) and the fiber length (L; cm) of the sample, an electric resistance value (Ω / cm) is calculated by the following formula. The line resistance value (Ω / cm) is an arithmetic average value of the calculated electric resistance values of ten samples. Further, the line resistance variation coefficient is calculated by the following formula based on the standard deviation of the measured electric resistance value and the line resistance value that is an average value thereof.
Electrical resistance value (Ω / cm) = (5-E) / ((E / 50) × L)
Line resistance variation coefficient = (Standard deviation of electrical resistance value) / (Line resistance value)

(比抵抗)
試料の断面積をマイクロスコープ(ソニック株式会社製BS-D8000)により測定し、上記の線抵抗値に基づいて以下の式で算出した。
比抵抗値(Ω・cm)=線抵抗値(Ω/cm)×断面積(cm2
(Resistivity)
The cross-sectional area of the sample was measured with a microscope (BS-D8000 manufactured by Sonic Co., Ltd.), and calculated by the following formula based on the above-mentioned line resistance value.
Specific resistance (Ω · cm) = Line resistance (Ω / cm) × Cross sectional area (cm 2 )

(伸長変形時の線抵抗値)
上述した線抵抗値の測定方法と同様に10サンプルを準備し、サンプルを引張試験機(株式会社島津製作所製 オートグラフAGS-1kNG)にセットし、セットしたサンプルを上述した線抵抗値の測定方法と同様に金属端子に接続して直列回路を構成する。そして、引張試験機によりサンプルを糸長方向に任意の倍率で伸長変形させ、所定時間経過後、上述した線抵抗値の測定方法と同様に電圧を測定して伸長変形後の線抵抗値を算出する。
(Line resistance value during extension deformation)
10 samples are prepared in the same manner as the above-described line resistance measurement method, the sample is set on a tensile tester (Autograph AGS-1kNG, manufactured by Shimadzu Corporation), and the set sample is measured for the above-described line resistance value. A series circuit is configured by connecting to metal terminals in the same manner as in FIG. Then, the sample is stretched and deformed at an arbitrary magnification in the yarn length direction by a tensile tester, and after a predetermined time has elapsed, the voltage is measured in the same manner as the above-described method of measuring the line resistance value to calculate the line resistance value after the stretching deformation. To do.

また、線抵抗変動率は、伸長変形前の線抵抗値をR0、n%伸長変形時の線抵抗値をRnとした場合に、以下の式により算出する。
線抵抗変動率(%)=(Rn−R0)/R0×100
Further, the line resistance fluctuation rate is calculated by the following equation, where R 0 is the line resistance value before stretching deformation and R n is the line resistance value during n% stretching deformation.
Line resistance fluctuation rate (%) = (R n −R 0 ) / R 0 × 100

<実施例1>
帝人テクノプロダクツ株式会社製のアラミド紡績糸(80/2)を経糸及び緯糸に使用し、各々40本/cmの密度で平織により織り込んで布帛を作成し、布帛全体を銅・ニッケルメッキ液(奥野製薬工業株式会社製)によりメッキ装置(株式会社パワーユニオン製)で無電解メッキ処理した。メッキ処理して得られた導電性布帛は、目付が112g/m2(金属18g/m2を含む)で、表面体積抵抗測定方法(三菱化学株式会社製ロレスタ)による抵抗値が0.05Ω/□であった。得られた導電性布帛を、セラミック製回転刃のスリット装置により経糸方向に沿って1mm幅で連続的に切断加工し、導電性スリットヤーンを作成した。得られた導電性スリットヤーンは、経糸4本の幅でスリットされていた。
<Example 1>
Using aramid spun yarn (80/2) manufactured by Teijin Techno Products Ltd. for warp and weft yarns, weaving them with plain weave at a density of 40 yarns / cm each, and creating a fabric with copper / nickel plating solution (Okuno) Electroless plating was performed with a plating apparatus (manufactured by Power Union Co., Ltd.) using a pharmaceutical industry. The conductive fabric obtained by the plating treatment has a basis weight of 112 g / m 2 (including 18 g / m 2 of metal) and a resistance value by a surface volume resistance measurement method (Loresta manufactured by Mitsubishi Chemical Corporation) of 0.05Ω / It was □. The obtained conductive fabric was continuously cut at a width of 1 mm along the warp direction with a ceramic rotary blade slitting device to produce a conductive slit yarn. The obtained conductive slit yarn was slit with a width of four warps.

<実施例2>
日本精線株式会社製のステンレス繊維(繊維径30μm×1f)を経糸及び緯糸に各々108本/cmの密度で平織により織り込んで導電性布帛を作成した。得られた導電性布帛を、実施例1と同様に、ステンレス刃により経糸方向に沿って0.8mm幅で連続的に切断加工し、導電性スリットヤーンを作成した。得られた導電性スリットヤーンは、経糸8本の幅でスリットされていた。
<Example 2>
A stainless steel fiber (fiber diameter 30 μm × 1f) manufactured by Nippon Seisen Co., Ltd. was woven into a warp and a weft by a plain weave at a density of 108 yarns / cm to create a conductive fabric. Similarly to Example 1, the obtained conductive fabric was cut continuously with a stainless blade along the warp direction at a width of 0.8 mm to produce a conductive slit yarn. The obtained conductive slit yarn was slit with a width of 8 warps.

<比較例1〜3>
比較例として、理研電線株式会社製の銅線(繊維径50μm×1f;比較例1)、日本精線株式会社製のステンレス繊維(繊維径12μm×100f;比較例2)及び日本蚕毛染色株式会社製のナイロン銀メッキ繊維(194デシテックス/40f;比較例3)を使用して、実施例2と同様に導電性スリットヤーンを作成した。
<Comparative Examples 1-3>
As comparative examples, copper wires manufactured by Riken Electric Wire Co., Ltd. (fiber diameter 50 μm × 1f; Comparative Example 1), stainless steel fibers manufactured by Nippon Seisen Co., Ltd. (fiber diameter 12 μm × 100 f; Comparative Example 2), and Nippon Kashiwa Dyeing Co., Ltd. A conductive slit yarn was prepared in the same manner as in Example 2 using a nylon silver plated fiber (194 dtex / 40f; Comparative Example 3) manufactured by the company.

実施例及び比較例で得られた導電性スリットヤーンの電気特性を図1に示す。図1に示すように、実施例1及び2では、10Ω/cm以下の線抵抗値を有しており、電気信号を伝達するには十分な電気特性を備えている。また、実施例1及び2では、0%〜10%までの伸長変形の範囲において、線抵抗値は変動が小さくほぼ一定していることがわかる。特に、5%及び10%の伸長変形の前後の変動率は±2.0%以内であり、伸長変形に対して電気特性が安定していることがわかる。また、線抵抗変動係数は、比較例として挙げられた金属繊維からなる導電性スリットヤーンと同様にサンプルの電気抵抗値のばらつきが少なく、導電性スリットヤーンとしてほぼ均一な電気特性を備えていることがわかる。   The electrical characteristics of the conductive slit yarns obtained in the examples and comparative examples are shown in FIG. As shown in FIG. 1, Examples 1 and 2 have a line resistance value of 10 Ω / cm or less, and have sufficient electrical characteristics to transmit an electrical signal. Moreover, in Examples 1 and 2, it can be seen that the line resistance value has little fluctuation and is almost constant in the range of elongation deformation from 0% to 10%. In particular, the fluctuation rate before and after the 5% and 10% stretching deformations is within ± 2.0%, indicating that the electrical characteristics are stable against the stretching deformation. In addition, the coefficient of variation in the line resistance has little variation in the electric resistance value of the sample as in the case of the conductive slit yarn made of the metal fiber mentioned as the comparative example, and has almost uniform electrical characteristics as the conductive slit yarn. I understand.

これに対し、比較例1では、線抵抗値が低くなっているが、5%伸長変形時には線抵抗値が約5%増加し、10%の伸長変形時には伸長変形率の倍以上に線抵抗値が増加しており、伸長変形に対して電気特性が安定していないことがわかる。比較例2では、2%伸長変形時まではほぼ一定の線抵抗を示すものの、3%以上の伸長変形で破断したため導電性が失われた。比較例3では、伸長変形が増加するにしたがい線抵抗値が増加し、5%伸長変形時に線抵抗値が16.9%増加し、10%伸長変形時には線抵抗値が53%増加しており、伸長変形による電気特性の変動が大きいことがわかる。   On the other hand, in Comparative Example 1, the line resistance value is low, but the line resistance value increases by about 5% at the time of 5% elongation deformation, and the line resistance value is more than double the elongation deformation rate at the time of 10% elongation deformation. It can be seen that the electrical characteristics are not stable against elongation deformation. In Comparative Example 2, although the wire resistance was almost constant until 2% elongation deformation, the conductivity was lost because it was broken by 3% or more elongation deformation. In Comparative Example 3, the wire resistance value increased as the elongation deformation increased, the wire resistance value increased by 16.9% when stretched by 5%, and the wire resistance value increased by 53% when stretched by 10%. It can be seen that the variation in electrical characteristics due to the extension deformation is large.

以上説明したように、経糸及び緯糸により織成された導電性布帛を当該経糸を3本以上含む幅でスリットして0.5mm〜5mmの糸幅に形成し、糸長方向に5%伸長変形する前後の線抵抗値が10Ω/cm以下で、かつその変動率が3%以内である導電性スリットヤーンを得ることが可能となり、衣料品等の製品の製造及び使用時において安定した電気的特性を有する導電性スリットヤーンを実現することができる。   As described above, a conductive fabric woven with warps and wefts is slit to a width that includes three or more warps to form a yarn width of 0.5 mm to 5 mm, and stretched and deformed by 5% in the yarn length direction. It is possible to obtain a conductive slit yarn having a line resistance value of 10 Ω / cm or less before and after and having a fluctuation rate of 3% or less, and stable electrical characteristics during the manufacture and use of products such as clothing. A conductive slit yarn having the following can be realized.

本発明は、電子機器とテキスタイルが融合したウエアラブルコンピュータ、防爆防塵機能等の高機能作業服等に使用する糸として好適であり、電気製品や自動車等の各種工業製品の電子材料として用いられる導電糸及び導電性織編物に幅広く使用することが可能である。例えば、電気製品や自動車部品などの各種産業用途での伸長変形を必要とする可動部での電気的シールド材や導電部材として使用でき、バイタルセンシングや情報発信ツールとしてのウエアラブルなシステムの信号線や電源ラインとして使用することができる。また、電気的特性を要求されるe−テキスタイルの信号線や電源ラインとして使用することができる。   INDUSTRIAL APPLICABILITY The present invention is suitable as a thread used for wearable computers in which electronic equipment and textiles are fused, high-performance work clothes such as explosion-proof dust-proof functions, etc., and conductive threads used as electronic materials for various industrial products such as electrical products and automobiles. And can be widely used for conductive woven and knitted fabrics. For example, it can be used as an electrical shield material or conductive member in movable parts that require extensional deformation in various industrial applications such as electrical products and automotive parts, and it can be used as signal lines for wearable systems as vital sensing and information transmission tools. Can be used as a power line. Further, it can be used as an e-textile signal line or power supply line that requires electrical characteristics.

Claims (6)

経糸及び緯糸により織成された導電性布帛を当該経糸を3本以上含む幅でスリットして0.5mm〜5mmの糸幅に形成されており、糸長方向に5%伸長変形する前後の線抵抗値が10Ω/cm以下で、かつその変動率が3%以内である導電性スリットヤーン。   A conductive fabric woven with warps and wefts is slit to a width that includes three or more warps to form a thread width of 0.5 mm to 5 mm. A conductive slit yarn having a resistance value of 10 Ω / cm or less and a variation rate of 3% or less. 前記導電性布帛は、少なくとも経糸に紡績糸が用いられており、メッキ処理による金属層が形成されている請求項1に記載の導電性スリットヤーン。   2. The conductive slit yarn according to claim 1, wherein a spun yarn is used for at least the warp yarn and a metal layer is formed by plating. 前記導電性布帛は、経糸及び緯糸の繊度の比が0.5〜1.5であり、経糸及び緯糸の織密度の比が0.7〜1.3である請求項1又は2に記載の導電性スリットヤーン。   3. The conductive fabric according to claim 1, wherein a ratio of the fineness of the warp and the weft is 0.5 to 1.5, and a ratio of the woven density of the warp and the weft is 0.7 to 1.3. Conductive slit yarn. 請求項1から3のいずれかに記載の導電性スリットヤーンを含む導電性織編物。   A conductive woven or knitted fabric comprising the conductive slit yarn according to any one of claims 1 to 3. 絶縁性繊維からなる経糸及び緯糸により布帛を織成し、得られた前記布帛表面に金属メッキ処理を施して金属層を形成することで電気抵抗が1Ω/m2以下の導電性布帛を作成し、得られた前記導電性布帛を経糸方向に沿って経糸を3本以上含む幅でスリットして0.5mm〜5mmの糸幅に形成する導電性スリットヤーンの製造方法。 A fabric is woven with warps and wefts made of insulating fibers, and a metal layer is formed by applying metal plating to the surface of the obtained fabric to produce a conductive fabric having an electrical resistance of 1 Ω / m 2 or less. A method for producing a conductive slit yarn, wherein the conductive fabric is slit in a width including three or more warps along the warp direction to form a thread width of 0.5 mm to 5 mm. 少なくとも経糸に紡績糸を用いて前記布帛を織成する請求項5に記載の導電性スリットヤーンの製造方法。   The method for producing a conductive slit yarn according to claim 5, wherein the fabric is woven using at least a spun yarn as a warp.
JP2014063774A 2014-03-26 2014-03-26 Electric conductive slit yarn and method for producing the same Pending JP2015183345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063774A JP2015183345A (en) 2014-03-26 2014-03-26 Electric conductive slit yarn and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063774A JP2015183345A (en) 2014-03-26 2014-03-26 Electric conductive slit yarn and method for producing the same

Publications (1)

Publication Number Publication Date
JP2015183345A true JP2015183345A (en) 2015-10-22

Family

ID=54350217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063774A Pending JP2015183345A (en) 2014-03-26 2014-03-26 Electric conductive slit yarn and method for producing the same

Country Status (1)

Country Link
JP (1) JP2015183345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185565B1 (en) * 2019-12-26 2020-12-02 (주)부영섬유 Conductive composite yarn capable of sensing the force in vertical and horizontal direction and textile sensor having the same
WO2022024827A1 (en) * 2020-07-28 2022-02-03 東レ株式会社 Electroconductive fiber, clothing including electroconductive fiber, and electrical/electronic instrument including electroconductive fiber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102478A (en) * 1984-10-25 1986-05-21 セ−レン株式会社 Conductive cloth and its production
JP2000212853A (en) * 1999-01-18 2000-08-02 Sumitomo Electric Ind Ltd Production of electroconductor-woven tape
JP2000219076A (en) * 1998-10-22 2000-08-08 Seiren Co Ltd Electrode material for object-humanbody detecting system
JP2000273762A (en) * 1999-03-26 2000-10-03 Teijin Ltd Base fabric for electromagnetic wave-shielding material and electromagnetic wave-shielding material using the same
JP2001226873A (en) * 1999-12-07 2001-08-21 Seiren Co Ltd Metal coated fiber material
US20010019928A1 (en) * 1999-12-07 2001-09-06 Susumu Takagi Metal coated fiber materials
JP2004011035A (en) * 2002-06-04 2004-01-15 Teijin Ltd Surface-electroconductive fabric having flexibility and softness
JP2009270218A (en) * 2008-05-02 2009-11-19 Diatex Co Ltd Electromagnetic wave suppression flat yarn, electromagnetic wave suppression product using same, and method for producing the same
JP2010261145A (en) * 2009-04-11 2010-11-18 Fukui Prefecture Composite string and fabric provided with the same
JP2013147767A (en) * 2012-01-19 2013-08-01 Fukui Prefecture Electronic component mounting weave, electronic component mounting body and fabric using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102478A (en) * 1984-10-25 1986-05-21 セ−レン株式会社 Conductive cloth and its production
JP2000219076A (en) * 1998-10-22 2000-08-08 Seiren Co Ltd Electrode material for object-humanbody detecting system
JP2000212853A (en) * 1999-01-18 2000-08-02 Sumitomo Electric Ind Ltd Production of electroconductor-woven tape
JP2000273762A (en) * 1999-03-26 2000-10-03 Teijin Ltd Base fabric for electromagnetic wave-shielding material and electromagnetic wave-shielding material using the same
JP2001226873A (en) * 1999-12-07 2001-08-21 Seiren Co Ltd Metal coated fiber material
US20010019928A1 (en) * 1999-12-07 2001-09-06 Susumu Takagi Metal coated fiber materials
JP2004011035A (en) * 2002-06-04 2004-01-15 Teijin Ltd Surface-electroconductive fabric having flexibility and softness
JP2009270218A (en) * 2008-05-02 2009-11-19 Diatex Co Ltd Electromagnetic wave suppression flat yarn, electromagnetic wave suppression product using same, and method for producing the same
US20100323138A1 (en) * 2008-05-02 2010-12-23 Diatex Co., Ltd Electromagnetic Interference Suppression Flat Yarn, Electromagnetic Interference Suppression Article Using the Flat Yarn, and Method for Manufacturing the Flat Yarn and Article Using the Same
JP2010261145A (en) * 2009-04-11 2010-11-18 Fukui Prefecture Composite string and fabric provided with the same
JP2013147767A (en) * 2012-01-19 2013-08-01 Fukui Prefecture Electronic component mounting weave, electronic component mounting body and fabric using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185565B1 (en) * 2019-12-26 2020-12-02 (주)부영섬유 Conductive composite yarn capable of sensing the force in vertical and horizontal direction and textile sensor having the same
WO2022024827A1 (en) * 2020-07-28 2022-02-03 東レ株式会社 Electroconductive fiber, clothing including electroconductive fiber, and electrical/electronic instrument including electroconductive fiber

Similar Documents

Publication Publication Date Title
US9388514B2 (en) Method of producing electrically conductive metal composite yarn having increased yield strength, composite yarn produced by the method and embroidered circuit produced using the composite yarn
JP5352795B2 (en) Woven knitted fabric using conductive yarn for e-textile
KR101247924B1 (en) Elastic signal transmission cable
TWI723109B (en) Woven ribbon piezoelectric element, fabric piezoelectric element using the braided ribbon piezoelectric element, and devices using the same
JP2001279575A (en) Electroconductive woven fabric
CN112888817B (en) Cloth with electrode wiring
TWI652385B (en) Conductive textile
Asghar et al. Effects of metal filament’s alignment on tensile and electrical properties of conductive hybrid cover yarns
JP2015183345A (en) Electric conductive slit yarn and method for producing the same
KR100943303B1 (en) Manufacturing method of electromagnetic shielding fabric with covered yarn
JP2019011965A (en) Tensile sensor
JP2013147765A (en) Fabric structure
WO2022270461A1 (en) Conductive mesh fabric
KR20130032890A (en) Electro-conductive textile
JP6085162B2 (en) Flat insulation sheath
Buhu et al. Analysis of tensile properties for conductive textile yarns
JP6635788B2 (en) Braided piezoelectric element, fabric-like piezoelectric element using braided piezoelectric element, and device using them
KR101656312B1 (en) Touch-sensitive knitted fabric and Manufacturing method thereof
KR101393264B1 (en) electro-conductive textile for low voltage
JP6804996B2 (en) Electromagnetic shield
JP2016125174A (en) Conductive fiber
CN205451839U (en) Shielding cable that fabric was woven
RU182617U1 (en) TISSUE THREAD
CN220767303U (en) Be applied to conductive elastic cord and wearable equipment of wearable equipment
Labeeb et al. Embroidery on Textiles as a Smart Solution for Wearable Applications.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306