JP4565720B2 - Polyimide-based multilayer endless tubular film, production method thereof and use thereof - Google Patents

Polyimide-based multilayer endless tubular film, production method thereof and use thereof Download PDF

Info

Publication number
JP4565720B2
JP4565720B2 JP2000282478A JP2000282478A JP4565720B2 JP 4565720 B2 JP4565720 B2 JP 4565720B2 JP 2000282478 A JP2000282478 A JP 2000282478A JP 2000282478 A JP2000282478 A JP 2000282478A JP 4565720 B2 JP4565720 B2 JP 4565720B2
Authority
JP
Japan
Prior art keywords
polyimide
layer
linear expansion
semiconductive
endless tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000282478A
Other languages
Japanese (ja)
Other versions
JP2002086599A (en
Inventor
隆志 鞍岡
直樹 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2000282478A priority Critical patent/JP4565720B2/en
Publication of JP2002086599A publication Critical patent/JP2002086599A/en
Application granted granted Critical
Publication of JP4565720B2 publication Critical patent/JP4565720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、特にポリイミドをマトリックとする半導電層と電気絶縁層とからなるポリイミド系多層無端管状フイルムの湾曲を改善し、合わせて安定した電気抵抗性と高絶縁耐力(耐電圧性)を有したポリイミド系多層無端管状フイルムとその製造方法及びその使用に関し提供するものである。その使用の一例としてカラー複写機の中間転写ベルトが有効である。
【0002】
【従来の技術】
ポリイミド多層無端管状フイルム(ベルト)については、次のような事が知られている。
(D)導電性カーボンブラックにより付与したポリイミド半導電層(内面層)を内層とし、外層(表面層)としてフッ素系樹脂を積層して電気絶縁層(誘電層)とした該フイルム。
(E)導電性カーボンブラックにより付与したポリイミド半導電層を内層又は外層(表面)とし、これにポリイミド電気絶縁層(誘電層)を外層又は内層として積層した該フイルム(例えば本件特許出願人による特開平07−156287号公報、特開平11−235765号公報)。
そして(D)の製造方法としては、まず半導電性ポリアミド酸溶液を既知の遠心成形法等で成形・加熱して半導電性ポリイミド(半導電層)の該フイルムを得る。そしてこのフイルムの表面にエマルジョン状フッ素系樹脂をスプレー塗布し焼き付けるとか、予め成形された無端管状フッ素系樹脂を該半導電層に嵌着して、各々表面層を絶縁層とする二層の該フイルムとするものであ。
一方(E)の製造方法は、まず絶縁性又は半導電性のポリアミド酸溶液を既知の遠心成形法等により相当する一層を成形し、次にその一層の内面に半導電性又は絶縁性のポリアミド酸溶液を同様に遠心成形法により成形する。そして最後に完全脱溶媒とイミド化のための加熱を行って、相当する二層の該フイルムとするものである。
そしてこれら該フイルムは、例えばカラー複写機の中間転写ベルトとして使用されることも知られている。
【0003】
【発明が解決しようとする課題】
前記(E)で知られている該フイルムは、(D)に記載する該フイルムに比較して、表面耐摩耗性が卓越し、且つ層間剥離するような危険性のないのが特長である。このことは、電気絶縁層(誘電層)の有する静電容量に経時変化がないので常に一定した電圧で帯電でき、且つ使用耐久性にも卓越しているものと言える。従って、最近では該(E)のフイルムに関心が向けられ、カラー複写機の中間転写ベルトへの使用検討が積極的に進められている。
ところが、この検討の中で新たに次のような問題のあることも判ってきた。
それは得られた該フイルムが、外側に又は内側に向かって湾曲している場合があること。実質的に湾曲していない場合でも、ベルトとして長時間使用すると徐々に湾曲してくる場合があることである。この湾曲は、(程度にもよるが)画像の乱れ(前記中間転写ベルトとして使用の場合)とか、回転蛇行の原因になるので、製品品質検査の点で重要である。
その他に、特に積極的に電圧を印加してポリイミド電気絶縁層を帯電させて使用する場合(例えば前記中間転写ベルトとして使用する場合)、より低電圧印加でも絶縁破壊し易い場合があること、つまり絶縁耐力に弱い面があることであった。
【0004】
そこで本発明者らは、まずその原因について検討した。その結果湾曲については半導電層と電気絶縁層の有する熱的特性に、そして絶縁耐力については製造の仕方に原因がありそうであることが判った。そこで今度はこの原因を一挙に解決すべく鋭意検討した。その結果前記請求項1と6とに記載する手段を見出し本発明に到達したのである。
【0005】
【課題を解決するための手段】
即ち本発明は、まず請求項1に記載するように、導電性カーボンブラックにより付与された半導電性ポリイミド層と実質的電気絶縁性ポリイミド層からなるポリイミド系多層無端管状フイルムにおいて、該実質的電気絶縁性ポリイミド層の有する線膨張係数が、該半導電性ポリイミド層の有する線膨張係数に対して0.8〜1.3倍であることを特徴とするポリイミド系多層無端管状フイルムである。
【0006】
そして請求項1に従属する発明として、更に請求項2〜5も提供し好ましく解決をはかるものである。
【0007】
そして前記請求項1〜5で提供するポリイミド系多層無端管状フイルムは、請求項6で提供する特殊の製造方法によって最も効果的に得ることができるが、その製造方法は、次の(A)〜(C)に記載の各工程が順次行われてなることを特徴とするものである。
(A)ポリアミド酸と有機溶媒とを含有する実質的電気絶縁性ポリアミド酸溶液又はポリアミド酸と導電性カーボンブラック粉体と有機溶媒とを含有する半導電性ポリアミド酸溶液を、実質的無遠心力の速度で回転する該ドラムの内面に噴霧状で均一に供給し加熱して、該溶媒の一部を残存含有する実質的電気絶縁性又は半導電性のポリアミド酸無端管状フイルムに成形する第一工程、
(B)前記金属ドラム内面に成形された実質的電気絶縁性又は半導電性のポリアミド酸無端管状フイルムの内面に、ポリアミド酸と導電性カーボンブラック粉体と有機溶媒とからなる半導電性ポリアミド酸溶液又はポリアミド酸と有機溶媒とからなる実質的電気絶縁性ポリアミド酸溶液を、実質的無遠心力の速度で回転する該ドラムの内面に噴霧状で均一に供給し加熱して、半導電性又は実質的電気絶縁性の無端管状のポリアミド酸を積層成形する第二工程、
(C)前記第二工程で得られた積層ポリアミド酸無端管状フイルムを熱風加熱して残存有機溶媒の蒸発除去と共に、ポリアミド酸成分をイミド化して相当するポリイミド系無端多層管状フイルムに変える第三工程。
【0008】
そして、前記製造方法に従属する発明として請求項7と8も提供し、好ましく解決をはかるのである。
【0009】
そして前記ポリイミド系多層無端管状フイルムの用途に関し、請求項9でカラー複写機の中間転写ベルトとして有効に使用できることも提供するものである。
以下に本発明を次の実施形態で詳細に説明する。
【0010】
【発明の実施の形態】
まず本発明のポリイミド系多層無端管状フイルム(以下単にMLフイルムと呼ぶ)は、導電性カーボンブラック(以下CB粉体)により付与された半導電性のポリイミドを半導電層(PI半導電層)とし、そして(実質的にCB粉体等の導電剤を使用しない)実質的電気絶縁性にあるポリイミドを電気絶縁層(PI絶縁層)を積層してなる。つまり基本的にはこの二層により構成され、そして該半導電層と該電気絶縁層の配置関係は特に限定されず、該半導電層が表面層となる場合もあれば、裏面層となる場合もあると言う構成を採る。
尚、該フイルムは基本的には二層であるが、該両層の間に更に同様層を交互に積層するようなことを排除するものではない。
【0011】
MLフイルムの基本構成は前記の通りであるが、本発明では単にPI半導電層とPI絶縁層とで構成するのではなくて、特に線膨張係数でもって特定し、それでもって構成するものである。つまりその線膨張係数は、該PI絶縁層の有する線膨張係数が、該PI半導電層の有する線膨張係数に対して0.8〜1.3倍、好ましくは0.9〜1.2倍、更には1〜1.1倍である必要がある。このように特定された範囲で両層が構成されることで、前記するMLフイルムの湾曲の問題は一挙に解決されることになる。この範囲の意味は、両層の有する線膨張係数が同一か、PI絶縁層の有する線膨張係数が大きい場合は、PI半導電層のそれを小さくし、逆にPI絶縁層の有する線膨張係数が小さい場合は、PI半導電層のそれを大きくすることであるが、それも最小0.8倍まで、最大1.3倍までとすることでのみ達成される。つまりPI絶縁層の有する線膨張係数が、PI半導電層のそれよりも大きく1.3倍を超えてしまっても、又逆に小さく0.8倍未満になっても湾曲現象が発生し、満足できる解決が得られない。
【0012】
湾曲課題の点では、基本的には前記条件範囲で解決されるが、更により効果的であるのは、請求項2に記載する前記PI半導電層とPI絶縁層の各々の有する線膨張係数が同桁数の中で異なり、それでもって前記好ましく設定する0.9〜1.2倍、更に1〜1.1倍の範囲にある場合である。つまり、例えばPI半導電層の有する線膨張係数が1×10−5cm/cm/℃であれば,PI絶縁層のそれも同じ桁数をもって1〜1.2×10−5cm/cm/℃の範囲にあると言うことである。
【0013】
PI半導電層とPI絶縁層とは、前記のような線膨張関係にあるが、この線膨張を支配するのは、得られたMLフイルムの分子配向の有無(程度)にもあるが、主体はポリイミド(PI)、つまりPI自身である。これに付随してCB粉体もその混合分散により影響し、PI自身の線膨張係数を若干下げる場合もあれば、逆に上げる方向に作用する場合もある。
【0014】
前記PI自身の有する線膨張係数は、基本的にはPIを構成する分子構造により違いがでるが、ほぼ全てのものが(1〜9.9×10- )〜(1〜9.9×10- )cm/cm/℃の範囲にある。
線膨張係数が1〜9.9×10- cm/cm/℃の範囲にあるものは、一般に二次転移点を有するもので、約250〜420℃程度のPI、そして1〜9.9×10- cm/cm/℃の範囲にあるものは、一般に二次転移点がより高いか又は実質的にないもので、約470℃以上のPIである。つまり10- cm/cm/℃桁のPIは、比較的動きやすい分子構造を有するものに見られる。例えばイミド基に結合する有機基(フエニル基、ビフエニル基、フエニレン基)の2つ以上が−O−、−SO−、−CO−、−(CH1〜3−等で繋がれているPIグループに見られる。
一方10- cm/cm/℃桁のPIは、動き難い硬直な分子構造を有するものに見られる。これは該−O−、−SO−、−CO−、−(CH1〜3−等を有しない有機基(フエニル基、ビフエニル基、フエニレン基)のみでイミド基が繋がれているPIグループに見られる。
【0015】
前記するような各PIグループの中から適宜妥当なPIが選択され、各々の層のマトリックス樹脂として使用される。例えば次のような場合が例示できる。
それは請求項3に記載するもので、半導電層のPIとしては(1〜9.9×10- )cm/cm/℃桁のものを、そして絶縁層のPIとしては(1〜9.9×10- )cm/cm/℃桁のものを各々選ぶのが良い。
【0016】
又前記絶縁層のPIの場合は、該10- cm/cm/℃桁のPIと10- cm/cm/℃桁のPIの二種ブレンドポリイミドによっても10- cm/cm/℃オーダのPIにすることができる。両者の混合比については、両者約5〜95重量%の間で適宜変えれば良いが、この範囲にあっても次のようにするのがよい。つまり半導電層の線膨張係数が10- cm/cm/℃桁である場合は、10- cm/cm/℃桁のPIの混合率を少なくし、逆に半導電層の線膨張係数が10- cm/cm/℃桁である場合は、10- cm/cm/℃桁のPIの混合率を少なくする。
【0017】
又、本発明のMLフイルムは、前記するように表面層がPI半導電層であっても、逆に裏面層であっても良いが、例えば前記する中間転写ベルトとして使用する場合PI半導電層を表面層に、PI絶縁層を裏面層に設定する(請求項5)と次の点で好ましい場合もある。しかし、これはカラー複写機の機種(ユーザー)によっても異なり、必ずしもこれが良いと言うものでもない。
その好ましい点は、表面層にCB粉体が分散存在していることで、ベルト表面と(トナー)クリーニング部材(例えばウレタン製ブレード)との間の静摩擦(又は動摩擦)の度合いが適正に制御され、回転起動が円滑に行われ易くなることと(起動電流が過度に負荷されない)、該ドラム上のトナー顕像の一次転移が忠実に行われや易いと言うことからである。
【0018】
又、前記クリーニング部材との間の静摩擦(又は動摩擦)効果の点に関しては、裏面のPI絶縁層に微細酸化ケイ素(例えば二酸化ケイ素)を分散存在させると、ベルト裏面と回転ローラとの間の該摩擦も適正に制御されるようになる。つまり表面はCB粉体により、裏面は酸化ケイ素によって摩擦制御されることになり、より一層回転起動が円滑に行われるようになる。
尚、この摩擦制御手段については、特に表面層を物理(物理化学)的に粗面化するとか、無機粉体(酸化ケイ素、酸化チタン、炭酸カルシュウム、アルミナ等)、熱硬化樹脂粉体等を混合分散して粗面化する方法が知られている。本発明では特に表面をCB粉体で、裏面を酸化ケイ素と言う組み合わせでも適正な摩擦制御が行えるようにもなったことで、もう一つの特長が加わったと言える。
【0019】
次に本発明のMLフイルムの製造方法について説明する。
本製造方法については、一般に知られている遠心成形法等でも製造できるので制限はないが、その中でも請求項6で提供する製造方法における“実質的無遠心力の速度で回転する該ドラムの内面に噴霧状で均一に供給し加熱”(以下無遠心噴霧成形法と呼ぶ)は、既知の遠心成形法に比較して次の点でより有効であるので、ここでは請求項7に記載する製造方法について説明する。
◎成形原液を高速回転して遠心力で流延塗布することはないので、被塗布面の状態(性質)にも関係なく円滑に、且つ高厚み精度でもって迅速に塗布・積層できる。
◎表面層と裏面層との層界面で両者が混ざり合うような作用をしないので、PI絶縁層とPI半導電層との特性が変化することなくそのまま形成される。
◎形成層に微細気泡が入いるようなことはなく緻密層である。この効果は絶縁耐力にも優れている作用に繋がって発現するものと考えらる。
◎特に無機系の添加剤を混合して成形する場合、該添加剤が表面部分に偏在して分散するようなことは全くなく、全体に均一に分散した状態で得られる。
◎より高い溶液粘度の成形原液を使うのにより有効な成形方法である。これは使用する有機溶媒量がより少量になるので、製造時間が大幅に短縮されることになる。
◎無遠心(低速回転)であるので、金属ドラムの回転ブレの心配もないので、より大きい径の該ドラムが使用できる。つまりより大きい径の該フイルムが容易に製造できることになる。又厚み精度も極めて高くムラのより一層の改善がはかれる。
以上の特長は、結局湾曲の解消作用にも寄与することに繋がることになる。
【0020】
まず(A)に記載の第一工程(以下A1工程)から説明する。
A1工程は、ポリアミド酸(以下PA酸と呼ぶ)と有機溶媒とを含有する実質的電気絶縁性ポリアミド酸溶液(電絶PA酸溶液1と呼ぶ)又はポリアミド酸とCB粉体と有機溶媒とを含有する半導電性ポリアミド酸溶液(以下半導電PA酸溶液1と呼ぶ)を、実質的無遠心力の速度で回転する該ドラムの内面に噴霧状で均一に供給し加熱して(以下無遠心噴霧成形法1と呼ぶ)、該溶媒の一部を残存含有する実質的電気絶縁性又は半導電性のポリアミド酸無端管状フイルム(以下電絶PA酸管状フイルム又は半導電PA酸管状フイルムと呼ぶ)に成形する工程である。
【0021】
まず成形原料の電絶PA酸溶液1又は半導電PA酸溶液1のPA酸は、前記MLフイルムのマトリックス樹脂であるポリイミド(PI)又はポリアミドイミド樹脂(PAI)の前駆体であり、まずこのPA酸段階で自己支持性のある、一部有機溶媒残存の無端管状フイルムに成形して後、完全脱溶媒とイミド化してMLフイルムとする二段階方式を採る。
ここで各層をどの様な線膨張係数にするかは、選ぶPI、つまりPA酸を合成する出発原料の選択にある。それを具体的に例示すると次の通りである。
10- cm/cm/℃桁のものでは、例えばピロメリット酸二無水物又は3,3´,4,4´−ビフェニルテトラカルボン酸二無水物とp−フエニレンジアミンとの重縮合反応によって得られるPA酸、ピロメリット酸二無水物と4,4´−ジアミノジフェニルメタンとの重縮合反応によって得られるPA酸等である。
一方10- cm/cm/℃桁のものでは、例えばピロメリット酸二無水物又は3,3´,4,4´−ビフェニルテトラカルボン酸二無水物と4,4´−ジアミノジフェニルエーテルとの重縮合反応によって得られるPA酸、ピロメリット酸二無水物と4,4´−ビス(3アミノフェノキシ)ビフェニルとの重縮合反応によって得られるPA酸、3,3´,4,4´−ベンゾフェノンテトラカルボン酸二無水物と4,4´−ジアミノジフェニルケトンとの重縮合反応によって得られるPA酸、3,3´,4,4´−ベンゾフェノンテトラカルボン酸二無水物と4,4´−ジアミノジフェニルスルホンとの重縮合反応によって得られるPA酸、トリメリット酸無水物と4,4´−ジアミノジフェニルエーテルとの重縮合反応によって得られるPA酸(PAIの前駆体)等である。
【0022】
又前記するように、10- cm/cm/℃桁のPIは、10- cm/cm/℃桁のPIと10- cm/cm/℃桁のPIの二種ブレンドポリイミドのPA酸ても良いが、これは例えば前記する3,3´,4,4´−ビフェニルテトラカルボン酸二無水物と4,4´−ジアミノジフェニルエーテルとの重縮合反応によって得られるPA酸と3,3´,4,4´−ビフェニルテトラカルボン酸二無水物とp−フエニレンジアミンの重縮合反応によって得られるPA酸とのブレンドPA酸が挙げられる。因みに前者のPA酸による線膨張係数は4.1〜4.3×10- cm/cm/℃、後者のそれは6〜7×10- cm/cm/℃であり、この両者を例えば前者10〜40重量%、後者90〜60重量%をブレンドして得られるPI絶縁層の有するで線膨張係数は1.6〜2.0×10- cm/cm/℃程度になる。
【0023】
そして、半導電化のためのCB粉体は次のようなものである。
これにはその製造原料(天然ガス、アセチレンガス、コールタール等)と製造条件(燃焼条件)とによって種々の物性(電気抵抗、揮発分、比表面積、粒径、pH値、DBP吸油量等)を有したものがある。可能なかぎり少量の混合分散でもって、より低い電気抵抗値が容易に得られるようなCB粉体、例えばストラクチャーの発達した導電指標の高いものとか(これはアセチレンガスを原料として製造して得たCB粉体に多い)、或いは導電指標はあまり高くないが、pH値を低くするような、揮発成分を多く含有するようなCB粉体を選ぶのが良い。しかしながら、余りにも少量添加で、より低い電気抵抗値が得られるようなCB粉体は、付与される電気抵抗値にバラツキが発生し易い場合もあるので、その点事前に十分チェックして支障をきたさないように適正なCB粉体を選ぶのがよい。
【0024】
更に有機溶媒は、前記PA酸を均一に溶解させるものであるが、これは一般にPA酸の溶媒として知られている、非プロトン性の有機極性化合物が例示できる。例えばN−メチル−2−ピロリドン(NMPと略す)、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホン等である。
【0025】
そして前記各成分を組成して電絶PA酸溶液1又は半導電PA酸溶液1が得られるが、その調製は例えば次のような手順で行われる。
まず電絶PA酸溶液1の場合は、前記二種(三種でも良い)の出発原料を有機溶媒中で重縮合反応して相当する高分子量PA酸の溶液を得て、これを該溶液1とするのが良い。つまり前記例示する2つの出発原料の当量を、該溶媒中で常温以下(以上では溶解に困難をきたす、イミド化反応も起こる)の低温で重縮合反応する。重縮合したPA酸(固形分)は、所定の溶液粘度をもって溶液状で得られる。ここで微細酸化ケイ素を含有させようと思えば、この得られた溶液に所定量(一般にPA酸に対して1〜3重量%でよい)添加し十分に攪拌混合しておけばよい。該粘度の調整が必要である場合には、該溶媒を追加して溶解希釈する。
ここでのPA酸と有機溶媒との組成比は、後記する無遠心噴霧成形との間で自ずから決まるが、この成形法ではより高粘度溶液(1Pa・s以上、2〜7Pa・s)の該溶液1が使用できるので(請求項7)、より高いPA酸濃度とするのがよい。
又該溶液1には、基本的にはCB粉体は勿論、他の導電剤も混合されないが、仮にPI半導電層の有する表面抵抗値が1012Ω/□程度以下であれば、CB粉体を微量混合して1015Ω/□程度に調製してこれをPI絶縁層としても良い。
尚、PA酸は基本的には閉環イミド基は有しないが、有機溶媒に溶解する範囲以内であれば該イミド基を有するPA酸であっても良い。
【0026】
一方半導電PA酸溶液1は次のようにして調製される。
前記得られた電絶PA酸溶液1に所定のCB粉体を添加して、まず羽根付きハイミキサーで予備的混合を行い、最後にボールミルで本格的に混合分散する。この場合も該粘度の調整が必要であるに場合は、該溶媒を追加して溶解希釈すれば良い。ここで該CB粉体の混合量は、前記する該粉体の特性の差、所望する電気抵抗値(ここでは表面抵抗値)によって変わる。例えば表面抵抗値で10〜1015Ω/□の間での半導電性を必要とする場合には、固形分(PA酸)に対して約5〜25重量%である。そしてこの場合の有機溶媒量も、後記する成形法の差によって異なる。つまり溶液粘度との関係で決まる。
【0027】
そして前記調製された電絶PA酸溶液1又は半導電PA酸溶液1は成形原液として次の無遠心噴霧成形法に供せられる。以下この成形法について説明する。
【0028】
まず無遠心噴霧成形法に使われる成形装置としては、概略次のような機構によりなる。
両端開口の金属ドラムが2本の回転ローラ上に(着脱自在に)載置される。該ドラムは、該ローラの回転によって間接回転する機構を採る。そして該ドラム内を加熱するための加熱源(例えば遠赤外線)が外側上部に設けられている。ここで該ローラ内にも加熱源が設けられ、該ドラムの補助的加熱を行う。そして、該ドラム内には、該面から所定間隔離して水平に左右動し、且つ挿脱自在機構を有してなる成形原液吐出用スリット状ノズルが設けられている。このノズルにはこの吐出口を挟んで圧空供給ノズルも合体して設けられている。これはギヤポンプ等を使って該ノズルに向かって供給されてくる成形原液を吐出口で圧空と合流させて噴霧化するためのものである。ここで該ノズルの出口幅(スリット幅)は、約0.2〜3mm、長さは約10〜100mmと言ったところである。これにより供給幅と供給量(塗布厚さ)が決まる。
そして、少なくとも該ドラムの全体は排気フアンを持った筐体で囲まれるようになっていて、回転成形中に加熱蒸発される有機溶媒を速やかに系外に除去される。勿論、成形原液は一回の噴射供給動作で全面均一に塗布されて、且つ所望するフイルム厚さが自由に得られるように、成形原液の供給量と該ドラムの回転速度と該ノズルの左動又は右動の速度とが自動的に制御されるようにコンピューターが組み込まれてもいる。
【0029】
そして前記成形装置による成形手順は、概略次の通り行われる。
まず前記ノズルが、金属ドラムの内右端の上位置に30〜50mm程度離して配置される。そして該ドラムは、コンピューター制御された所定の回転速度(勿論遠心力の作用しない角速度、例えば4〜6rad/s程度の低速度で回転を始める。次に(若干時差をおいて)所定量の成形原液の噴霧状供給と共に、該ノズルの右端から左端への移動がコンピューター制御下でスタートする。右端から左端への供給が終わったら直ちに噴射供給を停止し、該ノズルは一旦原位置に自動復帰させ、更に後退させて系外に出される。
次に回転し続けている金属ドラムを筐体で囲み、前記加熱源による加熱をスタートし、該ドラム内を所定温度に保つ。この加熱の開始と共に、前記筐体の排気フアンの稼働もスタートする。この時の回転速度は、当初の速度と同じである場合と、更に若干速く又は遅く(勿論無遠心力下の速度で、一般には前記最初の速度の0.5〜3倍程度)する場合がある。ここでの加熱条件は基本的には、有機溶媒の蒸発温度よりも高いが、イミド化温度(200〜450℃程度)よりも低い温度(約100〜150℃)とする。これはここで有機極性溶媒の全てを除去せずに一部を残存させておく為と、イミド化を実質的に進めない為である。
【0030】
前記A1工程で条件とする有機溶媒の一部残存のことと、(ここでイミド化は実質的に行わずに)実質的電気絶縁性又は半導電性のポリアミド酸無端管状フイルムの状態で止めておく理由は次の通りである。
まず有機溶媒の一部残存の必要性は、前記表面層の内面に対して裏面層用成形原液が弾くようなこともなく、極めて濡れ良く均一に積層塗布できることと、両層が一体的に密着積層され、層間剥離を起こすようなことも起こらない等による。
ここで一部残存の一部の意味は、上記作用効果の最も有効な発現はその残存量が多くても少なくて良くなく、適正な残存範囲がありそれを一部と表現している。従ってその一部の適正量はこの作用効果との関係から導き出されるが、本発明者等の検討では、請求項8で提供するように、固形分(PA酸)に対して20〜60重量%、好ましくは30〜50重量%と言ったところである。
一方、ポリアミド酸無端管状フイルムの状態で止めておくのは、主として前記一部溶媒残存の作用効果中、特に裏面層との一体的密着をより効果的に作用させる為と、表面層に発生し易いクラックの防止のためである。
【0031】
次に(B)の第二工程(以下B2工程と呼ぶ)について説明する。
【0032】
B2工程は、前記A1工程で成形され金属ドラムに付着支持されている実質的電気絶縁性又は半導電性のポリアミド酸無端管状フイルムの内面に、PA酸とCB粉体と有機溶媒とからなる半導電性ポリアミド酸溶液(以下半導電PA酸溶液2と呼ぶ)又はPA酸と有機溶媒とからなる実質的電気絶縁性ポリアミド酸溶液(以下電絶PA酸溶液2と呼ぶ)を、実質的無遠心力の速度で回転する該ドラムの内面に噴霧状で均一に供給し加熱して(以下無遠心噴霧成形法2と呼ぶ)半導電性又は実質的電気絶縁性の無端管状のポリアミド酸を積層成形する工程である。
【0033】
前記成形原液としての半導電PA酸溶液2及び電絶PA酸溶液2の調製法、組成比、溶液粘度を始め、無遠心噴霧成形法2は、前記A1工程で説明した半導電PA酸溶液1、電絶PA酸溶液1及び無遠心噴霧成形法1と同じ条件内で行われるので再度の説明は割愛する。但し実際に積層する場合の諸条件は、同じ場合もあれば異なる場合もある。
又、該工程での加熱条件は、必ずしも前記A1工程と同じにするものではないが、しかし該A1工程と同じように、有機溶媒一部残存と更にイミド化が進行しない加熱条件で行うのが望ましい。これは両層同じ条件の範囲で形成されていることになるので、最後に行う第三の(C)工程は同一の加熱条件で同時に終了させることができ、製品として得られるMLフイルムも最高の品質・性能をもって製造するのにより有効であるからである。
【0034】
又、前記A1工程とB2工程で積層する各無端管状PA酸フイルムの層厚は、次の要因を加味して総合的に決められる。
まず最終得られるMLフイルムの屈曲性、強度の点から全厚が決められる。これは約50〜150μmの範囲が例示できる。そしてこの全厚の中でPI半導電層とPI絶縁層の各層厚が決められるが、これはPI絶縁層が必要とする帯電量(静電容量)と耐電圧(絶縁耐力)を得るに要する層厚、それを帯電させるに必要とするPI半導電層の厚さ、更には本発明の課題である湾曲の点を考慮して、最適各層厚が設定される。ここで特に湾曲解消の点からは、線膨張係数の小さい層の層厚は、これの大きい層の層厚よりも厚く設定した方が好ましい。
【0035】
次に最後に行う、(C)の第三工程(以下C3工程と呼ぶ)について説明する。
C3工程は、前記B2工程で得られた実質的電気絶縁性と半導電性を有してなる二層PA酸無端管状フイルムを、残存有機溶媒の実質的完全除去とPA酸成分の実質的完全イミド化を、特に熱風加熱手段により行うものである。
従って熱風温度は、この両者が円滑に進行するような温度での処理と言うことになる。この具体的温度は、まず常温から徐々に昇温して110〜200℃程度に到達したら一旦この昇温を停止して、その温度で一定時間(一般に40〜100分間程度)加熱して残存溶媒の大部分を蒸発除去する。そして引き続き徐々昇温して行き、350〜450℃程度に到達したら昇温を停止して、その温度で一定時間(一般に40〜80分間程度)し、終わったら冷却して製品としてのMLフイルムを得る。
ここで特に熱風を加熱媒体とするのは、単なる加熱に比べて、発生する残存溶媒とイミド化の際に発生する縮合水が素早く系外に除去されることによる。その結果得られるMLフイルムは、本来有する特性を変えることなく高品質・高性能もって得られる。
【0036】
尚、前記熱風加熱手段としては次の二つの方法がある。いずれの方法を採るかは基本的には加熱収縮の程度で決める。つまり加熱収縮傾向のものは(例えば3〜8%程度)はA法の収縮規制下での加熱を行うのが良い。
(A法)・・金属ドラム内周面に付着している積層PA酸無端フイルムをを剥離し、これを別設の中空管状金型(該フイルムの内径よりも若干小さ目の外径)に嵌挿して、これを熱風乾燥機の中で熱風加熱する。
(B法)・・金属ドラム内周面に付着したままで、該ドラムごと熱風乾燥機に投入して熱風加熱する。
尚、ここでの加熱で特に前記設定した各層の層厚は薄くなるが、この設定厚範囲を越脱するような大きな収縮はなく、小さなものである。
【0037】
本発明による前記MLフイルムは、内側又は外側のいずれ側にも湾曲のないものであることは勿論、ムラのない電気抵抗値、安定した帯電性、優れた絶縁耐力等も有する。これ等を具備する該フイルムは、種々の用途に有効活用できる。取り分け請求項9でも提供するように、カラー複写機の中間転写ベルトとしての使用が有効である。
尚、該中間転写ベルトとしての使用に関しては、特に機構変更と言ったことはなく、既存のカラー複写機に装着使用できるので、装置としての説明は割愛する。
【0038】
【実施例】
次に比較例と共に実施例によって更に詳述する。
尚、線膨張係数、湾曲度、表面抵抗値(Rs、Ω/□)及び耐電圧は次の方法により測定したものである。
●線膨張係数(cm/cm/℃)・・各層を形成するPI絶縁層とPI半導電層に相当する各フイルムを作製し、これをサンプルとして、各々について次の条件で測定したものである。
測定器は株式会社島津製作所製の熱機械分析装置TMA−50の熱分析システムTA−50WS、サンプルは周方向にカットした長さ10mm、この長さの範囲で、測定温度は100〜200℃の範囲で、5℃/分の速度で昇温しつつ連続測定した。得られた各点での線膨張係数を平均して算出し該係数とした。
●湾曲度・・正面図で示す図1の測定具により測定した。つまり直径40mmの張架ロール1が固定されていて、これにサンプルの一端を引っかけ垂下状態にし、そして他端に同径の重さ2kgの加重張架ロール2(フリー)をはめて吊り下げる。そして該ロール1の中心線3から100mm下の4の位置で内側(想像線7)又は外側(想像線6)への湾曲幅を測定しmmで表す。全く湾曲のない場合(実線5)の幅40mmと比較する。
尚、本発明に言う非湾曲は、少なくとも2個のローラに2kgの張力で張架した場合、湾曲があっても回転に支障のない場合を言うが、数字的には全く湾曲のない場合に対して±1.15倍以内、より小さく±1.10倍以内が例示される。
●Rv・・サンプルに付き、三菱化学株式会社製の抵抗測定器“ハイレスタIP・HRプローブ”を使って、等ピッチで幅方向に5カ所と縦(周)方向に8カ所を全体(合計40カ所)に渡って測定し、各々平均して幅方向と縦(周)方向の測定値として示す。ここでの測定は、1kV印加の下10秒経過後に行う。
●耐電圧・・測定器は“KIKUSUI ELECTRONICS CORP社製の電圧テスター(WITHSTANDING VOLTAG TESTER)/機種 TOS8750”を使用。測定は110×110mmにカットしたサンプルを、100×100mmの板状電極に挟んで1kV/10秒の昇電速度で電圧を印加し、電流値が10mAを超えた時点の電圧を測定した。
【0039】
(実施例1)
まず半導電PA酸溶液1と電絶PA酸溶液2とを次のようにして調製した。
<半導電PA酸溶液1>
まず3,3´,4,4´−ビフエニルテトラカルボン酸二無水物とp−フエニレンジアミンとの当モル量をNMP溶媒中、20℃で重縮合反応させて、固形分濃度18重量%の芳香族PA酸溶液1(溶液粘度5Pa・s)を4kg合成した。そしてこの2kgを採取し、これに101.5gのCB粉体(pH3、比表面積180m/、粒子径25μm、体積抵抗値10Ω・cm)(固形分に対して22重量%)とNMP462.4g(溶液粘度調製用)とを羽根付きの攪拌機で攪拌しつつ予備的混合し、更にこれをボールミルに移し換えて十分に混合分散した。このものの溶液粘度は4.3Pa・sであった。
<電絶PA酸溶液2>
ピロメリット酸二無水物と4,4´−ジアミノジフェニルエーテルとの当モル量をNMP溶媒中、20℃で重縮合反応させて、固形分濃度18重量%の該溶液2を2kg合成した(溶液粘度4.7Pa・s)。
【0040】
次に、各層を形成する半導電層と電気絶縁層の線膨張係数を知るため、予め次の通り製膜し、得られた各フイルムについて該係数を求めた。
前記の半導電PA酸溶液1と電絶PA酸溶液2の一部を採取して、各々をガラス板に塗布し、熱風乾燥機に入れて加熱乾燥した。加熱乾燥の条件は、まず130分間を要して120℃まで昇温し、まずその温度で50分間加熱し、次に120分間要して450℃まで昇温して、その温度で60分間加熱した。得られたフイルムをガラス板から剥離した。該フイルムの厚さは半導電性のものでは73μm、電気絶縁性のものでは69μmであった。この各サンプルの線膨張係数を測定した。
測定結果は、半導電性フイルムでは1.6〜1.7×10−5cm/cm/℃、絶縁性フイルムでは1.9〜2.0×10−5cm/cm/℃であった(両者平均値を採って倍率を見ると、これは半導電性フイルムの約1.19倍にある)。
【0041】
参考までに、前記半導電PA酸溶液1の原液の芳香族PA酸溶液1についても前記同様にガラス板に塗布し、加熱乾燥して71μmのPIフイルムを製膜し、線膨張係数を求めた。それは6.2〜6.3×10−6cm/cm/℃であった。この結果を前記半導電性フイルムの線膨張係数と比較すると、CB粉体を混合分散させたことで線膨張係数が一桁、大きくなっていることが判る。
【0042】
次に前記半導電PA酸溶液1と電絶PA酸溶液2との必要量を使って、次の条件でまず無遠心噴霧成形を行ない、半導電層が表面に、絶縁層が裏面になるようにして二層の無端管状PA酸フイルムに成形した。
尚、ここで使用した成形装置と成形手順は、前記本文中の記載に基づくが、詳細は次の通りであった。
【0043】
<成形装置>
◎金属ドラム・・内面鏡面仕上げ(クロムメッキ、Rz=0.6μm)、両端開口の幅550mm、内径260mmのステンレス製円筒体、
◎スリット状ノズル(ヘッド)・・吐出口幅0.5mm、長さ80mmのノズル。
【0044】
<成形手順>
まず前記半導電PA酸溶液1を用いて、該スリット状ノズルを金属ドラム内右端に該ドラム面から50mm離してセットしたら、4rad/sの角速度でゆっくりと回転を始めた。この回転の10秒後に、左方向移動速度5.0mm/秒に制御された該ノズル(この速度は終始一定)から噴霧供給量68.7g/分で移動しつつ噴霧を開始した。そして該ノズルが左端にきたら直ちに噴射と移動を停止し、原位置に復帰させると共に、一旦系外に取り出した。
【0045】
次に前記回転速度を維持しつつ、金属ドラムを筐体で囲い加熱を開始した。加熱条件は、まず130分間を要して120℃(該ドラム内温度)まで昇温し、まずその温度で30分間加熱した(この加熱の間は、筐体に付設された排気フアンによって蒸発する有機溶媒は、積極的に系外に排出除去されている)。該加熱が終了したら、加熱を停止し常温に冷却し回転を停止した。金属ドラム内面には固形化した半導電性の無端管状PA酸フイルムか付着されていた。この端部を切り出して残存NMP量を測定したところ30重量%あり、そしてIR分析によりイミド基の有無を確認したが、その吸収ピークは見られなかった。又厚さを測定すると43μmであった。
【0046】
そして引き続き、前記金属ドラム付着の半導電性無端管状PA酸フイルムの内面に、前記電絶PA酸溶液2を使って前記同様にして無遠心噴霧成形した。
但し、この時の噴霧供給量は99.8g/分、加熱は140分間を要して140℃、140℃で60分間加熱した。冷却して金属ドラムから剥がして、二層積層の無端管状PA酸フイルムを得た。このものの全厚は98±2μmであった。
【0047】
最後に、前記得られた無端管状PA酸フイルムを、本文中(A法)として例示する熱風加熱手段により熱風加熱して、残存溶媒の蒸発除去とイミド化とを行い目的とする二層MLフイルム得た。
尚、ここで該A法条件は次の通りであった。
●中空管状金型=外径250mm、長さ450mmで表面はクロムメッキ仕上げ、●熱風加熱=熱風乾燥機を使い、この中でまず120℃で60分間,次に120分間要して450℃まで昇温して、その温度で60分間加熱して終了。
【0048】
前記得られた二層MLフイルムは、両端を50mmずつトリミングして幅450mmに仕上げた。該フイルムの全厚は79±1μmであった。
そして該フイルムについて湾曲度、Rv、耐電圧を測定したところ次の通りであった。
湾曲度=外側に42mm(非湾曲40mmに対して1.05倍で極めて僅少)、Rv=7±0.8×1014Ω/□、耐電圧=5kVでも絶縁破壊なし。
【0049】
(実施例2)
まず半導電PA酸溶液1と電絶PA酸溶液2とを次のようにして調製した。
<半導電PA酸溶液1>
前記実施例1で調製した半導電PA酸溶液1を使用。
<電絶PA酸溶液2>
まず3,3´,4,4´−ビフエニルテトラカルボン酸二無水物と4,4´−ジアミノフエニルエーテルとの当モル量をNMP溶媒中、20℃で重縮合反応させて、固形分濃度18重量%の芳香族PA酸溶液2(溶液粘度4.9Pa・s)を2kg合成した。そしてこの300gと前記実施例1で半導電PA酸溶液1の原液として合成した芳香族PA酸溶液1の700gとを混合してブレンド液を調製して該溶液2とした。
【0050】
次に、電気絶縁層を形成するフイルムの線膨張係数を測定するために、前記電絶PA酸溶液2のブレンド液の一部を採取して、前記実施例1と同様にしてガラス板に塗布・熱風乾燥してブレンドPIフイルムを製膜した。得られたフイルムの厚さは77μmであり、線膨張係数は1.7〜1.8×10−5cm/cm/℃であった。
尚、前記半導電PA酸溶液1により形成される半導電層のフイルムの線膨張係数は、実施例1と同じの1.6〜1.7×10−5cm/cm/℃。従って、この該絶縁層となるブレンドPIフイルムの線膨張係数は該半導電性フイルムの約1.06倍と言うことになる。
【0051】
次に前記半導電PA酸溶液1と電絶PA酸溶液2とを使って、まず実施例1と同一条件で無遠心噴霧成形を行ない、半導電層が表面に、絶縁層が裏面になるようにして二層の無端管状PA酸フイルムに成形した。金属ドラムから剥離し全厚を測定したら97±3μmであった。
尚、第一回の無遠心噴霧成形により成形された半導電性の該フイルム中の残存溶媒量は29重量%含有され、又厚さを測定すると42μmであった。
【0052】
最後に前記得られた積層無端管状PA酸フイルムを、前記実施例1と同一条件で熱風加熱して、残存溶媒の蒸発除去とイミド化とを行い目的とする二層ML管状フイルム得た。
【0053】
前記得られた二層MLフイルムは、両端を50mmづつトリミングして幅450mmに仕上げた。該フイルムの全厚は81±1μmであった。
そして該フイルムについて湾曲度、Rv、耐電圧を測定したところ次の通りであった。
湾曲度=外側に40.8mm(非湾曲40mmに対して1.02倍で実質的に反りなし)、Rv=6±0.6×1014Ω/□、耐電圧=5kVでも絶縁破壊なし。
【0054】
(比較例1)(線膨張係数関係が0.8倍未満の場合)
まず(比較用)半導電PA酸溶液3と電絶PA酸溶液3とを次のようにして調製した。
<半導電PA酸溶液3>
前記実施例1で調製した半導電PA酸溶液1を該溶液3に使用。
<電絶PA酸溶液3>
前記実施例1で半導電PA酸溶液1の原液として合成した芳香族PA酸溶液1を該溶液3に使用。
【0055】
尚、前記半導電PA酸溶液3により形成される半導電層の線膨張係数は、前記実施例1で測定したように1.6〜1.7×10−5cm/cm/℃、電絶PA酸溶液3により形成される絶縁層の線膨張係数は、前記実施例1で求めた6.2〜6.3×10−6cm/cm/℃。従って、これにより積層形成される半導電層と絶縁層の有する線膨張係数は、該絶縁層は半導電層の約0.4倍と言うことになる。
【0056】
次に前記半導電PA酸溶液3と電絶PA酸溶液3とを使って、まず実施例1と同一条件で無遠心噴霧成形を行ない、半導電層が表面に、絶縁層が裏面になるようにして二層の無端管状PA酸フイルムに成形した。金属ドラムから剥離し全厚を測定したら100±3μmであった。
尚、第一回の無遠心噴霧成形により成形された半導電性の該フイルム中の残存溶媒量は32重量%含有され、又厚さを測定すると44μmであった。
【0057】
最後に前記得られた積層無端管状PA酸フイルムを、前記実施例1と同一条件で熱風加熱して、残存溶媒の蒸発除去とイミド化とを行い目的とする二層MLフイルム得た。
【0058】
前記得られた二層MLフイルムは、両端を50mmずつトリミングして幅450mmに仕上げた。該フイルムの全厚は84±1μmであった。
そして該フイルムについて湾曲度、Rv、耐電圧を測定したところ次の通りであった。
湾曲度=外側に54mm(非湾曲40mmに対して1.33倍)、Rv=6.9±0.9×1014Ω/□、耐電圧=5kVでも絶縁破壊なし。
Rv、耐電圧については前記実施例と差はないが、本発明が最小限必要とする非湾曲度よりもはるかに大きく実用できないレベルである。例えばこのようなMLフイルムをベルトとして使用すると、まず平面そのものが出ない。又仮に蛇行防止対策を採って回転しても蛇行は避けられないと言ったことが起きる。
【0059】
【発明の効果】
本発明は前述の通り構成されているので、次のような効果を奏する。
【0060】
湾曲しない積層無端管状PI系フイルムが安定して製造できるようになったことと、合わせて安定した帯電性と絶縁耐力、回転耐久性にも優れた品質・性能を付与させることができるようになった。
【0061】
前記の優れた特性を有することで、より一層に種々の用途に有効に使用されるようになるが、就中カラー複写機の中間転写ベルトとしての使用は、より一層高品質・性能をもって有効なものとなる。
【図面の簡単な説明】
【図1】湾曲度測定具を正面図で示したものである。
【符号の説明】
1 張架ロール(固定)
2 加重張架ロール(フリー)
4 測定位置
5、6、7 吊り下げサンプル
[0001]
BACKGROUND OF THE INVENTION
In particular, the present invention improves the curvature of a polyimide-based multilayer endless tubular film composed of a semiconductive layer made of polyimide and an electrically insulating layer, and has stable electrical resistance and high dielectric strength (voltage resistance). The present invention relates to a polyimide-based multilayer endless tubular film, a method for producing the same, and a use thereof. As an example of its use, an intermediate transfer belt of a color copying machine is effective.
[0002]
[Prior art]
About the polyimide multilayer endless tubular film (belt), the following is known.
(D) The film comprising a polyimide semiconductive layer (inner surface layer) provided by conductive carbon black as an inner layer and a fluorine resin as an outer layer (surface layer) to form an electrically insulating layer (dielectric layer).
(E) The polyimide semiconductive layer provided by conductive carbon black is used as an inner layer or an outer layer (surface), and a polyimide electrical insulating layer (dielectric layer) is laminated on the outer layer or the inner layer as a film (for example, a special feature by the present applicant). (Kaihei 07-156287, JP-A-11-235765).
As the production method (D), first, a semiconductive polyamic acid solution is molded and heated by a known centrifugal molding method or the like to obtain the film of the semiconductive polyimide (semiconductive layer). Then, an emulsion-like fluororesin is spray-applied on the surface of this film and baked, or a preformed endless tubular fluororesin is fitted into the semiconductive layer, and each of the surface layers is an insulating layer. It is a film.
On the other hand, in the production method (E), an insulating or semiconductive polyamic acid solution is first formed into a corresponding layer by a known centrifugal molding method or the like, and then a semiconductive or insulating polyamide is formed on the inner surface of the single layer. The acid solution is similarly molded by centrifugal molding. Finally, heating for complete desolvation and imidization is performed to form a corresponding two-layer film.
It is also known that these films are used as an intermediate transfer belt of a color copying machine, for example.
[0003]
[Problems to be solved by the invention]
The film known in (E) is characterized by superior surface wear resistance and no danger of delamination compared to the film described in (D). This can be said that the electrostatic capacity of the electrical insulating layer (dielectric layer) does not change with time, so that it can be charged at a constant voltage and has excellent durability. Therefore, recently, attention has been directed to the film (E), and use of the color copying machine as an intermediate transfer belt has been actively studied.
However, this study has also revealed that there are the following problems.
That is, the obtained film may be curved outward or inward. Even if it is not substantially curved, it may gradually bend when used as a belt for a long time. This curvature is important in terms of product quality inspection because it causes image distortion (when used as the intermediate transfer belt) and rotational meandering (depending on the degree).
In addition, particularly when a voltage is applied positively to charge the polyimide electrical insulating layer (for example, when used as the intermediate transfer belt), there is a case where dielectric breakdown is likely to occur even when a lower voltage is applied. There was a weak side in the dielectric strength.
[0004]
Therefore, the present inventors first examined the cause. As a result, it was found that the curvature is likely to be caused by the thermal characteristics of the semiconductive layer and the electrical insulating layer, and the dielectric strength is likely to be caused by the manufacturing method. Therefore, this time, we studied diligently to solve this cause at once. As a result, the means described in claims 1 and 6 has been found and the present invention has been achieved.
[0005]
[Means for Solving the Problems]
That is, according to the present invention, first, a polyimide-based multilayer endless tubular film comprising a semiconductive polyimide layer provided by conductive carbon black and a substantially electrically insulating polyimide layer is provided. The polyimide-based multilayer endless tubular film is characterized in that the linear expansion coefficient of the insulating polyimide layer is 0.8 to 1.3 times the linear expansion coefficient of the semiconductive polyimide layer.
[0006]
As an invention dependent on claim 1, claims 2 to 5 are further provided and preferably solved.
[0007]
And although the polyimide-type multilayer endless tubular film provided in the said Claims 1-5 can be most effectively obtained by the special manufacturing method provided in Claim 6, the manufacturing method is the following (A)- Each step described in (C) is performed sequentially.
(A) A substantially electrically insulating polyamic acid solution containing a polyamic acid and an organic solvent or a semiconductive polyamic acid solution containing a polyamic acid, a conductive carbon black powder and an organic solvent, First, the inner surface of the drum rotating at a speed of 5 is uniformly sprayed and heated to form a substantially electrically insulating or semiconductive polyamic acid endless tubular film containing a part of the solvent. Process,
(B) A semiconductive polyamic acid comprising a polyamic acid, a conductive carbon black powder and an organic solvent on the inner surface of a substantially electrically insulating or semiconductive polyamic acid endless tubular film formed on the inner surface of the metal drum. A substantially electrically insulating polyamic acid solution consisting of a solution or polyamic acid and an organic solvent is uniformly supplied in the form of a spray on the inner surface of the drum rotating at a speed of substantially no centrifugal force and heated to be semiconductive or A second step of laminating a substantially electrically insulating endless tubular polyamic acid;
(C) The third step in which the laminated polyamic acid endless tubular film obtained in the second step is heated with hot air to evaporate and remove the remaining organic solvent, and imidize the polyamic acid component to change it into a corresponding polyimide endless multilayer tubular film. .
[0008]
Further, claims 7 and 8 are also provided as inventions dependent on the manufacturing method, and preferably solved.
[0009]
With respect to the use of the polyimide-based multilayer endless tubular film, it is also provided in claim 9 that it can be effectively used as an intermediate transfer belt of a color copying machine.
The present invention will be described in detail in the following embodiments.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, the polyimide-based multilayer endless tubular film of the present invention (hereinafter simply referred to as ML film) is a semiconductive polyimide (PI semiconductive layer) made of semiconductive polyimide provided by conductive carbon black (hereinafter referred to as CB powder). And a substantially electrically insulating polyimide (substantially not using a conductive agent such as CB powder), and laminating an electrical insulating layer (PI insulating layer). That is, it is basically composed of these two layers, and the arrangement relationship between the semiconductive layer and the electrically insulating layer is not particularly limited, and the semiconductive layer may be a surface layer or a back layer. Adopt a structure that there is also.
The film is basically composed of two layers, but it does not exclude that the same layers are alternately laminated between the two layers.
[0011]
The basic structure of the ML film is as described above. In the present invention, however, the ML film is not simply constituted by the PI semiconductive layer and the PI insulating layer, but is specified by the linear expansion coefficient and constituted by it. . That is, the linear expansion coefficient of the PI insulating layer is 0.8 to 1.3 times, preferably 0.9 to 1.2 times that of the PI semiconductive layer. Furthermore, it is necessary to be 1 to 1.1 times. By constituting both layers in the range specified in this way, the above-mentioned problem of bending of the ML film is solved at once. The meaning of this range is that when the linear expansion coefficient of both layers is the same or the linear expansion coefficient of the PI insulating layer is large, that of the PI semiconductive layer is reduced, and conversely the linear expansion coefficient of the PI insulating layer. If is small, it is to increase that of the PI semiconductive layer, but this is also achieved only by setting the minimum to 0.8 times and the maximum to 1.3 times. In other words, even if the linear expansion coefficient of the PI insulating layer is larger than that of the PI semiconductive layer and exceeds 1.3 times, or conversely, it is small and less than 0.8 times, the bending phenomenon occurs. A satisfactory solution cannot be obtained.
[0012]
In terms of the bending problem, the linear expansion coefficient of each of the PI semiconducting layer and the PI insulating layer according to claim 2 is basically solved in the range of conditions, but more effective. Are different in the same number of digits, and are still in the range of 0.9 to 1.2 times, preferably 1 to 1.1 times, which is preferably set. That is, for example, the linear expansion coefficient of the PI semiconductive layer is 1 × 10.-5If it is cm / cm / ° C., that of the PI insulating layer is also 1 to 1.2 × 10 with the same number of digits.-5That is, it is in the range of cm / cm / ° C.
[0013]
The PI semiconductive layer and the PI insulating layer are in the linear expansion relationship as described above. The linear expansion is governed by the presence or absence (degree) of molecular orientation of the obtained ML film. Is polyimide (PI), that is, PI itself. Accompanying this, the CB powder is also affected by the mixing and dispersion, and the linear expansion coefficient of the PI itself may be lowered slightly, or it may act in the reverse direction.
[0014]
The linear expansion coefficient of the PI itself varies basically depending on the molecular structure constituting the PI, but almost all are (1 to 9.9 × 10- 5) To (1 to 9.9 × 10- 6) In the range of cm / cm / ° C.
Linear expansion coefficient is 1 to 9.9 × 10- 5Those in the range of cm / cm / ° C. generally have a secondary transition point, a PI of about 250-420 ° C., and 1-9.9 × 10- 6Those in the cm / cm / ° C. range generally have a higher or substantially no second order transition point and a PI of about 470 ° C. or higher. That is 10- 5PIs in the order of cm / cm / ° C. are found in those having a relatively mobile molecular structure. For example, two or more organic groups (phenyl group, biphenyl group, phenyl group) bonded to an imide group are represented by —O— or —SO.2-, -CO2-,-(CH2)1-3-Found in PI groups that are connected by, etc.
Meanwhile 10- 6PIs in the order of cm / cm / ° C. are found in those having a rigid molecular structure that is difficult to move. This is the -O-, -SO2-, -CO2-,-(CH2)1-3It can be seen in the PI group in which the imide group is connected only by an organic group having no-(phenyl group, biphenyl group, phenyl group).
[0015]
Appropriate PI is appropriately selected from each PI group as described above, and used as a matrix resin for each layer. For example, the following cases can be exemplified.
It is described in claim 3, and the PI of the semiconductive layer is (1 to 9.9 × 10- 6) Cm / cm / ° C. and the insulating layer PI is (1 to 9.9 × 10- 5) It is better to select ones in the order of cm / cm / ° C.
[0016]
In the case of the PI of the insulating layer, the 10- 5PI of 10 / cm / cm / ° C and 10- 6Even with a double blend polyimide of PI in the order of cm / cm / ° C.- 5The PI can be on the order of cm / cm / ° C. The mixing ratio of the two may be appropriately changed between about 5 to 95% by weight, but even within this range, the following is preferable. That is, the coefficient of linear expansion of the semiconductive layer is 10- 510 / cm / cm / ° C- 6The mixing ratio of PI in the order of cm / cm / ° C. is reduced, and conversely, the linear expansion coefficient of the semiconductive layer is 10- 510 / cm / cm / ° C- 6Reduce the mixing ratio of PI in the order of cm / cm / ° C.
[0017]
In the ML film of the present invention, the surface layer may be a PI semiconductive layer as described above, or conversely, it may be a back layer. However, when used as an intermediate transfer belt, for example, the PI semiconductive layer is used. When the surface layer is set as the surface layer and the PI insulating layer is set as the back surface layer, the following points may be preferable. However, this differs depending on the model (user) of the color copying machine, and this is not necessarily good.
The preferred point is that the CB powder is dispersed in the surface layer, so that the degree of static friction (or dynamic friction) between the belt surface and the (toner) cleaning member (for example, a urethane blade) is appropriately controlled. This is because the rotation start is easily performed smoothly (the start-up current is not excessively loaded), and the primary transfer of the toner image on the drum is easily performed faithfully.
[0018]
Further, regarding the point of static friction (or dynamic friction) effect with the cleaning member, if fine silicon oxide (for example, silicon dioxide) is dispersed in the PI insulating layer on the back surface, the effect between the back surface of the belt and the rotating roller can be reduced. Friction is also properly controlled. That is, friction is controlled on the front surface by CB powder and the back surface by silicon oxide, so that the rotation can be started more smoothly.
As for the friction control means, in particular, the surface layer is physically (physicochemically) roughened, inorganic powder (silicon oxide, titanium oxide, calcium carbonate, alumina, etc.), thermosetting resin powder, etc. A method of roughening by mixing and dispersing is known. In the present invention, it can be said that another feature has been added because proper friction control can be performed even in a combination of CB powder on the front surface and silicon oxide on the back surface.
[0019]
Next, the manufacturing method of the ML film of this invention is demonstrated.
The manufacturing method is not limited because it can be manufactured by a generally known centrifugal molding method or the like, but among them, “the inner surface of the drum rotating at a substantially no centrifugal force speed” in the manufacturing method provided in claim 6. Since the sprayed and uniformly supplied and heated "(hereinafter referred to as non-centrifugal spray molding method) is more effective in the following points as compared with the known centrifugal molding method, the production according to claim 7 is performed here. A method will be described.
◎ Since the forming stock solution is not spun and applied by centrifugal force at high speed, it can be applied and laminated smoothly and with high thickness accuracy, regardless of the state (properties) of the surface to be applied.
◎ Since the two layers do not mix at the interface between the front surface layer and the back surface layer, the PI insulating layer and the PI semiconductive layer are formed as they are without changing their characteristics.
A fine layer with no fine bubbles in the formation layer. It is considered that this effect is manifested in connection with an action that is excellent in dielectric strength.
In particular, in the case of molding by mixing inorganic additives, the additives are not unevenly distributed on the surface portion and are not dispersed at all, and can be obtained in a state of being uniformly dispersed throughout.
◎ It is a more effective molding method by using a molding stock solution having a higher solution viscosity. This reduces the amount of organic solvent used, thus greatly reducing manufacturing time.
◎ Because it is non-centrifugation (low-speed rotation), there is no fear of rotation blur of the metal drum, so that a drum with a larger diameter can be used. That is, the film having a larger diameter can be easily manufactured. In addition, the thickness accuracy is extremely high, and the unevenness can be further improved.
The above features will eventually contribute to the bend elimination action.
[0020]
First, the first step (hereinafter referred to as A1 step) described in (A) will be described.
In the step A1, a substantially electrically insulating polyamic acid solution (referred to as an ionized PA acid solution 1) containing a polyamic acid (hereinafter referred to as PA acid) and an organic solvent or a polyamic acid, CB powder and an organic solvent are added. The contained semiconductive polyamic acid solution (hereinafter referred to as semiconductive PA acid solution 1) is uniformly supplied in the form of a spray to the inner surface of the drum rotating at a substantially non-centrifugal force speed and heated (hereinafter referred to as non-centrifugal). Spray molding method 1), a substantially electrically insulating or semiconductive polyamic acid endless tubular film (hereinafter referred to as an ionized PA acid tubular film or a semiconductive PA acid tubular film) containing a part of the solvent. It is the process of shape | molding.
[0021]
First, the PA acid of the ionizing PA acid solution 1 or the semiconductive PA acid solution 1 as a forming raw material is a precursor of polyimide (PI) or polyamideimide resin (PAI) which is the matrix resin of the ML film. A two-stage system is adopted in which an endless tubular film having a partially organic solvent remaining, which is self-supporting in an acid stage, is formed, and then imidized with a complete solvent removal to form an ML film.
Here, the linear expansion coefficient for each layer depends on the PI to be selected, that is, the selection of the starting material for synthesizing the PA acid. Specific examples thereof are as follows.
10- 6In the order of cm / cm / ° C., for example, PA obtained by polycondensation reaction of pyromellitic dianhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine. PA acid obtained by polycondensation reaction of acid, pyromellitic dianhydride and 4,4'-diaminodiphenylmethane.
Meanwhile 10- 5In the order of cm / cm / ° C., for example, it is obtained by polycondensation reaction of pyromellitic dianhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether. PA acid obtained by polycondensation reaction of pyromellitic dianhydride with 4,4′-bis (3aminophenoxy) biphenyl, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride Of PA acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-diaminodiphenylsulfone obtained by polycondensation reaction of the product with 4,4′-diaminodiphenyl ketone. PA acid obtained by condensation reaction, PA acid obtained by polycondensation reaction of trimellitic anhydride and 4,4'-diaminodiphenyl ether (precursor of PAI) ) Etc.
[0022]
As mentioned above, 10- 5PI of cm / cm / ° C. digit is 10- 5PI of 10 / cm / cm / ° C and 10- 6The PA acid of a two-blend polyimide of PI of the order of cm / cm / ° C. may be used, for example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 4,4′-diamino described above. A blend PA acid of PA acid obtained by polycondensation reaction with diphenyl ether, PA acid obtained by polycondensation reaction of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine is Can be mentioned. Incidentally, the former linear expansion coefficient by PA acid is 4.1 to 4.3 × 10.- 5cm / cm / ° C., the latter being 6-7 × 10- 6The coefficient of linear expansion is 1.6 to 2.0 × 10 6 having a PI insulating layer obtained by blending both the former 10 to 40% by weight and the latter 90 to 60% by weight, for example.- 5It becomes about cm / cm / ° C.
[0023]
The CB powder for semiconducting is as follows.
There are various physical properties (electrical resistance, volatile content, specific surface area, particle size, pH value, DBP oil absorption, etc.) depending on the raw materials used for production (natural gas, acetylene gas, coal tar, etc.) and production conditions (combustion conditions). Some have CB powder that can easily obtain a lower electrical resistance value with as little mixing and dispersion as possible, such as a high conductivity index with a developed structure (this was obtained by producing acetylene gas as a raw material) CB powder), or the conductivity index is not so high, but it is preferable to select a CB powder containing a large amount of volatile components that lowers the pH value. However, CB powder that can obtain a lower electrical resistance value with the addition of a too small amount may easily cause variations in the applied electrical resistance value. It is recommended to select an appropriate CB powder so as not to come.
[0024]
Furthermore, the organic solvent is one that uniformly dissolves the PA acid, and examples thereof include aprotic organic polar compounds generally known as PA acid solvents. For example, N-methyl-2-pyrrolidone (abbreviated as NMP), N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfone and the like.
[0025]
Then, each of the above components is composed to obtain an ionized PA acid solution 1 or a semiconductive PA acid solution 1, and the preparation thereof is performed, for example, in the following procedure.
First, in the case of the ionized PA acid solution 1, the above-mentioned two (or three) starting materials are polycondensed in an organic solvent to obtain a corresponding high molecular weight PA acid solution. Good to do. That is, the equivalents of the two exemplified starting materials are subjected to a polycondensation reaction in the solvent at a low temperature of room temperature or lower (above causing difficulty in dissolution and imidation reaction also occurs). The polycondensed PA acid (solid content) is obtained in the form of a solution having a predetermined solution viscosity. Here, if it is intended to contain fine silicon oxide, a predetermined amount (generally 1 to 3% by weight with respect to PA acid) may be added to the obtained solution and sufficiently stirred and mixed. When it is necessary to adjust the viscosity, the solvent is added and dissolved and diluted.
The composition ratio of the PA acid and the organic solvent here is naturally determined during non-centrifugal spray molding to be described later, but in this molding method, the higher viscosity solution (1 Pa · s or more, 2 to 7 Pa · s) Since the solution 1 can be used (Claim 7), a higher PA acid concentration is preferable.
The solution 1 is basically not mixed with CB powder but other conductive agent, but the surface resistance value of the PI semiconductive layer is 1012If it is about Ω / □ or less, a small amount of CB powder is mixed to make 1015It may be prepared to be about Ω / □ and used as a PI insulating layer.
The PA acid basically does not have a ring-closing imide group, but may be a PA acid having the imide group as long as it is within a range that dissolves in an organic solvent.
[0026]
On the other hand, the semiconductive PA acid solution 1 is prepared as follows.
Predetermined CB powder is added to the obtained ionized PA acid solution 1 and preliminarily mixed with a bladed high mixer, and finally mixed and dispersed in a ball mill. Also in this case, if it is necessary to adjust the viscosity, the solvent may be added and dissolved and diluted. Here, the mixing amount of the CB powder varies depending on the difference in the characteristics of the powder and the desired electric resistance value (here, the surface resistance value). For example, the surface resistance value is 103-1015When semiconductivity between Ω / □ is required, it is about 5 to 25% by weight based on the solid content (PA acid). In this case, the amount of the organic solvent also varies depending on the difference in molding method described later. That is, it is determined by the relationship with the solution viscosity.
[0027]
The prepared PA acid solution 1 or semiconductive PA acid solution 1 is subjected to the following non-centrifugal spray molding method as a forming stock solution. This molding method will be described below.
[0028]
First, the molding apparatus used in the non-centrifugal spray molding method is roughly constituted by the following mechanism.
Metal drums with openings at both ends are placed (removably) on two rotating rollers. The drum adopts a mechanism that rotates indirectly by the rotation of the roller. A heating source (for example, far-infrared rays) for heating the inside of the drum is provided on the outer upper portion. Here, a heating source is also provided in the roller to perform auxiliary heating of the drum. In the drum, there is provided a slit nozzle for discharging a forming stock solution that is horizontally separated from the surface by a predetermined distance and moves horizontally and has a detachable mechanism. The nozzle is also provided with a compressed air supply nozzle with the discharge port interposed therebetween. This is for atomizing the forming stock solution supplied toward the nozzle using a gear pump or the like by joining the compressed air at the discharge port. Here, the outlet width (slit width) of the nozzle is about 0.2 to 3 mm, and the length is about 10 to 100 mm. This determines the supply width and supply amount (coating thickness).
At least the entire drum is surrounded by a casing having an exhaust fan, and the organic solvent heated and evaporated during the rotational molding is quickly removed from the system. Of course, the forming stock solution is applied uniformly over the entire surface by a single jet feeding operation, and the amount of forming stock solution supplied, the rotational speed of the drum, and the left movement of the nozzle are adjusted so that the desired film thickness can be obtained freely. Alternatively, a computer is incorporated so that the speed of right movement is automatically controlled.
[0029]
And the shaping | molding procedure by the said shaping | molding apparatus is performed as follows roughly.
First, the nozzle is arranged at an upper position on the inner right end of the metal drum at a distance of about 30 to 50 mm. The drum starts rotating at a computer-controlled predetermined rotational speed (of course, an angular speed at which centrifugal force does not act, for example, a low speed of about 4 to 6 rad / s. Next, a predetermined amount of molding is performed. Along with the spray supply of the stock solution, the movement from the right end to the left end of the nozzle starts under computer control.When the supply from the right end to the left end is finished, the injection supply is stopped immediately, and the nozzle is automatically returned to the original position once. , Further retreat to be out of the system.
Next, the rotating metal drum is surrounded by a casing, heating by the heating source is started, and the inside of the drum is kept at a predetermined temperature. As the heating starts, the operation of the exhaust fan of the casing also starts. The rotation speed at this time may be the same as the initial speed, or may be slightly faster or slower (of course, no centrifugal force, generally about 0.5 to 3 times the initial speed). is there. The heating conditions here are basically higher than the evaporation temperature of the organic solvent but lower than the imidization temperature (about 200 to 450 ° C.) (about 100 to 150 ° C.). This is because a part of the organic polar solvent is left without being removed and imidization is not substantially advanced.
[0030]
Stop the remaining part of the organic solvent which is a condition in the step A1 and a substantially electrically insulating or semiconductive polyamic acid endless tubular film (without substantially imidization here). The reason is as follows.
First of all, the necessity of remaining a part of the organic solvent is that the molding solution for the back layer does not repel the inner surface of the surface layer, and it can be applied evenly with good wettability, and both layers are in close contact with each other. It is because it is laminated and does not cause delamination.
Here, the meaning of a part of the remaining part means that the most effective expression of the above-mentioned action and effect may be small even if the residual amount is large, and there is an appropriate remaining range, which is expressed as a part. Therefore, the appropriate amount of a part thereof is derived from the relationship with this action and effect, but in the study by the present inventors, as provided in claim 8, it is 20 to 60% by weight based on the solid content (PA acid). The preferred range is 30 to 50% by weight.
On the other hand, the end of the polyamic acid endless tubular film is mainly generated during the effect of the remaining part of the solvent, particularly in order to make the integrated adhesion with the back surface layer more effective, and in the surface layer. This is to prevent easy cracking.
[0031]
Next, the second step (B) (hereinafter referred to as B2 step) will be described.
[0032]
Step B2 is a semi-finished film made of PA acid, CB powder, and organic solvent on the inner surface of a substantially electrically insulating or semiconductive polyamic acid endless tubular film formed in Step A1 and attached to and supported by a metal drum. A conductive polyamic acid solution (hereinafter referred to as semiconductive PA acid solution 2) or a substantially electrically insulating polyamic acid solution (hereinafter referred to as ionized PA acid solution 2) composed of PA acid and an organic solvent is substantially centrifuged. Laminate molding of semiconductive or substantially electrically insulating endless polyamic acid by uniformly supplying and heating (hereinafter referred to as non-centrifugal spray molding method 2) to the inner surface of the drum rotating at the speed of force. It is a process to do.
[0033]
The preparation method, composition ratio, solution viscosity of the semiconductive PA acid solution 2 and the ionized PA acid solution 2 as the molding stock solution, and the non-centrifugal spray molding method 2 are the semiconductive PA acid solution 1 described in the step A1. Since it is carried out within the same conditions as the ionized PA acid solution 1 and the non-centrifugal spray molding method 1, the description thereof will be omitted. However, the conditions for actual lamination may be the same or different.
In addition, the heating conditions in this step are not necessarily the same as those in the A1 step, but as in the A1 step, the heating conditions are such that a part of the organic solvent remains and further imidization does not proceed. desirable. This means that both layers are formed in the same range of conditions, so the third (C) step to be performed at the end can be completed simultaneously under the same heating conditions, and the ML film obtained as a product is the best This is because it is more effective to manufacture with quality and performance.
[0034]
The layer thickness of each endless tubular PA acid film laminated in the A1 step and the B2 step is comprehensively determined in consideration of the following factors.
First, the total thickness is determined in terms of the flexibility and strength of the finally obtained ML film. This can be exemplified by a range of about 50 to 150 μm. The thickness of each of the PI semiconductive layer and the PI insulating layer is determined in the total thickness. This is necessary for obtaining the charge amount (capacitance) and withstand voltage (dielectric strength) required by the PI insulating layer. The optimum layer thickness is set in consideration of the layer thickness, the thickness of the PI semiconductive layer necessary for charging the layer, and the curvature that is the subject of the present invention. Here, particularly from the viewpoint of eliminating the curvature, it is preferable to set the layer thickness of the layer having a small linear expansion coefficient to be larger than the layer thickness of the large layer.
[0035]
Next, the third step (C) (hereinafter referred to as C3 step) to be performed last will be described.
In step C3, the two-layer PA acid endless tubular film having substantially electrical insulation and semiconductivity obtained in step B2 is subjected to substantially complete removal of residual organic solvent and substantially complete PA acid component. The imidization is particularly performed by hot air heating means.
Therefore, the hot air temperature is a treatment at such a temperature that both of them proceed smoothly. First, the temperature is gradually raised from room temperature to reach about 110 to 200 ° C., and once this temperature rise is stopped, heating is continued at that temperature for a certain period of time (generally about 40 to 100 minutes). Most of the water is removed by evaporation. Then, the temperature is gradually raised, and when it reaches about 350 to 450 ° C., the temperature rise is stopped, and at that temperature for a certain period of time (generally about 40 to 80 minutes), it is cooled and the ML film as a product is cooled. obtain.
Here, the reason why hot air is used as the heating medium is that the residual solvent generated and the condensed water generated during imidization are quickly removed from the system as compared with simple heating. The resulting ML film can be obtained with high quality and high performance without changing the inherent properties.
[0036]
The hot air heating means includes the following two methods. Which method is used is basically determined by the degree of heat shrinkage. In other words, those with a tendency to heat shrinkage (for example, about 3 to 8%) are preferably heated under the shrinkage regulation of the A method.
(Method A) ··· Remove the laminated PA acid endless film adhering to the inner peripheral surface of the metal drum and fit it into a separate hollow tubular mold (outer diameter slightly smaller than the inner diameter of the film) Then, this is heated with hot air in a hot air dryer.
(Method B)-Stuck on the inner peripheral surface of the metal drum and put in the hot air dryer together with the drum to heat with hot air.
In addition, although the layer thickness of each set layer is particularly reduced by heating here, there is no large shrinkage that goes beyond this set thickness range, and the layer is small.
[0037]
The ML film according to the present invention is not curved on either the inner side or the outer side, but also has a uniform electric resistance value, stable chargeability, excellent dielectric strength, and the like. The film comprising these can be effectively used for various purposes. In particular, as provided in claim 9, use as an intermediate transfer belt of a color copying machine is effective.
The use as the intermediate transfer belt is not particularly referred to as a mechanism change, and can be installed and used in an existing color copying machine.
[0038]
【Example】
Next, the present invention will be described in more detail by way of examples together with comparative examples.
The linear expansion coefficient, curvature, surface resistance (Rs, Ω / □), and withstand voltage were measured by the following methods.
● Linear expansion coefficient (cm / cm / ° C.): Each film corresponding to the PI insulating layer and PI semiconductive layer forming each layer was prepared, and this was used as a sample and measured under the following conditions. .
The measuring instrument is a thermal analysis system TA-50WS of a thermomechanical analyzer TMA-50 manufactured by Shimadzu Corporation, the sample is 10 mm long cut in the circumferential direction, and the measurement temperature is 100 to 200 ° C. The temperature was continuously measured at a rate of 5 ° C./min. The coefficient of linear expansion at each obtained point was averaged and calculated.
● Degree of curvature: Measured with the measuring tool of FIG. That is, the tension roll 1 having a diameter of 40 mm is fixed, and one end of the sample is hooked on the tension roll 1 and suspended, and the other end is loaded with a weight tension roll 2 (free) having the same diameter of 2 kg and suspended. The bending width to the inside (imaginary line 7) or the outside (imaginary line 6) is measured at 4 positions 100 mm below the center line 3 of the roll 1 and expressed in mm. Compared to a width of 40 mm when there is no curvature at all (solid line 5).
The non-curvature referred to in the present invention refers to a case where there is no hindrance to rotation even if there is a curvature when it is stretched over at least two rollers with a tension of 2 kg, but numerically there is no curvature at all. On the other hand, it is within ± 1.15 times and smaller than ± 1.10 times.
● Rv ・ ・ Attach to the sample and use a resistance measuring instrument “HIRESTA IP ・ HR probe” manufactured by Mitsubishi Chemical Co., Ltd., with a total pitch of 5 in the width direction and 8 in the longitudinal (circumferential) direction (total 40) It is measured over a number of locations) and averaged to show the measured values in the width direction and the longitudinal (circumferential) direction. The measurement here is performed after 10 seconds with 1 kV applied.
● Withstand voltage ・ ・ The measuring instrument uses a voltage tester (WITHSTANDING VOLTAG TESTER / model TOS8750) manufactured by KIKUSUI ELECTRONICS CORP. In the measurement, a sample cut to 110 × 110 mm was sandwiched between plate electrodes of 100 × 100 mm, a voltage was applied at a rate of increase of 1 kV / 10 seconds, and the voltage when the current value exceeded 10 mA was measured.
[0039]
Example 1
First, semiconductive PA acid solution 1 and ionized PA acid solution 2 were prepared as follows.
<Semiconductive PA acid solution 1>
First, an equimolar amount of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine is subjected to a polycondensation reaction at 20 ° C. in an NMP solvent to obtain a solid concentration of 18% by weight. 4 kg of an aromatic PA acid solution 1 (solution viscosity: 5 Pa · s) was synthesized. Then, 2 kg of this was sampled, and 101.5 g of CB powder (pH 3, specific surface area 180 m) was collected.2/, Particle diameter 25 μm, volume resistivity 100Ω · cm) (22% by weight based on solids) and NMP462.4g (for solution viscosity adjustment) are preliminarily mixed while stirring with a bladed stirrer, and then transferred to a ball mill and mixed thoroughly. Distributed. The solution viscosity of this product was 4.3 Pa · s.
<Electrophoretic PA acid solution 2>
An equimolar amount of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether was subjected to a polycondensation reaction in an NMP solvent at 20 ° C. to synthesize 2 kg of the solution 2 having a solid concentration of 18% by weight (solution viscosity). 4.7 Pa · s).
[0040]
Next, in order to know the linear expansion coefficients of the semiconductive layer and the electrical insulating layer forming each layer, the film was formed in advance as follows, and the coefficient was obtained for each of the obtained films.
A part of the semiconductive PA acid solution 1 and the ionized PA acid solution 2 was collected, applied to a glass plate, and placed in a hot air dryer and dried by heating. The heating and drying conditions are as follows. First, 130 minutes are required and the temperature is raised to 120 ° C. First, heating is performed at that temperature for 50 minutes, then 120 minutes are required and the temperature is raised to 450 ° C. and then heated at that temperature for 60 minutes. did. The obtained film was peeled from the glass plate. The thickness of the film was 73 μm for the semiconductive material and 69 μm for the electrically insulating film. The linear expansion coefficient of each sample was measured.
The measurement result is 1.6 to 1.7 × 10 6 for the semiconductive film.-5cm / cm / ° C., 1.9 to 2.0 × 10 for an insulating film-5It was cm / cm / ° C. (When taking the average of both and looking at the magnification, this is about 1.19 times that of the semiconductive film).
[0041]
For reference, the aromatic PA acid solution 1 as a stock solution of the semiconductive PA acid solution 1 was also applied to a glass plate in the same manner as described above, dried by heating to form a 71 μm PI film, and the linear expansion coefficient was obtained. . It is 6.2-6.3 × 10-6It was cm / cm / ° C. When this result is compared with the linear expansion coefficient of the semiconductive film, it can be seen that the linear expansion coefficient is increased by an order of magnitude by mixing and dispersing the CB powder.
[0042]
Next, using the necessary amount of the semiconductive PA acid solution 1 and the ionized PA acid solution 2, first, non-centrifugal spray molding is performed under the following conditions so that the semiconductive layer becomes the front surface and the insulating layer becomes the back surface. Thus, a two-layer endless tubular PA acid film was formed.
In addition, although the shaping | molding apparatus and molding procedure used here are based on the description in the said text, the details were as follows.
[0043]
<Molding equipment>
◎ Metal drum ・ Inner mirror finish (chrome plating, Rz = 0.6μm), stainless steel cylinder with a width of 550mm at both ends and an inner diameter of 260mm,
◎ Slit nozzle (head) ・ ・ Nozzle with discharge port width 0.5mm and length 80mm.
[0044]
<Molding procedure>
First, using the semiconductive PA acid solution 1, when the slit-like nozzle was set at the right end in the metal drum at a distance of 50 mm from the drum surface, it slowly started to rotate at an angular velocity of 4 rad / s. Ten seconds after this rotation, spraying was started while moving at a spray supply rate of 68.7 g / min from the nozzle (this speed was constant from start to finish) controlled to a leftward moving speed of 5.0 mm / sec. Immediately after the nozzle reached the left end, the injection and movement were stopped, returned to the original position, and once taken out of the system.
[0045]
Next, while maintaining the rotational speed, heating was started by enclosing the metal drum with a casing. The heating conditions are as follows. First, 130 minutes are required and the temperature is raised to 120 ° C. (temperature inside the drum), and then the temperature is first heated for 30 minutes (during this heating, it is evaporated by the exhaust fan attached to the housing). Organic solvents are actively discharged out of the system). When the heating was completed, the heating was stopped, the temperature was cooled to room temperature, and the rotation was stopped. A solidified semiconductive endless tubular PA acid film was adhered to the inner surface of the metal drum. When this end portion was cut out and the amount of residual NMP was measured, it was 30% by weight, and the presence or absence of an imide group was confirmed by IR analysis, but no absorption peak was observed. The thickness was measured to be 43 μm.
[0046]
Subsequently, non-centrifugal spray molding was performed on the inner surface of the semiconductive endless tubular PA acid film adhering to the metal drum in the same manner as described above using the ionized PA acid solution 2.
However, the spray supply amount at this time was 99.8 g / min, and heating took 140 minutes, and heating was performed at 140 ° C. and 140 ° C. for 60 minutes. It cooled and peeled from the metal drum, and the endless tubular PA acid film of 2 layer lamination was obtained. The total thickness of this was 98 ± 2 μm.
[0047]
Finally, the obtained endless tubular PA acid film is heated by hot air heating means exemplified in the text (Method A) to evaporate and remove the residual solvent and imidize the target two-layer ML film. Obtained.
Here, the method A conditions were as follows.
● Hollow tubular mold = outer diameter 250mm, length 450mm, surface is chrome-plated ● Hot air heating = hot air dryer is used, first at 120 ℃ for 60 minutes, then 120 minutes required to 450 ℃ Raise the temperature and heat at that temperature for 60 minutes to finish.
[0048]
The obtained two-layer ML film was trimmed at both ends by 50 mm and finished to a width of 450 mm. The total thickness of the film was 79 ± 1 μm.
The curvature, Rv, and withstand voltage of the film were measured and the results were as follows.
Curvature = 42 mm outward (1.05 times less than non-curved 40 mm), Rv = 7 ± 0.8 × 1014No breakdown even at Ω / □, withstand voltage = 5kV.
[0049]
(Example 2)
First, semiconductive PA acid solution 1 and ionized PA acid solution 2 were prepared as follows.
<Semiconductive PA acid solution 1>
The semiconductive PA acid solution 1 prepared in Example 1 was used.
<Electrophoretic PA acid solution 2>
First, an equimolar amount of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 4,4′-diaminophenyl ether was subjected to a polycondensation reaction at 20 ° C. in an NMP solvent to obtain a solid content. 2 kg of an aromatic PA acid solution 2 having a concentration of 18% by weight (solution viscosity: 4.9 Pa · s) was synthesized. Then, 300 g of this mixture and 700 g of the aromatic PA acid solution 1 synthesized as the stock solution of the semiconductive PA acid solution 1 in Example 1 were mixed to prepare a blend solution, and the solution 2 was obtained.
[0050]
Next, in order to measure the linear expansion coefficient of the film forming the electrical insulating layer, a part of the blend solution of the ionized PA acid solution 2 is collected and applied to the glass plate in the same manner as in Example 1. -Dry with hot air to form a blended PI film. The thickness of the obtained film is 77 μm, and the linear expansion coefficient is 1.7 to 1.8 × 10.-5It was cm / cm / ° C.
Incidentally, the linear expansion coefficient of the film of the semiconductive layer formed by the semiconductive PA acid solution 1 is 1.6 to 1.7 × 10 which is the same as that of the first embodiment.-5cm / cm / ° C. Therefore, the linear expansion coefficient of the blended PI film serving as the insulating layer is about 1.06 times that of the semiconductive film.
[0051]
Next, using the semiconductive PA acid solution 1 and the ionized PA acid solution 2, first, non-centrifugal spray molding is performed under the same conditions as in Example 1 so that the semiconductive layer is on the front surface and the insulating layer is on the back surface. Thus, a two-layer endless tubular PA acid film was formed. When peeled from the metal drum and measured for the total thickness, it was 97 ± 3 μm.
The residual solvent amount in the semiconductive film formed by the first non-centrifugal spray molding was 29% by weight, and the thickness was 42 μm as measured.
[0052]
Finally, the obtained laminated endless tubular PA acid film was heated with hot air under the same conditions as in Example 1 to evaporate and remove the residual solvent and obtain the desired double-layered ML tubular film.
[0053]
The obtained two-layer ML film was trimmed by 50 mm at both ends and finished to a width of 450 mm. The total thickness of the film was 81 ± 1 μm.
The curvature, Rv, and withstand voltage of the film were measured and the results were as follows.
Curvature = 40.8 mm outward (1.02 times greater than non-curved 40 mm, substantially no warping), Rv = 6 ± 0.6 × 1014No breakdown even at Ω / □, withstand voltage = 5kV.
[0054]
(Comparative Example 1) (When the linear expansion coefficient relationship is less than 0.8 times)
First (for comparison) semiconductive PA acid solution 3 and ionized PA acid solution 3 were prepared as follows.
<Semiconductive PA acid solution 3>
The semiconductive PA acid solution 1 prepared in Example 1 was used as the solution 3.
<Electrostatic PA acid solution 3>
The aromatic PA acid solution 1 synthesized as a stock solution of the semiconductive PA acid solution 1 in Example 1 is used for the solution 3.
[0055]
The linear expansion coefficient of the semiconductive layer formed by the semiconductive PA acid solution 3 is 1.6 to 1.7 × 10 6 as measured in Example 1.-5The linear expansion coefficient of the insulating layer formed by the cm / cm / ° C., ionized PA acid solution 3 was 6.2 to 6.3 × 10 obtained in Example 1 above.-6cm / cm / ° C. Therefore, the linear expansion coefficient of the semiconductive layer and the insulating layer formed in this way is about 0.4 times that of the semiconductive layer.
[0056]
Next, using the semiconductive PA acid solution 3 and the ionized PA acid solution 3, first, non-centrifugal spray molding is performed under the same conditions as in Example 1 so that the semiconductive layer becomes the front surface and the insulating layer becomes the back surface. Thus, a two-layer endless tubular PA acid film was formed. When peeled from the metal drum and measured for the total thickness, it was 100 ± 3 μm.
The amount of residual solvent in the semiconductive film formed by the first non-centrifugal spray molding was 32% by weight, and the thickness measured was 44 μm.
[0057]
Finally, the obtained laminated endless tubular PA acid film was heated with hot air under the same conditions as in Example 1 to evaporate the remaining solvent and imidize to obtain the desired double-layer ML film.
[0058]
The obtained two-layer ML film was trimmed at both ends by 50 mm and finished to a width of 450 mm. The total thickness of the film was 84 ± 1 μm.
The curvature, Rv, and withstand voltage of the film were measured and the results were as follows.
Curvature = 54 mm outward (1.33 times non-curved 40 mm), Rv = 6.9 ± 0.9 × 1014No breakdown even at Ω / □, withstand voltage = 5kV.
The Rv and withstand voltage are not different from those of the above embodiments, but are far greater than the non-curvature required by the present invention and at a practical level. For example, when such an ML film is used as a belt, the flat surface itself does not appear. In addition, if meandering prevention measures are taken, meandering is unavoidable.
[0059]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0060]
It is now possible to stably produce laminated endless tubular PI films that do not bend, and to provide quality and performance with excellent charging performance, dielectric strength, and rotational durability. It was.
[0061]
By having the above-mentioned excellent characteristics, it can be used more effectively for various purposes. However, the use as an intermediate transfer belt of a color copier is particularly effective with higher quality and performance. It will be a thing.
[Brief description of the drawings]
FIG. 1 is a front view of a curvature measuring tool.
[Explanation of symbols]
1 Tension roll (fixed)
2 Weighted tension roll (free)
4 Measurement position
5, 6, 7 Hanging sample

Claims (9)

導電性カーボンブラックにより付与された表面抵抗値が10 〜10 15 Ω/□の半導電性ポリイミド層X及び表面抵抗値が10 15 Ω/□以上のポリイミド層からなるポリイミド系多層無端管状フイルムであって、
該ポリイミド層の有する線膨張係数が、該半導電性ポリイミド層の有する線膨張係数に対して0.8〜1.3倍であり、
該半導電性ポリイミド層Xを形成するポリイミドの有する線膨張係数が10 −6 cm/cm/℃桁であり、
該ポリイミド層Yを形成するポリイミドの有する線膨張係数が10 - cm/cm/℃桁である
ことを特徴とするポリイミド系多層無端管状フイルム。
Surface resistance conferred by the conductive carbon black is 10 3 ~10 15 Ω / □ of the semiconductive polyimide layer X and the surface resistance value is from 10 15 Ω / □ or more polyimide layers Y polyimide multilayer endless tubular A film ,
The linear expansion coefficient with the 該Po polyimide layer Y is 0.8 to 1.3 times the linear expansion coefficient included in the semiconductive polyimide layer X,
The linear expansion coefficient of the polyimide forming the semiconductive polyimide layer X is 10 −6 cm / cm / ° C.,
The linear expansion coefficient with the polyimide forming the polyimide layer Y is 10 - 5 cm / cm / ℃ digit a is <br/> polyimide multilayer endless tubular film, characterized in that.
前記半導電性ポリイミド層前記ポリイミド層との各々の有する線膨張係数が同桁数をもって異なる請求項1に記載のポリイミド系多層無端管状フイルム。The polyimide multilayer endless tubular film according to each coefficient of linear expansion is different with the same number of digits according to claim 1 having the of the semiconductive polyimide layer X and the polyimide layer Y. 記ポリイミド層を形成するポリイミドが、線膨張係数が10-5cm/cm/℃桁のポリイミドと線膨張係数が10-6cm/cm/℃桁のポリイミドの二種のブレンドポリイミドである請求項1又は2に記載のポリイミド系多層無端管状フイルム。Before polyimide forming the Kipo polyimide layer Y is linear expansion coefficient of 10 -5 cm / cm / ℃ digit polyimide and linear expansion coefficient of 10 -6 cm / cm / ℃ digit polyimide two blends polyimide The polyimide-type multilayer endless tubular film according to claim 1 or 2 . 前記半導電性ポリイミド層を表面層に、前記ポミド層を裏面層とする請求項1〜のいずれか1項に記載のポリイミド系多層無端管状フイルム。Wherein the semiconductive polyimide layer X on the surface layer, a polyimide multilayer endless tubular film according to any one of claims 1 to 3 for the port Li Lee bromide layer Y and the back surface layer. 次の(A)〜(C)に記載の各工程が順次行われてなることを特徴とする請求項1に記載のポリイミド系多層無端管状フイルムの製造方法であって、
(A)ポリアミド酸X’と導電性カ−ボンブラック粉体と有機溶媒とを含むポリアミド酸溶液を実質的無遠心力の速度で遠心成形して有機溶媒の一部が残存する無端管状フイルムを形成する工程(ここで、ポリアミド酸X’をイミド化して得られるポリイミドの有する線膨張係数が10 - cm/cm/℃桁である。)、
(B)上記(A)で得られた無端管状フイルムの内面に、ポリアミド酸Y’と有機溶媒とを含むポリアミド酸溶液を供給し実質的無遠心力の速度で遠心成形して、無端管状の積層フイルムを形成する工程(ここで、ポリアミド酸Y’をイミド化して得られるポリイミドの有する線膨張係数が10 - cm/cm/℃桁である)、並びに
(C)上記(B)で得られた無端管状の積層フイルムを熱風加熱して、外層に表面抵抗値が10 〜10 15 Ω/□の半導電性ポリイミド層Xを有し、内層に表面抵抗値が10 15 Ω/□以上のポリイミド層Yを有し、内層のポリイミド層Yの有する線膨張係数が、外層の半導電性ポリイミド層Xの有する線膨張係数に対して0.8〜1.3倍であるポリイミド系多層無端管状フイルムを製造する工程、
を含む製造方法。
A next (A) ~ (C) producing a polyimide-based multilayer endless tubular film according to claim 1 in which each step is characterized by comprising sequentially performed according to,
(A) A polyamic acid solution containing polyamic acid X ′, conductive carbon black powder, and an organic solvent is subjected to centrifugal molding at a substantially non-centrifugal force speed to form an endless tubular film in which a part of the organic solvent remains. forming to process -, (wherein the linear expansion coefficient with the polyimide obtained by imidizing the polyamic acid X '10 is 6 cm / cm / ℃ digits.)
(B) A polyamic acid solution containing polyamic acid Y ′ and an organic solvent is supplied to the inner surface of the endless tubular film obtained in (A) above, and subjected to centrifugal molding at a speed of substantially no centrifugal force. forming a laminated film (here, the linear expansion coefficient with the polyimide obtained by imidizing the polyamic acid Y 'is 10 - is 5 cm / cm / ℃ digits), and
(C) The endless tubular laminated film obtained in (B) above is heated with hot air to have a semiconductive polyimide layer X with a surface resistance of 10 3 to 10 15 Ω / □ in the outer layer, and a surface in the inner layer. The polyimide layer Y has a resistance value of 10 15 Ω / □ or more, and the linear expansion coefficient of the inner polyimide layer Y is 0.8 to 1 with respect to the linear expansion coefficient of the outer semiconductive polyimide layer X. A process for producing a polyimide-based multilayer endless tubular film which is 3 times;
Manufacturing method.
次の(A)〜(C)に記載の各工程が順次行われてなることを特徴とする請求項1に記載のポリイミド系多層無端管状フイルムの製造方法であって、
(A)ポリアミド酸Y’と有機溶媒とを含むポリアミド酸溶液とを含むポリアミド酸溶液を実質的無遠心力の速度で遠心成形して有機溶媒の一部が残存する無端管状フイルムを形成する工程(ここで、ポリアミド酸Y’をイミド化して得られるポリイミドの有する線膨張係数が10 - cm/cm/℃桁である),
(B)上記(A)で得られた無端管状フイルムの内面に、ポリアミド酸X’と導電性カ−ボンブラック粉体と有機溶媒とを含むポリアミド酸溶液を供給し実質的無遠心力の速度で遠心成形して、無端管状の積層フイルムを形成する工程(ここで、ポリアミド酸X’をイミド化して得られるポリイミドの有する線膨張係数が10 - cm/cm/℃桁である。)、並びに
(C)上記(B)で得られた無端管状の積層フイルムを熱風加熱して、外層に表面抵抗値が10 15 Ω/□以上のポリイミド層Yを有し、内層に表面抵抗値が10 〜10 15 Ω/□の半導電性ポリイミド層Xを有し、外層のポリイミド層Yの有する線膨張係数が、内層の半導電性ポリイミド層Xの有する線膨張係数に対して0.8〜1.3倍であるポリイミド系多層無端管状フイルムを製造する工程、
を含む製造方法。
A next (A) ~ (C) producing a polyimide-based multilayer endless tubular film according to claim 1 in which each step is characterized by comprising sequentially performed according to,
(A) A step of forming an endless tubular film in which a part of the organic solvent remains by subjecting the polyamic acid solution containing the polyamic acid Y ′ and the polyamic acid solution containing the organic solvent to centrifugal molding at a speed of substantially no centrifugal force. (here, the linear expansion coefficient with the polyimide obtained by imidizing the polyamic acid Y 'is 10 - is 5 cm / cm / ℃ digits),
(B) A polyamic acid solution containing polyamic acid X ′, conductive carbon black powder, and an organic solvent is supplied to the inner surface of the endless tubular film obtained in (A) above, and the speed of the substantially centrifugal force is reduced. in and centrifugal molding step of forming a laminated film of an endless tubular -, (wherein the linear expansion coefficient with the polyimide obtained by imidizing the polyamic acid X '10 is 6 cm / cm / ℃ digits.) And
(C) The endless tubular laminated film obtained in (B) above is heated with hot air to have a polyimide layer Y with an outer layer having a surface resistance value of 10 15 Ω / □ or more in the outer layer and a surface resistance value of 10 3 in the inner layer. has ~10 15 Ω / □ semiconductive polyimide layer X of the linear expansion coefficient with the polyimide layer Y of the outer layer, relative to the linear expansion coefficient included in the semiconductive polyimide layer X of the inner layer 0.8 to 1 A process for producing a polyimide-based multilayer endless tubular film which is 3 times;
Manufacturing method.
前記(A)と(B)の工程における各該ポリアミド酸溶液の溶液粘度が1Pa・s以上である請求項5又は6に記載のポリイミド系多層無端管状フイルムの製造方法。The method for producing a polyimide-based multilayer endless tubular film according to claim 5 or 6, wherein the solution viscosity of each polyamic acid solution in the steps (A) and (B) is 1 Pa · s or more. 前記(A)の第一工程における有機溶媒の一部残存含有量が、ポリアミド酸X’又はY’に対して20〜60重量%である請求項5〜7のいずれかに記載のポリイミド系多層無端管状フイルムの製造方法。The polyimide-based multilayer according to any one of claims 5 to 7, wherein a partial residual content of the organic solvent in the first step (A) is 20 to 60 wt% with respect to the polyamic acid X 'or Y' . A method for producing an endless tubular film. 請求項1〜4のいずれかに記載のポリイミド系多層無端管状フイルムからなるカラー複写機の中間転写ベルト An intermediate transfer belt for a color copying machine comprising the polyimide-based multilayer endless tubular film according to any one of claims 1 to 4 .
JP2000282478A 2000-09-18 2000-09-18 Polyimide-based multilayer endless tubular film, production method thereof and use thereof Expired - Fee Related JP4565720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282478A JP4565720B2 (en) 2000-09-18 2000-09-18 Polyimide-based multilayer endless tubular film, production method thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282478A JP4565720B2 (en) 2000-09-18 2000-09-18 Polyimide-based multilayer endless tubular film, production method thereof and use thereof

Publications (2)

Publication Number Publication Date
JP2002086599A JP2002086599A (en) 2002-03-26
JP4565720B2 true JP4565720B2 (en) 2010-10-20

Family

ID=18766991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282478A Expired - Fee Related JP4565720B2 (en) 2000-09-18 2000-09-18 Polyimide-based multilayer endless tubular film, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP4565720B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514841B2 (en) 1998-02-17 2010-07-28 淳二 城戸 Organic electroluminescent device
JP4683829B2 (en) 2003-10-17 2011-05-18 淳二 城戸 Organic electroluminescent device and manufacturing method thereof
JP2006206778A (en) * 2005-01-28 2006-08-10 Ist:Kk Tubular polyimide resin product
JP5092337B2 (en) 2006-10-06 2012-12-05 富士ゼロックス株式会社 Endless belt and manufacturing method thereof, image forming apparatus, intermediate transfer belt, transfer conveyance belt, and conveyance apparatus
JP2010243999A (en) * 2009-03-19 2010-10-28 Fuji Xerox Co Ltd Electro-conductive belt, fabrication method thereof, and image forming device

Also Published As

Publication number Publication date
JP2002086599A (en) 2002-03-26

Similar Documents

Publication Publication Date Title
US6352750B1 (en) Seamless tubular electrically-semiconductive aromatic polymide film and process for producing the same
WO1991001220A1 (en) Composite tubular article and its production method
JP4565720B2 (en) Polyimide-based multilayer endless tubular film, production method thereof and use thereof
JP4619208B2 (en) Polyimide resin belt with isotropic dielectric constant in the surface direction
JP2007072197A (en) Endless tubular belt and method for producing the same
JP2003213014A (en) Tubular film of semiconductive wholly aromatic polyimide and method for producing the same
JP2010085450A (en) Seamless belt and method of manufacturing the same
JP2002316369A (en) Tubular aromatic polyimide resin multilayered film and its manufacturing method
JP4399656B2 (en) Durable polyimide film, production method thereof and use thereof
JPH08176319A (en) Cylindrical polyimide film and its production
JP2005247987A (en) Semiconducting polyimide precursor composition and manufacturing method of semiconducting polyimide tubular product using the same
JP5171000B2 (en) Semiconductive polyimide resin belt and method for manufacturing the same
JP3607931B2 (en) Semiconductive polyimide endless belt for recording of copying machines
JP2002137317A (en) Multilayered endless tubular polyimide film and method for manufacturing the same
JP2001131410A (en) Semiconductive polyamic acid composition and its use
JP2001354854A (en) Semiconductive polyamide-imide composition
JP6936732B2 (en) Transfer member for image forming apparatus
JP4596344B2 (en) Intermediate transfer belt resin composition
JPH10138264A (en) Manufacture of composite film
JPH06202513A (en) Fixing device
JP2001215821A (en) Fixing belt and method of producing the same
JP2001152013A (en) Thermally stable semiconductive polyamic acid composition and its use
JP2006301196A (en) Seamless belt
JP2002072703A (en) Semiconductive polyimide-base endless tubular film and method for using the same
JP2005247986A (en) Semiconducting aromatic amic acid composition and manufacturing method of semiconducting endless tubular polyimide film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees