JP2001351826A - Reduction-resistant dielectric composition and laminated ceramic capacitor using the same - Google Patents

Reduction-resistant dielectric composition and laminated ceramic capacitor using the same

Info

Publication number
JP2001351826A
JP2001351826A JP2000168559A JP2000168559A JP2001351826A JP 2001351826 A JP2001351826 A JP 2001351826A JP 2000168559 A JP2000168559 A JP 2000168559A JP 2000168559 A JP2000168559 A JP 2000168559A JP 2001351826 A JP2001351826 A JP 2001351826A
Authority
JP
Japan
Prior art keywords
reduction
powder
mol
dielectric composition
resistant dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000168559A
Other languages
Japanese (ja)
Other versions
JP4568961B2 (en
Inventor
Nobuaki Nagai
伸明 永井
Yuichi Murano
雄一 村野
Kumao Kanayama
熊夫 金山
Masuhiro Yamamoto
益裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000168559A priority Critical patent/JP4568961B2/en
Publication of JP2001351826A publication Critical patent/JP2001351826A/en
Application granted granted Critical
Publication of JP4568961B2 publication Critical patent/JP4568961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reduction-resistant dielectric composition which includes a main component consisting of particles uniformly coated with sintering auxiliary without segregating it and additives and is used for a base-metal inner electrode laminated ceramic capacitor that can be widely used as a medium or high voltage capacitor in a circuit such as a switching power supply circuit, a DC-DC converter circuit, a lighting inverter circuit or the like. SOLUTION: A colloidal suspension containing a sintering auxiliary component, BaTiO3, as a main component and a small amount of additives are mixed up into material powder, by which the colloidal suspension is uniformly dispersed, and BaTiO3 particles 11 are uniformly coated with the sintering auxiliary 12, so that no abnormal reaction occurs locally during firing, and a reduction- resistant dielectric composition capable of forming a very dense and controlled structure can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内部電極が卑金属
から成り、JIS規格B特性或いはEIA規格X7R特
性を満足し、スイッチング電源回路、DC−DCコンバ
ータ回路、照明用インバータ回路等に中高圧用として広
く使用される積層セラミックコンデンサに用いられる耐
還元性誘電体組成物及びそれを用いた積層セラミックコ
ンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medium-to-high voltage switching power supply circuit, DC-DC converter circuit, lighting inverter circuit, etc., in which the internal electrodes are made of a base metal and satisfy JIS B characteristics or EIA X7R characteristics. TECHNICAL FIELD The present invention relates to a reduction-resistant dielectric composition used for a multilayer ceramic capacitor widely used as a multilayer ceramic capacitor, and a multilayer ceramic capacitor using the same.

【0002】[0002]

【従来の技術】近年、ノート型パソコン等に代表される
様に電子機器の軽薄短小化に伴いそれに使用される重要
な受動部品の1つであるセラミックコンデンサも従来の
円板型から積層型への移行が急速に進み、スイッチング
電源回路やDC−DCコンバータ回路の小型化及び樹脂
モールド化に寄与している。また、信用調査機関のデー
タによると西暦2005年にはセラミックコンデンサの
積層化率は90%を超える事が確実であり、低定格電圧
品のみならず中高圧品、更には安全規格品の領域にまで
積層化が波及するのは時間の問題である。
2. Description of the Related Art In recent years, as electronic devices have become lighter and thinner, as represented by notebook type personal computers and the like, ceramic capacitors, which are one of the important passive components used in electronic devices, have been changed from the conventional disk type to the multilayer type. Is rapidly progressing, which contributes to downsizing of switching power supply circuits and DC-DC converter circuits and resin molding. According to the data of credit bureaus, it is certain that the lamination rate of ceramic capacitors will exceed 90% in the year 2005, not only for low-rated voltage products but also for medium- and high-voltage products and also for safety standard products. It is only a matter of time before the lamination spreads.

【0003】例えば、スイッチング電源回路の1次側ス
ナバ用としては定格電圧が630VDCでJIS規格B
特性或いはEIA規格X7R特性を満足する中高圧用積
層セラミックコンデンサが多数使用されており、一大市
場を形成しつつある。
For example, for a primary side snubber of a switching power supply circuit, the rated voltage is 630 VDC and JIS standard B
Many multi-layer ceramic capacitors for medium and high pressures satisfying the characteristics or the EIA standard X7R characteristics are used, and are forming a large market.

【0004】積層セラミックコンデンサは、セラミック
誘電体層と内部電極層が交互に複数積層され、その積層
構造の上下に全体の寸法調整と内部気密封止の為の誘電
体層が設けられている。内部電極層の電気的接続は、そ
れらの終端部分が露出した両端面に端子電極を設けるこ
とによって行い、これら端子電極表面には半田付け実装
を容易に且つ支障なく行える様に、Ni鍍金の上にSn
鍍金又はSn−Pb系の半田鍍金が層状に施された構造
となっている。
In a multilayer ceramic capacitor, a plurality of ceramic dielectric layers and internal electrode layers are alternately laminated, and a dielectric layer for adjusting the overall dimensions and hermetically sealing the inside is provided above and below the laminated structure. The electrical connection of the internal electrode layers is performed by providing terminal electrodes on both end surfaces where their terminal portions are exposed, and the surfaces of these terminal electrodes are plated with Ni plating so that solder mounting can be performed easily and without any trouble. To Sn
It has a structure in which plating or Sn-Pb-based solder plating is applied in layers.

【0005】従来より、この様な積層セラミックコンデ
ンサに使用される誘電体組成物は、主成分であるBaT
iO3に数種類の添加物を加えたものが主流であり、例
えば特公平3−23504号公報にはBaTiO3にN
25とCoOを加えた組成物が開示されており、これ
によるとNb25とCoOが静電容量の温度変化率を平
坦化する成分として作用し、EIA規格X7R特性を満
足することが記載されている。同じく特公平3−612
87号公報にはBaTiO3にNb25、CoO、Ce
2及びZnOを加えた組成物が開示されており、Nb2
5とCoOが静電容量の温度変化率を平坦化し、Ce
2は焼成温度を低下し、ZnOは電気特性を改善する
ことが記載されている。
Conventionally, a dielectric composition used for such a multilayer ceramic capacitor has been made of BaT which is a main component.
The mainstream is one in which several types of additives are added to iO 3. For example, Japanese Patent Publication No. 3-23504 discloses BaTiO 3 with N.
A composition in which b 2 O 5 and CoO are added is disclosed. According to this composition, Nb 2 O 5 and CoO act as components for flattening the rate of change in capacitance with temperature, and satisfy EIA standard X7R characteristics. It is described. Also 3-610
No. 87 discloses BaTiO 3 containing Nb 2 O 5 , CoO, Ce.
O 2 and compositions plus ZnO is disclosed, Nb 2
O 5 and CoO flatten the rate of change of capacitance with temperature,
It is described that O 2 lowers the firing temperature and ZnO improves the electrical properties.

【0006】しかしながら上記誘電体組成物は、内部電
極としてPd系貴金属の使用を前提としたものであり、
特に高積層数高静電容量の品種において原材料コストの
面で問題があった。これを解決する方法として、Pd系
の貴金属に代わりコストの安いNiあるいはNiを主成
分とする合金を使用することが公知であり、積層セラミ
ックコンデンサに占める卑金属内部電極品の割合は急増
している。
However, the above-mentioned dielectric composition is based on the premise that a Pd-based noble metal is used as an internal electrode,
In particular, there is a problem in terms of raw material cost in a product having a high number of stacked layers and a high capacitance. As a method for solving this, it is known to use Ni or an alloy containing Ni as a main component, which is inexpensive, instead of the Pd-based noble metal, and the ratio of base metal internal electrode products in the multilayer ceramic capacitor is rapidly increasing. .

【0007】Niは卑金属であるので、従来の貴金属の
積層セラミックコンデンサの様に酸素雰囲気中で焼成す
る事は不可能で、低酸素分圧雰囲気中においてNiが酸
化されないように焼成しなければならない。セラミック
コンデンサ用として公知であるBaTiO3に代表され
るペロブスカイト酸化物は、1000゜C以上の高温に
おいてNiの酸化還元平衡酸素分圧以下の雰囲気に晒さ
れると還元され、絶縁抵抗値が低下したり、電界を印加
した状態での信頼性試験、いわゆる負荷寿命での不良率
が増大し、コンデンサ用誘電体としての機能を果たさな
くなる。
Since Ni is a base metal, it cannot be fired in an oxygen atmosphere like a conventional noble metal multilayer ceramic capacitor, and must be fired in a low oxygen partial pressure atmosphere so that Ni is not oxidized. . Known perovskite oxides such as BaTiO 3 for ceramic capacitors are reduced when exposed to an atmosphere of Ni redox equilibrium oxygen partial pressure or less at a high temperature of 1000 ° C. or higher, and the insulation resistance value decreases. In addition, the reliability test in a state in which an electric field is applied, that is, the failure rate in a so-called load life increases, and the function as a dielectric for a capacitor is not performed.

【0008】この課題に対し、これらペロブスカイト酸
化物が、AサイトとBサイトに存在するイオンの化学量
論比を変化させたり、あるいは結晶格子中にドナーとな
って固溶しうる、例えば遷移金属イオン等を添加したり
することによって、前述のような熱処理を行っても還元
されにくくなる性質を利用して、ペロブスカイト酸化物
と微量の添加物から構成される多くの耐還元性誘電体組
成物が考案され、開示されている。以前の耐還元性誘電
体組成物は、静電容量の温度変化率が大きいJIS規格
F特性が主流であったが、近年積極的な材料開発が行わ
れ、温度変化率が小さいJIS規格B特性或いはEIA
規格X7R特性が薄層大容量積層セラミックコンデンサ
に適用されている。例えば特開平8−124784号公
報には主成分としてBaTiO3を副成分としてMg
O、Y23、BaO及びCaOから選ばれる少なくとも
1種とSiO2とを含有するNi及びNi系合金等の卑
金属が使用可能な耐還元性誘電体組成物が開示されてい
る。また、特開平9−171938号公報にはBaTi
3系の主成分に対して、副成分としてMgO、及び焼
結助剤成分としてLi2O−B23−(Si,Ti)O2
系の酸化物を含有した耐還元性誘電体組成物が開示され
ている。これにより、静電容量の温度変化率が小さく、
しかも安価なNi系の内部電極を使用した大容量の積層
セラミックコンデンサが主として16〜50VDCの低
定格電圧品を中心に商品化されている。
In order to solve this problem, these perovskite oxides can change the stoichiometric ratio of the ions present at the A site and the B site, or can form a solid solution as a donor in the crystal lattice. Many reduction-resistant dielectric compositions composed of perovskite oxide and a small amount of additives by utilizing the property of being hardly reduced even by performing the above-described heat treatment by adding ions or the like. Have been devised and disclosed. In the past, reduction-resistant dielectric compositions mainly used the JIS standard F characteristic having a large temperature change rate of capacitance, but in recent years active material development has been carried out, and the JIS standard B characteristic having a small temperature change rate has been developed. Or EIA
Standard X7R characteristics are applied to thin-layer large-capacity multilayer ceramic capacitors. For example, JP-A-8-124784 discloses that BaTiO 3 is used as a main component and Mg is used as a sub-component.
A reduction-resistant dielectric composition that can use a base metal such as Ni and a Ni-based alloy containing at least one selected from O, Y 2 O 3 , BaO and CaO and SiO 2 is disclosed. Japanese Patent Application Laid-Open No. 9-171938 discloses BaTi
MgO as a sub-component and Li 2 O—B 2 O 3 — (Si, Ti) O 2 as a sintering aid component with respect to the main component of the O 3 system.
A reduction-resistant dielectric composition containing a system oxide is disclosed. Thereby, the temperature change rate of the capacitance is small,
Moreover, large-capacity monolithic ceramic capacitors using inexpensive Ni-based internal electrodes have been commercialized mainly for low-rated voltage products of 16 to 50 VDC.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
耐還元性誘電体組成物の多くは主成分であるペロブスカ
イト酸化物に対する微量添加物の均一な分散性や反応性
を考慮して設計されたものであるとは言い難く、工程上
制御しえない要因によって製品の特性、品質が変動し、
歩留まりの低下や信頼性不良を引き起こしている。例え
ば、従来のプロセスである仮焼混合法により作製した耐
還元性誘電体組成物は微量添加物の中でも特にLi2
−B23−(Si,Ti)O2系やBaO−SiO2系等
の焼結助剤成分を均一に分散させることが難しく、焼結
助剤成分が不均一に分散した組成物であった。その結
果、焼成時の反応過程で局部的な異常反応を起こし、結
晶粒子径のばらつきが大きくなりしかもポアーが多い不
均質な微細構造となり、静電容量や誘電体損失のばらつ
きが生じ、絶縁破壊電圧が低く、また超加速寿命試験
(HALT)における故障時間の分布が広く、平均故障
時間が短いという問題点を有していた。
However, many of the conventional reduction-resistant dielectric compositions are designed in consideration of the uniform dispersibility and reactivity of a trace amount of an additive to the perovskite oxide as a main component. It is difficult to say that the characteristics and quality of the product fluctuate due to factors that cannot be controlled in the process,
This causes a decrease in yield and poor reliability. For example, a reduction-resistant dielectric composition produced by a calcining mixing method, which is a conventional process, is particularly suitable for Li 2 O among trace additives.
-B 2 O 3 - (Si, Ti) O 2 series and BaO-SiO 2 system it is difficult to uniformly disperse the sintering aid components, such as, a composition sintering aid component is unevenly distributed there were. As a result, a local abnormal reaction occurs in the reaction process at the time of firing, the dispersion of crystal grain diameters becomes large, and a heterogeneous fine structure with many pores occurs, and the variation of capacitance and dielectric loss occurs, and dielectric breakdown occurs. There is a problem that the voltage is low, the distribution of the failure time in the ultra-accelerated life test (HALT) is wide, and the average failure time is short.

【0010】そこで本発明は以上の様な課題を解決し、
焼結助剤成分を偏析させることなく主成分の粉末粒子の
周囲に均一にコーティングさせた耐還元性誘電体組成物
を提供し、該耐還元性誘電体組成物を用いて初期特性及
び耐久信頼性等のばらつきが小さく、中高圧用として優
れた特性を有する卑金属内部電極積層セラミックコンデ
ンサを提供することを目的としている。
Therefore, the present invention solves the above problems,
The present invention provides a reduction-resistant dielectric composition in which a sintering aid component is uniformly coated around powder particles of a main component without segregation, and uses the reduction-resistant dielectric composition to improve initial characteristics and durability reliability. It is an object of the present invention to provide a base metal internal electrode multilayer ceramic capacitor having small variations in properties and the like and excellent characteristics for medium and high pressures.

【0011】[0011]

【課題を解決するための手段】この課題を解決するため
に本発明の耐還元性誘電体組成物は、Ca及びBaの酢
酸塩水溶液とSiの金属アルコキシドエタノール溶液を
攪拌混合しながらアンモニア水を滴下してCa、Ba及
びSi成分を含むコロイド状懸濁液を作製する工程と、
該コロイド状懸濁液を主成分のBaTiO3粉末及び微
量の添加剤と共に混合して原料粉末を作製する工程とを
順次行うことにより製造し、前記主成分のBaTiO3
粉末粒子の周囲が前記Ca、Ba及びSiより成る焼結
助剤として作用する成分により均一にコーティングされ
たものである。これにより、焼成時に主成分のBaTi
3とCa、Ba及びSiより成る焼結助剤成分との局
部的な異常反応がなく、焼結助剤成分が均一に分散され
た非常に緻密な組織を形成することが可能な耐還元性誘
電体組成物が得られる。また、該耐還元性誘電体組成物
を使用して作製した積層セラミックコンデンサは、非常
に細かく均一に制御された結晶粒子径を有する。
Means for Solving the Problems In order to solve this problem, a reduction-resistant dielectric composition according to the present invention is characterized in that an aqueous ammonia solution of Ca and Ba and a solution of a metal alkoxide ethanol of Si are mixed while stirring aqueous ammonia. A step of preparing a colloidal suspension containing Ca, Ba and Si components by dropping,
Produced by sequentially performing the step of preparing a raw material powder is mixed with the additives of BaTiO 3 powder and trace amounts of mainly of the colloidal suspension, BaTiO 3 of the main component
The periphery of the powder particles is uniformly coated with a component acting as a sintering aid consisting of Ca, Ba and Si. Thereby, the main component, BaTi, is fired during firing.
O 3 and Ca, no local abnormal reaction of the sintering assistant agent component consisting of Ba and Si, very dense structure can be formed of resistance to reduction of the sintering aid component is uniformly dispersed The resulting dielectric composition is obtained. Moreover, the multilayer ceramic capacitor manufactured using the reduction-resistant dielectric composition has a very fine and uniformly controlled crystal particle diameter.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、焼結助剤として作用する成分を含むコロイド状懸濁
液を作製する工程と、該コロイド状懸濁液を主成分の粉
末及び微量の添加剤と共に混合して原料粉末を作製する
工程とを順次行うことにより製造した耐還元性誘電体組
成物であって、前記主成分の粉末粒子の周囲が前記焼結
助剤として作用する成分により均一にコーティングされ
たことを特徴とするものであり、焼成時に主成分の粉末
と焼結助剤として作用する成分との局部的な異常反応が
なく、焼結助剤成分が均一に分散された非常に緻密な組
織を形成することが可能な耐還元性誘電体組成物を実現
できるという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention comprises a step of preparing a colloidal suspension containing a component acting as a sintering aid, And a step of preparing a raw material powder by mixing with a powder and a trace amount of an additive.The reduction-resistant dielectric composition is manufactured by sequentially performing the steps of: It is characterized by being uniformly coated with the acting components, with no local abnormal reaction between the main component powder and the component acting as a sintering additive during firing, and a uniform sintering additive component This has the effect of realizing a reduction-resistant dielectric composition capable of forming a very dense structure dispersed in the composition.

【0013】本発明の請求項2に記載の発明は、Ca及
びBaの酢酸塩水溶液とSiの金属アルコキシドエタノ
ール溶液を攪拌混合しながらアンモニア水を滴下してC
a、Ba及びSi成分を含むコロイド状懸濁液を作製す
る工程と、該コロイド状懸濁液を主成分のBaTiO3
粉末及び微量の添加剤と共に混合して原料粉末を作製す
る工程とを順次行うことにより製造した耐還元性誘電体
組成物であって、前記主成分のBaTiO3粉末粒子の
周囲が前記Ca、Ba及びSiを含む焼結助剤として作
用する成分により均一にコーティングされたことを特徴
とするものであり、焼成時に主成分のBaTiO3とC
a、Ba及びSiを含む焼結助剤成分との局部的な異常
反応がなく、焼結助剤成分が均一に分散された非常に緻
密な組織を形成することが可能な耐還元性誘電体組成物
を実現できるという作用を有する。
According to a second aspect of the present invention, an aqueous solution of Ca and Ba and an aqueous solution of a metal alkoxide of Si are stirred and mixed with ammonia water while stirring and mixing.
a, a step of preparing a colloidal suspension containing Ba and Si component, the colloidal suspension of the main component BaTiO 3
A reduction-resistant dielectric composition prepared by mixed with powder and trace additives sequentially performing a step of preparing a raw material powder, the the surrounding BaTiO 3 powder particles of the main component Ca, Ba and which is characterized in that it is uniformly coated with component acting as a sintering aid containing Si, BaTiO 3 main component during firing and C
a reduction-resistant dielectric capable of forming a very dense structure in which the sintering aid component is uniformly dispersed without local abnormal reaction with the sintering aid component containing a, Ba and Si It has the effect of realizing the composition.

【0014】本発明の請求項3に記載の発明は、請求項
2に記載の発明においてコロイド状懸濁液は主成分のB
aTiO3粉末100モルに対してCa及びBa成分の
内少なくとも1種以上を各々0.5〜1.5モル、Si
成分を1.0〜3.0モル含むものであり、これにより
モル比の制御されたCa、Ba及びSiを含む非常に薄
い非晶質層をBaTiO3粒子の周囲に形成するという
作用を有している。
According to a third aspect of the present invention, the colloidal suspension according to the second aspect is characterized in that the main component is B
at least one or more of Ca and Ba components are each 0.5 to 1.5 moles with respect to 100 moles of aTiO 3 powder;
It contains 1.0 to 3.0 moles of the component, and has the effect of forming a very thin amorphous layer containing Ca, Ba and Si at a controlled molar ratio around the BaTiO 3 particles. are doing.

【0015】本発明の請求項4に記載の発明は、請求項
2に記載の発明において添加剤は主成分のBaTiO3
粉末100モルに対して各々0.03〜1.0モルのD
2 3、MgO及びMn34の内から選ばれた少なくと
も1種類以上を含有するものであり、焼成温度において
Niの酸化還元平衡酸素分圧以下の雰囲気中で優れた耐
還元性を実現するという作用を有している。また、電気
的初期特性及び静電容量の温度変化率を目標値に制御す
るという作用を有する。
The invention described in claim 4 of the present invention is characterized in that
In the invention described in Item 2, the additive is BaTiO as a main component.Three
0.03-1.0 mol of D for 100 mol of powder
yTwoO Three, MgO and MnThreeOFourAt least selected from
Also contains one or more kinds, and at the firing temperature
Excellent oxidation resistance in an atmosphere below the oxidation-reduction equilibrium oxygen partial pressure of Ni
It has the effect of realizing reducibility. Also electric
Control the initial temperature characteristics and the rate of temperature change of capacitance to target values.
It has the effect of

【0016】本発明の請求項5に記載の発明は、誘電体
で構成された基体と、前記基体中に設けられた複数の内
部電極と、前記基体の両端部に設けられ、前記内部電極
と電気的に接合された一対の外部電極とを備え、前記外
部電極は互いに電気的に非接触とした積層セラミックコ
ンデンサであって、前記基体を請求項1,2いずれか1
に記載された耐還元性誘電体組成物で構成したことによ
って、初期特性及び耐久信頼性等のばらつきが小さく、
特に中高圧用として優れた特性を有する。
According to a fifth aspect of the present invention, there is provided a semiconductor device comprising: a base made of a dielectric; a plurality of internal electrodes provided in the base; and a plurality of internal electrodes provided at both ends of the base. 3. A multilayer ceramic capacitor comprising a pair of external electrodes electrically connected to each other, wherein the external electrodes are not electrically in contact with each other, and the base is made of any one of claims 1 and 2.
The composition of the reduction-resistant dielectric composition described in the, small variations in initial characteristics and durability reliability, etc.,
In particular, it has excellent properties for medium and high pressure applications.

【0017】本発明の請求項6に記載の発明は、誘電体
で構成された基体と、前記基体中に設けられた複数の内
部電極と、前記基体の両端部に設けられ、前記内部電極
と電気的に接合された一対の外部電極とを備え、前記外
部電極は互いに電気的に非接触とした積層セラミックコ
ンデンサであって、基体は結晶質粒子の周囲に非晶質材
を設けた構造としたことによって、初期特性及び耐久信
頼性等のばらつきが小さく、特に中高圧用として優れた
特性を有する。
According to a sixth aspect of the present invention, there is provided an electronic device comprising: a base made of a dielectric; a plurality of internal electrodes provided in the base; and an internal electrode provided at both ends of the base. A multilayer ceramic capacitor having a pair of external electrodes electrically connected to each other, wherein the external electrodes are electrically non-contacted with each other, and the base has a structure in which an amorphous material is provided around crystalline particles. As a result, variations in initial characteristics, durability reliability, and the like are small, and particularly excellent characteristics for medium and high pressures.

【0018】本発明の請求項7に記載の発明は、請求項
6において、結晶性粒子としてBaTiO3粉末を用
い、非晶質材としてCa、Ba及びSiを含む材料で構
成したことによって、初期特性及び耐久信頼性等のばら
つきが小さく、特に中高圧用として優れた特性を有す
る。
The present invention according to claim 7 of the present invention is characterized in that, in claim 6, BaTiO 3 powder is used as the crystalline particles, and the amorphous material is made of a material containing Ca, Ba and Si. Variations in characteristics and durability reliability are small, and it has excellent characteristics especially for medium and high pressure applications.

【0019】本発明の実施において使用するチタン酸バ
リウム粉末は、平均粒子径と粒子径分布の幅が小さいも
のが好ましい。また、反応性についてはそれが小さい方
がB特性あるいはX7R特性の発現が容易であるので、
結晶化度の高い粉末を使用するのが好ましい。このよう
なチタン酸バリウム粉末を製造する工程において混入す
る不純物としては、バリウム以外のアルカリ土類金属や
鉄、珪素及びアルミニウム等があるが、これら不純物は
数千ppmのオーダで含有されていても特に支障はな
い。
The barium titanate powder used in the practice of the present invention preferably has a small average particle size and a small range of particle size distribution. In addition, the smaller the reactivity, the easier it is to develop the B characteristics or X7R characteristics.
It is preferable to use a powder having a high crystallinity. As impurities mixed in the process of producing such barium titanate powder, there are alkaline earth metals other than barium, iron, silicon, aluminum and the like, but even if these impurities are contained in the order of several thousand ppm. There is no particular problem.

【0020】チタン酸バリウム粉末を混合するコロイド
状懸濁液の出発材料であるCa及びBaの酢酸塩及びS
iのアルコキシドは一般的市販品が使え、これらに含有
される不純物は似通った化学的性質を有する金属である
ため、前述のチタン酸バリウムと同様に数千ppmのオ
ーダで含有されていても特に支障はない。また、アルコ
キシドを溶解させるエタノールも一般的な市販品が使用
できる。
The starting materials of the colloidal suspension in which the barium titanate powder is mixed are acetates of Ca and Ba and S
The alkoxide of i can be a general commercial product, and the impurities contained therein are metals having similar chemical properties. Therefore, even if the alkoxide is contained in the order of several thousand ppm similarly to the aforementioned barium titanate, No problem. In addition, general commercial products can also be used as ethanol for dissolving the alkoxide.

【0021】これら酢酸塩やアルコキシドは水−エタノ
ール溶液中で水和したイオンとして存在し、後のアンモ
ニア水の滴下によって微細な水酸化物をコロイド状懸濁
液の形で生成し、これをチタン酸バリウムと混合した
際、均一な状態で分散されるのが望ましい為、アンモニ
ア水の濃度は1モル/リットル以下、工程の設備的、時
間的余裕がある場合にはより低濃度にするのが望まし
い。アンモニア水の濃度が1モル/リットルを超えて濃
厚になると、前述の水酸化物が偏って生成し組成的に不
均一な状態でチタン酸バリウム粉末と混合される為、最
終的に組成不均一な耐還元性誘電体組成物となり、本発
明の意図するところとは全く異なった結果となる。
These acetates and alkoxides are present as hydrated ions in a water-ethanol solution, and a fine hydroxide is formed in the form of a colloidal suspension by the subsequent dropwise addition of aqueous ammonia, which is converted to titanium. When mixed with barium acid, it is desirable to disperse it in a uniform state, so the concentration of aqueous ammonia should be 1 mol / l or less, and if there is room in the equipment and time of the process, the concentration should be lower. desirable. When the concentration of the aqueous ammonia exceeds 1 mol / l, the hydroxide is unevenly formed and mixed with the barium titanate powder in a compositionally non-uniform state. This results in a highly reducible dielectric composition, which is completely different from what is intended by the present invention.

【0022】チタン酸バリウム粉末に対して添加される
各添加物の量は、製造する積層セラミックコンデンサの
誘電率と誘電体損失、靜電容量の温度変化率、絶縁抵
抗、絶縁破壊電圧、高温負荷寿命及び焼成温度における
耐還元性の観点から限定される。チタン酸バリウム10
0モルに対しDy23が1.0モルを超えると焼成によ
る緻密化が不完全になる為誘電率が低下し、また0.0
3モル未満になると靜電容量の温度変化率が大きくな
り、高温負荷寿命が短くなる。チタン酸バリウム100
モルに対しMgOが1.0モルを超えると誘電率の低下
と誘電体損失の増大を招き、また0.03モル未満にな
ると焼成温度における耐還元性が損なわれ、電気特性及
び寿命の全般にわたって劣化する。チタン酸バリウム1
00モルに対しMn34が1.0モルを超えると誘電体
損失が増加し、また0.03モル未満になると絶縁抵抗
及び絶縁破壊電圧が低下し、高温負荷寿命が短くなる。
The amount of each additive added to the barium titanate powder depends on the dielectric constant and dielectric loss of the multilayer ceramic capacitor to be manufactured, the temperature change rate of the capacitance, the insulation resistance, the dielectric breakdown voltage, and the high temperature load life. And from the viewpoint of reduction resistance at the firing temperature. Barium titanate 10
If Dy 2 O 3 exceeds 1.0 mol with respect to 0 mol, densification by firing becomes incomplete, so that the dielectric constant is lowered.
If it is less than 3 mol, the temperature change rate of the capacitance becomes large, and the high temperature load life becomes short. Barium titanate 100
If the amount of MgO exceeds 1.0 mol, the dielectric constant is reduced and the dielectric loss is increased. If the amount is less than 0.03 mol, the reduction resistance at the sintering temperature is impaired. to degrade. Barium titanate 1
If the amount of Mn 3 O 4 exceeds 1.0 mol with respect to 00 mol, the dielectric loss increases, and if it is less than 0.03 mol, the insulation resistance and the dielectric breakdown voltage decrease, and the high-temperature load life is shortened.

【0023】さらに、Ca及びBaに関しては、チタン
酸バリウム100モルに対しCa及びBa成分の内少な
くとも1種が1.5モルを超えると誘電率が低下すると
共に高温負荷寿命が劣化し、また0.5モル未満になる
と焼結助剤としての効果が得られず、焼成による緻密化
が不完全となり最適焼成温度が高くなる。Si成分に関
しても同様に、3.0モルを超えると誘電率が低下する
と共に高温負荷寿命が劣化し、また1.0モル未満にな
ると焼結助剤としての効果が得られず、焼成による緻密
化が不完全となる。
Further, with respect to Ca and Ba, when at least one of the Ca and Ba components exceeds 1.5 mol with respect to 100 mol of barium titanate, the dielectric constant decreases and the high temperature load life deteriorates. When the amount is less than 0.5 mol, the effect as a sintering aid cannot be obtained, and the densification by firing becomes incomplete and the optimum firing temperature becomes high. Similarly, if the Si content exceeds 3.0 mol, the dielectric constant decreases and the high temperature load life deteriorates. If the Si content is less than 1.0 mol, the effect as a sintering aid cannot be obtained, and Is incomplete.

【0024】また、主成分粉末であるBaTiO3粉末
の周りに存在する(コーティングされた)焼結助剤とし
ては、例えば、CaxBaySiO3(但し0.3<x及
びy<0.7)が挙げられる。この時、BaTiO3
末100モルに対して、焼結助剤は1.5〜2.3モル
(好ましくは1.9モル程度)程度設けられる。
Further, as the BaTiO 3 powder present around the (coated) sintering aid which is a main component powder, for example, Ca x Ba y SiO 3 (where 0.3 <x and y <0. 7). At this time, the sintering aid is provided in an amount of about 1.5 to 2.3 mol (preferably about 1.9 mol) with respect to 100 mol of the BaTiO 3 powder.

【0025】[0025]

【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.

【0026】(実施例1)実験の概略は、(表1)(表
2)(表3)に示した組成表に従って、主成分であるB
aTiO3粉末(堺化学製BT−03)と添加剤である
Dy23、MgO及びMn34の配合物と、Ca,Ba
及びSiより成る焼結助剤成分のコロイド状懸濁液をボ
ールミルで混合して各々の出発原料粉末を作製する。
(Example 1) The outline of the experiment was based on the composition tables shown in (Table 1), (Table 2) and (Table 3).
a mixture of aTiO 3 powder (BT-03 manufactured by Sakai Chemical) and additives Dy 2 O 3 , MgO and Mn 3 O 4 , Ca, Ba
Each starting material powder is prepared by mixing a colloidal suspension of a sintering aid component consisting of Si and Si with a ball mill.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】使用する原材料のメーカとグレードは(表
4)にまとめて記載した。
The manufacturers and grades of the raw materials used are summarized in (Table 4).

【0031】[0031]

【表4】 [Table 4]

【0032】次に、作製した粉末を使用して、形状が3
216サイズで定格電圧が630VDCを保証し100
00PFの靜電容量値が取得可能な積層セラミックコン
デンサを試作して総合評価する。
Next, using the prepared powder,
The rated voltage is 630VDC in 216 size and 100
A multilayer ceramic capacitor capable of acquiring a capacitance value of 00 PF is prototyped and comprehensively evaluated.

【0033】以下に積層セラミックコンデンサの詳細な
試作手順と評価方法について説明する。
A detailed description will now be given of a procedure for producing a multilayer ceramic capacitor and an evaluation method thereof.

【0034】主成分であるBaTiO3粉末及び添加剤
であるDy23、MgO及びMn3 4の各粉末を(表
1)〜(表3)の組成表に基づいて電子天秤で所定量を
秤量し、5mmφのZrO2質ボールが350g入った
内容積が600CCのポリエチレン製ポットミル中に投
入する。次にBa、Caの酢酸塩及びTEOS(テトラ
エトキシシラン)の所定量を電子天秤で秤量した後、酢
酸塩は100CCの純水に、またTEOSは150CC
のエタノールに別々に溶解させる。そして、該水溶液を
エタノール溶液中に投入して攪拌を続けながら1規定の
アンモニア水を所定量滴下して、焼結助剤成分より成る
コロイド状懸濁液を得た。次に、該コロイド状懸濁液を
上記ボールミル中に投入し100rpmの回転速度で2
0時間混合した。混合物は150メッシュのシルクスク
リーンで濾過して、テフロン(登録商標)シートを敷い
たステンレスバット中に投入し、ドラフト中で加温しな
がらエタノール分を揮発させ、アルミ泊で蓋をして15
0゜Cの温度で乾燥した。乾燥した塊状物はアルミナ乳
鉢中で解砕した後、32メッシュのナイロン篩を通過し
てアルミナ製坩堝に入れて400゜C/2時間(昇降温
速度:200゜C/H)の条件で熱処理してスラリー用
粉末とした。
BaTiO as a main componentThreePowders and additives
DyTwoOThree, MgO and MnThreeO FourOf each powder
1) Based on the composition table of (Table 3), a predetermined amount was
Weigh and measure 5mmφ ZrOTwo350g of quality ball
Pour into a polyethylene pot mill with an internal volume of 600 CC.
Enter. Next, acetates of Ba and Ca and TEOS (tetra
After weighing a predetermined amount of (ethoxysilane) with an electronic balance,
Acid salt is 100CC pure water and TEOS is 150CC
In ethanol separately. And the aqueous solution
Add 1N to ethanol solution while stirring.
A predetermined amount of aqueous ammonia is dropped, consisting of sintering aid components
A colloidal suspension was obtained. Next, the colloidal suspension is
Put into the ball mill and rotate at 100 rpm.
Mix for 0 hours. The mixture is a 150 mesh silk screen
Filter with Lean and spread Teflon (registered trademark) sheet
Into a stainless steel vat, and do not heat while drafting.
Then volatilize the ethanol, cover with aluminum and cover with 15
Dry at a temperature of 0 ° C. Dried mass is alumina milk
After crushing in a pot, it passes through a 32 mesh nylon sieve
And placed in an alumina crucible at 400 ° C / 2 hours (temperature rise / fall
Rate: 200 ° C / H) for heat treatment under slurry condition
Powder.

【0035】得られたスラリー用粉末を日本電子製走査
型電子顕微鏡及びエネルギー分散型X線マイクロアナラ
イザーで分析して、その様子を図1に示す。
The obtained slurry powder was analyzed with a scanning electron microscope and an energy dispersive X-ray microanalyzer manufactured by JEOL Ltd. The appearance is shown in FIG.

【0036】図1において、BaTiO3粒子11はC
a、Ba及びSiを含む薄い膜12により均一に満遍な
くコーティングされていた。
In FIG. 1, BaTiO 3 particles 11 are C
The thin film 12 containing a, Ba and Si was uniformly and uniformly coated.

【0037】次に、内容積が600CCのポリエチレン
製ポットミル中にスラリー用粉末100gと、溶剤とし
て作用する酢酸ブチル、2−n−ブトキシエタノール及
びエタノールさらに可塑剤として作用するブチルベンジ
ルフタレートをそれぞれ所定量投入し、10mmφZr
2ボール440gを用いて100rpmの回転速度で
6時間混合することにより湿潤した。6時間湿潤後、ス
ラリーをスポイドで平滑なガラス板上に滴下して、成膜
し、光学顕微鏡で分散状態を観察して凝集がないことを
確認した。そして、湿潤が完了した上記ボールミルに、
ポリビニルブチラール樹脂より成るビヒクルを50g投
入し100rpmの回転速度で12時間混合してシート
成形用スラリーとした。
Next, 100 g of powder for slurry, butyl acetate, 2-n-butoxyethanol and ethanol acting as a solvent, and butyl benzyl phthalate acting as a plasticizer in predetermined amounts were each placed in a pot mill made of polyethylene having a capacity of 600 CC. Put in, 10mmφZr
Wet by mixing with 440 g of O 2 balls at a rotation speed of 100 rpm for 6 hours. After wetting for 6 hours, the slurry was dropped on a smooth glass plate with a spoid to form a film, and the dispersion state was observed with an optical microscope to confirm that there was no aggregation. Then, in the ball mill where wetting is completed,
50 g of a vehicle made of a polyvinyl butyral resin was charged and mixed at a rotation speed of 100 rpm for 12 hours to obtain a sheet forming slurry.

【0038】次に、該スラリーを150メッシュのシル
クスクリーンで濾過した後、75μmの基体上に成膜し
て20〜25μmの厚みを有するセラミック生シートを
得た。そして、該セラミック生シートと、Niペースト
(住友金属鉱山製NLP−43195)より作製した内部
電極シートを用いて転写工法により所定の層数に積層し
た後、切断してグリーンチップを得た。
Next, the slurry was filtered through a 150-mesh silk screen, and then formed into a film on a 75 μm substrate to obtain a ceramic green sheet having a thickness of 20 to 25 μm. Then, the ceramic raw sheet and a Ni paste
A predetermined number of layers were laminated by a transfer method using an internal electrode sheet prepared from (NLP-43195 manufactured by Sumitomo Metal Mining) and then cut to obtain a green chip.

【0039】次に、湿式法で得られたグリーンチップの
面取りを実施した。まず、可塑剤であるブチルベンジル
フタレートを揮発させる為にグリーンチップを160〜
200゜Cの温度で、重量減少率が4〜8%の範囲内に
なる様に熱処理した。そして、このグリーンチップを4
00CCの純水と専用のメディアと共に面取り専用のポ
ットに投入し、205rpmで4〜7分間回転した後、
該グリーンチップを120゜Cで乾燥した。面取りした
グリーンチップの両端面にNiペースト(住友金属鉱山
製NLP−43195より作製したもの)を塗布し12
0゜Cで10分間乾燥して脱脂した。脱脂は、該グリー
ンチップをAS−2100ジルコニア粉末を敷いた焼成
専用のジルコニアコートさや中に投入して、N2ガス中
で400゜Cで4時間保持して実施した。そして、回転
式雰囲気炉により還元雰囲気焼成を実施した。グリーン
ガス、CO2及びN2により調整したNiの平衡酸素分圧
よりも2桁低い酸素分圧雰囲気中で1250゜Cの温度
で2時間保持した。
Next, the green chips obtained by the wet method were chamfered. First, a green chip was used to volatilize the plasticizer butylbenzyl phthalate.
Heat treatment was performed at a temperature of 200 ° C. so that the weight loss rate was in the range of 4 to 8%. And this green chip is 4
Put into a pot dedicated to chamfering with pure water of 00CC and dedicated media, rotate at 205 rpm for 4-7 minutes,
The green chips were dried at 120 ° C. Ni paste (prepared from NLP-43195 manufactured by Sumitomo Metal Mining Co., Ltd.) is applied to both end surfaces of the chamfered green chip and 12
It was degreased by drying at 0 ° C. for 10 minutes. The degreasing was carried out by putting the green chips into a zirconia coat sheath dedicated to firing, on which AS-2100 zirconia powder was laid, and keeping them at 400 ° C. in N 2 gas for 4 hours. Then, firing in a reducing atmosphere was performed using a rotary atmosphere furnace. It was maintained at a temperature of 1250 ° C. for 2 hours in an oxygen partial pressure atmosphere two orders of magnitude lower than the equilibrium oxygen partial pressure of Ni adjusted by green gas, CO 2 and N 2 .

【0040】そして、焼成したチップの両端面にAgを
塗布して大気中600゜Cの温度で焼き付けた後、Ni
鍍金及びSn鍍金を施して積層セラミックコンデンサを
完成させた。
Then, Ag was applied to both end surfaces of the fired chip and baked at a temperature of 600 ° C. in the air.
Plating and Sn plating were performed to complete a multilayer ceramic capacitor.

【0041】この作製された積層セラミックコンデンサ
を図2に示す。
FIG. 2 shows the produced multilayer ceramic capacitor.

【0042】図2において、21は基体で、基体中21
には内部電極22〜25が設けられており、内部電極2
2,23は基体21の一方の端面まで達しており、その
一方の端面上に設けられた外部電極26に電気的に接続
されており、内部電極24,25は、基体21の他方の
端面まで達しており、その他方の端面上に設けられた外
部電極27に電気的に接続されている。外部電極26,
27は互いに非接触となっており、しかも内部電極2
2,23及び内部電極24,25も非接触となるように
構成されている。この様な構成によって、基体21は、
結晶性粒子(BaTiO3粒子等)の間(周り)に非晶
質材(例えば、Ca、Ba及びSiを含む非晶質)が存
在するような構成となり、特性が向上する。
In FIG. 2, reference numeral 21 denotes a substrate,
Are provided with internal electrodes 22 to 25.
2 and 23 reach one end face of the base 21 and are electrically connected to an external electrode 26 provided on one end face thereof, and the internal electrodes 24 and 25 reach the other end face of the base 21. And is electrically connected to an external electrode 27 provided on the other end face. External electrode 26,
27 are not in contact with each other, and the internal electrodes 2
2, 23 and the internal electrodes 24, 25 are also configured to be in non-contact. With such a configuration, the base 21 is
The structure is such that an amorphous material (for example, an amorphous material containing Ca, Ba and Si) exists between (around) the crystalline particles (such as BaTiO 3 particles), and the characteristics are improved.

【0043】次に、試作した積層セラミックコンデンサ
の電気特性を評価した。靜電容量(Cap)と誘電体損
失(tanδ)はYHP製LCRメータ4284Aを使
用して1V/1KHzの信号電圧下で測定した。絶縁抵
抗値(IR)はアドバンテスト社製絶縁抵抗計R834
0Aを使用して500VDCを1分間印加して測定し
た。絶縁破壊電圧(BDV)は菊水電子製耐圧計を使用
して空気中で直流破壊電圧を測定した。靜電容量の温度
変化率(Cap−TC)は恒温槽にYHP製LCRメー
タ4284Aを接続して−55〜+125゜Cの範囲内
で測定した。靜電容量と誘電体損失は各々20個測定に
供し、絶縁抵抗値と絶縁破壊電圧は各々10個、温度変
化率は2個測定し、平均値を算出してそれらの結果を
(表5)〜(表7)に示した。
Next, the electrical characteristics of the prototyped multilayer ceramic capacitor were evaluated. Capacitance (Cap) and dielectric loss (tan δ) were measured using a YHP LCR meter 4284A under a signal voltage of 1 V / 1 KHz. The insulation resistance (IR) is measured by Advantest insulation resistance meter R834.
Measurement was performed by applying 500 VDC for 1 minute using OA. The dielectric breakdown voltage (BDV) was obtained by measuring the DC breakdown voltage in air using a Kikusui Electronics pressure gauge. The temperature change rate of the capacitance (Cap-TC) was measured in the range of −55 to + 125 ° C. by connecting a YHP LCR meter 4284A to the thermostat. Capacitance and dielectric loss were each measured for 20 pieces, insulation resistance and breakdown voltage were each 10 pieces, and temperature change rate was measured for 2 pieces. The average value was calculated and the results were obtained (Table 5)- The results are shown in (Table 7).

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】ここで、(表5)〜(表7)の試料Noは
(表1)〜(表3)の試料Noに対応している。また、
これらの表中の試料Noに※印を記したものは、電気特
性や焼結性などの設定項目の少なくとも1つについて良
好な評価が得られなかった試料である。
Here, the sample numbers in (Table 5) to (Table 7) correspond to the sample numbers in (Table 1) to (Table 3). Also,
Samples marked with an asterisk (*) for the sample Nos. In these tables are samples for which good evaluation was not obtained for at least one of the setting items such as electrical characteristics and sinterability.

【0048】(表1)〜(表3)及び(表5)〜(表
7)より明らかな様に、チタン酸バリウム100モルに
対しDy23が1.0モルを超えると、1250゜Cの
焼成で若干焼結性が劣化するため、靜電容量が低下し、
また0.03モル未満になると靜電容量の温度変化率が
大きくなる傾向にあった。チタン酸バリウム100モル
に対しMgOが1.0モルを超えると靜電容量の低下と
誘電体損失の増大を招き、また0.03モル未満になる
と焼成時の耐還元性が損なわれる為、誘電体損失が増大
し、絶縁破壊電圧及び絶縁抵抗が劣化した。チタン酸バ
リウム100モルに対しMn34が1.0モルを超える
と靜電容量の低下と誘電体損失の増加を招き、また0.
03モル未満になると絶縁抵抗及び絶縁破壊電圧が急激
に劣化した。さらに、焼結助剤成分に関しては、チタン
酸バリウム100モルに対しCa及びBa成分の内少な
くとも1種が1.5モルを超えると靜電容量が低下し、
また0.5モル未満になると焼結助剤としての効果が得
られず焼結性が損なわれる為、絶縁抵抗及び絶縁破壊電
圧が劣化した。また、Si成分に関してはチタン酸バリ
ウム100モルに対して1.0モル未満及び3.0モル
を超えた場合についてCa及びBa成分と同様の傾向で
あった。
As is clear from Tables 1 to 3 and Tables 5 to 7, when Dy 2 O 3 exceeds 1.0 mol per 100 mol of barium titanate, 1250 ° C. Since the sinterability is slightly deteriorated by firing of C, the capacitance is reduced,
When the amount is less than 0.03 mol, the rate of change in capacitance with temperature tends to increase. If MgO exceeds 1.0 mol with respect to 100 mol of barium titanate, a decrease in capacitance and an increase in dielectric loss are caused, and if less than 0.03 mol, reduction resistance during firing is impaired. The loss increased, and the breakdown voltage and insulation resistance deteriorated. If the amount of Mn 3 O 4 exceeds 1.0 mol with respect to 100 mol of barium titanate, a decrease in capacitance and an increase in dielectric loss are caused.
If the amount is less than 03 mol, the insulation resistance and the dielectric breakdown voltage rapidly deteriorate. Further, with respect to the sintering aid component, when at least one of the Ca and Ba components exceeds 1.5 mol with respect to 100 mol of barium titanate, the electrostatic capacity decreases,
On the other hand, when the amount is less than 0.5 mol, the effect as a sintering aid cannot be obtained and the sinterability is impaired, so that the insulation resistance and the dielectric breakdown voltage are deteriorated. The Si component had a tendency similar to the Ca and Ba components when it was less than 1.0 mol and more than 3.0 mol based on 100 mol of barium titanate.

【0049】これに対し、主成分のBaTiO3粉末1
00モルに対して、Dy23、MgO及びMn34の内
から選ばれた少なくとも1種以上を各々0.03〜1.
0モル含み、且つ主成分のBaTiO3粉末100モル
に対してCa及びBa成分の内少なくとも1種以上を各
々0.5〜1.5モル、Si成分を1.0〜3.0モル
含む組成物により作製した積層セラミックコンデンサは
良好な焼結性と電気特性とを有し、またEIA規格X7
R特性及びJIS規格B特性を満足し、形状が3216
サイズで定格電圧が630VDCを保証し、10000
PFの靜電容量値を有する中高圧用積層セラミックコン
デンサとして使用可能なものであった。
On the other hand, the main component BaTiO 3 powder 1
Against 00 mol, Dy 2 O 3, MgO and Mn 3 O 4 at least one kind selected from among each 0.03.
0 mol include, and each 0.5 to 1.5 moles of at least one or more of Ca and Ba components with respect to BaTiO 3 powder 100 moles of the main component, the composition of the Si component contains 1.0 to 3.0 moles The multilayer ceramic capacitor made of the product has good sinterability and electrical characteristics, and also complies with EIA standard X7.
Satisfies R characteristics and JIS B characteristics and has shape of 3216
The rated voltage is 630VDC in size and 10,000
It could be used as a medium- and high-voltage multilayer ceramic capacitor having a capacitance value of PF.

【0050】以上の様に本発明の耐還元性誘電体組成物
は、主成分であるBaTiO3粉末粒子の周囲に焼結助
剤成分を偏析させることなく均一にコーティングさせ、
かつ前記焼結助剤成分及び微量添加剤の組成を限定した
ものである為、該組成物を用いることにより、非常に緻
密で制御された微細構造を有する誘電体層が得られ、静
電容量の温度変化率が良好で、絶縁破壊電圧が高い耐久
信頼性に優れた積層セラミックコンデンサを実現するこ
とができる。
As described above, the reduction-resistant dielectric composition of the present invention allows the sintering aid component to be uniformly coated around the BaTiO 3 powder particles as the main component without segregating,
In addition, since the composition of the sintering aid component and the trace additive is limited, a dielectric layer having a very dense and controlled microstructure can be obtained by using the composition, and the capacitance can be increased. A multilayer ceramic capacitor having a good temperature change rate, a high dielectric breakdown voltage, and excellent durability durability can be realized.

【0051】[0051]

【発明の効果】以上の様に本発明によれば、主成分であ
るBaTiO3粉末粒子の周囲に焼結助剤成分を偏析さ
せることなく均一にコーティングさせ、かつ前記焼結助
剤成分及び微量添加剤の組成を限定した耐還元性誘電体
組成物である為、該組成物を用いることにより、非常に
緻密で制御された微細構造を有する誘電体層が得られ、
静電容量の温度変化率が良好で、絶縁破壊電圧が高い耐
久信頼性に優れた積層セラミックコンデンサを実現する
ことができる。
As described above, according to the present invention, the sintering aid component is uniformly coated around the BaTiO 3 powder particles as the main component without segregation, and the sintering aid component and the trace Since the composition of the additive is a reduction-resistant dielectric composition having a limited composition, by using the composition, a dielectric layer having a very dense and controlled microstructure is obtained,
It is possible to realize a multilayer ceramic capacitor having a good capacitance temperature change rate, a high dielectric breakdown voltage, and excellent durability reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における耐還元性誘電体
組成物のスラリー用粉末を示す図
FIG. 1 is a view showing a slurry powder of a reduction-resistant dielectric composition according to an embodiment of the present invention.

【図2】本発明の一実施の形態における積層セラミック
コンデンサを示す側断面図
FIG. 2 is a side sectional view showing a multilayer ceramic capacitor according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 BaTiO3粒子 12 Ca、Ba及びSiより成る薄い膜 21 基体 22〜25 内部電極 26,27 外部電極Reference Signs List 11 BaTiO 3 particles 12 Thin film composed of Ca, Ba and Si 21 Substrate 22-25 Internal electrode 26, 27 External electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金山 熊夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山本 益裕 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5E001 AB03 AE00 AE02 AE03 AE04 AF06 AH00 AJ02  ──────────────────────────────────────────────────の Continued on the front page (72) Kumayama Kaneyama, Inventor 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Masuhiro Yamamoto 1006 Odaka Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 5E001 AB03 AE00 AE02 AE03 AE04 AF06 AH00 AJ02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】焼結助剤として作用する成分を含むコロイ
ド状懸濁液を作製する工程と、該コロイド状懸濁液を主
成分の粉末及び微量の添加剤と共に混合して原料粉末を
作製する工程とを順次行うことにより製造した耐還元性
誘電体組成物であって、前記主成分の粉末粒子の周囲が
前記焼結助剤として作用する成分により均一にコーティ
ングされたことを特徴とする耐還元性誘電体組成物。
1. A step of preparing a colloidal suspension containing a component acting as a sintering aid, and mixing the colloidal suspension with a main component powder and a small amount of additives to prepare a raw material powder. And a reduction-resistant dielectric composition produced by successively performing the steps of: a. A reduction-resistant dielectric composition.
【請求項2】Ca及びBaの酢酸塩水溶液とSiの金属
アルコキシドエタノール溶液を攪拌混合しながらアンモ
ニア水を滴下してCa、Ba及びSi成分を含むコロイ
ド状懸濁液を作製する工程と、該コロイド状懸濁液を主
成分のBaTiO3粉末及び微量の添加剤と共に混合し
て原料粉末を作製する工程とを順次行うことにより製造
した耐還元性誘電体組成物であって、前記主成分のBa
TiO3粉末粒子の周囲が前記Ca、Ba及びSiを含
む焼結助剤として作用する成分により均一にコーティン
グされたことを特徴とする耐還元性誘電体組成物。
2. A step of preparing a colloidal suspension containing Ca, Ba and Si components by dropping aqueous ammonia while stirring and mixing an aqueous solution of Ca and Ba acetate and an ethanol solution of metal alkoxide of Si. Mixing the colloidal suspension with the main component BaTiO 3 powder and a trace amount of an additive to produce a raw material powder. Ba
A reduction-resistant dielectric composition, wherein the periphery of TiO 3 powder particles is uniformly coated with a component acting as a sintering aid containing Ca, Ba and Si.
【請求項3】前記コロイド状懸濁液は主成分のBaTi
3粉末100モルに対してCa及びBa成分の内少な
くとも1種以上を各々0.5〜1.5モル、Si成分を
1.0〜3.0モル含むことを特徴とする請求項2記載
の耐還元性誘電体組成物。
3. The colloidal suspension is composed mainly of BaTi.
3. The composition according to claim 2, wherein at least one of Ca and Ba components is contained in an amount of 0.5 to 1.5 mol and the Si component is contained in an amount of 1.0 to 3.0 mol per 100 mol of the O3 powder. And a reduction-resistant dielectric composition.
【請求項4】前記添加剤は主成分のBaTiO3粉末1
00モルに対して各々0.03〜1.0モルのDy
23、MgO及びMn34の内から選ばれた少なくとも
1種類以上を含むことを特徴とする請求項2記載の耐還
元性誘電体組成物。
4. The additive comprises BaTiO 3 powder 1 as a main component.
0.03 to 1.0 mol of Dy with respect to 00 mol
2 O 3, MgO and Mn 3 reduction-resistant dielectric composition according to claim 2, characterized in that it comprises at least one or more selected from among O 4.
【請求項5】誘電体で構成された基体と、前記基体中に
設けられた複数の内部電極と、前記基体の両端部に設け
られ、前記内部電極と電気的に接合された一対の外部電
極とを備え、前記外部電極は互いに電気的に非接触とし
た積層セラミックコンデンサであって、前記基体を請求
項1,2いずれか1に記載された耐還元性誘電体組成物
で構成したことを特徴とする積層セラミックコンデン
サ。
5. A base made of a dielectric, a plurality of internal electrodes provided in the base, and a pair of external electrodes provided at both ends of the base and electrically connected to the internal electrodes. Wherein the external electrodes are electrically in non-contact with each other in a multilayer ceramic capacitor, wherein the substrate is made of the reduction-resistant dielectric composition according to any one of claims 1 and 2. Characteristic multilayer ceramic capacitor.
【請求項6】誘電体で構成された基体と、前記基体中に
設けられた複数の内部電極と、前記基体の両端部に設け
られ、前記内部電極と電気的に接合された一対の外部電
極とを備え、前記外部電極は互いに電気的に非接触とし
た積層セラミックコンデンサであって、基体は結晶質粒
子の周囲に非晶質材を設けた構造としたことを特徴とす
る積層セラミックコンデンサ。
6. A base made of a dielectric, a plurality of internal electrodes provided in the base, and a pair of external electrodes provided at both ends of the base and electrically connected to the internal electrodes. Wherein the external electrodes are electrically non-contact with each other, and the substrate has a structure in which an amorphous material is provided around crystalline particles.
【請求項7】結晶性粒子としてBaTiO3粉末を用
い、非晶質材としてCa、Ba及びSiを含む材料で構
成したことを特徴とする請求項6記載の積層セラミック
コンデンサ。
7. The multilayer ceramic capacitor according to claim 6, wherein the crystalline particles are made of BaTiO 3 powder, and the amorphous material is made of a material containing Ca, Ba and Si.
JP2000168559A 2000-06-06 2000-06-06 Multilayer ceramic capacitor Expired - Fee Related JP4568961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000168559A JP4568961B2 (en) 2000-06-06 2000-06-06 Multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000168559A JP4568961B2 (en) 2000-06-06 2000-06-06 Multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2001351826A true JP2001351826A (en) 2001-12-21
JP4568961B2 JP4568961B2 (en) 2010-10-27

Family

ID=18671547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000168559A Expired - Fee Related JP4568961B2 (en) 2000-06-06 2000-06-06 Multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4568961B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905995B2 (en) 2002-03-19 2005-06-14 Tdk Corporation Ceramic powder and multilayer ceramic device
KR100645629B1 (en) 2004-10-27 2006-11-15 삼성전기주식회사 Dielectric multi-layered coating powder and composite dielectric material using the same
JP2007204315A (en) * 2006-02-01 2007-08-16 Murata Mfg Co Ltd Method of manufacturing ceramic powder, ceramic powder and laminated ceramic electronic component
WO2009038174A1 (en) * 2007-09-20 2009-03-26 Nitto Denko Corporation Electromagnetic wave absorber and method for electromagnetic wave absorption
US9613756B2 (en) 2011-01-21 2017-04-04 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05508145A (en) * 1990-06-28 1993-11-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved dielectric composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05508145A (en) * 1990-06-28 1993-11-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved dielectric composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905995B2 (en) 2002-03-19 2005-06-14 Tdk Corporation Ceramic powder and multilayer ceramic device
KR100645629B1 (en) 2004-10-27 2006-11-15 삼성전기주식회사 Dielectric multi-layered coating powder and composite dielectric material using the same
JP2007204315A (en) * 2006-02-01 2007-08-16 Murata Mfg Co Ltd Method of manufacturing ceramic powder, ceramic powder and laminated ceramic electronic component
WO2009038174A1 (en) * 2007-09-20 2009-03-26 Nitto Denko Corporation Electromagnetic wave absorber and method for electromagnetic wave absorption
US9613756B2 (en) 2011-01-21 2017-04-04 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor

Also Published As

Publication number Publication date
JP4568961B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
EP1612816B1 (en) Dielectric composition for a multilayer ceramic capacitor
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
EP0814486B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
JP5035016B2 (en) Dielectric porcelain composition and electronic component
JP5343974B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JPH1083932A (en) Layered ceramic capacitor
CN102219478B (en) Dielectric ceramic composition and ceramic electronic component
JP2002187770A (en) Dielectric porcelain composition and laminated ceramic capacitor using the same
JP2001089231A (en) Dielectric porcelain composition and electronic parts
US8518844B2 (en) Dielectric ceramic composition and monolithic ceramic capacitor
JP3882054B2 (en) Multilayer ceramic capacitor
JP2018186224A (en) Multilayer ceramic capacitor and method for manufacturing the same
US10879008B2 (en) Ceramic capacitor, circuit substrate and manufacturing method of the same
JP4997685B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP7262640B2 (en) ceramic capacitor
JP2001351826A (en) Reduction-resistant dielectric composition and laminated ceramic capacitor using the same
JP3791264B2 (en) Method for producing reduction-resistant dielectric composition and method for producing multilayer ceramic capacitor
JP2003176172A (en) Dielectric ceramic composition and electronic parts
JP4114434B2 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JP4660940B2 (en) Reduction-resistant dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor using the same
JP4682407B2 (en) Multilayer ceramic capacitor
JP4810753B2 (en) Ceramic capacitor
JP2002087879A (en) Dielectric ceramic composition and laminated ceramic capacitor using the same
JP2002308671A (en) Reduction-resistant dielectric composition and ceramic electronic parts using the same
JP4552272B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees