JP4568961B2 - Multilayer ceramic capacitor - Google Patents

Multilayer ceramic capacitor Download PDF

Info

Publication number
JP4568961B2
JP4568961B2 JP2000168559A JP2000168559A JP4568961B2 JP 4568961 B2 JP4568961 B2 JP 4568961B2 JP 2000168559 A JP2000168559 A JP 2000168559A JP 2000168559 A JP2000168559 A JP 2000168559A JP 4568961 B2 JP4568961 B2 JP 4568961B2
Authority
JP
Japan
Prior art keywords
mol
powder
batio
component
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000168559A
Other languages
Japanese (ja)
Other versions
JP2001351826A (en
Inventor
伸明 永井
雄一 村野
熊夫 金山
益裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000168559A priority Critical patent/JP4568961B2/en
Publication of JP2001351826A publication Critical patent/JP2001351826A/en
Application granted granted Critical
Publication of JP4568961B2 publication Critical patent/JP4568961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内部電極が卑金属から成り、JIS規格B特性或いはEIA規格X7R特性を満足し、スイッチング電源回路、DC−DCコンバータ回路、照明用インバータ回路等に中高圧用として広く使用される積層セラミックコンデンサに用いられる耐還元性誘電体組成物及びそれを用いた積層セラミックコンデンサに関するものである。
【0002】
【従来の技術】
近年、ノート型パソコン等に代表される様に電子機器の軽薄短小化に伴いそれに使用される重要な受動部品の1つであるセラミックコンデンサも従来の円板型から積層型への移行が急速に進み、スイッチング電源回路やDC−DCコンバータ回路の小型化及び樹脂モールド化に寄与している。また、信用調査機関のデータによると西暦2005年にはセラミックコンデンサの積層化率は90%を超える事が確実であり、低定格電圧品のみならず中高圧品、更には安全規格品の領域にまで積層化が波及するのは時間の問題である。
【0003】
例えば、スイッチング電源回路の1次側スナバ用としては定格電圧が630VDCでJIS規格B特性或いはEIA規格X7R特性を満足する中高圧用積層セラミックコンデンサが多数使用されており、一大市場を形成しつつある。
【0004】
積層セラミックコンデンサは、セラミック誘電体層と内部電極層が交互に複数積層され、その積層構造の上下に全体の寸法調整と内部気密封止の為の誘電体層が設けられている。内部電極層の電気的接続は、それらの終端部分が露出した両端面に端子電極を設けることによって行い、これら端子電極表面には半田付け実装を容易に且つ支障なく行える様に、Ni鍍金の上にSn鍍金又はSn−Pb系の半田鍍金が層状に施された構造となっている。
【0005】
従来より、この様な積層セラミックコンデンサに使用される誘電体組成物は、主成分であるBaTiO3に数種類の添加物を加えたものが主流であり、例えば特公平3−23504号公報にはBaTiO3にNb25とCoOを加えた組成物が開示されており、これによるとNb25とCoOが静電容量の温度変化率を平坦化する成分として作用し、EIA規格X7R特性を満足することが記載されている。同じく特公平3−61287号公報にはBaTiO3にNb25、CoO、CeO2及びZnOを加えた組成物が開示されており、Nb25とCoOが静電容量の温度変化率を平坦化し、CeO2は焼成温度を低下し、ZnOは電気特性を改善することが記載されている。
【0006】
しかしながら上記誘電体組成物は、内部電極としてPd系貴金属の使用を前提としたものであり、特に高積層数高静電容量の品種において原材料コストの面で問題があった。これを解決する方法として、Pd系の貴金属に代わりコストの安いNiあるいはNiを主成分とする合金を使用することが公知であり、積層セラミックコンデンサに占める卑金属内部電極品の割合は急増している。
【0007】
Niは卑金属であるので、従来の貴金属の積層セラミックコンデンサの様に酸素雰囲気中で焼成する事は不可能で、低酸素分圧雰囲気中においてNiが酸化されないように焼成しなければならない。セラミックコンデンサ用として公知であるBaTiO3に代表されるペロブスカイト酸化物は、1000゜C以上の高温においてNiの酸化還元平衡酸素分圧以下の雰囲気に晒されると還元され、絶縁抵抗値が低下したり、電界を印加した状態での信頼性試験、いわゆる負荷寿命での不良率が増大し、コンデンサ用誘電体としての機能を果たさなくなる。
【0008】
この課題に対し、これらペロブスカイト酸化物が、AサイトとBサイトに存在するイオンの化学量論比を変化させたり、あるいは結晶格子中にドナーとなって固溶しうる、例えば遷移金属イオン等を添加したりすることによって、前述のような熱処理を行っても還元されにくくなる性質を利用して、ペロブスカイト酸化物と微量の添加物から構成される多くの耐還元性誘電体組成物が考案され、開示されている。以前の耐還元性誘電体組成物は、静電容量の温度変化率が大きいJIS規格F特性が主流であったが、近年積極的な材料開発が行われ、温度変化率が小さいJIS規格B特性或いはEIA規格X7R特性が薄層大容量積層セラミックコンデンサに適用されている。例えば特開平8−124784号公報には主成分としてBaTiO3を副成分としてMgO、Y23、BaO及びCaOから選ばれる少なくとも1種とSiO2とを含有するNi及びNi系合金等の卑金属が使用可能な耐還元性誘電体組成物が開示されている。また、特開平9−171938号公報にはBaTiO3系の主成分に対して、副成分としてMgO、及び焼結助剤成分としてLi2O−B23−(Si,Ti)O2系の酸化物を含有した耐還元性誘電体組成物が開示されている。これにより、静電容量の温度変化率が小さく、しかも安価なNi系の内部電極を使用した大容量の積層セラミックコンデンサが主として16〜50VDCの低定格電圧品を中心に商品化されている。
【0009】
【発明が解決しようとする課題】
しかしながら、従来の耐還元性誘電体組成物の多くは主成分であるペロブスカイト酸化物に対する微量添加物の均一な分散性や反応性を考慮して設計されたものであるとは言い難く、工程上制御しえない要因によって製品の特性、品質が変動し、歩留まりの低下や信頼性不良を引き起こしている。例えば、従来のプロセスである仮焼混合法により作製した耐還元性誘電体組成物は微量添加物の中でも特にLi2O−B23−(Si,Ti)O2系やBaO−SiO2系等の焼結助剤成分を均一に分散させることが難しく、焼結助剤成分が不均一に分散した組成物であった。その結果、焼成時の反応過程で局部的な異常反応を起こし、結晶粒子径のばらつきが大きくなりしかもポアーが多い不均質な微細構造となり、静電容量や誘電体損失のばらつきが生じ、絶縁破壊電圧が低く、また超加速寿命試験(HALT)における故障時間の分布が広く、平均故障時間が短いという問題点を有していた。
【0010】
そこで本発明は以上の様な課題を解決し、焼結助剤成分を偏析させることなく主成分の粉末粒子の周囲に均一にコーティングさせた耐還元性誘電体組成物を提供し、該耐還元性誘電体組成物を用いて初期特性及び耐久信頼性等のばらつきが小さく、中高圧用として優れた特性を有する卑金属内部電極積層セラミックコンデンサを提供することを目的としている。
【0011】
【課題を解決するための手段】
この課題を解決するために本発明の積層セラミックコンデンサは、基体と、前記基体中に設けられた複数の内部電極と、前記基体の両端部に設けられ前記内部電極と電気的に接合された一対の外部電極とを備え、前記外部電極は互いに電気的に非接触とし、前記基体を構成する耐還元性誘電体組成物は、Ca及びBaの酢酸塩水溶液とSiの金属アルコキシドエタノール溶液を攪拌混合しながらアンモニア水を滴下してCa、Ba及びSi成分を含むコロイド状懸濁液を作製する工程と、該コロイド状懸濁液を主成分のBaTiO 3 粉末及び微量の添加剤と共に混合して原料粉末を作製する工程とを順次行うことにより製造され、前記コロイド状懸濁液は主成分のBaTiO 3 粉末100モルに対してCa及びBa成分の内少なくとも1種以上を各々0.5〜1.5モル、Si成分を1.0〜3.0モル含み、前記添加剤は主成分のBaTiO 3 粉末100モルに対して各々0.03〜1.0モルのDy 2 3 、MgO及びMn 3 4 の内から選ばれた少なくとも1種類以上を含み、前記主成分のBaTiO 3 粉末粒子の周囲が前記Ca、Ba及びSiを含む焼結助剤として作用する成分により均一にコーティングされていることを特徴とする
【0012】
【発明の実施の形態】
本発明の請求項1に記載の発明は、前記基体中に設けられた複数の内部電極と、前記基体の両端部に設けられ前記内部電極と電気的に接合された一対の外部電極とを備え、前記外部電極は互いに電気的に非接触とし、前記基体を構成する耐還元性誘電体組成物は、Ca及びBaの酢酸塩水溶液とSiの金属アルコキシドエタノール溶液を攪拌混合しながらアンモニア水を滴下してCa、Ba及びSi成分を含むコロイド状懸濁液を作製する工程と、該コロイド状懸濁液を主成分のBaTiO 3 粉末及び微量の添加剤と共に混合して原料粉末を作製する工程とを順次行うことにより製造され、前記コロイド状懸濁液は主成分のBaTiO 3 粉末100モルに対してCa及びBa成分の内少なくとも1種以上を各々0.5〜1.5モル、Si成分を1.0〜3.0モル含み、前記添加剤は主成分のBaTiO 3 粉末100モルに対して各々0.03〜1.0モルのDy 2 3 、MgO及びMn 3 4 の内から選ばれた少なくとも1種類以上を含み、前記主成分のBaTiO 3 粉末粒子の周囲が前記Ca、Ba及びSiを含む焼結助剤として作用する成分により均一にコーティングされていることを特徴とするものであり、焼成時に主成分の粉末と焼結助剤として作用する成分との局部的な異常反応がなく、焼結助剤成分が均一に分散された非常に緻密な組織を形成することが可能な耐還元性誘電体組成物を実現できるという作用を有する。また、焼成時に主成分のBaTiO 3 とCa、Ba及びSiを含む焼結助剤成分との局部的な異常反応がなく、焼結助剤成分が均一に分散された非常に緻密な組織を形成することが可能な耐還元性誘電体組成物を実現できるという作用を有する。また、モル比の制御されたCa、Ba及びSiを含む非常に薄い非晶質層をBaTiO 3 粒子の周囲に形成するという作用を有している。さらに、焼成温度においてNiの酸化還元平衡酸素分圧以下の雰囲気中で優れた耐還元性を実現するという作用を有している。また、電気的初期特性及び静電容量の温度変化率を目標値に制御するという作用を有する。
【0019】
本発明の実施において使用するチタン酸バリウム粉末は、平均粒子径と粒子径分布の幅が小さいものが好ましい。また、反応性についてはそれが小さい方がB特性あるいはX7R特性の発現が容易であるので、結晶化度の高い粉末を使用するのが好ましい。このようなチタン酸バリウム粉末を製造する工程において混入する不純物としては、バリウム以外のアルカリ土類金属や鉄、珪素及びアルミニウム等があるが、これら不純物は数千ppmのオーダで含有されていても特に支障はない。
【0020】
チタン酸バリウム粉末を混合するコロイド状懸濁液の出発材料であるCa及びBaの酢酸塩及びSiのアルコキシドは一般的市販品が使え、これらに含有される不純物は似通った化学的性質を有する金属であるため、前述のチタン酸バリウムと同様に数千ppmのオーダで含有されていても特に支障はない。また、アルコキシドを溶解させるエタノールも一般的な市販品が使用できる。
【0021】
これら酢酸塩やアルコキシドは水−エタノール溶液中で水和したイオンとして存在し、後のアンモニア水の滴下によって微細な水酸化物をコロイド状懸濁液の形で生成し、これをチタン酸バリウムと混合した際、均一な状態で分散されるのが望ましい為、アンモニア水の濃度は1モル/リットル以下、工程の設備的、時間的余裕がある場合にはより低濃度にするのが望ましい。アンモニア水の濃度が1モル/リットルを超えて濃厚になると、前述の水酸化物が偏って生成し組成的に不均一な状態でチタン酸バリウム粉末と混合される為、最終的に組成不均一な耐還元性誘電体組成物となり、本発明の意図するところとは全く異なった結果となる。
【0022】
チタン酸バリウム粉末に対して添加される各添加物の量は、製造する積層セラミックコンデンサの誘電率と誘電体損失、靜電容量の温度変化率、絶縁抵抗、絶縁破壊電圧、高温負荷寿命及び焼成温度における耐還元性の観点から限定される。チタン酸バリウム100モルに対しDy23が1.0モルを超えると焼成による緻密化が不完全になる為誘電率が低下し、また0.03モル未満になると靜電容量の温度変化率が大きくなり、高温負荷寿命が短くなる。チタン酸バリウム100モルに対しMgOが1.0モルを超えると誘電率の低下と誘電体損失の増大を招き、また0.03モル未満になると焼成温度における耐還元性が損なわれ、電気特性及び寿命の全般にわたって劣化する。チタン酸バリウム100モルに対しMn34が1.0モルを超えると誘電体損失が増加し、また0.03モル未満になると絶縁抵抗及び絶縁破壊電圧が低下し、高温負荷寿命が短くなる。
【0023】
さらに、Ca及びBaに関しては、チタン酸バリウム100モルに対しCa及びBa成分の内少なくとも1種が1.5モルを超えると誘電率が低下すると共に高温負荷寿命が劣化し、また0.5モル未満になると焼結助剤としての効果が得られず、焼成による緻密化が不完全となり最適焼成温度が高くなる。Si成分に関しても同様に、3.0モルを超えると誘電率が低下すると共に高温負荷寿命が劣化し、また1.0モル未満になると焼結助剤としての効果が得られず、焼成による緻密化が不完全となる。
【0024】
また、主成分粉末であるBaTiO3粉末の周りに存在する(コーティングされた)焼結助剤としては、例えば、CaxBaySiO3(但し0.3<x及びy<0.7)が挙げられる。この時、BaTiO3粉末100モルに対して、焼結助剤は1.5〜2.3モル(好ましくは1.9モル程度)程度設けられる。
【0025】
【実施例】
次に、本発明の具体例を説明する。
【0026】
(実施例1)
実験の概略は、(表1)(表2)(表3)に示した組成表に従って、主成分であるBaTiO3粉末(堺化学製BT−03)と添加剤であるDy23、MgO及びMn34の配合物と、Ca,Ba及びSiより成る焼結助剤成分のコロイド状懸濁液をボールミルで混合して各々の出発原料粉末を作製する。
【0027】
【表1】

Figure 0004568961
【0028】
【表2】
Figure 0004568961
【0029】
【表3】
Figure 0004568961
【0030】
使用する原材料のメーカとグレードは(表4)にまとめて記載した。
【0031】
【表4】
Figure 0004568961
【0032】
次に、作製した粉末を使用して、形状が3216サイズで定格電圧が630VDCを保証し10000PFの靜電容量値が取得可能な積層セラミックコンデンサを試作して総合評価する。
【0033】
以下に積層セラミックコンデンサの詳細な試作手順と評価方法について説明する。
【0034】
主成分であるBaTiO3粉末及び添加剤であるDy23、MgO及びMn34の各粉末を(表1)〜(表3)の組成表に基づいて電子天秤で所定量を秤量し、5mmφのZrO2質ボールが350g入った内容積が600CCのポリエチレン製ポットミル中に投入する。次にBa、Caの酢酸塩及びTEOS(テトラエトキシシラン)の所定量を電子天秤で秤量した後、酢酸塩は100CCの純水に、またTEOSは150CCのエタノールに別々に溶解させる。そして、該水溶液をエタノール溶液中に投入して攪拌を続けながら1規定のアンモニア水を所定量滴下して、焼結助剤成分より成るコロイド状懸濁液を得た。次に、該コロイド状懸濁液を上記ボールミル中に投入し100rpmの回転速度で20時間混合した。混合物は150メッシュのシルクスクリーンで濾過して、テフロンシートを敷いたステンレスバット中に投入し、ドラフト中で加温しながらエタノール分を揮発させ、アルミ泊で蓋をして150゜Cの温度で乾燥した。乾燥した塊状物はアルミナ乳鉢中で解砕した後、32メッシュのナイロン篩を通過してアルミナ製坩堝に入れて400゜C/2時間(昇降温速度:200゜C/H)の条件で熱処理してスラリー用粉末とした。
【0035】
得られたスラリー用粉末を日本電子製走査型電子顕微鏡及びエネルギー分散型X線マイクロアナライザーで分析して、その様子を図1に示す。
【0036】
図1において、BaTiO3粒子11はCa、Ba及びSiを含む薄い膜12により均一に満遍なくコーティングされていた。
【0037】
次に、内容積が600CCのポリエチレン製ポットミル中にスラリー用粉末100gと、溶剤として作用する酢酸ブチル、2−n−ブトキシエタノール及びエタノールさらに可塑剤として作用するブチルベンジルフタレートをそれぞれ所定量投入し、10mmφZrO2ボール440gを用いて100rpmの回転速度で6時間混合することにより湿潤した。6時間湿潤後、スラリーをスポイドで平滑なガラス板上に滴下して、成膜し、光学顕微鏡で分散状態を観察して凝集がないことを確認した。そして、湿潤が完了した上記ボールミルに、ポリビニルブチラール樹脂より成るビヒクルを50g投入し100rpmの回転速度で12時間混合してシート成形用スラリーとした。
【0038】
次に、該スラリーを150メッシュのシルクスクリーンで濾過した後、75μmの基体上に成膜して20〜25μmの厚みを有するセラミック生シートを得た。そして、該セラミック生シートと、Niペースト(住友金属鉱山製NLP−43195)より作製した内部電極シートを用いて転写工法により所定の層数に積層した後、切断してグリーンチップを得た。
【0039】
次に、湿式法で得られたグリーンチップの面取りを実施した。まず、可塑剤であるブチルベンジルフタレートを揮発させる為にグリーンチップを160〜200゜Cの温度で、重量減少率が4〜8%の範囲内になる様に熱処理した。そして、このグリーンチップを400CCの純水と専用のメディアと共に面取り専用のポットに投入し、205rpmで4〜7分間回転した後、該グリーンチップを120゜Cで乾燥した。面取りしたグリーンチップの両端面にNiペースト(住友金属鉱山製NLP−43195より作製したもの)を塗布し120゜Cで10分間乾燥して脱脂した。脱脂は、該グリーンチップをAS−2100ジルコニア粉末を敷いた焼成専用のジルコニアコートさや中に投入して、N2ガス中で400゜Cで4時間保持して実施した。そして、回転式雰囲気炉により還元雰囲気焼成を実施した。グリーンガス、CO2及びN2により調整したNiの平衡酸素分圧よりも2桁低い酸素分圧雰囲気中で1250゜Cの温度で2時間保持した。
【0040】
そして、焼成したチップの両端面にAgを塗布して大気中600゜Cの温度で焼き付けた後、Ni鍍金及びSn鍍金を施して積層セラミックコンデンサを完成させた。
【0041】
この作製された積層セラミックコンデンサを図2に示す。
【0042】
図2において、21は基体で、基体中21には内部電極22〜25が設けられており、内部電極22,23は基体21の一方の端面まで達しており、その一方の端面上に設けられた外部電極26に電気的に接続されており、内部電極24,25は、基体21の他方の端面まで達しており、その他方の端面上に設けられた外部電極27に電気的に接続されている。外部電極26,27は互いに非接触となっており、しかも内部電極22,23及び内部電極24,25も非接触となるように構成されている。この様な構成によって、基体21は、結晶性粒子(BaTiO3粒子等)の間(周り)に非晶質材(例えば、Ca、Ba及びSiを含む非晶質)が存在するような構成となり、特性が向上する。
【0043】
次に、試作した積層セラミックコンデンサの電気特性を評価した。靜電容量(Cap)と誘電体損失(tanδ)はYHP製LCRメータ4284Aを使用して1V/1KHzの信号電圧下で測定した。絶縁抵抗値(IR)はアドバンテスト社製絶縁抵抗計R8340Aを使用して500VDCを1分間印加して測定した。絶縁破壊電圧(BDV)は菊水電子製耐圧計を使用して空気中で直流破壊電圧を測定した。靜電容量の温度変化率(Cap−TC)は恒温槽にYHP製LCRメータ4284Aを接続して−55〜+125゜Cの範囲内で測定した。靜電容量と誘電体損失は各々20個測定に供し、絶縁抵抗値と絶縁破壊電圧は各々10個、温度変化率は2個測定し、平均値を算出してそれらの結果を(表5)〜(表7)に示した。
【0044】
【表5】
Figure 0004568961
【0045】
【表6】
Figure 0004568961
【0046】
【表7】
Figure 0004568961
【0047】
ここで、(表5)〜(表7)の試料Noは(表1)〜(表3)の試料Noに対応している。また、これらの表中の試料Noに※印を記したものは、電気特性や焼結性などの設定項目の少なくとも1つについて良好な評価が得られなかった試料である。
【0048】
(表1)〜(表3)及び(表5)〜(表7)より明らかな様に、チタン酸バリウム100モルに対しDy23が1.0モルを超えると、1250゜Cの焼成で若干焼結性が劣化するため、靜電容量が低下し、また0.03モル未満になると靜電容量の温度変化率が大きくなる傾向にあった。チタン酸バリウム100モルに対しMgOが1.0モルを超えると靜電容量の低下と誘電体損失の増大を招き、また0.03モル未満になると焼成時の耐還元性が損なわれる為、誘電体損失が増大し、絶縁破壊電圧及び絶縁抵抗が劣化した。チタン酸バリウム100モルに対しMn34が1.0モルを超えると靜電容量の低下と誘電体損失の増加を招き、また0.03モル未満になると絶縁抵抗及び絶縁破壊電圧が急激に劣化した。さらに、焼結助剤成分に関しては、チタン酸バリウム100モルに対しCa及びBa成分の内少なくとも1種が1.5モルを超えると靜電容量が低下し、また0.5モル未満になると焼結助剤としての効果が得られず焼結性が損なわれる為、絶縁抵抗及び絶縁破壊電圧が劣化した。また、Si成分に関してはチタン酸バリウム100モルに対して1.0モル未満及び3.0モルを超えた場合についてCa及びBa成分と同様の傾向であった。
【0049】
これに対し、主成分のBaTiO3粉末100モルに対して、Dy23、MgO及びMn34の内から選ばれた少なくとも1種以上を各々0.03〜1.0モル含み、且つ主成分のBaTiO3粉末100モルに対してCa及びBa成分の内少なくとも1種以上を各々0.5〜1.5モル、Si成分を1.0〜3.0モル含む組成物により作製した積層セラミックコンデンサは良好な焼結性と電気特性とを有し、またEIA規格X7R特性及びJIS規格B特性を満足し、形状が3216サイズで定格電圧が630VDCを保証し、10000PFの靜電容量値を有する中高圧用積層セラミックコンデンサとして使用可能なものであった。
【0050】
以上の様に本発明の耐還元性誘電体組成物は、主成分であるBaTiO3粉末粒子の周囲に焼結助剤成分を偏析させることなく均一にコーティングさせ、かつ前記焼結助剤成分及び微量添加剤の組成を限定したものである為、該組成物を用いることにより、非常に緻密で制御された微細構造を有する誘電体層が得られ、静電容量の温度変化率が良好で、絶縁破壊電圧が高い耐久信頼性に優れた積層セラミックコンデンサを実現することができる。
【0051】
【発明の効果】
以上の様に本発明によれば、主成分であるBaTiO3粉末粒子の周囲に焼結助剤成分を偏析させることなく均一にコーティングさせ、かつ前記焼結助剤成分及び微量添加剤の組成を限定した耐還元性誘電体組成物である為、該組成物を用いることにより、非常に緻密で制御された微細構造を有する誘電体層が得られ、静電容量の温度変化率が良好で、絶縁破壊電圧が高い耐久信頼性に優れた積層セラミックコンデンサを実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における耐還元性誘電体組成物のスラリー用粉末を示す図
【図2】本発明の一実施の形態における積層セラミックコンデンサを示す側断面図
【符号の説明】
11 BaTiO3粒子
12 Ca、Ba及びSiより成る薄い膜
21 基体
22〜25 内部電極
26,27 外部電極[0001]
BACKGROUND OF THE INVENTION
In the present invention, the internal electrode is made of a base metal, satisfies the JIS standard B characteristic or the EIA standard X7R characteristic, and is widely used as a medium voltage for a switching power supply circuit, DC-DC converter circuit, lighting inverter circuit, etc. The present invention relates to a reduction-resistant dielectric composition used for a capacitor and a multilayer ceramic capacitor using the same.
[0002]
[Prior art]
In recent years, ceramic capacitors, which are one of the important passive components used for electronic devices, are rapidly changing from conventional disk type to multilayer type as electronic devices become lighter, thinner, and smaller, as represented by notebook personal computers. Advances have contributed to miniaturization and resin molding of switching power supply circuits and DC-DC converter circuits. In addition, according to the data of the credit bureau, it is certain that the lamination rate of ceramic capacitors will exceed 90% in the year 2005, and not only low rated voltage products but also medium and high voltage products, as well as safety standard products. It is a matter of time for the lamination to spread.
[0003]
For example, a large number of medium- and high-voltage multilayer ceramic capacitors satisfying JIS standard B characteristics or EIA standard X7R characteristics with a rated voltage of 630 VDC are used for primary snubbers of switching power supply circuits, forming a huge market. is there.
[0004]
In a multilayer ceramic capacitor, a plurality of ceramic dielectric layers and internal electrode layers are alternately stacked, and dielectric layers for overall dimension adjustment and internal hermetic sealing are provided above and below the multilayer structure. The internal electrode layers are electrically connected by providing terminal electrodes on both end faces where the end portions are exposed, and the surface of these terminal electrodes is coated with Ni plating so that it can be easily soldered and mounted. Further, Sn plating or Sn-Pb solder plating is applied in layers.
[0005]
Conventionally, a dielectric composition used for such a multilayer ceramic capacitor has been mainly obtained by adding several kinds of additives to BaTiO 3 as a main component. For example, Japanese Patent Publication No. 3-23504 discloses BaTiO 3. 3 is disclosed in which Nb 2 O 5 and CoO are added. According to this, Nb 2 O 5 and CoO act as components for flattening the rate of change in capacitance with temperature, and the EIA standard X7R characteristics are obtained. Satisfaction is stated. Nb 2 O 5 in BaTiO 3 also in KOKOKU 3-61287 discloses, CoO, composition plus CeO 2 and ZnO are disclosed, Nb 2 O 5 and CoO is a temperature change rate of capacitance It is described that planarization, CeO 2 lowers the firing temperature, and ZnO improves electrical properties.
[0006]
However, the above dielectric composition is premised on the use of a Pd-based noble metal as an internal electrode, and there is a problem in terms of raw material costs particularly in the type having a high stacking number and a high capacitance. As a method for solving this problem, it is known to use low-cost Ni or an alloy containing Ni as a main component instead of Pd-based precious metals, and the proportion of base metal internal electrode products in the multilayer ceramic capacitor is rapidly increasing. .
[0007]
Since Ni is a base metal, it cannot be fired in an oxygen atmosphere like a conventional noble metal multilayer ceramic capacitor, and must be fired so that Ni is not oxidized in a low oxygen partial pressure atmosphere. Perovskite oxides such as BaTiO 3 known for ceramic capacitors are reduced when exposed to an atmosphere below the Ni redox equilibrium oxygen partial pressure at a high temperature of 1000 ° C. or higher, resulting in a decrease in insulation resistance. In addition, a reliability test with an electric field applied, that is, a defective rate in a so-called load life increases, and the function as a capacitor dielectric is not achieved.
[0008]
In response to this problem, these perovskite oxides can change the stoichiometric ratio of ions existing at the A site and the B site, or can dissolve as a donor in the crystal lattice, such as transition metal ions. Many reduction-resistant dielectric compositions composed of perovskite oxides and a small amount of additives have been devised by utilizing the property of being difficult to be reduced even by heat treatment as described above. Are disclosed. Previous reduction-resistant dielectric compositions were mainly JIS standard F characteristics with a large capacitance temperature change rate, but in recent years aggressive material development has been carried out, and JIS standard B characteristics with a low temperature change rate. Alternatively, the EIA standard X7R characteristic is applied to a thin layer large capacity multilayer ceramic capacitor. For example, Japanese Patent Laid-Open No. 8-124784 discloses a base metal such as Ni and Ni-based alloys containing BaTiO 3 as a main component and at least one selected from MgO, Y 2 O 3 , BaO and CaO as a sub component and SiO 2. Is disclosed a reduction resistant dielectric composition. Japanese Patent Laid-Open No. 9-171938 discloses MgO as an auxiliary component and Li 2 O—B 2 O 3 — (Si, Ti) O 2 as a auxiliary component with respect to a BaTiO 3 main component. A reduction-resistant dielectric composition containing the oxide of is disclosed. As a result, large-capacity monolithic ceramic capacitors using low-cost Ni-based internal electrodes with a low capacitance temperature change rate have been commercialized mainly for low rated voltage products of 16 to 50 VDC.
[0009]
[Problems to be solved by the invention]
However, it is difficult to say that many of the conventional reduction-resistant dielectric compositions are designed in consideration of the uniform dispersibility and reactivity of trace additives with respect to the main component perovskite oxide. The characteristics and quality of the product fluctuate due to factors that cannot be controlled, causing a decrease in yield and poor reliability. For example, a reduction-resistant dielectric composition produced by a calcination mixing method, which is a conventional process, is a Li 2 O—B 2 O 3 — (Si, Ti) O 2 system or BaO—SiO 2 among trace additives. It was difficult to uniformly disperse the sintering aid component such as a system, and the composition was a composition in which the sintering aid component was dispersed unevenly. As a result, a local abnormal reaction occurs in the reaction process during firing, resulting in a heterogeneous microstructure with large variations in crystal particle size and many pores, resulting in variations in capacitance and dielectric loss, and dielectric breakdown. The problem is that the voltage is low, the failure time distribution in the super accelerated life test (HALT) is wide, and the average failure time is short.
[0010]
Accordingly, the present invention solves the above-described problems, and provides a reduction-resistant dielectric composition in which the sintering aid component is uniformly coated around the main component powder particles without segregation, and the reduction resistance It is an object of the present invention to provide a base metal internal electrode multilayer ceramic capacitor having a small variation in initial characteristics, durability reliability, and the like using a dielectric dielectric composition and having excellent characteristics for medium and high pressure applications.
[0011]
[Means for Solving the Problems]
In order to solve this problem, a multilayer ceramic capacitor of the present invention includes a base, a plurality of internal electrodes provided in the base, and a pair of electrical electrodes joined to the internal electrodes provided at both ends of the base. The external electrodes are electrically non-contact with each other, and the reduction-resistant dielectric composition constituting the substrate is prepared by stirring and mixing an aqueous solution of Ca and Ba acetate and a metal alkoxide ethanol solution of Si. A step of preparing a colloidal suspension containing Ca, Ba and Si components by dropping ammonia water while mixing the colloidal suspension together with the main component BaTiO 3 powder and a small amount of additives. The colloidal suspension is at least one of Ca and Ba components per 100 moles of the main component BaTiO 3 powder. 0.5 to 1.5 mol each of Si and 1.0 to 3.0 mol of Si component, and the additive is 0.03 to 1.0 mol of Dy for 100 mol of BaTiO 3 powder as a main component. A component that includes at least one selected from 2 O 3 , MgO, and Mn 3 O 4 , and in which the periphery of the BaTiO 3 powder particles as the main component acts as a sintering aid containing Ca, Ba, and Si. It is characterized by being uniformly coated .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention includes a plurality of internal electrodes provided in the base, and a pair of external electrodes provided at both ends of the base and electrically joined to the internal electrodes. The external electrodes are not in electrical contact with each other, and the reduction-resistant dielectric composition constituting the substrate is dropwise added with ammonia water while stirring and mixing an aqueous solution of Ca and Ba acetate and a metal alkoxide ethanol solution of Si. A step of preparing a colloidal suspension containing Ca, Ba and Si components, and a step of mixing the colloidal suspension together with a main component BaTiO 3 powder and a small amount of additives to prepare a raw material powder. The colloidal suspension is composed of at least one of Ca and Ba components in an amount of 0.5 to 1.5 mol and Si component of 100 mol of BaTiO 3 powder as a main component. The additive is selected from 0.03 to 1.0 mol of Dy 2 O 3 , MgO and Mn 3 O 4 with respect to 100 mol of the main BaTiO 3 powder. At least one of the above-mentioned BaTiO 3 powder particles as the main component is uniformly coated with a component acting as a sintering aid containing Ca, Ba and Si. Yes, there is no local abnormal reaction between the main component powder and the component acting as a sintering aid during firing, and it is possible to form a very dense structure in which the sintering aid component is uniformly dispersed. It has the effect | action that a reduction-resistant dielectric material composition is realizable. Also, there is no local abnormal reaction between the main component BaTiO 3 and the sintering aid component containing Ca, Ba and Si during firing , and a very dense structure is formed in which the sintering aid component is uniformly dispersed. It has the effect | action that the reduction-resistant dielectric composition which can be implement | achieved is realizable. Also it has the effect of forming controlled Ca molar ratio, a very thin amorphous layer containing Ba and Si around the BaTiO 3 particles. Furthermore, it has the effect of realizing excellent reduction resistance in an atmosphere below the redox equilibrium oxygen partial pressure of Ni at the firing temperature. Moreover, it has the effect | action of controlling the electrical initial characteristic and the temperature change rate of an electrostatic capacitance to a target value.
[0019]
The barium titanate powder used in the practice of the present invention is preferably a powder having a small average particle size and particle size distribution. In addition, the smaller the reactivity, the easier it is to express the B characteristic or the X7R characteristic. Therefore, it is preferable to use a powder having a high crystallinity. Impurities mixed in the process for producing such barium titanate powder include alkaline earth metals other than barium, iron, silicon, and aluminum. These impurities may be contained in the order of several thousand ppm. There is no particular problem.
[0020]
Ca and Ba acetates and Si alkoxides, which are the starting materials for colloidal suspensions mixed with barium titanate powder, can be used as commercially available products, and impurities contained therein are metals having similar chemical properties. Therefore, even if it is contained in the order of several thousand ppm like the aforementioned barium titanate, there is no particular problem. Moreover, a general commercial item can also be used for ethanol in which the alkoxide is dissolved.
[0021]
These acetates and alkoxides exist as hydrated ions in a water-ethanol solution, and a fine hydroxide is formed in the form of a colloidal suspension by the subsequent dropwise addition of aqueous ammonia, which is converted to barium titanate. When mixed, it is desirable to disperse in a uniform state. Therefore, the concentration of ammonia water is 1 mol / liter or less, and it is desirable to lower the concentration when there is sufficient equipment and time for the process. When the concentration of ammonia water exceeds 1 mol / liter, the above-mentioned hydroxide is generated unevenly and mixed with the barium titanate powder in a compositionally non-uniform state. A reduction-resistant dielectric composition, which is completely different from the intended one of the present invention.
[0022]
The amount of each additive added to the barium titanate powder is the dielectric constant and dielectric loss of the multilayer ceramic capacitor to be produced, the rate of change in temperature of the dielectric capacity, insulation resistance, dielectric breakdown voltage, high temperature load life and firing temperature. It is limited from the viewpoint of reduction resistance. When Dy 2 O 3 exceeds 1.0 mol with respect to 100 mol of barium titanate, the dielectric constant decreases due to incomplete densification by firing, and when the amount is less than 0.03 mol, the rate of change in temperature of the dielectric capacity is Larger and shorter high temperature load life. When MgO exceeds 1.0 mol with respect to 100 mol of barium titanate, the dielectric constant is decreased and the dielectric loss is increased, and when it is less than 0.03 mol, the reduction resistance at the firing temperature is impaired. Deteriorates throughout life. When Mn 3 O 4 exceeds 1.0 mol with respect to 100 mol of barium titanate, the dielectric loss increases, and when it is less than 0.03 mol, the insulation resistance and breakdown voltage decrease and the high temperature load life is shortened. .
[0023]
Furthermore, with respect to Ca and Ba, when at least one of Ca and Ba components exceeds 1.5 mol with respect to 100 mol of barium titanate, the dielectric constant decreases and the high temperature load life deteriorates, and 0.5 mol If it is less than the range, the effect as a sintering aid cannot be obtained, the densification by firing becomes incomplete, and the optimum firing temperature becomes high. Similarly, when the Si component exceeds 3.0 mol, the dielectric constant decreases and the high temperature load life deteriorates. When the Si component is less than 1.0 mol, the effect as a sintering aid cannot be obtained. Conversion becomes incomplete.
[0024]
Moreover, present around the BaTiO 3 powder as the main component powder (coated) as the sintering aid, for example, Ca x Ba y SiO 3 (where 0.3 <x and y <0.7) is Can be mentioned. At this time, the sintering aid is provided in an amount of about 1.5 to 2.3 mol (preferably about 1.9 mol) with respect to 100 mol of BaTiO 3 powder.
[0025]
【Example】
Next, specific examples of the present invention will be described.
[0026]
Example 1
The outline of the experiment is as follows. According to the composition table shown in (Table 1) (Table 2) (Table 3), BaTiO 3 powder as a main component (BT-03 manufactured by Sakai Chemical) and Dy 2 O 3 and MgO as additives. And a mixture of Mn 3 O 4 and a colloidal suspension of sintering aid components composed of Ca, Ba and Si are mixed by a ball mill to prepare each starting material powder.
[0027]
[Table 1]
Figure 0004568961
[0028]
[Table 2]
Figure 0004568961
[0029]
[Table 3]
Figure 0004568961
[0030]
Manufacturers and grades of raw materials used are summarized in (Table 4).
[0031]
[Table 4]
Figure 0004568961
[0032]
Next, using the produced powder, a multilayer ceramic capacitor that can guarantee a rated voltage of 630 VDC and obtain a dielectric capacity value of 10000 PF by making a 3216 size is comprehensively evaluated.
[0033]
The detailed trial procedure and evaluation method of the multilayer ceramic capacitor will be described below.
[0034]
Each powder of BaTiO 3 powder as the main component and Dy 2 O 3 , MgO and Mn 3 O 4 as additives is weighed in a predetermined amount with an electronic balance based on the composition table of (Table 1) to (Table 3). It is put into a polyethylene pot mill with an internal volume of 600 CC containing 350 g of 5 mmφ ZrO 2 quality balls. Next, a predetermined amount of Ba, Ca acetate and TEOS (tetraethoxysilane) are weighed with an electronic balance, and then acetate is dissolved in 100 CC pure water and TEOS is dissolved separately in 150 CC ethanol. Then, a predetermined amount of 1N ammonia water was dropped while continuing stirring while the aqueous solution was poured into an ethanol solution to obtain a colloidal suspension composed of a sintering aid component. Next, the colloidal suspension was put into the ball mill and mixed for 20 hours at a rotation speed of 100 rpm. The mixture is filtered through a 150 mesh silk screen, placed in a stainless steel vat with a Teflon sheet, ethanol is volatilized while warming in a fume hood, covered with aluminum, and covered at 150 ° C. Dried. The dried lump is crushed in an alumina mortar, then passed through a 32 mesh nylon sieve and placed in an alumina crucible for heat treatment under conditions of 400 ° C / 2 hours (heating rate: 200 ° C / H). Thus, a powder for slurry was obtained.
[0035]
The obtained powder for slurry is analyzed with a scanning electron microscope and an energy dispersive X-ray microanalyzer manufactured by JEOL, and the state is shown in FIG.
[0036]
In FIG. 1, BaTiO 3 particles 11 were uniformly and uniformly coated with a thin film 12 containing Ca, Ba and Si.
[0037]
Next, 100 g of slurry powder, butyl acetate acting as a solvent, 2-n-butoxyethanol and ethanol, and a predetermined amount of butylbenzyl phthalate acting as a plasticizer are put into a polyethylene pot mill having an internal volume of 600 CC, Wet was obtained by mixing for 6 hours at a rotation speed of 100 rpm using 440 g of 10 mmφZrO 2 balls. After wetting for 6 hours, the slurry was dropped onto a smooth glass plate with a dropoid, formed into a film, and the dispersion state was observed with an optical microscope to confirm that there was no aggregation. Then, 50 g of a vehicle made of polyvinyl butyral resin was added to the ball mill that had been wetted, and mixed at a rotational speed of 100 rpm for 12 hours to obtain a sheet forming slurry.
[0038]
Next, the slurry was filtered through a 150 mesh silk screen, and then a film was formed on a 75 μm substrate to obtain a ceramic raw sheet having a thickness of 20 to 25 μm. Then, using the ceramic raw sheet and an internal electrode sheet produced from Ni paste (NLP-43195 manufactured by Sumitomo Metal Mining), the laminate was laminated in a predetermined number of layers by a transfer method, and then cut to obtain a green chip.
[0039]
Next, chamfering of the green chip obtained by the wet method was performed. First, in order to volatilize the plasticizer butylbenzyl phthalate, the green chip was heat-treated at a temperature of 160 to 200 ° C. so that the weight reduction rate was in the range of 4 to 8%. The green chip was put into a pot dedicated to chamfering together with 400 CC pure water and a dedicated medium, rotated at 205 rpm for 4 to 7 minutes, and then dried at 120 ° C. Ni paste (made from NLP-43195 manufactured by Sumitomo Metal Mining) was applied to both end faces of the chamfered green chip, dried at 120 ° C. for 10 minutes, and degreased. Degreasing was carried out by putting the green chip into a zirconia-coated sheath dedicated to firing with AS-2100 zirconia powder and holding it at 400 ° C. for 4 hours in N 2 gas. And reduction atmosphere baking was implemented with the rotary atmosphere furnace. It was held at a temperature of 1250 ° C. for 2 hours in an oxygen partial pressure atmosphere two orders of magnitude lower than the equilibrium oxygen partial pressure of Ni adjusted with green gas, CO 2 and N 2 .
[0040]
Then, Ag was applied to both end faces of the fired chip and baked at a temperature of 600 ° C. in the atmosphere, and then Ni plating and Sn plating were performed to complete a multilayer ceramic capacitor.
[0041]
The produced multilayer ceramic capacitor is shown in FIG.
[0042]
In FIG. 2, reference numeral 21 denotes a base, and internal electrodes 22 to 25 are provided in the base 21, and the internal electrodes 22 and 23 reach one end face of the base 21 and are provided on one end face thereof. The internal electrodes 24 and 25 reach the other end surface of the base 21 and are electrically connected to the external electrode 27 provided on the other end surface. Yes. The external electrodes 26 and 27 are not in contact with each other, and the internal electrodes 22 and 23 and the internal electrodes 24 and 25 are also in non-contact. With such a configuration, the base 21 has a configuration in which an amorphous material (for example, an amorphous material including Ca, Ba and Si) exists between (around) the crystalline particles (BaTiO 3 particles and the like). , Improve the characteristics.
[0043]
Next, the electrical characteristics of the prototype multilayer ceramic capacitor were evaluated. Electrostatic capacity (Cap) and dielectric loss (tan δ) were measured using a YHP LCR meter 4284A under a signal voltage of 1 V / 1 KHz. The insulation resistance value (IR) was measured by applying 500 VDC for 1 minute using an insulation resistance meter R8340A manufactured by Advantest Corporation. With respect to the dielectric breakdown voltage (BDV), a DC breakdown voltage was measured in air using a pressure gauge made by Kikusui Electronics. The temperature change rate (Cap-TC) of the electrostatic capacity was measured within a range of −55 to + 125 ° C. by connecting a YHP LCR meter 4284A to a thermostatic chamber. The dielectric capacity and dielectric loss were each measured for 20 pieces, the insulation resistance value and the dielectric breakdown voltage were 10 pieces each, the temperature change rate was measured 2 pieces, the average value was calculated, and the results were calculated (Table 5) to (Table 7).
[0044]
[Table 5]
Figure 0004568961
[0045]
[Table 6]
Figure 0004568961
[0046]
[Table 7]
Figure 0004568961
[0047]
Here, the sample numbers in (Table 5) to (Table 7) correspond to the sample numbers in (Table 1) to (Table 3). In addition, those marked with * in the sample numbers in these tables are samples for which good evaluation has not been obtained for at least one of the setting items such as electrical characteristics and sinterability.
[0048]
As apparent from (Table 1) to (Table 3) and (Table 5) to (Table 7), when Dy 2 O 3 exceeds 1.0 mole with respect to 100 moles of barium titanate, firing at 1250 ° C. Since the sinterability slightly deteriorated, the dielectric capacity decreased, and when the amount was less than 0.03 mol, the temperature change rate of the dielectric capacity tended to increase. If MgO exceeds 1.0 mol with respect to 100 mol of barium titanate, the dielectric capacity will decrease and the dielectric loss will increase, and if it is less than 0.03 mol, the reduction resistance during firing will be impaired. Loss increased, and breakdown voltage and insulation resistance deteriorated. When Mn 3 O 4 exceeds 1.0 mol with respect to 100 mol of barium titanate, the dielectric capacity and dielectric loss increase, and when it is less than 0.03 mol, the insulation resistance and breakdown voltage deteriorate rapidly. did. Furthermore, regarding the sintering aid component, when at least one of the Ca and Ba components exceeds 1.5 mol with respect to 100 mol of barium titanate, the negative electrode capacity decreases, and when it becomes less than 0.5 mol, the sintering capacity is reduced. Since the effect as an auxiliary agent was not obtained and the sinterability was impaired, the insulation resistance and the breakdown voltage were deteriorated. Moreover, regarding Si component, it was the same tendency as Ca and Ba component when less than 1.0 mol and exceeding 3.0 mol with respect to 100 mol of barium titanate.
[0049]
On the other hand, with respect to 100 moles of the main component BaTiO 3 powder, each contains at least one selected from Dy 2 O 3 , MgO and Mn 3 O 4 in an amount of 0.03 to 1.0 mole, and Lamination produced by a composition containing 0.5 to 1.5 moles of Ca and Ba components and 1.0 to 3.0 moles of Si component with respect to 100 moles of BaTiO 3 powder as a main component. Ceramic capacitors have good sinterability and electrical characteristics, satisfy EIA standard X7R characteristics and JIS standard B characteristics, have a 3216 size shape, guarantee a rated voltage of 630 VDC, and have a dielectric capacity value of 10,000 PF. It could be used as a medium- and high-pressure multilayer ceramic capacitor.
[0050]
As described above, the reduction-resistant dielectric composition of the present invention uniformly coats the sintering aid component around the BaTiO 3 powder particles as the main component without segregation, and the sintering aid component and Since the composition of the trace additive is limited, by using the composition, a dielectric layer having a very fine and controlled microstructure is obtained, and the rate of change in capacitance with temperature is good. A multilayer ceramic capacitor having a high dielectric breakdown voltage and excellent durability and reliability can be realized.
[0051]
【The invention's effect】
As described above, according to the present invention, the sintering aid component is uniformly coated around the BaTiO 3 powder particles as the main component without causing segregation, and the composition of the sintering aid component and the trace additive is set. Since it is a limited reduction-resistant dielectric composition, by using this composition, a dielectric layer having a very dense and controlled microstructure can be obtained, and the rate of change in capacitance with temperature is good. A multilayer ceramic capacitor having a high dielectric breakdown voltage and excellent durability and reliability can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a powder for slurry of a reduction-resistant dielectric composition in one embodiment of the present invention. FIG. 2 is a side sectional view showing a multilayer ceramic capacitor in one embodiment of the present invention. ]
11 BaTiO 3 particles 12 Thin film made of Ca, Ba and Si 21 Bases 22 to 25 Internal electrodes 26 and 27 External electrodes

Claims (1)

基体と、前記基体中に設けられた複数の内部電極と、前記基体の両端部に設けられ前記内部電極と電気的に接合された一対の外部電極とを備え、前記外部電極は互いに電気的に非接触とし、A base, a plurality of internal electrodes provided in the base, and a pair of external electrodes provided at both ends of the base and electrically joined to the internal electrodes, the external electrodes being electrically connected to each other Contactless,
前記基体を構成する耐還元性誘電体組成物は、Ca及びBaの酢酸塩水溶液とSiの金属アルコキシドエタノール溶液を攪拌混合しながらアンモニア水を滴下してCa、Ba及びSi成分を含むコロイド状懸濁液を作製する工程と、該コロイド状懸濁液を主成分のBaTiOThe reduction-resistant dielectric composition constituting the substrate is a colloidal suspension containing Ca, Ba and Si components by dropwise addition of aqueous ammonia while stirring and mixing an aqueous solution of Ca and Ba acetate and a metal alkoxide ethanol solution of Si. A step of preparing a turbid liquid, and the colloidal suspension is composed of BaTiO as a main component. 3Three 粉末及び微量の添加剤と共に混合して原料粉末を作製する工程とを順次行うことにより製造され、前記コロイド状懸濁液は主成分のBaTiOThe colloidal suspension is made of BaTiO as a main component. 3Three 粉末100モルに対してCa及びBa成分の内少なくとも1種以上を各々0.5〜1.5モル、Si成分を1.0〜3.0モル含み、前記添加剤は主成分のBaTiOEach powder contains at least one of Ca and Ba components in an amount of 0.5 to 1.5 mol and Si component in an amount of 1.0 to 3.0 mol with respect to 100 mol of the powder. 3Three 粉末100モルに対して各々0.03〜1.0モルのDy0.03 to 1.0 mol of Dy each for 100 mol of powder 22 O 3Three 、MgO及びMnMgO and Mn 3Three O 4Four の内から選ばれた少なくとも1種類以上を含み、前記主成分のBaTiOIncluding at least one selected from the group consisting of BaTiO as the main component 3Three 粉末粒子の周囲が前記Ca、Ba及びSiを含む焼結助剤として作用する成分により均一にコーティングされていることを特徴とする積層セラミックコンデンサ。A multilayer ceramic capacitor characterized in that the periphery of powder particles is uniformly coated with a component that acts as a sintering aid containing Ca, Ba and Si.
JP2000168559A 2000-06-06 2000-06-06 Multilayer ceramic capacitor Expired - Fee Related JP4568961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000168559A JP4568961B2 (en) 2000-06-06 2000-06-06 Multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000168559A JP4568961B2 (en) 2000-06-06 2000-06-06 Multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2001351826A JP2001351826A (en) 2001-12-21
JP4568961B2 true JP4568961B2 (en) 2010-10-27

Family

ID=18671547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000168559A Expired - Fee Related JP4568961B2 (en) 2000-06-06 2000-06-06 Multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4568961B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783938B2 (en) 2002-03-19 2006-06-07 Tdk株式会社 Ceramic powder and multilayer ceramic electronic components
KR100645629B1 (en) 2004-10-27 2006-11-15 삼성전기주식회사 Dielectric multi-layered coating powder and composite dielectric material using the same
JP2007204315A (en) * 2006-02-01 2007-08-16 Murata Mfg Co Ltd Method of manufacturing ceramic powder, ceramic powder and laminated ceramic electronic component
US20110147073A1 (en) * 2007-09-20 2011-06-23 Nitto Denko Corporation Electromagnetic radiation absorber and method for absorbing electromagnetic radiation
WO2012099193A1 (en) 2011-01-21 2012-07-26 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05508145A (en) * 1990-06-28 1993-11-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved dielectric composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05508145A (en) * 1990-06-28 1993-11-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved dielectric composition

Also Published As

Publication number Publication date
JP2001351826A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
KR100438517B1 (en) Reduction-Resistant Dielectric Ceramic Compact and Laminated Ceramic Capacitor
KR100271726B1 (en) Ceramic composirion and multilayer ceramic capacitor made therefrom
JP4521387B2 (en) Reduction-resistant dielectric ceramic composition
TWI501273B (en) Laminated ceramic capacitors
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
KR100256199B1 (en) Monolithic ceramic capacitor
JP5035016B2 (en) Dielectric porcelain composition and electronic component
JP5343974B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP2015156470A (en) Laminated ceramic electronic component
JP3882054B2 (en) Multilayer ceramic capacitor
JP3961454B2 (en) Low temperature fired dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH10247609A (en) Stacked ceramic capacitor
JP4717302B2 (en) Dielectric porcelain composition and electronic component
JP2019129283A (en) Ceramic capacitor and production method thereof
JP4568961B2 (en) Multilayer ceramic capacitor
JP3323801B2 (en) Porcelain capacitors
JP7262640B2 (en) ceramic capacitor
JP3791264B2 (en) Method for producing reduction-resistant dielectric composition and method for producing multilayer ceramic capacitor
JP2008081351A (en) Dielectric ceramic, multilayer ceramic capacitor, and method for manufacturing the same
JP4660940B2 (en) Reduction-resistant dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor using the same
JP2003176172A (en) Dielectric ceramic composition and electronic parts
JP4325900B2 (en) Dielectric porcelain composition
JP4682407B2 (en) Multilayer ceramic capacitor
JP4810753B2 (en) Ceramic capacitor
JP4674438B2 (en) Ceramic electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees