JP4566089B2 - Bidirectional optical transceiver using flexible substrate - Google Patents

Bidirectional optical transceiver using flexible substrate Download PDF

Info

Publication number
JP4566089B2
JP4566089B2 JP2005229442A JP2005229442A JP4566089B2 JP 4566089 B2 JP4566089 B2 JP 4566089B2 JP 2005229442 A JP2005229442 A JP 2005229442A JP 2005229442 A JP2005229442 A JP 2005229442A JP 4566089 B2 JP4566089 B2 JP 4566089B2
Authority
JP
Japan
Prior art keywords
signal line
reception
transmission
printed circuit
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005229442A
Other languages
Japanese (ja)
Other versions
JP2007048822A (en
Inventor
智暁 吉田
俊二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005229442A priority Critical patent/JP4566089B2/en
Publication of JP2007048822A publication Critical patent/JP2007048822A/en
Application granted granted Critical
Publication of JP4566089B2 publication Critical patent/JP4566089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電磁遮蔽用のフレキシブル基板を使用して信号送受信間の電気的なクロストークの遮蔽を行った双方向光トランシーバに関するものである。 The present invention relates to a bidirectional optical transceiver was shielding electrical crosstalk between the signals received using a flexible base plate for electromagnetic shielding.

インターネットの普及に伴って、サービスの多様化が進むとともに所要ビットレートが目覚しく上昇している。光ファイバを用いた光アクセスサービスは、光ファイバの高速広帯域という特性を活用できるため、将来性のある高速アクセスサービスとして注目されている。   With the spread of the Internet, the required bit rate has risen remarkably with the diversification of services. Optical access services using optical fibers are attracting attention as future high-speed access services because they can utilize the characteristics of optical fibers such as high-speed and broadband.

光アクセスサービスにおいては、主に、局とユーザとの間を接続する光ファイバ線路の敷設、管理コストを低減することを目的として、1芯の光ファイバで双方向の通信が提供される。たとえば、非特許文献1に示されるように、下り方向に1.49μm帯、上り方向に1.31μm帯と異なる波長の光を用い、両端に設置した装置内に波長フィルタを用いることで相互干渉の少ない1芯双方向通信を実現している。しかし、また一方で、2本の光ファイバで上りと下り方向を分離した2芯双方向通信方式は、1芯双方向方式に比べて、部品の簡素化などでさらなるトランシーバ製造コストの低減が可能であるため、ファイバ敷設コストの低い、短距離の領域で用いられている。   In the optical access service, bi-directional communication is mainly provided with a single-core optical fiber for the purpose of reducing the installation and management costs of the optical fiber line connecting the station and the user. For example, as shown in Non-Patent Document 1, mutual interference is achieved by using light of wavelengths different from the 1.49 μm band in the downstream direction and the 1.31 μm band in the upstream direction, and using wavelength filters in the devices installed at both ends. Realizes single-core bidirectional communication with little. However, on the other hand, the two-core bidirectional communication method that separates the upstream and downstream directions with two optical fibers can further reduce transceiver manufacturing costs by simplifying the parts compared to the single-core bidirectional method. Therefore, it is used in a short distance region where the fiber laying cost is low.

両端に設置されている装置内においては、送受信データは主として電気信号として処理されるが、光通信を行うためにはその電気信号と光ファイバ線路上の光信号を相互に変換する機能が必要とされる。その機能を担う部品を光トランシーバといい、送信においては発光素子であるレーザーダイオード(LD)と送信電気信号に従って規定の信号品質でLDを発光させるためのLDドライバから構成される。また、受信においては受光素子であるフォトダイオード(PD)によって光電変換された電流信号を増幅するプリアンプと信号を一定振幅の電圧信号に増幅するリミツタアンプから構成される。また、1芯双方向通信方式においては、さらに上りと下りの波長の異なる光信号をLD、PDに合分波させるための光波長フィルタを具備している。   In the devices installed at both ends, transmission / reception data is mainly processed as an electrical signal, but in order to perform optical communication, a function for mutually converting the electrical signal and the optical signal on the optical fiber line is required. Is done. The component responsible for this function is called an optical transceiver, and is composed of a laser diode (LD), which is a light emitting element, and an LD driver for causing the LD to emit light with a prescribed signal quality in accordance with a transmission electric signal. In reception, it includes a preamplifier that amplifies a current signal photoelectrically converted by a photodiode (PD) that is a light receiving element, and a limiter amplifier that amplifies the signal to a voltage signal having a constant amplitude. Further, the single-core bidirectional communication system further includes an optical wavelength filter for multiplexing and demultiplexing optical signals having different upstream and downstream wavelengths to the LD and PD.

図11に1本の送受信用光ファイバ20を使用する1芯双方向光トランシーバの基本構成のブロック図を示す。とくにLD11、PD12、プリアンプ13、波長フィル14は、光学設計された一体の光モジュールとして組み立てられる。これは送受信用光モジュール10と呼ばれており、最終的にはその他の電気部品を実装する実装用プリント基板と接続され、光トランシーバ用筐体内に実装される。30はLDドライバ、40はリミッタアンプである。   FIG. 11 shows a block diagram of a basic configuration of a single-core bidirectional optical transceiver using one transmission / reception optical fiber 20. In particular, the LD 11, the PD 12, the preamplifier 13, and the wavelength filter 14 are assembled as an integrated optical module that is optically designed. This is called an optical module 10 for transmission / reception, and is finally connected to a mounting printed board on which other electrical components are mounted, and mounted in an optical transceiver casing. 30 is an LD driver, and 40 is a limiter amplifier.

また、図12に2本の光ファイバ20A,20Bを使用する2芯双方向光トランシーバの基本構成のブロック図を示す。1芯双方向方式に比べて上りと下りの波長を分離する光フィルタを用いず、送信用光ファイバ20Aと受信用光ファイバ20Bを使用する。LD11が実装されているモジュールを送信用光モジュール10A、PD12とプリアンプ13が実装されているモジュールを受信用光モジュール10Bと呼ぶ。   FIG. 12 is a block diagram showing a basic configuration of a two-core bidirectional optical transceiver using two optical fibers 20A and 20B. The optical fiber for transmission 20A and the optical fiber for reception 20B are used without using the optical filter that separates the upstream and downstream wavelengths compared to the single-core bidirectional system. The module in which the LD 11 is mounted is referred to as a transmission optical module 10A, and the module in which the PD 12 and the preamplifier 13 are mounted is referred to as a reception optical module 10B.

以上の図11に示した1芯双方向光トランシーバ、図12に示した2芯双方向光トランシーバを実装用プリント基板50上に構成した例を、図13,図14に示す。51、53は送信差動信号線、52,54は受信差動信号線である。図13において、送受信用光モジュール10の送信入力側15の端子は送信差動信号線53に、受信出力側16の端子は受信差動信号線54に接続される。また、図14において、送信用光モジュール10Aの送信入力側15Aの端子は送信差動信号線53に、受信用光モジュール10Bの受信出力側16Bの端子は受信差動信号線54に接続される。   FIGS. 13 and 14 show examples in which the single-core bidirectional optical transceiver shown in FIG. 11 and the two-core bidirectional optical transceiver shown in FIG. 12 are configured on the printed circuit board 50 for mounting. Reference numerals 51 and 53 denote transmission differential signal lines, and reference numerals 52 and 54 denote reception differential signal lines. In FIG. 13, the terminal on the transmission input side 15 of the transmission / reception optical module 10 is connected to the transmission differential signal line 53, and the terminal on the reception output side 16 is connected to the reception differential signal line 54. In FIG. 14, the terminal on the transmission input side 15A of the transmission optical module 10A is connected to the transmission differential signal line 53, and the terminal on the reception output side 16B of the reception optical module 10B is connected to the reception differential signal line 54. .

近年のインターネットの普及と光アクセス技術の向上によって、その伝送速度は年々上昇を続けており、ギガビット級の信号を扱う光トランシーバも一般的になりつつある。また、コスト低減や取り扱いの容易性を向上させるため、光トランシーバの小型化が求められている。   With the recent spread of the Internet and the improvement of optical access technology, the transmission speed continues to increase year by year, and optical transceivers that handle gigabit-class signals are becoming common. In addition, in order to reduce cost and improve ease of handling, miniaturization of optical transceivers is required.

しかし、より小型の筐体により高速な信号を送受信する双方向光トランシーバを実装すると、送信受信の素子が近接されて一体化されるため、送信信号が受信信号に影響を及ぼす電気的クロストークの問題が顕在化する。これは一般に受信信号が光伝送路で減衰された微弱な信号であるのに対し、送信信号は対向するトランシーバで受信可能となる発光レベルを満たすよう十分な振幅をもつ信号がLDに入力されるためである。影響を与える干渉電磁界の発生源は光モジュールとLDドライバ間の信号線である場合、光モジュール内で送信信号に沿って駆動されるLDの端子間における電圧変動である場合など、複数の原因が想定される。さらにその特性は周囲の構造、接地条件によって大きく変化するため、最終的な電気的クロストーク量の予想が難しく、送受信間の電気的アイソレーションを満たす光トランシーバ設計を著しく困難にしている。また、より遠距離の送受信を可能とするためにダイナミックレンジを拡大すると、光出力規定を高レベルにし、最小受光感度をさらに向上させる必要がある。すなわち、送信側はLDを発光させるための所要信号電力が上昇し、雑音自体が強く発せられることになり、受信側はより微小な信号も雑音の影響を受けることなく識別再生する能力が要求される。したがって、電気的クロストークに対する要求はさらに厳しくなる。   However, when a bidirectional optical transceiver that transmits and receives high-speed signals in a smaller housing is mounted, the elements for transmission and reception are close together and integrated, so electrical crosstalk that affects the reception signal by the transmission signal The problem becomes obvious. In general, this is a weak signal in which the received signal is attenuated by the optical transmission line, while the transmitted signal is input to the LD with a sufficient amplitude to satisfy the emission level that can be received by the opposite transceiver. Because. The source of the interfering electromagnetic field that has an influence is a signal line between the optical module and the LD driver, or a voltage variation between terminals of the LD driven along the transmission signal in the optical module. Is assumed. Further, since the characteristics greatly change depending on the surrounding structure and grounding conditions, it is difficult to predict the final amount of electrical crosstalk, and it is extremely difficult to design an optical transceiver that satisfies electrical isolation between transmission and reception. Further, if the dynamic range is expanded in order to enable transmission / reception over a longer distance, it is necessary to raise the optical output regulation to a high level and further improve the minimum light receiving sensitivity. In other words, the required signal power for causing the LD to emit light increases on the transmitting side, and noise itself is strongly emitted, and the receiving side is required to be capable of identifying and reproducing even a minute signal without being affected by noise. The Therefore, the demand for electrical crosstalk becomes more severe.

[第1の従来例]
そこで、これらの問題を回避するために様々な技術が開示されている。たとえば、特許文献1では、ICや光モジュールを実装したプリント基板を、そのプリント基板のグランド層と接続した導体層を有するフレキシブル基板と互いの片端を突き合わせて電気的に接続し、そのフレキシブル基板がプリント基板上の各部品を包み込むように覆うことで、外来雑音から遮赦することが開示されている。
[First conventional example]
Therefore, various techniques have been disclosed in order to avoid these problems. For example, in Patent Document 1, a printed board on which an IC or an optical module is mounted is electrically connected to a flexible board having a conductor layer connected to the ground layer of the printed board by butting one end of the printed board. It has been disclosed to shield from external noise by covering each part on a printed circuit board so as to wrap.

この特許文献1の開示技術の概要について図15を用いて説明する。導体層を有する方形のフレキシブル基板80の1辺で、部品を実装するプリント基板50の接地電位とその導体層を接続し、プリント基板50上の部品を覆うようにしてフレキシブル基板80を折り返す。このようにすると、プリント基板50内に形成されるグランド面によって部品下部だけでなく、部品上部にも近接した電磁遮蔽を設けることが可能になる。接地電位が部品を包む込むようになり、光トランシーバ外からの外来ノイズを遮蔽するだけでなく、送信信号から放射されるクロストーク成分も効果的に吸収し、送受信クロストークを抑圧することができる。   An outline of the technology disclosed in Patent Document 1 will be described with reference to FIG. The ground potential of the printed board 50 on which the component is mounted and the conductor layer are connected to one side of the rectangular flexible board 80 having the conductor layer, and the flexible board 80 is folded back so as to cover the component on the printed board 50. In this way, it is possible to provide electromagnetic shielding close to not only the lower part of the component but also the upper part of the component by the ground surface formed in the printed circuit board 50. The ground potential wraps around the parts, and not only shields external noise from the outside of the optical transceiver, but also effectively absorbs the crosstalk component radiated from the transmission signal and suppresses transmission / reception crosstalk. .

[第2の従来例]
また、特許文献2には、送受信一体型の光モジュールにおいて、送信信号入力リード端子と受信信号出力リード端子の間に、隣接したL字形状の接地用リード端子を配置することで、送信信号から受信信号への電気的クロストークを接地電位に集中させることによって、電気的クロストークを低減させることが開示されている。
[Second conventional example]
Further, in Patent Document 2, in an optical module integrated with transmission / reception, an adjacent L-shaped ground lead terminal is arranged between a transmission signal input lead terminal and a reception signal output lead terminal, so that a transmission signal can be detected. It is disclosed to reduce electrical crosstalk by concentrating electrical crosstalk to a received signal at ground potential.

この特許文献2の開示技術の概要について図16を用いて説明する。図16は発光素子と受光素子を搭載する光モジュールのパッケージにおいて、そのフレーム90と外部とを接続するリード端子の構造を平面図としてあらわしたものである。光モジュールは送信信号用リード端子91と、受信信号用リード端子92を具備し、それらに隣接する接地用リード端子93,94は送信、受信各リード端子91,92間上に端子が存在するようL字形上をしており、接地電位と接続される。この接地用リート端子93,94が送信、受信各リード端子91,92間上に存在することにより、送信用リード端子91から受信用リード端子92へと発生する電界を阻止する構造であり、送受信間の電気的クロストークを抑圧することができる。   An outline of the technology disclosed in Patent Document 2 will be described with reference to FIG. FIG. 16 is a plan view showing the structure of a lead terminal for connecting the frame 90 and the outside in an optical module package on which a light emitting element and a light receiving element are mounted. The optical module includes a transmission signal lead terminal 91 and a reception signal lead terminal 92. The grounding lead terminals 93 and 94 adjacent to the optical signal lead terminal 91 and the reception signal lead terminal 92 are present between the transmission and reception lead terminals 91 and 92, respectively. It is L-shaped and is connected to the ground potential. Since the ground lead terminals 93 and 94 are present between the transmission and reception lead terminals 91 and 92, the electric field generated from the transmission lead terminal 91 to the reception lead terminal 92 is blocked. It is possible to suppress electrical crosstalk between them.

[第3の従来例]
また、特許文献3には、送信用光モジュールおよび受信用光モジュールとプリント基板を接続するリード端子部分に、基準電位と接続した覆い(ブラケット)を設けることで、送信信号と受信信号の干渉を抑えて電気的クロストークを低減させることが開示されている。
[Third conventional example]
In Patent Document 3, a cover (bracket) connected to a reference potential is provided at a lead terminal portion that connects a transmission optical module and a reception optical module to a printed circuit board, thereby preventing interference between a transmission signal and a reception signal. It has been disclosed to suppress and reduce electrical crosstalk.

この特許文献3の開示技術の概要について図17を用いて説明する。図17は図14に比べて、送信用光モジュール10Aの送信入力側15Aの端子、受信用光モジュール10Bの受信出力側16Bの端子の部分に導電性のプラケット100A,100Bを付加した構造である。ブラケット100A,100Bは送信差動信号線53、受信差動信号線54の両外側に用意した基準電圧に固定した端子を接続することにより、ブラケット100A,100B全体を基準電位とすることで、送受信間の電気的クロストークや外来雑音を遮蔽する構造である。ブラケット100A,100Bは雑音源となる送信用光モジュール10Aや、被遮蔽体となる受信用光モジュール10Bに近接して配置されるため、遮蔽効果が高くなることが期待される。
情報通信技術委員会(TTC)標準TS−1000 特開平11−233911号公報 特開2002−299645号公報 特開2003−107297号公報
An outline of the technology disclosed in Patent Document 3 will be described with reference to FIG. FIG. 17 is a structure in which conductive plackets 100A and 100B are added to the terminals of the transmission input side 15A of the transmission optical module 10A and the reception output side 16B of the reception optical module 10B, as compared with FIG. . The brackets 100A and 100B transmit and receive by connecting terminals fixed to reference voltages prepared on both outer sides of the transmission differential signal line 53 and the reception differential signal line 54, thereby setting the brackets 100A and 100B as a reference potential. It is a structure that shields between electrical crosstalk and external noise. Since the brackets 100A and 100B are arranged close to the transmitting optical module 10A serving as a noise source and the receiving optical module 10B serving as a shielded body, it is expected that the shielding effect is enhanced.
Information and Communication Technology Committee (TTC) Standard TS-1000 Japanese Patent Laid-Open No. 11-233911 JP 2002-299645 A JP 2003-107297 A

しかし、図15の第1の従来例では、遮蔽のためだけにフレキシブル基板80を用いるため、実際に組み立てる際は、従来の光トランシーバに比べて実装用プリント基板50との接続工程を追加する必要がある。また、モジュール全体を覆うため、包み込んだ接地電位で形成されるグランド面の内径が大きくなる。通常、等電位の導体で構成される場合、この構造はプリント基板50のグランド面とフレキシブル基板80の導体層からなる空洞共振器と同様の構造となり、導体の対向する距離が波長の半分と等しくなる周波数で共振する現象が発生し、電気的クロストークが強調されるという欠点がある。   However, in the first conventional example of FIG. 15, since the flexible substrate 80 is used only for shielding, it is necessary to add a connection process with the mounting printed circuit board 50 in comparison with the conventional optical transceiver when actually assembling. There is. In addition, since the entire module is covered, the inner diameter of the ground surface formed by the enclosed ground potential is increased. Usually, when composed of an equipotential conductor, this structure is the same as a cavity resonator composed of the ground plane of the printed circuit board 50 and the conductor layer of the flexible substrate 80, and the distance between the conductors is equal to half the wavelength. There is a drawback that a phenomenon of resonance at a certain frequency occurs and electrical crosstalk is emphasized.

また、図16の第2の従来例では、各リード端子の配置は平面的であり、リード端子からの上下方向へ生じる電界を阻止する構造にはなっていない。すなわち、電気的クロストークの遮蔽効果は、接地用リード端子93,94がない場合よりは効果が認められるが、限定される。送信信号用リード端子91から発生する電界を効果的に遮蔽するには、前述した第1の従来例のように全体を覆う必要がある。   Further, in the second conventional example of FIG. 16, the arrangement of each lead terminal is planar and does not have a structure that prevents an electric field generated in the vertical direction from the lead terminal. That is, the effect of shielding electrical crosstalk is limited, although the effect is recognized as compared with the case where the ground lead terminals 93 and 94 are not provided. In order to effectively shield the electric field generated from the transmission signal lead terminal 91, it is necessary to cover the whole as in the first conventional example described above.

また、図17の第3の従来例の構造もまた、前述した第1の従来例と同様に、実際に組み立てる際は、従来の光トランシーバに比べて、ブラケット100A,100Bを製造し、実装用プリント基板50とブラケット100A,100Bとの接続工程を追加する必要がある。このブラケット100A,100Bは非常に小型でかつ立体構造をなしているため、その実装に関しては高い技術水準が求められ、歩留まりの上昇、工程の複雑化などのコスト上昇要因となる。   In addition, the structure of the third conventional example of FIG. 17 is also manufactured by mounting brackets 100A and 100B in comparison with the conventional optical transceiver when actually assembled, as in the first conventional example. It is necessary to add a connection process between the printed circuit board 50 and the brackets 100A and 100B. Since the brackets 100A and 100B are very small and have a three-dimensional structure, a high technical level is required for their mounting, which causes a cost increase such as an increase in yield and a complicated process.

上記した第3の従来例は2芯双方向光トランシーバを念頭にして説明されているが、図13に示した1芯双方向光トランシーバにおいても応用することが可能である。しかし、送受信用光モジュール10に応用した際にも同様の問題が生じることは明らかである。   Although the above-described third conventional example has been described with a two-core bidirectional optical transceiver in mind, it can also be applied to the one-core bidirectional optical transceiver shown in FIG. However, it is clear that the same problem occurs when applied to the transmission / reception optical module 10.

本発明の目的は、電磁遮蔽用のフレキシブル基板を使用して、送受信間の電気的なクロストークの抑圧を、簡便かつ柔軟な実装手法で且つ部品点数を増やすことなく低コストで実現できるようにした双方向光トランシーバを提供することにある。 An object of the present invention uses the full Rekishiburu substrates for electromagnetic shielding, so that the suppression of electrical crosstalk between transmission and reception can be realized and at a low cost without increasing the number of parts in a simple and flexible implementation approach Another object of the present invention is to provide a bidirectional optical transceiver.

上記課題を解決するため、請求項1にかかる発明は、1本の送受信用光ファイバと接続される送受信用光モジュールの送信入力側の端子と実装用プリント基板の送信信号線とを接続し、前記送受信用光モジュールの受信出力側の端子と前記実装用プリント基板の受信信号線とを接続した双方向光トランシーバにおいて、ほぼ中央部分に信号線接続用穴が形成された方形の電磁遮蔽用のフレキシブル基板であって、表面において前記信号線接続用穴の周囲を除く全面に導体層が形成され、裏面において前記信号線接続用穴の周囲から1つの辺端まで延伸する信号線が形成されているフレキシブル基板を用意し、前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記送信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導体層を前記実装用プリント基板の基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記送信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送受信用光モジュールの前記送信入力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送受信用光モジュールの前記送信入力側の端子に接続し、および/又は、前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記受信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導体層を前記実装用プリント基板の前記基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記受信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送受信用光モジュールの前記受信出力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送受信用光モジュールの前記受信入力側の端子に接続したことを特徴とする。 In order to solve the above-mentioned problem, the invention according to claim 1 connects a terminal on the transmission input side of a transmission / reception optical module connected to one transmission / reception optical fiber and a transmission signal line of a mounting printed board, In a bidirectional optical transceiver in which a terminal on the reception output side of the transmission / reception optical module and a reception signal line of the printed circuit board for mounting are connected, a rectangular electromagnetic shield having a signal line connection hole formed in a substantially central portion. In the flexible substrate, a conductor layer is formed on the entire surface excluding the periphery of the signal line connection hole on the front surface, and a signal line extending from the periphery of the signal line connection hole to one edge is formed on the back surface. A flexible board is prepared, the flexible board is bent so that the surface is on the outside, and both opposite ends of the flexible board are connected to the printed board for mounting. The conductor layer of the flexible board is connected to the reference potential terminal of the mounting printed board by fixing the front and back surfaces of the portion corresponding to the transmission signal line, and the signal line of the flexible board is used for the mounting. The signal line of the flexible board is connected to the transmission signal line of the printed circuit board, and the terminal of the transmission input side of the transmission / reception optical module is inserted into the signal line connection hole of the flexible board. Connect to the terminal on the transmission input side of the transmission / reception optical module and / or bend the flexible substrate so that the surface is on the outside, and receive both ends of the flexible substrate on the receiving side of the mounting printed circuit board. By fixing both the front and back surfaces of the portion corresponding to the signal line, the conductor layer of the flexible substrate is The signal line of the flexible printed circuit board is connected to the reception signal line of the mounting printed circuit board, and is connected to the signal line connection hole of the flexible printed circuit board for the transmission / reception. The terminal on the reception output side of the optical module is inserted to connect the signal line of the flexible substrate to the terminal on the reception input side of the optical module for transmission / reception .

請求項2にかかる発明は、1本の送受信用光ファイバと接続される送受信用光モジュールの送信入力側の端子と実装用プリント基板の送信信号線とを接続し、前記送受信用光モジュールの受信出力側の端子と前記実装用プリント基板の受信信号線とを接続した双方向光トランシーバにおいて、ほぼ中央部分に信号線接続用穴が形成された方形の電磁遮蔽用のフレキシブル基板であって、表面において前記信号線接続用穴の周囲を除く全面に導体層が形成され、裏面において前記信号線接続用穴の周囲から1つの辺端まで延伸する信号線が形成され、前記信号線接続用穴の形成された部分の両側で且つ前記信号線の両側の一部に凸部が形成され、全体形状が十字形状となったフレキシブル基板を用意し、前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記送信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導体層を前記実装用プリント基板の基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記送信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送受信用光モジュールの前記送信入力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送受信用光モジュールの前記送信入力側の端子に接続し、且つ前記フレキシブル基板の両側の前記凸部を内側に折り曲げ、および/又は、前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記受信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導体層を前記実装用プリント基板の前記基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記受信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送受信用光モジュールの前記受信出力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送受信用光モジュールの前記受信入力側の端子に接続し、且つフレキシブル基板の両側の前記凸部を内側に折り曲げたことを特徴とする。 According to a second aspect of the present invention, a terminal on a transmission input side of a transmission / reception optical module connected to one transmission / reception optical fiber is connected to a transmission signal line of a mounting printed circuit board, and the reception of the transmission / reception optical module is performed. In a bidirectional optical transceiver in which an output side terminal and a reception signal line of the mounting printed circuit board are connected, a rectangular electromagnetic shielding flexible board in which a signal line connection hole is formed in a substantially central portion, A conductor layer is formed on the entire surface excluding the periphery of the signal line connection hole, and a signal line extending from the periphery of the signal line connection hole to one side edge is formed on the back surface of the signal line connection hole. Prepare a flexible board having convex portions formed on both sides of the formed part and on both sides of the signal line, and having a cross shape as a whole. The conductive layer of the flexible substrate is fixed to the front and back surfaces of the portion corresponding to the transmission signal line of the mounting printed circuit board by bending both ends of the flexible circuit board so as to be The signal line of the flexible board is connected to the transmission signal line of the mounting printed board, and the signal line connecting hole of the flexible board is connected to the reference potential terminal of the board. By inserting the terminal on the transmission input side, the signal line of the flexible substrate is connected to the terminal on the transmission input side of the transmission / reception optical module, and the convex portions on both sides of the flexible substrate are bent inward. And / or bending the flexible substrate so that the surface is on the outside, and By fixing both opposite ends of the board to the front and back both sides of the portion corresponding to the reception signal line of the mounting printed board, the conductor layer of the flexible board is connected to the reference potential terminal of the mounting printed board. In addition, the signal line of the flexible substrate is connected to the reception signal line of the printed circuit board for mounting, and the terminal on the reception output side of the optical module for transmission / reception is inserted into the signal line connection hole of the flexible substrate Thus, the signal line of the flexible substrate is connected to the terminal on the reception input side of the transmission / reception optical module, and the convex portions on both sides of the flexible substrate are bent inward .

請求項3にかかる発明は、1本の送信用光ファイバと接続される送信用光モジュールの送信入力側の端子と実装用プリント基板の送信信号線とを接続し、1本の受信用光ファイバと接続される受信用光モジュールの受信出力側の端子と前記実装用プリント基板の受信信号線とを接続した双方向光トランシーバにおいて、ほぼ中央部分に信号線接続用穴が形成された方形の電磁遮蔽用のフレキシブル基板であって、表面において前記信号線接続用穴の周囲を除く全面に導体層が形成され、裏面において前記信号線接続用穴の周囲から1つの辺端まで延伸する信号線が形成されているフレキシブル基板を用意し、記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記送信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導層を前記実装用プリント基板の基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記送信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送信用光モジュールの前記送信入力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送信用光モジュールの前記送信入力側の端子に接続し、および/又は、前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記受信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導層を前記実装用プリント基板の前記基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記受信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記受信用光モジュールの前記受信出力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記受信用光モジュールの前記受信出力側の端子に接続したことを特徴とする。 According to claim 3 invention connects one transmission input side terminal of the transmitting optical module which is connected to the transmitting optical fiber and the transmission signal line of the mounting printed circuit board, one of the reception optical fiber in the bidirectional optical transceiver that is connected to receive the output side of the terminal and a reception signal line of the mounting printed circuit board receiving credit optical module is connected to the square of the electromagnetic substantially the central portion signal line connection hole is formed A flexible substrate for shielding, wherein a conductor layer is formed on the entire surface excluding the periphery of the signal line connection hole on the front surface, and a signal line extending from the periphery of the signal line connection hole to one edge on the back surface. a flexible substrate that is formed is prepared, before the notated Rekishiburu substrate said surface by bending such that the outer, previous notated Rekishiburu substrate opposite ends of the mounting printed circuit board By fixing the both sides of the portion corresponding to the transmission signal line, before notate Rekishiburu said electrically layer of the substrate as well as connected to the reference potential terminal of the mounting printed circuit board, before notated Rekishiburu said signal substrate by connecting the line to the transmission signal line of the mounting printed circuit board, to and inserting the transmission input side terminals of the pre-notated Rekishiburu substrate said signal line optical module the transmission to the connecting hole of the front Stories connecting the signal lines of the full Rekishiburu substrate to the transmission input side terminal of the transmitting optical module, and / or, a pre-notated Rekishiburu substrate by bending so that the surface becomes outside, before notated Rekishiburu substrate by the ends of the facing fixed on both sides of the portion corresponding to the reception signal line of the mounting printed circuit board, prior to the mounting of the guide layer of notated Rekishiburu substrate While connected to the reference potential terminal of the printed circuit board, prior to connecting the signal lines of the notated Rekishiburu substrate to the receiving signal line of the mounting printed circuit board, and front notated Rekishiburu to the signal line connecting hole of the substrate by inserting the reception output terminal of the receiving optical module, characterized in that said signal lines prior notated Rekishiburu substrate and connected to said receiver output terminal of said receiving optical module.

請求項4にかかる発明は、1本の送信用光ファイバと接続される送信用光モジュールの送信入力側の端子と実装用プリント基板の送信信号線とを接続し、1本の受信用光ファイバと接続される受信用光モジュールの受信出力側の端子と前記実装用プリント基板の受信信号線とを接続した双方向光トランシーバにおいて、ほぼ中央部分に信号線接続用穴が形成された方形の電磁遮蔽用のフレキシブル基板であって、表面において前記信号線接続用穴の周囲を除く全面に導体層が形成され、裏面において前記信号線接続用穴の周囲から1つの辺端まで延伸する信号線が形成され、前記信号線接続用穴の形成された部分の両側で且つ前記信号線の両側の一部に凸部が形成され、全体形状が十字形状となったフレキシブル基板を用意し、記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記送信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導層を前記実装用プリント基板の基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記送信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送信用光モジュールの前記送信入力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送信用光モジュールの前記送信入力側の端子に接続し、且つ前記フレキシブル基板の前記凸部を内側に折り曲げ、および/又は、前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記受信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導層を前記実装用プリント基板の前記基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記受信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記受信用光モジュールの前記受信出力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記受信用光モジュールの前記受信出力側の端子に接続し、且つ前記フレキシブル基板の前記凸部を内側に折り曲げたことを特徴とする。 According to claim 4 invention connects one transmission input side terminal of the transmitting optical module which is connected to the transmitting optical fiber and the transmission signal line of the mounting printed circuit board, one of the reception optical fiber In a bidirectional optical transceiver in which a terminal on the receiving output side of a receiving optical module connected to a receiving signal line of the printed circuit board for mounting is connected, a rectangular electromagnetic wave having a signal line connecting hole formed in a substantially central portion A flexible substrate for shielding, wherein a conductor layer is formed on the entire surface excluding the periphery of the signal line connection hole on the front surface, and a signal line extending from the periphery of the signal line connection hole to one edge on the back surface. is formed, a convex portion is formed on a part of both sides of both sides and the signal line of the formed portion of the hole for the signal line connection, providing a flexible substrate overall shape becomes a cross shape, before notated Lexi Folding the Le substrate so that the surface becomes outside, by the opposite ends of the front notated Rekishiburu substrate fixed to both sides of the portion corresponding to the transmission signal line of the mounting printed circuit board, before notated the Rekishiburu the conductive layer of the substrate as well as connected to the reference potential terminal of the mounting printed circuit board, prior to connecting the signal lines of the notated Rekishiburu substrate to the transmission signal line of the mounting printed circuit board, and front notated by the signal line connection hole of Rekishiburu substrate inserting the transmission input side terminal of the transmitting optical module, the transmission input side terminal of the pre-notated Rekishiburu board the transmitting optical module the signal line connected to, and folding the projecting portions of the front notated Rekishiburu substrate inward, and / or, a pre-notated Rekishiburu substrate by bending so that the surface becomes outside, before By fixing the opposite ends of the full Rekishiburu substrate on both sides of the portion corresponding to the reception signal line of the mounting printed circuit board, the reference of the mounting printed circuit board the conductor layer before notated Rekishiburu substrate while connected to the potential terminals, before notated Rekishiburu the connect signal lines to the reception signal line of the mounting printed circuit board, and front notated Rekishiburu the signal line optical module the received connection hole of the substrate the substrate by inserting the reception output terminal of the pre-connecting the signal lines of the notated Rekishiburu substrate to the reception output terminal of the receiving optical module, and pre-notated Rekishiburu the convex portion of the substrate Folded inward.

請求項5にかかる発明は、請求項1又は3に記載の双方向光トランシーバにおいて、前記フレキシブル基板の折り曲げた内径の最大値を、扱う信号に必要な信号周波数の最大周波数の波長の半分以下に設定したことを特徴とする。 According to a fifth aspect of the present invention, in the bidirectional optical transceiver according to the first or third aspect, the maximum value of the bent inner diameter of the flexible substrate is set to be equal to or less than half the wavelength of the maximum frequency of the signal frequency necessary for a signal to be handled. It is characterized by setting .

請求項6にかかる発明は、請求項2又は4に記載の双方向光トランシーバにおいて、前記フレキシブル基板の折り曲げた内径の最大値を、扱う信号に必要な信号周波数の最大周波数の波長の半分以下に設定したことを特徴とする。 The invention according to claim 6 is the bidirectional optical transceiver according to claim 2 or 4, wherein the maximum value of the bent inner diameter of the flexible board is set to half or less of the wavelength of the maximum frequency of the signal frequency necessary for the signal to be handled. It is characterized by setting .

請求項1〜4にかかる発明の双方向光トランシーバによれば、送受信間のクロストークの低減手法を、簡便で容易かつ柔軟に部品点数を増やすことなく提供できる。第1の従来技術で説明したフレキシブル基板や第3の従来技術で説明したブラケットは、クロストークを遮蔽するための追加の部品やその実装工程が必要であったが、本発明によれば、実装用プリント基板と光モジュールを接続する際にフレキシブル基板を用いて電気的クロストークを遮蔽するため、部品点数が増えることはなく、従来の信号線の接続工程にわずかな追加で実現可能である。 According to the bidirectional optical transceiver of the first to fourth aspects of the present invention, a technique for reducing crosstalk between transmission and reception can be provided simply, easily and flexibly without increasing the number of components. The flexible substrate described in the first conventional technology and the bracket described in the third conventional technology require additional components and a mounting process for shielding crosstalk. When a printed circuit board and an optical module are connected, electrical crosstalk is shielded by using a flexible substrate, so that the number of components does not increase and can be realized with a slight addition to the conventional signal line connection process.

また、光モジュールの送信入力側の端子、受信出力側の端子の双方にこのフレキシブル基板を用いることによって、電気的クロストークの遮蔽効果をより高めるとともに、光モジュールと光ファイバの光軸合わせのための高低差調整と、実装用プリント基板を筐体に実装する際の光モジュールとの高低差調整を独立に行うことが可能になり、実装がより容易になる。   In addition, by using this flexible substrate for both the transmission input side terminal and the reception output side terminal of the optical module, the shielding effect of electrical crosstalk is further enhanced, and the optical axis of the optical module and the optical fiber is aligned. It is possible to independently perform the height difference adjustment and the height difference adjustment with the optical module when the mounting printed board is mounted on the housing, which makes mounting easier.

また、請求項5、6にかかる発明の双方向光トランシーバによれば、包み込まれる領域が十分小さくなるため、より高速な信号のクロストークも抑圧することが可能である。第1の従来例においては、包み込む領域の大きさは実装部品や信号線全体を覆う程度であるため、高速の信号を送受信する場合、実装用プリント基板のグランド面とフレキシブル基板の導体層で包み込まれる領域の内部が空洞共振器に似た構造となり、対向する導対面の直線距離の半分の波長で共振が発生し、クロストークを増大させる結果となりうるが、本発明ではこの問題が解決される。 Further, according to the bidirectional optical transceiver of the inventions according to claims 5 and 6 , since the enveloped area is sufficiently small, it is possible to suppress crosstalk of higher speed signals. In the first conventional example, the size of the enveloping area is sufficient to cover the entire mounting component and signal line. Therefore, when transmitting / receiving a high-speed signal, the enveloping area is encapsulated between the ground plane of the mounting printed board and the conductor layer of the flexible board. However, the present invention solves this problem, although the inside of the region to be formed has a structure similar to a cavity resonator and resonance occurs at a wavelength half the linear distance of the opposing conductive surface, thereby increasing crosstalk. .

[第1の実施例]
図1は第1の実施例の1芯双方向光トランシーバの内部構造の斜視図である。実装用プリント基板50上に発光素子を駆動するICのLDドライバ30と送受信用光モジュール10から出力される受信信号の波形整形を行うICのリミッタアンプ40が実装される。なお、図1では、送受信用光モジュール10の受信出力側16の端子については受信差動信号線54に直接半田付けを行っているが、本実施例においては受信出力側16の端子の接続方法は任意である。送信入力側15の端子は本発明の特徴であるフレキシブル基板60で接続されている。なお、以降で図示するフレキシブル基板に配置される信号線は送信入力側の信号線のみであるが、電源線や他の信号線も同様に送信入力側の信号線と並行に配置することで任意に実現可能であるため、省略する。
[First embodiment]
FIG. 1 is a perspective view of the internal structure of the single-core bidirectional optical transceiver of the first embodiment. An IC LD driver 30 for driving a light emitting element and an IC limiter amplifier 40 for shaping a waveform of a received signal output from the transmission / reception optical module 10 are mounted on the mounting printed board 50. In FIG. 1, the terminal on the reception output side 16 of the transmission / reception optical module 10 is directly soldered to the reception differential signal line 54. In this embodiment, the terminal connection method on the reception output side 16 is connected. Is optional. The terminals on the transmission input side 15 are connected by a flexible substrate 60 that is a feature of the present invention. The signal lines arranged on the flexible substrate shown in the following are only the signal lines on the transmission input side. However, the power lines and other signal lines can be arranged in parallel with the signal lines on the transmission input side as well. Since it is feasible, it is omitted.

図2(a)、(b)に、送受信用光モジュール10の送信入力側15の端子と実装用プリント基板50の送信差動信号線53を接続するフレキシブル基板60の表面側、裏面側の展開図を示す。このフレキシブル基板60は、方形の形状(短冊形状)であり、その表面全面に導体層61を設けるが、送信入力側15の端子と接続する信号線接続用の穴62が形成されている箇所(ほぼ中央)の周囲には導体層61を配置しない。また、実装用プリント基板50上の端子と接続するため四隅に電磁遮蔽接続用の穴63を開ける。この四隅の穴63は実装用プリント基板50の基準電位(電源電位又は接地電位)と接続するためのものであり、後に明示する接続形態を実現し、実装用プリント基板50の基準電位と接続可能であれば、具体的な方法は任意である。フレキシブル基板60の裏面には穴62から連続する差動信号線64を配置する。差動信号線64を実装用プリント基板50上の端子と接続する部分は、下部の片端部65に設け、送受信用光モジュール10の送信入力側15の端子と接続する箇所(穴62の部分)はフレキシブル基板60のほぼ中央部に配置する。必要であれば、差動信号線64を規定の特性インピーダンスとなるよう配置することも可能である。   2 (a) and 2 (b), developments on the front surface side and the back surface side of the flexible substrate 60 connecting the terminal on the transmission input side 15 of the transmission / reception optical module 10 and the transmission differential signal line 53 of the mounting printed circuit board 50 are shown. The figure is shown. The flexible substrate 60 has a rectangular shape (strip shape), and a conductor layer 61 is provided on the entire surface of the flexible substrate 60, but a signal line connection hole 62 connected to a terminal on the transmission input side 15 is formed ( The conductor layer 61 is not disposed around (approximately the center). In addition, holes 63 for electromagnetic shielding connection are formed in the four corners in order to connect to the terminals on the mounting printed board 50. The holes 63 at the four corners are for connection with the reference potential (power supply potential or ground potential) of the mounting printed circuit board 50. The connection form described later is realized and can be connected to the reference potential of the mounting printed circuit board 50. If so, the specific method is arbitrary. A differential signal line 64 continuous from the hole 62 is disposed on the back surface of the flexible substrate 60. The portion where the differential signal line 64 is connected to the terminal on the mounting printed circuit board 50 is provided at the lower end portion 65 and is connected to the terminal on the transmission input side 15 of the transmitting / receiving optical module 10 (hole 62 portion). Is arranged at substantially the center of the flexible substrate 60. If necessary, the differential signal line 64 can be arranged to have a prescribed characteristic impedance.

図3はフレキシブル基板60を用いて接続する箇所の拡大図である。15aは送受信用光モジュール10の送信入力側15の端子である。LDドライバ30からの送信差動信号線53およびフレキシブル基板60と接続する端子は、実装用プリント基板50の表面に配置されている。ここで、フレキシブル基板60の導体層61が表面になり、フレキシブル基板60の差動信号線64が下面になるようにして、実装用プリント基板50の送信差動信号線53とフレキシブル基板60の差動信号線64を接続し、そのまま下に折り曲げるようにしてフレキシブル基板60の導体層61側から送受信用光モジュール10の送信入力側15の端子15aを穴62に挿入し接続する。その後、フレキシブル基板60の差動信号線64が存在しない部分を再び実装用プリント基板50の裏側に折り返して、実装用プリント基板50の裏側にフレキシブル基板60の片端を配置する。実装用プリント基板50の表面と裏側には2箇所ずつ接地電位または電源電位と接続するための端子が用意されており(図示せず)、その端子に、フレキシブル基板60の四隅の穴63を介して導体層61を接続する。ただし、ここで示した実装用プリント基板50の基準電位とフレキシブル基板60とを接続する方法は一例であり、実装用プリント基板50の表側と裏側で基準電位と接続する構成であれば、具体的な手法は任意である。   FIG. 3 is an enlarged view of a portion to be connected using the flexible substrate 60. Reference numeral 15 a denotes a terminal on the transmission input side 15 of the transmission / reception optical module 10. The transmission differential signal line 53 from the LD driver 30 and the terminals connected to the flexible substrate 60 are arranged on the surface of the mounting printed board 50. Here, the difference between the transmission differential signal line 53 of the mounting printed board 50 and the flexible board 60 is such that the conductor layer 61 of the flexible board 60 is on the front surface and the differential signal line 64 of the flexible board 60 is on the bottom surface. The signal line 64 is connected, and the terminal 15a on the transmission input side 15 of the transmission / reception optical module 10 is inserted into the hole 62 and connected from the conductor layer 61 side of the flexible substrate 60 so as to be bent as it is. Thereafter, the portion of the flexible board 60 where the differential signal line 64 does not exist is folded back to the back side of the mounting printed board 50, and one end of the flexible board 60 is disposed on the back side of the mounting printed board 50. Terminals (not shown) for connecting to the ground potential or the power supply potential are provided at two positions on the front and back sides of the mounting printed board 50, and the terminals are connected to the terminals 63 through the holes 63 at the four corners. Then, the conductor layer 61 is connected. However, the method of connecting the reference potential of the mounting printed circuit board 50 and the flexible substrate 60 shown here is an example, and if the structure is connected to the reference potential on the front side and the back side of the mounting printed circuit board 50, the specific method The method is arbitrary.

図4(a)〜(d)は送受信用光モジュール10を実装用プリント基板50に接続する手順を示している。まず(a)のように、フレキシブル基板60を実装用プリント基板50に接続する。すなわち、実装用プリント基板50の送信差動信号線53の端子とフレキシブル基板60の差動信号線64、実装用プリント基板50上の基準電位端子とフレキブル基板60の隅に配置した穴63を半田などを用いて接続し導通させる。次に(b)のように、送受信用光モジュール10の送信入力側15の端子を実装用プリント基板50の上部に配置し、(c)のようにフレキシブル基板60の穴62に差し込んで半円付けして接続する。最後に(d)のように、フレキシブル基板60の接続していない片端を実装用プリント基板50の裏面に接続する。なお、この図4(a)〜(d)で示した接続手順は一例であり、フレキシブル基板60と実装用プリント基板50を接続する前に、送受信用光モジュール10の送信入力側15の端子をフレキシブル基板60の穴62に差し込んで半田付けなどにより接続し、その後にフレキシブル基板60と実装用プリント基板50の接続を行っても良い。   4A to 4D show a procedure for connecting the transmission / reception optical module 10 to the mounting printed board 50. FIG. First, the flexible substrate 60 is connected to the mounting printed circuit board 50 as shown in FIG. That is, the terminals of the transmission differential signal line 53 of the mounting printed board 50, the differential signal line 64 of the flexible board 60, the reference potential terminal on the mounting printed board 50, and the hole 63 arranged at the corner of the flexible board 60 are soldered. Connect to make it conductive. Next, as shown in (b), the terminal on the transmission input side 15 of the optical module for transmission / reception 10 is arranged on the mounting printed circuit board 50 and inserted into the hole 62 of the flexible board 60 as shown in (c). Connect. Finally, as shown in (d), one end of the flexible substrate 60 that is not connected is connected to the back surface of the printed circuit board 50 for mounting. The connection procedure shown in FIGS. 4A to 4D is an example. Before connecting the flexible board 60 and the printed circuit board 50 for mounting, the terminal on the transmission input side 15 of the transmission / reception optical module 10 is connected. The flexible board 60 may be inserted into the hole 62 and connected by soldering, and then the flexible board 60 and the mounting printed board 50 may be connected.

図3からもわかるように、本実施例によってLDドライバ30の送信差動信号線54から送受信用光モジュール10の送信入力側15の端子15aまでの差動信号線64の上部と下部が、実装用プリント基板50上の基準電位と接続されたフレキシブル基板60の導体層61によって囲われるため、差動信号線64から放射される電気的なクロストーク成分がフレキシブル基板60の導体層61によって遮蔽される。また、このフレキシブル基板60は本来、実装用プリント基板50と送受信用光モジュール10の送信入力側15の端子15aを接続するために用いられるものであり、電気的クロストークを遮赦するための部品を新たに追加する必要がない。また、実装用プリント基板50上に配置した基準電位と接続する端子をフレキシブル基板60と接続するという工程が追加されるが、通常の信号線を接続する工程と同時に行うことによって、その追加作業量は僅かである。   As can be seen from FIG. 3, according to this embodiment, the upper and lower portions of the differential signal line 64 from the transmission differential signal line 54 of the LD driver 30 to the terminal 15a on the transmission input side 15 of the transmission / reception optical module 10 are mounted. The electrical crosstalk component radiated from the differential signal line 64 is shielded by the conductor layer 61 of the flexible board 60 because the conductor layer 61 of the flexible board 60 connected to the reference potential on the printed circuit board 50 is surrounded. The The flexible substrate 60 is originally used for connecting the printed circuit board 50 for mounting and the terminal 15a on the transmission input side 15 of the transmission / reception optical module 10, and is a component for blocking electrical crosstalk. There is no need to add a new one. In addition, a process of connecting a terminal connected to the reference potential arranged on the mounting printed circuit board 50 to the flexible board 60 is added, but the additional work amount is performed simultaneously with the process of connecting a normal signal line. Is slight.

また、第1の実施例では、フレキシブル基板60で囲う内部の内径を、送信する信号に必要な信号周波数の最大周波数の波長の半分の長さ以下とすることで、さらに電気的クロストークを抑圧する効果がある。フレキシブル基板60で囲うことによって、擬似的な空洞共振器を構成することになり、その径の最大の長さが存在する箇所で一番低い共振周波数で共振が発生してしまう。その共振を受信信号に影響を与えないようにするには、共振周波数を信号の所要帯域外とする構造にすることである。   In the first embodiment, the inner diameter enclosed by the flexible substrate 60 is set to be equal to or less than half the maximum frequency of the signal frequency required for the signal to be transmitted, thereby further suppressing electrical crosstalk. There is an effect to. By surrounding the flexible substrate 60, a pseudo cavity resonator is formed, and resonance occurs at the lowest resonance frequency at a portion where the maximum length of the diameter exists. In order to prevent the resonance from affecting the received signal, it is necessary to make the resonance frequency outside the required band of the signal.

このためには、送信信号をNRZとし、そのビットレートをB(bit/s)とするとき、そのNRZの信号を伝送するために必要な信号の最大周波数fm(Hz)を、
fm=1/B (1)
とすると、フレキシブル基板60で囲う内部の径の最大値Lmax(m)は、
Lmax=c/2fm (2)
となるように可能な限り小さくし、その包む大きさを小さくする。cは光速である。
For this purpose, when the transmission signal is NRZ and the bit rate is B (bit / s), the maximum frequency fm (Hz) of the signal necessary to transmit the signal of the NRZ is
fm = 1 / B (1)
Then, the maximum value Lmax (m) of the inner diameter enclosed by the flexible substrate 60 is
Lmax = c / 2fm (2)
And make it as small as possible, and make it smaller. c is the speed of light.

さらに、図示しないが、送受信用光モジュール10の受信出力側16の端子にも以上説明したフレキシブル基板60による接続と同様な接続方法を用いてもよい。送受信間クロストークの影響は送信側からの放射と、受信側への混入によって発生するものであり、受信側も本実施例の構造で遮蔽することによって、さらなる送受信間のクロストークの抑圧を実現することが可能になる。このときは、実装用プリント基板50と送受信用光モジュール10が相対的にある程度可動性を持つようにすることが可能になる。これにより、光ファイバ20と送受信用光モジュール10との接続に関する光軸調整と実装用プリント基板50の光トランシーバ筐体内部での高さ調整を独立に行うことが可能になるため、光トランシーバの設計や実装がより容易になるという利点もある。その際は図1における実装用プリント基板50上に配置される受信差動信号線52,54は送信差動信号線51,53と同じ面ではなく、実装用プリント基板50を多層基板とし、中間層に電源層や接地電位層を設け、受信差動信号線52,54やリミッタアンプ40を裏面に実装するなどして、信号線や部品全体で送受信問の電気的クロストークを抑圧する構造とすることなども有効な対策として挙げられる。   Further, although not shown, a connection method similar to the connection using the flexible substrate 60 described above may be used for the terminal on the reception output side 16 of the transmission / reception optical module 10. The effect of crosstalk between transmission and reception is caused by radiation from the transmission side and mixing into the reception side. By blocking the reception side with the structure of this embodiment, further suppression of crosstalk between transmission and reception is realized. It becomes possible to do. At this time, the mounting printed board 50 and the transmission / reception optical module 10 can be relatively movable to some extent. As a result, the optical axis adjustment relating to the connection between the optical fiber 20 and the transmission / reception optical module 10 and the height adjustment inside the optical transceiver casing of the mounting printed circuit board 50 can be independently performed. There is also an advantage that it is easier to design and implement. In this case, the reception differential signal lines 52 and 54 arranged on the mounting printed circuit board 50 in FIG. 1 are not the same surface as the transmission differential signal lines 51 and 53, and the mounting printed circuit board 50 is a multi-layer circuit board. A structure in which a power supply layer and a ground potential layer are provided in the layer, and the reception differential signal lines 52 and 54 and the limiter amplifier 40 are mounted on the back surface, etc. Doing is also an effective measure.

[第2の実施例]
図5は第2の実施例の1芯双方向光トランシーバの内部構造の斜視図である。第1の実施例と異なる点は、送受信用光モジュール10と実装用プリント基板50との接続に、両側に横凸部75を有する十字型の形状のフレキシブル基板70を使用するようにした点である。図6(a)、(b)に本実施例におけるフレキシブル基板70の表面側、裏面側の展開図を示す。このフレキシブル基板70は、展開形状が十字型の形状であり、その表面に導体層71を設け、送受信用光モジュール10の送信入力側15の端子と接続する箇所には穴72を設け、その周囲には導体層71を配置しない。また、実装用プリント基板50上の端子と接続する縦凸部の四隅に穴73を開ける。裏面には差動信号線74を配置する。差動信号線74を実装用プリント基板50上の端子と接続する部分は、縦凸部の下部の片端部76に設け、送受信用光モジュール10の送信入力側15の端子と接続する箇所(穴72の部分)はフレキシブル基板70のほぼ中央部に配置する。必要であれば、差動信号線74を規定の特性インピーダンスとなるよう配置することも可能である。
[Second embodiment]
FIG. 5 is a perspective view of the internal structure of the single-core bidirectional optical transceiver of the second embodiment. The difference from the first embodiment is that a cross-shaped flexible substrate 70 having lateral convex portions 75 on both sides is used for connection between the transmission / reception optical module 10 and the mounting printed circuit board 50. is there. 6A and 6B are development views of the front surface side and the back surface side of the flexible substrate 70 in this embodiment. The flexible substrate 70 has a cross-shaped developed shape, a conductor layer 71 is provided on the surface thereof, a hole 72 is provided at a location connected to a terminal on the transmission input side 15 of the transmission / reception optical module 10, Is not provided with the conductor layer 71. In addition, holes 73 are formed in the four corners of the vertical convex portion connected to the terminal on the mounting printed board 50. A differential signal line 74 is disposed on the back surface. A portion for connecting the differential signal line 74 to a terminal on the printed circuit board 50 for mounting is provided at one end 76 at the lower portion of the vertical convex portion, and a portion (hole) connected to the terminal on the transmission input side 15 of the transmission / reception optical module 10. 72 portion) is arranged at a substantially central portion of the flexible substrate 70. If necessary, the differential signal line 74 can be arranged to have a prescribed characteristic impedance.

図7はフレキシブル基板70を用いて接続する箇所の拡大図である。LDドライバ30からの送信差動信号線53およびフレキシブル基板70と接続する端子は実装用プリント基板50の表面に配置されている。ここでフレキシブル基板70の導体層71が表面になり、フレキシブル基板70の差動信号線74が下面になるようにして、実装用プリント基板50の送信差動信号線53とフレキシブル基板70の差動信号線74を接続し、そのまま下に折り曲げるようにしてフレキシブル基板70の導体層71側から送受信用光モジュール10の送信入力側15の端子15aを穴72に挿入し接続する。その後、フレキシブル基板70の差動信号線74が存在しない部分を再び実装用プリント基板50側に折り返して、実装用プリント基板50の裏側にフレキシブル基板70の片端を配置する。実装用プリント基板50の表面と裏側に2箇所ずつ接地電位または電源電位と接続するための端子が用意されており(図示せず)、その端子に、フレキシブル基板70の4つの穴73を介して導体層71を接続する。ただし、ここで示した実装用プリント基板50の基準電位とフレキシブル基板70を接続する方法は一例であり、実装用プリント基板50の表側と裏側で基準電位と接続する構成であれば、具体的な手法は任意である。さらにフレキシブル基板70の横凸部75を、差動信号線74の横を囲うように内側に折り曲げ配置する。   FIG. 7 is an enlarged view of a portion to be connected using the flexible substrate 70. The transmission differential signal line 53 from the LD driver 30 and the terminals connected to the flexible board 70 are arranged on the surface of the mounting printed board 50. Here, the differential between the transmission differential signal line 53 of the mounting printed circuit board 50 and the flexible board 70 is made such that the conductor layer 71 of the flexible board 70 becomes the front surface and the differential signal line 74 of the flexible board 70 becomes the lower surface. The signal line 74 is connected, and the terminal 15a on the transmission input side 15 of the transmission / reception optical module 10 is inserted into the hole 72 from the conductor layer 71 side of the flexible substrate 70 so as to be bent as it is. Thereafter, the portion of the flexible substrate 70 where the differential signal line 74 does not exist is folded back to the mounting printed circuit board 50 side, and one end of the flexible substrate 70 is disposed on the back side of the mounting printed circuit board 50. Terminals (not shown) for connecting to the ground potential or the power supply potential are prepared on the front and back sides of the mounting printed circuit board 50 at two locations, and the terminals are connected to the terminals via the four holes 73 of the flexible board 70. The conductor layer 71 is connected. However, the method of connecting the reference potential of the mounting printed circuit board 50 and the flexible substrate 70 shown here is an example, and if the structure is connected to the reference potential on the front side and the back side of the mounting printed circuit board 50, the specific potential is specific. The method is arbitrary. Further, the lateral protrusion 75 of the flexible substrate 70 is bent and arranged inward so as to surround the side of the differential signal line 74.

図8は本実施例における送受信用光モジュール10と実装用プリント基板50の接続方法を示している。おおむね第1の実施例と同じであるため、図2(c)に相当する図のみを示す。フレキシブル基板70を実装用プリント基板50に接続する。すなわち、実装用プリント基板50の送信差動信号線53の端子とフレキシブル基板70の差動信号線74との間、実装用プリント基板50上の基準電位出力端子とフレキブル基板70の隅に配置した穴73との間を、半田などを用いて接続し導通させる。次に、送受信用光モジュール10の送信入力側15の端子を実装用プリント基板50の上部に配置し、図8のようにフレキシブル基板70の穴72に差し込んで半田付けして接続する。次に、フレキシブル基板70を折り曲げ、フレキシブル基板70の接続していない片端を実装用プリント基板50の裏面に接続する。ただし、ここで示した実装用プリント基板50の基準電位とフレキシブル基板70とを接続する方法は一例であり、実装用プリント基板50の表側と裏側で基準電位と接続する構成であれば、具体的な手法は任意である。最後にフレキシブル基板70の横凸部75を実装用プリント基板50の方向へ折り曲げると、図7のように構成することができる。   FIG. 8 shows a method of connecting the transmission / reception optical module 10 and the mounting printed board 50 in this embodiment. Since it is almost the same as the first embodiment, only the figure corresponding to FIG. 2C is shown. The flexible board 70 is connected to the mounting printed board 50. That is, between the terminal of the transmission differential signal line 53 of the mounting printed circuit board 50 and the differential signal line 74 of the flexible board 70, the reference potential output terminal on the mounting printed circuit board 50 and the corner of the flexible board 70 are arranged. The hole 73 is connected and made conductive using solder or the like. Next, the terminal on the transmission input side 15 of the transmission / reception optical module 10 is disposed on the mounting printed circuit board 50, and is inserted into the hole 72 of the flexible circuit board 70 and soldered as shown in FIG. Next, the flexible substrate 70 is bent, and one end of the flexible substrate 70 that is not connected is connected to the back surface of the printed circuit board 50 for mounting. However, the method of connecting the reference potential of the mounting printed circuit board 50 and the flexible substrate 70 shown here is an example, and if the configuration is such that the reference potential is connected to the front side and the back side of the mounting printed circuit board 50, a specific example is possible. The method is arbitrary. Finally, when the lateral protrusion 75 of the flexible substrate 70 is bent in the direction of the mounting printed circuit board 50, a configuration as shown in FIG. 7 can be obtained.

図7からもわかるように、本実施例によってLDドライバ30の送信差動信号線53から送受信用光モジュール10の送信入力側15の端子までの差動信号線74の上下横周囲が、実装用プリント基板50上の基準電位と接続されたフレキシブル基板70の導体層71によって囲われるため、差動信号線74から放射される電気的なクロストーク成分がフレキシブル基板70の導体層71によって遮蔽される。また、このフレキシブル基板70は本来、実装用プリント基板50と送受信用光モジュール10の送信入力側15の端子を接続するために用いられるものであり、電気的クロストークを遮赦するための部品を新たに追加する必要がない。また、実装用プリント基板50上に配置した基準電位と接続する端子をフレキシブル基板70と接続するという工程が追加されるが、通常の信号線を接続する工程と同時に行うことによって、その追加作業量は僅かである。   As can be seen from FIG. 7, according to this embodiment, the vertical and horizontal perimeters of the differential signal line 74 from the transmission differential signal line 53 of the LD driver 30 to the terminal of the transmission input side 15 of the transmission / reception optical module 10 are for mounting. The electrical crosstalk component radiated from the differential signal line 74 is shielded by the conductor layer 71 of the flexible substrate 70 because it is surrounded by the conductor layer 71 of the flexible substrate 70 connected to the reference potential on the printed circuit board 50. . The flexible board 70 is originally used to connect the printed circuit board 50 for mounting and the terminal on the transmission input side 15 of the optical module 10 for transmission / reception, and has a component for blocking electrical crosstalk. There is no need to add a new one. In addition, a process of connecting a terminal connected to the reference potential arranged on the mounting printed circuit board 50 to the flexible board 70 is added, and the additional work amount is performed simultaneously with the process of connecting a normal signal line. Is slight.

また、第2の実施例におけるフレキシブル基板70で囲う内部の径を、送信する信号に必要な信号周波数の最大周波数の波長の半分の長さ以下にすることで、さらに電気的クロストークを抑圧する効果がある。フレキシブル基板70で囲うことによって、擬似的な空洞共振器を構成することになり、取り囲む導体層71の径の最大の長さが存在する箇所で一番低い共振周波数で共振が発生してしまう。その共振を受信信号に影響を与えないようにするには、共振周波数を信号の所要帯域外とする構造にすることである。   Further, the electrical crosstalk is further suppressed by setting the inner diameter surrounded by the flexible substrate 70 in the second embodiment to be equal to or less than half the wavelength of the maximum frequency of the signal frequency necessary for the signal to be transmitted. effective. By surrounding the flexible substrate 70, a pseudo cavity resonator is formed, and resonance occurs at the lowest resonance frequency at a place where the maximum length of the diameter of the surrounding conductor layer 71 exists. In order to prevent the resonance from affecting the received signal, it is necessary to make the resonance frequency outside the required band of the signal.

このためには、送信信号をNRZとし、そのビットレートをB(bit/s)としたとき、そのNRZの信号を伝送するために必要な信号の最大周波数fm(Hz)を、
fm=1/B (3)
とすると、フレキシブル基板70で囲う内部の径の最大値Lmax(m)は、
Lmax=c/2fm (4)
となるように可能な限り小さくし、その包む大きさを小さくする。cは光速である。
For this purpose, when the transmission signal is NRZ and the bit rate is B (bit / s), the maximum frequency fm (Hz) of the signal necessary to transmit the signal of the NRZ is
fm = 1 / B (3)
Then, the maximum value Lmax (m) of the inner diameter enclosed by the flexible substrate 70 is
Lmax = c / 2fm (4)
And make it as small as possible, and make it smaller. c is the speed of light.

さらに、図示しないが、送受信用光モジュール10の受信出力側16の端子にも以上説明したフレキシブル基板70による接続と同様な接続方法を用いてもよい。送受信間クロストークの影響は送信側からの放射と、受信側への混入によって発生するものであり、受信側も本実施例の構造で遮蔽することによって、さらなる送受信間のクロストークの抑圧を実現することが可能になる。このときは、実装用プリント基板50と送受信用光モジュール10が相対的にある程度可動性を持つようにすることが可能になる。これにより、接続する光ファイバ20と送受信用光モジュール10との接続に関する光軸調整と実装用プリント基板50の光トランシーバ筐体内部での高さ調整を独立に行うことが可能になるため、光トランシーバの設計や実装がより容易になるという利点もある。その際は図5における実装用プリント基板50上に配置される受信差動信号線52、54は送信差動信号線51、53と同じ面ではなく、実装用プリント基板50を多層基板とし、中間層に電源層や接地電位層を設け、受信差動信号線52,54やリミッタアンプ40を裏面に実装するなどして、信号線や部品全体で送受信間の電気的クロストークを抑圧する構造とすることなども、有効な対策として挙げられる。   Further, although not shown, a connection method similar to the connection by the flexible substrate 70 described above may be used for the terminal on the reception output side 16 of the transmission / reception optical module 10. The effect of crosstalk between transmission and reception is caused by radiation from the transmission side and mixing into the reception side. By blocking the reception side with the structure of this embodiment, further suppression of crosstalk between transmission and reception is realized. It becomes possible to do. At this time, the mounting printed board 50 and the transmission / reception optical module 10 can be relatively movable to some extent. As a result, the optical axis adjustment relating to the connection between the optical fiber 20 to be connected and the transmission / reception optical module 10 and the height adjustment inside the optical transceiver casing of the mounting printed circuit board 50 can be performed independently. Another advantage is that the design and implementation of the transceiver is easier. In this case, the reception differential signal lines 52 and 54 arranged on the mounting printed circuit board 50 in FIG. 5 are not the same surface as the transmission differential signal lines 51 and 53, and the mounting printed circuit board 50 is a multi-layer circuit board. A structure in which a power supply layer and a ground potential layer are provided in the layer, and the reception differential signal lines 52 and 54 and the limiter amplifier 40 are mounted on the back surface to suppress electrical crosstalk between transmission and reception in the entire signal line and components, Doing is also an effective measure.

[第3、第4の実施例]
図9、図10は第3、第4の実施例の2芯双方向光トランシーバの内部構造の斜視図である。図9は2芯双方向用光トランシーバにおいて、送信用光モジュール10Aと受信用光モジュール10Bに第1の実施例のフレキシブル基板60と同一構成のフレキシブル基板60A,60Bを適用したものである。図10は2芯双方向用光トランシーバにおいて、送信用光モジュール10Aと受信用光モジュール10Bに第2の実施例のフレキシブル基板70と同一構成のフレキシブル基板70A,70Bを適用したものである。実装用プリント基板50上に発光素子を駆動するLDドライバ30と受信用光モジュール10Bから出力される受信信号の波形整形を行うリミッタアンプ40が実装される。光ファイバ20Aと接続される送信用光モジュール10Aは、発光素子を収納し、実装用プリント基板50のLDドライバ30から引き出される送信差動信号線53とフレキシブル基板60A又は70Aを用いて接続される。光ファイバ20Bと接続される受信用光モジュール10Bは、受光素子とプリアンプを収納し、実装用プリント基板50上のリミッタアンプ40から引き出される受信差動信号線54とフレキシブル基板60B又は70Bを用いて接続される。フレキシブル基板60A,60B,70A,70Bの接続方法は、第3の実施例については第1の実施例と、第4の実施例については第2の実施例と同様である。
[Third and fourth embodiments]
9 and 10 are perspective views of the internal structure of the two-core bidirectional optical transceiver of the third and fourth embodiments. FIG. 9 shows a two-core bidirectional optical transceiver in which flexible boards 60A and 60B having the same configuration as the flexible board 60 of the first embodiment are applied to the transmitting optical module 10A and the receiving optical module 10B. FIG. 10 shows a two-core bidirectional optical transceiver in which flexible substrates 70A and 70B having the same configuration as the flexible substrate 70 of the second embodiment are applied to the transmitting optical module 10A and the receiving optical module 10B. The LD driver 30 that drives the light emitting element and the limiter amplifier 40 that shapes the waveform of the received signal output from the receiving optical module 10B are mounted on the mounting printed circuit board 50. The transmitting optical module 10A connected to the optical fiber 20A houses the light emitting element and is connected using the transmitting differential signal line 53 drawn from the LD driver 30 of the mounting printed board 50 and the flexible board 60A or 70A. . The receiving optical module 10B connected to the optical fiber 20B houses the light receiving element and the preamplifier, and uses the receiving differential signal line 54 drawn from the limiter amplifier 40 on the mounting printed board 50 and the flexible board 60B or 70B. Connected. The connection method of the flexible boards 60A, 60B, 70A, 70B is the same as that of the first embodiment for the third embodiment and the second embodiment for the fourth embodiment.

第3の実施例によってLDドライバ30の送信差動信号線53から送信用光モジュー10Aの送信入力側15Aの端子までの信号線の上部と下部が、また第4の実施例によってLDドライバ30の差動差動信号線53から送信用光モジュール10Aの送信入力側15Aの端子までの信号線の四方周囲が、それぞれ実装用プリント基板50上の基準電位と接続されたフレキシブル基板60A又は70Aの導体層により囲われるため、信号線から放射される電気的なクロストーク成分がそれらフレキシブル基板の導体層によって遮赦される。   According to the third embodiment, the upper and lower portions of the signal line from the transmission differential signal line 53 of the LD driver 30 to the terminal on the transmission input side 15A of the transmission optical module 10A, and the LD driver 30 according to the fourth embodiment. The conductors of the flexible substrate 60A or 70A in which the signal signal line from the differential differential signal line 53 to the terminal on the transmission input side 15A of the transmission optical module 10A is connected to the reference potential on the printed circuit board 50 for mounting. Since they are surrounded by the layers, electrical crosstalk components radiated from the signal lines are blocked by the conductor layers of the flexible substrate.

さらに、受信用光モジュール10Bの受信出力側16Bの端子からリミッタアンプ40の受信差動信号線54までの信号線の周囲が、実装用プリント基板50上の基準電位と接続されたフレキシブル基板60B又は70Bの導体層によって囲われるため、外来雑音を遮赦することができる。また、これらのフレキシブル基板60B,70Bは実装用プリント基板50と送信用光モジュール10A、受信用光モジュール10Bの信号用端子との間の接続を兼ねており、電気的クロストークを遮蔽するための部品を新たに追加する必要がない。   Further, the flexible substrate 60B in which the periphery of the signal line from the terminal on the reception output side 16B of the reception optical module 10B to the reception differential signal line 54 of the limiter amplifier 40 is connected to the reference potential on the mounting printed circuit board 50 or Since it is surrounded by the conductor layer of 70B, it is possible to block external noise. These flexible boards 60B and 70B also serve as a connection between the mounting printed board 50 and the signal terminals of the transmitting optical module 10A and the receiving optical module 10B, so as to shield electrical crosstalk. There is no need to add new parts.

また、実装用プリント基板50上に配置した基準電位と接続する端子をフレキシブル基板60A,60B又は70A,70Bと接続するという工程が追加されるが、通常の信号線を接続する工程と同時に行うことによって、その追加作業量は僅かである。さらには実装用プリント基板50と送信用光モジュール10A、受信用光モジュール10Bの接続をフレキシブル基板60A,60B又は70A,70Bを用いて行うことで、実装用プリント基板5と送信用光モジュール10A、受信用光モジュール10Bに相対的にある程度可動性を持たせることが可能になる。これにより光ファイバ20A,20Bと送信用光モジュール10A、受信用光モジュール10Bとの接続に関する光軸調整と実装用プリント基板50の光トランシーバ筐体内部での高さ調整を独立に行うことが可能になるため、光トランシーバの設計や実装がより容易になるという利点がある。   In addition, a step of connecting a terminal connected to the reference potential arranged on the mounting printed circuit board 50 to the flexible substrates 60A, 60B or 70A, 70B is added, which is performed simultaneously with the step of connecting a normal signal line. Therefore, the additional work amount is small. Furthermore, by connecting the mounting printed board 50 to the transmitting optical module 10A and the receiving optical module 10B using the flexible boards 60A, 60B or 70A, 70B, the mounting printed board 5 and the transmitting optical module 10A, The receiving optical module 10B can be relatively movable to some extent. This makes it possible to independently adjust the optical axis relating to the connection between the optical fibers 20A and 20B, the transmitting optical module 10A, and the receiving optical module 10B and the height of the mounting printed circuit board 50 inside the optical transceiver casing. Therefore, there is an advantage that the design and mounting of the optical transceiver becomes easier.

また、第3、第4の実施例におけるフレキシブル基板60A又は70Aで囲う内部の径を、送信する信号に必要な信号周波数の最大周波数の波長の半分の長さ以下にすることも電気的クロストークを抑圧する効果がある。フレキシブル基板で囲うことによって、擬似的な空洞共振器を構成することになり、その径の最大の長さが存在する箇所で一番低い共振周波数で共振が発生してしまう。   It is also possible to make the inner diameter surrounded by the flexible substrate 60A or 70A in the third and fourth embodiments less than or equal to half the wavelength of the maximum frequency of the signal frequency necessary for the signal to be transmitted. Has the effect of suppressing By enclosing with a flexible substrate, a pseudo cavity resonator is formed, and resonance occurs at the lowest resonance frequency at a place where the maximum length of the diameter exists.

そのためには、送信信号をNRZとし、そのビットレートをB(bit/s)とするとき、そのNRZの信号を伝送するために必要な信号の最大周波数fm(Hz)を、
fm=1/B (5)
とすると、フレキシブル基板で囲う内部の径の最大値Lmax(m)は、
Lmax=c/2fm (6)
となるように可能な限り小さくし、その包む大きさを小さくする。cは光速である。
For that purpose, when the transmission signal is NRZ and the bit rate is B (bit / s), the maximum frequency fm (Hz) of the signal necessary to transmit the signal of the NRZ is
fm = 1 / B (5)
Then, the maximum value Lmax (m) of the inner diameter enclosed by the flexible substrate is
Lmax = c / 2fm (6)
And make it as small as possible, and make it smaller. c is the speed of light.

以上説明したとおり、本発明を適用することにより、光モジュールの内部における送受信間の電気的なクロストークを抑圧する手段を、信号線を配置したフレキシブル基板で、信号線を覆うような構造を持って接続することにより、簡便かつ柔軟な実装方法で、かつ部品点数を増やすことなく、より低コストな双方向光トランシーバを提供することが可能になる。   As described above, by applying the present invention, the means for suppressing electrical crosstalk between transmission and reception inside the optical module has a structure that covers the signal line with the flexible substrate on which the signal line is arranged. Thus, it is possible to provide a bidirectional optical transceiver at a lower cost with a simple and flexible mounting method and without increasing the number of components.

第1の実施例の1芯双方向光トランシーバの内部構造の斜視図である。It is a perspective view of the internal structure of the 1 core bidirectional | two-way optical transceiver of a 1st Example. (a)は第1の実施例の1芯双方向光トランシーバに使用する方形のフレキシブル基板の表面の展開図、(b)は裏面の展開図である。(a) is a development view of the front surface of a rectangular flexible substrate used in the single-core bidirectional optical transceiver of the first embodiment, and (b) is a development view of the back surface. 第1の実施例の1芯双方向光トランシーバの要部の拡大図である。It is an enlarged view of the principal part of the 1 core bidirectional | two-way optical transceiver of a 1st Example. (a)〜(d)は第1の実施例の1芯双方向光トランシーバの組立の説明図である。(a)-(d) is explanatory drawing of the assembly of the 1 core bi-directional optical transceiver of a 1st Example. 第2の実施例の1芯双方向光トランシーバの内部構造の斜視図である。It is a perspective view of the internal structure of the 1 core bidirectional | two-way optical transceiver of 2nd Example. (a)は第2の実施例の1芯双方向光トランシーバに使用する十字形のフレキシブル基板の表面の展開図、(b)は裏面の展開図である。(a) is a development view of the front surface of the cross-shaped flexible substrate used in the single-core bidirectional optical transceiver of the second embodiment, and (b) is a development view of the back surface. 第2の実施例の1芯双方向光トランシーバの要部の拡大図である。It is an enlarged view of the principal part of the 1 core bidirectional | two-way optical transceiver of a 2nd Example. 第2の実施例の1芯双方向光トランシーバの組立の説明図である。It is explanatory drawing of the assembly of the 1 core bidirectional | two-way optical transceiver of a 2nd Example. 第3の実施例の2芯双方向光トランシーバの内部構造の斜視図である。It is a perspective view of the internal structure of the 2 core bidirectional optical transceiver of a 3rd Example. 第4の実施例の2芯双方向光トランシーバの内部構造の斜視図である。It is a perspective view of the internal structure of the 2 core bidirectional optical transceiver of a 4th Example. 1芯双方向光トランシーバの構成のブロック図である。It is a block diagram of a structure of 1 core bidirectional | two-way optical transceiver. 2芯双方向光トランシーバの構成のブロック図である。It is a block diagram of a structure of a two-core bidirectional optical transceiver. 一般的な1芯双方向光トランシーバの内部構造の斜視図である。It is a perspective view of the internal structure of a general single core bidirectional optical transceiver. 一般的な2芯双方向光トランシーバの内部構造の斜視図である。It is a perspective view of the internal structure of a general two-core bidirectional optical transceiver. 第1の従来例の2芯双方向光トランシーバの内部構造の斜視図である。It is a perspective view of the internal structure of the 2-core bidirectional optical transceiver of the 1st prior art example. 第2の従来例の2芯双方向光トランシーバのフレームの説明図である。It is explanatory drawing of the flame | frame of the 2 core bidirectional optical transceiver of the 2nd prior art example. 第3の従来例の2芯双方向光トランシーバの内部構造の斜視図である。It is a perspective view of the internal structure of the 2 core bidirectional optical transceiver of the 3rd prior art example.

符号の説明Explanation of symbols

10:送受信用光モジュール、10A:送信用光モジュール、10B:受信用光モジュール
20:送受信用光ファイバ、20A:送信用光ファイバ、20B:受信用光ファイバ
30:LDドライバ
40:リミッタアンプ
50:実装用プリント基板、51,53:送信差動信号線、52,54:受信差動信号線
60:第1の実施例のフレキシブル基板、61:導体層、62、63:穴、64:差動信号線、65:片端部
70:第2の実施例のフレキシブル基板、71:導体層、72、73:穴、74:差動信号線、75:横凸部、76:片端部
80:第1の従来例のフレキシブル基板
90:第2の従来例のフレーム
100A,100B:第3の従来例のブラケット
10: optical module for transmission / reception, 10A: optical module for transmission, 10B: optical module for reception, 20: optical fiber for transmission / reception, 20A: optical fiber for transmission, 20B: optical fiber for reception 30: LD driver 40: limiter amplifier 50: Printed circuit board for mounting, 51, 53: transmission differential signal line, 52, 54: reception differential signal line 60: flexible substrate of the first embodiment, 61: conductor layer, 62, 63: hole, 64: differential Signal line 65: One end 70: Flexible substrate of the second embodiment 71: Conductor layer 72, 73: Hole 74: Differential signal line 75: Lateral convex part 76: One end 80: First The conventional flexible substrate 90: The frame of the second conventional example 100A, 100B: The bracket of the third conventional example

Claims (6)

1本の送受信用光ファイバと接続される送受信用光モジュールの送信入力側の端子と実装用プリント基板の送信信号線とを接続し、前記送受信用光モジュールの受信出力側の端子と前記実装用プリント基板の受信信号線とを接続した双方向光トランシーバにおいて、
ほぼ中央部分に信号線接続用穴が形成された方形の電磁遮蔽用のフレキシブル基板であって、表面において前記信号線接続用穴の周囲を除く全面に導体層が形成され、裏面において前記信号線接続用穴の周囲から1つの辺端まで延伸する信号線が形成されているフレキシブル基板を用意し、
前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記送信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導体層を前記実装用プリント基板の基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記送信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送受信用光モジュールの前記送信入力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送受信用光モジュールの前記送信入力側の端子に接続し、
および/又は、
前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記受信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導体層を前記実装用プリント基板の前記基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記受信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送受信用光モジュールの前記受信出力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送受信用光モジュールの前記受信入力側の端子に接続したことを特徴とする双方向光トランシーバ
A transmission input side terminal of a transmission / reception optical module connected to one transmission / reception optical fiber is connected to a transmission signal line of a mounting printed circuit board, and a reception output side terminal of the transmission / reception optical module is connected to the mounting In the bidirectional optical transceiver connected to the reception signal line on the printed circuit board,
A rectangular electromagnetic shielding flexible board in which a signal line connection hole is formed in a substantially central portion, a conductor layer is formed on the entire surface excluding the periphery of the signal line connection hole, and the signal line is formed on the back surface. Prepare a flexible board on which a signal line extending from the periphery of the connection hole to one edge is formed ,
The flexible substrate is bent so that the surface is on the outside, and both opposite ends of the flexible substrate are fixed to both the front and back surfaces of the mounting printed circuit board corresponding to the transmission signal line. The conductor layer is connected to a reference potential terminal of the mounting printed board, the signal line of the flexible board is connected to the transmission signal line of the mounting printed board, and the signal line of the flexible board is connected. By inserting the terminal on the transmission input side of the optical module for transmission / reception into the hole, the signal line of the flexible substrate is connected to the terminal on the transmission input side of the optical module for transmission / reception,
And / or
The flexible substrate is bent so that the surface is on the outside, and both opposite ends of the flexible substrate are fixed to both the front and back surfaces of the mounting printed circuit board corresponding to the reception signal line. The conductor layer is connected to the reference potential terminal of the mounting printed circuit board, the signal line of the flexible printed circuit board is connected to the reception signal line of the mounting printed circuit board, and the signal line connection of the flexible printed circuit board The signal line of the flexible board is connected to the terminal on the reception input side of the transmission / reception optical module by inserting the terminal on the reception output side of the transmission / reception optical module into the hole. Omnidirectional transceiver .
1本の送受信用光ファイバと接続される送受信用光モジュールの送信入力側の端子と実装用プリント基板の送信信号線とを接続し、前記送受信用光モジュールの受信出力側の端子と前記実装用プリント基板の受信信号線とを接続した双方向光トランシーバにおいて、  A transmission input side terminal of a transmission / reception optical module connected to one transmission / reception optical fiber is connected to a transmission signal line of a mounting printed circuit board, and a reception output side terminal of the transmission / reception optical module is connected to the mounting In the bidirectional optical transceiver connected to the reception signal line on the printed circuit board,
ほぼ中央部分に信号線接続用穴が形成された方形の電磁遮蔽用のフレキシブル基板であって、表面において前記信号線接続用穴の周囲を除く全面に導体層が形成され、裏面において前記信号線接続用穴の周囲から1つの辺端まで延伸する信号線が形成され、前記信号線接続用穴の形成された部分の両側で且つ前記信号線の両側の一部に凸部が形成され、全体形状が十字形状となったフレキシブル基板を用意し、  A rectangular electromagnetic shielding flexible board in which a signal line connection hole is formed in a substantially central portion, a conductor layer is formed on the entire surface excluding the periphery of the signal line connection hole, and the signal line is formed on the back surface. A signal line extending from the periphery of the connection hole to one side edge is formed, and convex portions are formed on both sides of the portion where the signal line connection hole is formed and on both sides of the signal line. Prepare a flexible board with a cross shape,
前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記送信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導体層を前記実装用プリント基板の基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記送信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送受信用光モジュールの前記送信入力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送受信用光モジュールの前記送信入力側の端子に接続し、且つ前記フレキシブル基板の両側の前記凸部を内側に折り曲げ、  The flexible substrate is bent so that the surface is on the outside, and both opposite ends of the flexible substrate are fixed to both the front and back surfaces of the mounting printed circuit board corresponding to the transmission signal line. The conductor layer is connected to a reference potential terminal of the mounting printed board, the signal line of the flexible board is connected to the transmission signal line of the mounting printed board, and the signal line of the flexible board is connected. By inserting the terminal on the transmission input side of the optical module for transmission / reception into the hole, the signal line of the flexible substrate is connected to the terminal on the transmission input side of the optical module for transmission / reception, and both sides of the flexible substrate Bend the convex part of
および/又は、  And / or
前記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記受信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導体層を前記実装用プリント基板の前記基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記受信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送受信用光モジュールの前記受信出力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送受信用光モジュールの前記受信入力側の端子に接続し、且つフレキシブル基板の両側の前記凸部を内側に折り曲げたことを特徴とする双方向光トランシーバ。  The flexible substrate is bent so that the surface is on the outside, and both opposite ends of the flexible substrate are fixed to both the front and back surfaces of the mounting printed circuit board corresponding to the reception signal line. The conductor layer is connected to the reference potential terminal of the mounting printed circuit board, the signal line of the flexible printed circuit board is connected to the reception signal line of the mounting printed circuit board, and the signal line connection of the flexible printed circuit board By inserting the terminal on the reception output side of the optical module for transmission / reception into the hole, the signal line of the flexible substrate is connected to the terminal on the reception input side of the optical module for transmission / reception, and both sides of the flexible substrate The bi-directional optical transceiver is characterized in that the convex part of is bent inward.
1本の送信用光ファイバと接続される送信用光モジュールの送信入力側の端子と実装用プリント基板の送信信号線とを接続し、1本の受信用光ファイバと接続される受信用光モジュールの受信出力側の端子と前記実装用プリント基板の受信信号線とを接続した双方向光トランシーバにおいて、
ほぼ中央部分に信号線接続用穴が形成された方形の電磁遮蔽用のフレキシブル基板であって、表面において前記信号線接続用穴の周囲を除く全面に導体層が形成され、裏面において前記信号線接続用穴の周囲から1つの辺端まで延伸する信号線が形成されているフレキシブル基板を用意し、
記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記送信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導層を前記実装用プリント基板の基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記送信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送信用光モジュールの前記送信入力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送信用光モジュールの前記送信入力側の端子に接続し、
および/又は、
記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記受信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導層を前記実装用プリント基板の前記基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記受信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記受信用光モジュールの前記受信出力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記受信用光モジュールの前記受信出力側の端子に接続したことを特徴とする双方向光トランシーバ。
A single transmission input side terminal of the transmitting optical module which is connected to the transmitting optical fiber and the transmission signal line of the mounting printed circuit board connected, receiving credit optical module is connected to one of the reception optical fiber In the bidirectional optical transceiver in which the terminal on the reception output side and the reception signal line of the mounting printed circuit board are connected,
A rectangular electromagnetic shielding flexible board in which a signal line connection hole is formed in a substantially central portion, a conductor layer is formed on the entire surface excluding the periphery of the signal line connection hole, and the signal line is formed on the back surface. Prepare a flexible board on which a signal line extending from the periphery of the connection hole to one edge is formed,
By pre notate Rekishiburu substrate the surface is bent so that the outer, fixed opposing ends of the front notated Rekishiburu substrate on both sides of the portion corresponding to the transmission signal line of the mounting printed circuit board, with connecting before the conductive layer of the notated Rekishiburu substrate to the reference potential terminal of the mounting printed circuit board, prior to connecting the signal lines of the notated Rekishiburu substrate to the transmission signal line of the mounting printed circuit board, and before notated Rekishiburu to the signal line connecting hole of the substrate by inserting the transmission input side terminal of the transmitting optical module, said transmission input before notated Rekishiburu board the transmitting optical module the signal line Connect to the terminal on the side,
And / or
By pre notate Rekishiburu substrate the surface is bent so that the outer, fixed opposing ends of the front notated Rekishiburu substrate on both sides of the portion corresponding to the reception signal line of the mounting printed circuit board, with connecting front notated Rekishiburu the guide layer of the substrate to the reference potential terminal of the mounting printed circuit board, prior to connecting the signal lines of the notated Rekishiburu substrate to the receiving signal line of the mounting printed circuit board, and before notated Rekishiburu to the signal line connecting hole of the substrate by inserting said receiver output terminal of said receiving optical module, before notated Rekishiburu the reception of the receiving optical module the signal line of the substrate A bidirectional optical transceiver characterized by being connected to a terminal on the output side.
1本の送信用光ファイバと接続される送信用光モジュールの送信入力側の端子と実装用プリント基板の送信信号線とを接続し、1本の受信用光ファイバと接続される受信用光モジュールの受信出力側の端子と前記実装用プリント基板の受信信号線とを接続した双方向光トランシーバにおいて、
ほぼ中央部分に信号線接続用穴が形成された方形の電磁遮蔽用のフレキシブル基板であって、表面において前記信号線接続用穴の周囲を除く全面に導体層が形成され、裏面において前記信号線接続用穴の周囲から1つの辺端まで延伸する信号線が形成され、前記信号線接続用穴の形成された部分の両側で且つ前記信号線の両側の一部に凸部が形成され、全体形状が十字形状となったフレキシブル基板を用意し、
記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記送信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導層を前記実装用プリント基板の基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記送信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記送信用光モジュールの前記送信入力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記送信用光モジュールの前記送信入力側の端子に接続し、且つ前記フレキシブル基板の前記凸部を内側に折り曲げ、
および/又は、
記フレキシブル基板を前記表面が外側となるように折り曲げて、前記フレキシブル基板の対向する両端を前記実装用プリント基板の前記受信信号線に対応する箇所の表裏両面に固定することにより、前記フレキシブル基板の前記導層を前記実装用プリント基板の前記基準電位端子に接続すると共に、前記フレキシブル基板の前記信号線を前記実装用プリント基板の前記受信信号線に接続し、且つ前記フレキシブル基板の前記信号線接続用穴に前記受信用光モジュールの前記受信出力側の端子を挿入することにより、前記フレキシブル基板の前記信号線を前記受信用光モジュールの前記受信出力側の端子に接続し、且つ前記フレキシブル基板の前記凸部を内側に折り曲げたことを特徴とする双方向光トランシーバ。
One transmission input terminal of the transmitting optical module which is connected to the transmission optical fiber and a transmission signal line of the mounting printed circuit board is connected, one receiving optical module to be connected to the reception optical fiber In the bidirectional optical transceiver in which the terminal on the reception output side and the reception signal line of the mounting printed circuit board are connected,
A rectangular electromagnetic shielding flexible board in which a signal line connection hole is formed in a substantially central portion, a conductor layer is formed on the entire surface excluding the periphery of the signal line connection hole, and the signal line is formed on the back surface. A signal line extending from the periphery of the connection hole to one side edge is formed, and convex portions are formed on both sides of the portion where the signal line connection hole is formed and on both sides of the signal line. Prepare a flexible board with a cross shape,
By pre notate Rekishiburu substrate the surface is bent so that the outer, fixed opposing ends of the front notated Rekishiburu substrate on both sides of the portion corresponding to the transmission signal line of said mounting printed circuit board, with connecting before the conductive layer of the notated Rekishiburu substrate to the reference potential terminal of the mounting printed circuit board, prior to connecting the signal lines of the notated Rekishiburu substrate to the transmission signal line of the mounting printed circuit board, and before notated Rekishiburu to the signal line connecting hole of the substrate by inserting the transmission input side terminal of the transmitting optical module, said transmission input before notated Rekishiburu board the transmitting optical module the signal line connected to the side of the terminal, and bending the protruding portion of the front notated Rekishiburu substrate inward,
And / or
By pre notate Rekishiburu substrate the surface is bent so that the outer, fixed opposing ends of the front notated Rekishiburu substrate on both sides of the portion corresponding to the reception signal line of the mounting printed circuit board, with connecting front notated Rekishiburu the guide layer of the substrate to the reference potential terminal of the mounting printed circuit board, prior to connecting the signal lines of the notated Rekishiburu substrate to the receiving signal line of the mounting printed circuit board, and before notated Rekishiburu to the signal line connecting hole of the substrate by inserting said receiver output terminal of said receiving optical module, before notated Rekishiburu the reception of the receiving optical module the signal line of the substrate bidirectional optical transceiver, characterized in that connected to the output terminal, folded the projecting portion of the front notated Rekishiburu substrate inside and.
請求項1又は3に記載の双方向光トランシーバにおいて、
前記フレキシブル基板の折り曲げた内径の最大値を、扱う信号に必要な信号周波数の最大周波数の波長の半分以下に設定したことを特徴とする双方向光トランシーバ。
The bidirectional optical transceiver according to claim 1 or 3,
A bidirectional optical transceiver characterized in that a maximum value of a bent inner diameter of the flexible substrate is set to half or less of a wavelength of a maximum frequency of a signal frequency necessary for a signal to be handled .
請求項2又は4に記載の双方向光トランシーバにおいて、
前記フレキシブル基板の折り曲げた内径の最大値を、扱う信号に必要な信号周波数の最大周波数の波長の半分以下に設定したことを特徴とする双方向光トランシーバ。
The bidirectional optical transceiver according to claim 2 or 4,
A bidirectional optical transceiver characterized in that a maximum value of a bent inner diameter of the flexible substrate is set to half or less of a wavelength of a maximum frequency of a signal frequency necessary for a signal to be handled .
JP2005229442A 2005-08-08 2005-08-08 Bidirectional optical transceiver using flexible substrate Expired - Fee Related JP4566089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229442A JP4566089B2 (en) 2005-08-08 2005-08-08 Bidirectional optical transceiver using flexible substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229442A JP4566089B2 (en) 2005-08-08 2005-08-08 Bidirectional optical transceiver using flexible substrate

Publications (2)

Publication Number Publication Date
JP2007048822A JP2007048822A (en) 2007-02-22
JP4566089B2 true JP4566089B2 (en) 2010-10-20

Family

ID=37851425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229442A Expired - Fee Related JP4566089B2 (en) 2005-08-08 2005-08-08 Bidirectional optical transceiver using flexible substrate

Country Status (1)

Country Link
JP (1) JP4566089B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287850A (en) * 2006-04-14 2007-11-01 Sumitomo Electric Ind Ltd Optical transceiver
JP2009027414A (en) * 2007-07-19 2009-02-05 Oki Electric Ind Co Ltd Optic-and-radio interaction telecommunication device
US8319118B2 (en) * 2008-02-22 2012-11-27 Sumitomo Electric Industries, Ltd. Optical transceiver providing independent spaces for electrical components and for optical components
JP5292027B2 (en) * 2008-09-09 2013-09-18 信越ポリマー株式会社 Optical transceiver
JP5361817B2 (en) * 2010-07-08 2013-12-04 三菱電機株式会社 Optical module
JP6398318B2 (en) * 2014-05-21 2018-10-03 住友電気工業株式会社 Optical transceiver
JP6347758B2 (en) 2015-03-25 2018-06-27 Nttエレクトロニクス株式会社 Flexible printed circuit board
CN106154443A (en) * 2016-10-08 2016-11-23 苏州海光芯创光电科技有限公司 A kind of light transmit-receive integrated device
JP7294948B2 (en) * 2019-08-21 2023-06-20 CIG Photonics Japan株式会社 optical module
CN111511097B (en) * 2020-06-18 2020-12-29 深圳市欧博凯科技有限公司 High-speed transmission optical module circuit board structure and manufacturing method thereof and crosstalk prevention method
CN113064238B (en) * 2021-03-22 2022-05-06 长飞光纤光缆股份有限公司 Soft board for realizing connection with optical device, connection method and optical module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169095U (en) * 1988-05-18 1989-11-29
JP2002043708A (en) * 2000-07-27 2002-02-08 Sony Chem Corp Wiring board
JP2002151807A (en) * 2000-11-08 2002-05-24 Saginomiya Seisakusho Inc Wiring board and pressure sensor
JP2004088020A (en) * 2002-08-29 2004-03-18 Toshiba Corp Electronic equipment provided with flexible printed circuit board and the substrate
JP2005175078A (en) * 2003-12-09 2005-06-30 Nitto Denko Corp Printed wiring board
JP2006073683A (en) * 2004-08-31 2006-03-16 Sony Corp Circuit device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169095U (en) * 1988-05-18 1989-11-29
JP2002043708A (en) * 2000-07-27 2002-02-08 Sony Chem Corp Wiring board
JP2002151807A (en) * 2000-11-08 2002-05-24 Saginomiya Seisakusho Inc Wiring board and pressure sensor
JP2004088020A (en) * 2002-08-29 2004-03-18 Toshiba Corp Electronic equipment provided with flexible printed circuit board and the substrate
JP2005175078A (en) * 2003-12-09 2005-06-30 Nitto Denko Corp Printed wiring board
JP2006073683A (en) * 2004-08-31 2006-03-16 Sony Corp Circuit device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007048822A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4566089B2 (en) Bidirectional optical transceiver using flexible substrate
US7195404B1 (en) Fiber optic transceiver module with electromagnetic interference absorbing material and method for making the module
JP5780148B2 (en) Optical transceiver and method for manufacturing optical transceiver
US6659655B2 (en) Fiber-optic modules with housing/shielding
US6461058B1 (en) Optoelectronic component
US20040196642A1 (en) Transceiver module with PCB having embedded traces for EMI control
KR101512816B1 (en) Flexible printed circuit board and optical communication module comprising the same
US20090263140A1 (en) Optical communication module and flexible printed circuit board
US20070051877A1 (en) Optical transmitter-receiver, optical transmitter-receiver module, and optical communication device
US20200322062A1 (en) Package for optical receiver module
US7338216B2 (en) Transmitter subassembly ground return path
WO2019225440A1 (en) Optical communication apparatus
JP2019046922A (en) Optical module and optical transmission device
JP2019062114A (en) Package for optical receiver module
JP2020021911A (en) Optical subassembly and optical module
US20070297809A1 (en) Optical Transmission/Reception Equipment And Optical Transmission/Reception Module
US20080187321A1 (en) Optical transceiver module
JP4828103B2 (en) Optical transceiver module
JP7294948B2 (en) optical module
JP2004363360A (en) Optical transmitting and receiving module
JP3797214B2 (en) Optical module
JP2019129287A (en) Package for optical receiver module
US20030235375A1 (en) Transceivers with improved cross talk
JP2007078844A (en) Optical transmission and reception device
JPH11196055A (en) Optical transmitter/receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees