JP4565349B2 - Manufacturing method of multilayer piezoelectric ceramic component - Google Patents

Manufacturing method of multilayer piezoelectric ceramic component Download PDF

Info

Publication number
JP4565349B2
JP4565349B2 JP2006522157A JP2006522157A JP4565349B2 JP 4565349 B2 JP4565349 B2 JP 4565349B2 JP 2006522157 A JP2006522157 A JP 2006522157A JP 2006522157 A JP2006522157 A JP 2006522157A JP 4565349 B2 JP4565349 B2 JP 4565349B2
Authority
JP
Japan
Prior art keywords
ceramic
internal electrode
electrode layer
layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006522157A
Other languages
Japanese (ja)
Other versions
JPWO2006068245A1 (en
Inventor
勝弘 堀川
教文 山田
隆浩 松任
俊克 久木
豊和 田端
季武 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2006068245A1 publication Critical patent/JPWO2006068245A1/en
Application granted granted Critical
Publication of JP4565349B2 publication Critical patent/JP4565349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、積層圧電アクチュエータや積層圧電発音体等の積層型圧電セラミック部品の製造方法に関する。 The present invention relates to a method for producing a laminated piezoelectric ceramic component such as a laminated piezoelectric actuator and the laminated piezoelectric sounding body.

従来より、この種の積層型圧電セラミック部品は、図5に示すように、圧電セラミック層101a〜101gと内部電極層102a〜102fとが交互に積層されてセラミック素体103を形成し、該セラミック素体103の端面に外部電極104a、104bが形成されている。   Conventionally, as shown in FIG. 5, this type of multilayer piezoelectric ceramic component has piezoelectric ceramic layers 101a to 101g and internal electrode layers 102a to 102f alternately stacked to form a ceramic body 103. External electrodes 104 a and 104 b are formed on the end face of the element body 103.

上記積層型圧電セラミック部品では、低コストで大きな変位量を有するものが要請されるが、そのためには内部電極層102a〜102fの薄層化が効果的である。   The multilayer piezoelectric ceramic component is required to have a large amount of displacement at low cost. For this purpose, it is effective to make the internal electrode layers 102a to 102f thinner.

すなわち、この種の積層型圧電セラミック部品では、電界が印加された場合、セラミック層101b〜101fが伸縮するが、内部電極層102a〜102fの厚みが厚いとセラミック層101b〜101f間が内部電極層102a〜102fに拘束されるため、該セラミック層101b〜101fの伸縮を阻害してしまう。つまり、内部電極層102a〜102fの厚みが薄いほどセラミック層101b〜101fが伸縮しやすくなり、変位量も大きくなる。   That is, in this type of multilayer piezoelectric ceramic component, when an electric field is applied, the ceramic layers 101b to 101f expand and contract, but when the internal electrode layers 102a to 102f are thick, the gap between the ceramic layers 101b to 101f is the internal electrode layer. Since it is restrained by 102a-102f, it will inhibit expansion-contraction of this ceramic layer 101b-101f. That is, the thinner the internal electrode layers 102a to 102f, the easier the ceramic layers 101b to 101f expand and contract, and the amount of displacement increases.

しかしながら、上記積層型圧電セラミック部品では、内部電極層102a〜102fを薄層化すると内部電極の被覆率が低下し、このため電極面積が減少して電位降下が生じ、変位量が低下するという欠点がある。   However, in the multilayer piezoelectric ceramic component described above, when the internal electrode layers 102a to 102f are thinned, the coverage of the internal electrodes is reduced, so that the electrode area is reduced, a potential drop occurs, and the amount of displacement is reduced. There is.

一方、電位降下を解消する技術としては、内部電極の全面積に対し、内部電極に生じた貫通孔の総面積の占める割合を40〜0%とし、またセラミック層と同一もしくは類似組成のセラミック材料を10〜30重量%含んだペーストを使用して内部電極を形成した積層型電子部品が提案されている(特許文献1)。   On the other hand, as a technique for eliminating the potential drop, the ratio of the total area of the through holes formed in the internal electrode to the total area of the internal electrode is 40 to 0%, and the ceramic material having the same or similar composition as the ceramic layer A multilayer electronic component in which an internal electrode is formed using a paste containing 10 to 30% by weight is proposed (Patent Document 1).

この特許文献1では、セラミック層と同一もしくは類似組成のセラミック材料、すなわちセラミック共材を10〜30重量%含んだペーストを使用して内部電極を形成することにより、膜厚が2.5μm以下の内部電極層において、被覆率を60〜100%に向上させて電極面積を増加させ、これにより静電容量が低下するのを回避し、また内部電極層の収縮を抑制して焼成後に構造欠陥が発生するのを極力回避しようとしている。   In Patent Document 1, the internal electrode is formed using a ceramic material having the same or similar composition as the ceramic layer, that is, a paste containing 10 to 30% by weight of a ceramic co-material, whereby the film thickness is 2.5 μm or less. In the internal electrode layer, the coverage is increased to 60 to 100% to increase the electrode area, thereby avoiding a decrease in the capacitance, and suppressing the shrinkage of the internal electrode layer to prevent structural defects after firing. I try to avoid it as much as possible.

また、被覆率を制御した技術としては、内部電極の負極にAg元素を含み、正極にAg元素を含まないようにし、内部電極の厚みが1〜3μmで被覆率50〜99%に制御した積層型圧電素子も提案されている(特許文献2)。   Further, as a technique for controlling the covering rate, a laminated layer in which the negative electrode of the internal electrode contains Ag element and the positive electrode does not contain Ag element, and the thickness of the internal electrode is 1 to 3 μm and the covering rate is controlled to 50 to 99%. A type piezoelectric element has also been proposed (Patent Document 2).

この特許文献2では、被覆率を50〜99%に制御することにより、マイグレーションやデラミネーションの発生を抑制して信頼性向上を図っている。   In this patent document 2, the occurrence of migration and delamination is suppressed and reliability is improved by controlling the coverage to 50 to 99%.

また、その他の従来技術としては、内部電極層がPd及び/又はPtを主成分とする金属材料からなり、かつ積層方向に貫通する複数の孔を有すると共に、該孔内部に圧電セラミック板と同材質からなり、内部電極を介して対向する各々圧電セラミック板を接続する共材を配設してなる積層圧電アクチュエータが提案されている(特許文献3)。   As another conventional technique, the internal electrode layer is made of a metal material containing Pd and / or Pt as a main component and has a plurality of holes penetrating in the stacking direction. There has been proposed a laminated piezoelectric actuator made of a material and provided with a common material for connecting respective piezoelectric ceramic plates facing each other through internal electrodes (Patent Document 3).

この特許文献3では、セラミック層の厚みに対し、最小内径寸法が1/2以下の貫通孔を設けて該貫通孔をセラミック共材で充填し、さらに貫通孔が形成された非電極部と電極部との面積比を1:1以下にすることにより、分極時の歪を抑制し、界面剥離が生じるのを回避している。   In Patent Document 3, a non-electrode portion and an electrode in which a through hole having a minimum inner diameter dimension of 1/2 or less with respect to the thickness of the ceramic layer is provided and the through hole is filled with a ceramic co-material, and the through hole is further formed. By making the area ratio with the portion 1: 1 or less, the strain at the time of polarization is suppressed, and the occurrence of interface peeling is avoided.

特開2002−164248号公報JP 2002-164248 A 特開2001−250994号公報JP 2001-250994 A 特開昭63−142875号公報JP 63-142875 A

しかしながら、特許文献1の技術を積層型圧電セラミック部品に適用した場合、単に被覆率を制御しただけでは、内部電極層中の電極が形成されていない非導電部の大きさにバラツキが生じたり、非導電部による電位降下が大きくなり、このため所望の大きな変位量を得ることができないという問題点があった。   However, when the technique of Patent Document 1 is applied to a multilayered piezoelectric ceramic component, variation in the size of the non-conductive portion in which the electrode in the internal electrode layer is not formed simply by controlling the coverage rate, There is a problem that the potential drop due to the non-conductive portion becomes large, so that a desired large displacement cannot be obtained.

また、特許文献2は、被覆率を50〜99%に制御することにより、マイグレーションやデラミネーションの発生を抑制しているものの、特許文献1と同様、積層型圧電セラミック部品に適用した場合、単に被覆率を制御しただけでは非導電部の大きさにバラツキが生じたり、非導電部による電位降下が大きくなり、このため所望の大きな変位量を得ることができないという問題点があった。   Moreover, although patent document 2 is suppressing generation | occurrence | production of migration and delamination by controlling a coverage to 50 to 99%, like patent document 1, when applied to a multilayer piezoelectric ceramic component, There is a problem that the control of the coverage rate causes variations in the size of the non-conductive portion, and the potential drop due to the non-conductive portion increases, and thus a desired large displacement cannot be obtained.

特許文献3は、セラミック層の厚みに対し、最小内径寸法が1/2以下の貫通孔を設けているものの、これだけでは電位降下が生じるため所望の大きな変位量を得ることができず、また非電極部(非導電部)と電極部(導電部)との比を1:1以下とするのみでは十分な被覆率が得られず、内部電極層とセラミック層との間で界面剥離の生じるおそれがあるという問題点があった。   In Patent Document 3, although a through hole having a minimum inner diameter dimension of 1/2 or less with respect to the thickness of the ceramic layer is provided, a potential drop occurs only with this, and a desired large displacement cannot be obtained. If the ratio of the electrode part (non-conductive part) to the electrode part (conductive part) is 1: 1 or less, sufficient coverage cannot be obtained, and interface peeling may occur between the internal electrode layer and the ceramic layer. There was a problem that there was.

本発明はこのような事情に鑑みなされたものであって、内部電極層が薄層であっても、大きな変位量を有し、かつ接合強度の優れた積層型圧電セラミック部品の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, even the internal electrode layer is a thin layer, has a large displacement amount, and the bonding strength superior method of fabricating the multilayer piezoelectric ceramic unit products The purpose is to provide.

積層型圧電セラミック部品では、低コストでかつ大きな変位量が求められるが、変位量の向上を阻害する主な要因としては、(1)電位降下、(2)残留応力、(3)変位阻害力の3つが考えられる。ここで、   Multilayer piezoelectric ceramic parts require a large amount of displacement at a low cost, but the main factors that hinder the improvement of the amount of displacement are (1) potential drop, (2) residual stress, and (3) displacement inhibition force. The following three are conceivable. here,

(1)電位降下とは、内部電極層中に貫通孔等の非導電部が形成される結果、該非導電部に起因した電位降下が生じ、電界と圧電定数との積で規定される変位量が低下する現象であり、特に、内部電極層を薄層化すると構造的に非導電部が増大することから、非導電部での電位降下が顕著となる。 (1) A potential drop is a displacement amount defined by the product of an electric field and a piezoelectric constant, as a result of a non-conductive part such as a through hole being formed in the internal electrode layer, resulting in a potential drop due to the non-conductive part. In particular, when the internal electrode layer is thinned, the non-conductive portion increases structurally, so that the potential drop at the non-conductive portion becomes significant.

(2)残留応力とは、セラミック層の熱膨張率と内部電極層の熱膨張率との差異に起因して応力が残留し、セラミック層の変位が抑制される現象である。 (2) Residual stress is a phenomenon in which stress remains due to the difference between the thermal expansion coefficient of the ceramic layer and the thermal expansion coefficient of the internal electrode layer, and displacement of the ceramic layer is suppressed.

(3)変位阻害力とは、電圧が印加されると、セラミック層が伸縮運動を行うが、該セラミック層は内部電極層で挟持されているため、前記セラミック層の変位が内部電極層によって阻害される現象である。 (3) Displacement inhibition force means that when a voltage is applied, the ceramic layer expands and contracts. However, since the ceramic layer is sandwiched between internal electrode layers, the displacement of the ceramic layer is inhibited by the internal electrode layer. It is a phenomenon.

そして、内部電極層を薄層化しかつ内部電極層のセラミック層への被覆率を低下させることにより、残留応力や変位阻害力を低減することができ、変位量を向上させることができると考えられるが、内部電極を薄層化したり被覆率を低下させると、非導電部が増大するため電位降下が大きくなり、変位量が却って低下してしまうおそれがある。   And, by reducing the thickness of the internal electrode layer and reducing the coverage of the internal electrode layer on the ceramic layer, it is possible to reduce the residual stress and displacement inhibition force and to improve the displacement amount. However, when the internal electrode is thinned or the coverage is reduced, the non-conductive portion increases, so that the potential drop increases and the displacement amount may decrease.

そこで、本発明者らは、変位量の向上を阻害する上記3つの要因、すなわち電位降下、残留応力及び変位阻害力を低減すべく鋭意研究を行ったところ、内部電極層のうち、非導電部の断面積を円換算した場合の平均直径xとセラミック層の厚みyとの比x/yを0.08〜0.33に制御すると共に、前記内部電極層の厚みzと前記セラミック層の厚みyとの比z/yを0.04〜0.40に制御し、かつ内部電極層のセラミック層への被覆率を60〜95%に制御することにより、電位降下による変位量の低下を最小限に抑制しつつ、残留応力や変位阻害力を低減することができ、これにより内部電極層が薄層の場合であっても変位量と信頼性の双方を向上させることが可能な積層型圧電セラミック部品を得ることができるという知見を得た。   Therefore, the present inventors conducted intensive research to reduce the above three factors that hinder the improvement of the displacement amount, that is, the potential drop, the residual stress, and the displacement inhibition force. The ratio x / y of the average diameter x to the ceramic layer thickness y when the cross-sectional area of the film is converted into a circle is controlled to 0.08 to 0.33, and the thickness z of the internal electrode layer and the thickness of the ceramic layer The ratio of y to z / y is controlled to 0.04 to 0.40, and the coverage of the internal electrode layer on the ceramic layer is controlled to 60 to 95%, thereby minimizing the decrease in displacement due to potential drop. Multi-layered piezoelectric that can reduce residual stress and displacement inhibition force while suppressing to the limit, thereby improving both displacement and reliability even when the internal electrode layer is thin. Acquired knowledge that ceramic parts can be obtained .

そしてそのためには、金属粉末の5〜20倍の比表面積を有する微小なセラミック粉末を、その含有量が金属粉末及びセラミック粉末の総計に対し20〜50重量%となるように、前記金属粉末と共に導電性ペースト中に分散させ、かつ焼成時の酸素濃度を0.1〜15体積%の低酸素濃度として製造する必要があるという知見を得た。For that purpose, a fine ceramic powder having a specific surface area 5 to 20 times that of the metal powder is mixed with the metal powder so that the content thereof is 20 to 50% by weight based on the total amount of the metal powder and the ceramic powder. It has been found that it is necessary to produce a low oxygen concentration of 0.1 to 15% by volume by dispersing in an electrically conductive paste and firing.

本発明はこのような知見に基づきなされたものであって、本発明に係る積層型圧電セラミック部品の製造方法は、セラミックグリーンシートの表面に導電性ペーストを塗布して内部電極層となるべき所定の導電パターンを形成し、該導電パターンの形成されたセラミックグリーンシートを積層した後、導電パターンの形成されていないセラミックグリーンシートで挟持し、圧着して積層体を形成し、その後前記積層体に焼成処理を施してセラミック層と内部電極層とが交互に積層されたセラミック素体を形成し、該セラミック素体の端面に外部電極を形成する積層型圧電セラミック部品の製造方法において、前記導電性ペーストが、金属粉末と、該金属粉末の5〜20倍の比表面積を有するセラミック粉末とを含有すると共に、該セラミック粉末の含有量が、金属粉末及びセラミック粉末の総計に対し、20〜50重量%となるように調製し、前記焼成処理を、酸素濃度が0.1〜15体積%の酸素雰囲気中で行ない、前記内部電極層が導電部と非導電部とを有するように該内部電極層を形成することを特徴としている。The present invention has been made on the basis of such knowledge, and the manufacturing method of the multilayer piezoelectric ceramic component according to the present invention is a predetermined method in which a conductive paste is applied to the surface of a ceramic green sheet to form an internal electrode layer. After forming the conductive pattern and laminating the ceramic green sheet on which the conductive pattern is formed, it is sandwiched between the ceramic green sheets on which the conductive pattern is not formed and pressed to form a laminated body. In the method for manufacturing a multilayer piezoelectric ceramic component, the ceramic body and the internal electrode layer are alternately laminated to form a ceramic body, and an external electrode is formed on an end face of the ceramic body. The paste contains a metal powder and a ceramic powder having a specific surface area 5 to 20 times that of the metal powder, and the ceramic The powder content is adjusted so as to be 20 to 50% by weight with respect to the total amount of the metal powder and the ceramic powder, and the firing treatment is performed in an oxygen atmosphere having an oxygen concentration of 0.1 to 15% by volume, The internal electrode layer is formed so that the internal electrode layer has a conductive portion and a non-conductive portion.

また、導電性ペーストに含有されるセラミック粉末は、焼成時にセラミックグリーンシート側にも拡散するため、特性変動を防ぐ観点からは、少なくとも主成分がセラミックグリーンシートと同一の成分組成を有する材料を使用するのが好ましい。In addition, the ceramic powder contained in the conductive paste diffuses to the ceramic green sheet side during firing, so from the standpoint of preventing characteristic fluctuations, use at least the material whose main component has the same component composition as the ceramic green sheet. It is preferable to do this.

すなわち、本発明の積層型圧電セラミック部品の製造方法は、前記セラミック粉末は、少なくとも主成分が前記セラミックグリーンシートと同一の成分組成であることを特徴としている。That is, the method for manufacturing a multilayer piezoelectric ceramic component according to the present invention is characterized in that the ceramic powder has at least a main component having the same component composition as the ceramic green sheet.

また、本発明の積層型圧電セラミック部品の製造方法は、前記非導電部の断面積を円換算した場合の平均直径xと前記セラミック層の厚みyとの比x/yが0.08〜0.33となるように前記非導電部を形成し、さらに前記内部電極層の厚みzと前記セラミック層の厚みyとの比z/yが0.04〜0.40であって前記内部電極層の前記セラミック層への被覆率が60〜95%となるように前記内部電極層を形成することを特徴としている。In the method for manufacturing a multilayer piezoelectric ceramic component of the present invention, the ratio x / y between the average diameter x and the thickness y of the ceramic layer when the cross-sectional area of the non-conductive portion is converted into a circle is 0.08 to 0. The non-conductive portion is formed so as to be .33, and the ratio z / y of the thickness z of the internal electrode layer to the thickness y of the ceramic layer is 0.04 to 0.40, and the internal electrode layer The internal electrode layer is formed so that the coverage of the ceramic layer is 60 to 95%.

また、内部電極層は、セラミック層と内部電極層との間の接合強度向上等の観点から、上述したように固形分として金属粉末とセラミック粉末とを含有した導電性ペーストを使用して形成されているため、非導電部は、空隙部とセラミック粉末が充填されたセラミック部とを有することとなる。そして、本発明者らが、非導電部の構造を解析した結果、非導電部中の空隙率を60%以上とすることにより、接合強度を損なうことなく変位量のより一層の向上を図ることができることが分かった。Also, the internal electrode layer is formed using a conductive paste containing metal powder and ceramic powder as a solid content as described above from the viewpoint of improving the bonding strength between the ceramic layer and the internal electrode layer. Therefore, the non-conductive portion has a void portion and a ceramic portion filled with ceramic powder. As a result of analyzing the structure of the non-conductive portion by the present inventors, the displacement amount is further improved without deteriorating the bonding strength by setting the porosity in the non-conductive portion to 60% or more. I found out that

すなわち、本発明の積層型圧電セラミック部品の製造方法は、前記非導電部は、空隙部とセラミック粉末で充填されたセラミック部とを有し、前記空隙部が前記非導電部中の60%以上を占めるように前記非導電部を形成することを特徴としている。 That is, in the method for manufacturing a multilayer piezoelectric ceramic component according to the present invention, the non-conductive portion has a void portion and a ceramic portion filled with ceramic powder, and the void portion is 60% or more of the non-conductive portion. The non-conductive portion is formed so as to occupy the area.

上記積層型圧電セラミック部品の製造方法によれば、前記導電性ペーストが、金属粉末と、該金属粉末の5〜20倍の比表面積を有するセラミック粉末とを含有すると共に、該セラミック粉末の含有量が、金属粉末及びセラミック粉末の総計に対し、20〜50重量%となるように調製し、前記焼成処理を、酸素濃度が0.1〜15体積%の酸素雰囲気中で行ない、前記内部電極層が導電部と非導電部とを有するように該内部電極層を形成するので、微小なセラミック粉末は焼結時にセラミックグリーンシートに効果的に拡散すると共に、内部電極層中の金属成分のセラミックグリーンシート内への拡散を抑制でき、内部電極層に多数の微小な非導電部を形成することができる。特に、低酸素濃度雰囲気での焼成により、内部電極層内に形成され得る貫通孔の焼結が抑制されるので、微小な空隙部が内部電極層内に略均一に分布され、これにより被覆率が低下して変位量を向上させることができる。しかも、内部電極の被覆率低下や薄層化により導電性ペーストの使用量を削減することができるため、コストの低廉化を図ることもできる。 According to the method for producing a laminated piezoelectric ceramic component, the conductive paste contains a metal powder and a ceramic powder having a specific surface area 5 to 20 times that of the metal powder, and the content of the ceramic powder. Is prepared so as to be 20 to 50% by weight with respect to the total amount of the metal powder and the ceramic powder, the firing treatment is performed in an oxygen atmosphere having an oxygen concentration of 0.1 to 15% by volume, and the internal electrode layer Since the internal electrode layer is formed so as to have a conductive part and a non-conductive part, the fine ceramic powder is effectively diffused into the ceramic green sheet during sintering, and the ceramic green of the metal component in the internal electrode layer Diffusion into the sheet can be suppressed, and a large number of minute nonconductive portions can be formed in the internal electrode layer. In particular, firing in a low oxygen concentration atmosphere suppresses the sintering of through-holes that can be formed in the internal electrode layer, so that minute voids are distributed substantially uniformly in the internal electrode layer, thereby covering the coverage ratio. Can be reduced and the amount of displacement can be improved. In addition, since the amount of conductive paste used can be reduced by reducing the coverage of the internal electrodes and making it thinner, the cost can be reduced.

また、前記セラミック粉末は、少なくとも主成分が前記セラミックグリーンシートと同一の成分組成であるので、焼成時にセラミック粉末がセラミックグリーンシート側に拡散しても特性変動を防止することができる。In addition, since the ceramic powder has at least the same component composition as the ceramic green sheet, even if the ceramic powder diffuses to the ceramic green sheet side during firing, fluctuations in characteristics can be prevented.

また、前記非導電部の断面積を円換算した場合の平均直径xと前記セラミック層の厚みyとの比x/yが0.08〜0.33となるように前記非導電部を形成し、さらに前記内部電極層の厚みzと前記セラミック層の厚みyとの比z/yが0.04〜0.40であって前記内部電極層の前記セラミック層への被覆率が60〜95%となるように前記内部電極層を形成するので、微小かつ多数の非導電部が形成されることとなり、しかも内部電極層の厚みに対してセラミック層の厚みが適度に薄いことから、セラミック層に加わる内部電極層による残留応力や変位阻害力が低減される効果が大きくなる。そしてこれにより、電位降下による変位量低下を抑制しつつ、残留応力、及び内部電極層によるセラミック層の変位阻害力を低減することができ、したがって大きな変位量を有し、かつ良好な接合強度を有する信頼性の優れた積層型圧電セラミック部品を得ることができる。Further, the non-conductive portion is formed so that a ratio x / y of an average diameter x and a thickness y of the ceramic layer when the cross-sectional area of the non-conductive portion is converted into a circle is 0.08 to 0.33. Furthermore, the ratio z / y between the thickness z of the internal electrode layer and the thickness y of the ceramic layer is 0.04 to 0.40, and the coverage of the internal electrode layer on the ceramic layer is 60 to 95%. The internal electrode layer is formed so that a large number of non-conductive portions are formed, and the thickness of the ceramic layer is moderately thin relative to the thickness of the internal electrode layer. The effect of reducing the residual stress and the displacement inhibition force due to the applied internal electrode layer is increased. As a result, it is possible to reduce the residual stress and the displacement inhibition force of the ceramic layer due to the internal electrode layer while suppressing the decrease in the displacement amount due to the potential drop, and thus have a large displacement amount and good bonding strength. A multilayer piezoelectric ceramic component having excellent reliability can be obtained.

また、前記非導電部は、空隙部とセラミック粉末で充填されたセラミック部とを有し、前記空隙部が前記非導電部中の60%以上を占めるように前記非導電部を形成するので、内部電極層による残留応力や変位阻害力を効果的に低減することができ、変位量や接合強度をより一層向上させることができる積層型圧電セラミック部品を得ることができる。  Further, the non-conductive portion has a void portion and a ceramic portion filled with ceramic powder, and the non-conductive portion is formed so that the void portion occupies 60% or more of the non-conductive portion. It is possible to effectively reduce the residual stress and the displacement inhibition force due to the internal electrode layer, and to obtain a multilayer piezoelectric ceramic component that can further improve the displacement amount and the bonding strength.

本発明に係る積層型圧電セラミック部品の一実施の形態を示す断面図である。1 is a cross-sectional view showing an embodiment of a multilayer piezoelectric ceramic component according to the present invention. 図1のB部拡大断面図である。It is the B section expanded sectional view of FIG. 本発明実施例のSEM画像の一例を示す図である。It is a figure which shows an example of the SEM image of this invention Example. 従来例のSEM画像の一例を示す図である。It is a figure which shows an example of the SEM image of a prior art example. 積層型圧電セラミック部品の従来例を示す断面図である。It is sectional drawing which shows the prior art example of a laminated type piezoelectric ceramic component.

符号の説明Explanation of symbols

1 セラミック層
2 内部電極層
5 導電部
6 非導電部
6a セラミック部
6b 空隙部
DESCRIPTION OF SYMBOLS 1 Ceramic layer 2 Internal electrode layer 5 Conductive part 6 Nonconductive part 6a Ceramic part 6b Space | gap part

次に、本発明の実施の形態を詳説する。   Next, an embodiment of the present invention will be described in detail.

図1は本発明に係る積層型圧電セラミック部品としての積層圧電アクチュエータの一実施の形態を示す断面図であって、該積層圧電アクチュエータは、セラミック層1(1a〜1g)と内部電極層2(2a〜2f)とが交互に積層されて圧電セラミック素体3が形成され、さらに圧電セラミック素体3の上面又は下面から端面に架けて断面L字状のAg等の導電性材料からなる外部電極4(4a、4b)が形成されている。   FIG. 1 is a sectional view showing an embodiment of a multilayer piezoelectric actuator as a multilayer piezoelectric ceramic component according to the present invention. The multilayer piezoelectric actuator includes a ceramic layer 1 (1a to 1g) and an internal electrode layer 2 ( 2a to 2f) are alternately laminated to form the piezoelectric ceramic body 3, and an external electrode made of a conductive material such as Ag having an L-shaped cross section extending from the upper surface or the lower surface of the piezoelectric ceramic body 3 to the end surface. 4 (4a, 4b) is formed.

すなわち、上記積層圧電アクチュエータは、内部電極2a、2c、2eの一端が一方の外部電極4bと電気的に接続され、内部電極2b、2d、2fの一端は他方の外部電極4aと電気的に接続されている。そして、積層圧電アクチュエータの分極方向は、内部電極2面に対し垂直方向とされ、一層毎に互いに逆方向に分極されている。そして、外部電極4aと外部電極4bとの間に電圧が印加されると、圧電横効果により矢印Aで示す長手方向に変位する。   That is, in the laminated piezoelectric actuator, one end of the internal electrodes 2a, 2c, and 2e is electrically connected to one external electrode 4b, and one end of the internal electrodes 2b, 2d, and 2f is electrically connected to the other external electrode 4a. Has been. The polarization direction of the laminated piezoelectric actuator is perpendicular to the surface of the internal electrode 2 and is polarized in opposite directions to each other. When a voltage is applied between the external electrode 4a and the external electrode 4b, it is displaced in the longitudinal direction indicated by the arrow A due to the piezoelectric lateral effect.

図2は図1のB部拡大断面図である。尚、本実施の形態では、内部電極層2b〜2dの一部を拡大しているが、他の部分も同様の構造を有している。   FIG. 2 is an enlarged cross-sectional view of a portion B in FIG. In this embodiment, a part of the internal electrode layers 2b to 2d is enlarged, but the other parts have the same structure.

すなわち、内部電極層2(2b〜2d)は、金属粉末が焼結されてなる導電部5と、金属粉末が存在しない非導電部6とからなり、さらに非導電部6は、少なくとも主成分がセラミック層1(1b〜1e)と同一の組成成分のセラミック粉末が存在するセラミック部6aと、固体の存在しない空隙部6bとを有している。尚、図中、C部に示すように、空隙部6bは必ずしも貫通している必要はない。また、例えば空隙部6bの一部にセラミック粉末が含まれていてもよい。また、図中、D部に示すように、セラミック部6aは、必ずしも内部電極層2をまたがる必要はなく、内部電極層2の一部に存在するようにしてもよい。   That is, the internal electrode layer 2 (2b to 2d) includes a conductive portion 5 formed by sintering metal powder and a nonconductive portion 6 in which no metal powder exists, and the nonconductive portion 6 includes at least a main component. It has a ceramic portion 6a in which ceramic powder having the same composition as the ceramic layer 1 (1b to 1e) is present, and a void portion 6b in which no solid is present. In addition, as shown to the C part in the figure, the space | gap part 6b does not necessarily need to penetrate. Further, for example, ceramic powder may be included in a part of the gap 6b. In addition, as shown in part D in the figure, the ceramic part 6 a does not necessarily need to straddle the internal electrode layer 2, and may exist in a part of the internal electrode layer 2.

そして、本実施の形態では、非導電部6の断面積を円換算した場合の平均直径xとセラミック層1の厚みyとの比x/yが0.08〜0.33となるように制御し、また内部電極層2のセラミック層1への被覆率が60〜95%となるように制御しており、これにより、非導電部6の大きさが微小化されて非導電部6における電位降下による変位量低下を抑制することができ、また微小な非導電部6を多数設けることにより内部電極層2の被覆率を低減することができる。そしてその結果、内部電極層2による残留応力や変位阻害力を低減することができ、積層圧電アクチュエータの変位量及び接合強度の向上を図ることができる。   And in this Embodiment, it controls so that ratio x / y of the average diameter x at the time of converting the cross-sectional area of the nonelectroconductive part 6 into a circle and the thickness y of the ceramic layer 1 may be 0.08-0.33. In addition, the coverage of the internal electrode layer 2 to the ceramic layer 1 is controlled to be 60 to 95%, whereby the size of the non-conductive portion 6 is reduced and the potential at the non-conductive portion 6 is reduced. It is possible to suppress a decrease in the amount of displacement due to the lowering, and it is possible to reduce the coverage of the internal electrode layer 2 by providing a large number of minute non-conductive portions 6. As a result, it is possible to reduce the residual stress and the displacement inhibition force due to the internal electrode layer 2, and it is possible to improve the displacement amount and the bonding strength of the laminated piezoelectric actuator.

比x/yは電位降下と相関関係があり、比x/yが小さくなるとセラミック層1の厚さに対して平均直径xが相対的に小さくなることから電位降下は小さくなり変位量が向上する。一方、比x/yが大きくなるとセラミック層1の厚みに対して平均直径xが相対的に大きくなることから、電位降下が大きくなり変位量が低下する。そして、前記被覆率が60%未満になると非導電部6が過剰に増加するため、電位降下が大きくなって変位量の低下を招き、またセラミック層1と内部電極層2との間の接合強度も低下して界面剥離が生じ易くなる。一方、前記被覆率が95%を超えると被覆率が過大となり、セラミック層1の伸縮運動を内部電極層2が拘束する変位阻害力が増大して変位量の低下を招く。また、共焼結時におけるセラミック層1の熱膨張率と内部電極層2の熱膨張率との差異に起因した残留応力により接合強度が低下するおそれがある。   The ratio x / y has a correlation with the potential drop, and when the ratio x / y becomes small, the average diameter x becomes relatively small with respect to the thickness of the ceramic layer 1, so that the potential drop becomes small and the displacement is improved. . On the other hand, when the ratio x / y is increased, the average diameter x is relatively increased with respect to the thickness of the ceramic layer 1, so that the potential drop is increased and the displacement is decreased. When the coverage is less than 60%, the non-conductive portion 6 increases excessively, so that the potential drop increases and the displacement amount decreases, and the bonding strength between the ceramic layer 1 and the internal electrode layer 2 is increased. And the interfacial peeling is likely to occur. On the other hand, when the covering ratio exceeds 95%, the covering ratio becomes excessive, and the displacement inhibition force that the internal electrode layer 2 restrains the expansion / contraction movement of the ceramic layer 1 increases, resulting in a decrease in the amount of displacement. Further, there is a risk that the bonding strength is reduced due to the residual stress caused by the difference between the thermal expansion coefficient of the ceramic layer 1 and the thermal expansion coefficient of the internal electrode layer 2 during co-sintering.

したがって、内部電極層2のセラミック層1への被覆率を60〜95%に制御する必要がある。   Therefore, it is necessary to control the coverage of the internal electrode layer 2 on the ceramic layer 1 to 60 to 95%.

また、前記比x/yを0.08〜0.33としたのは以下の理由による。   The reason why the ratio x / y is set to 0.08 to 0.33 is as follows.

前記比x/yが0.08未満になると非導電部6の平均直径xが小さくなるため、被覆率の制御が難しく、被覆率が高くなってしまい、このためセラミック層1の内部電極層2への変位阻害力が増大して変位量の低下を招く。一方、前記比x/yが0.33を超えると非導電部6の平均直径xが大きくなるため、非導電部6に起因した電位降下の増加を招き、所望の大きな変位量を得ることができなくなる。   When the ratio x / y is less than 0.08, the average diameter x of the non-conductive portion 6 becomes small, so that the coverage is difficult to control and the coverage becomes high. For this reason, the internal electrode layer 2 of the ceramic layer 1 The displacement inhibition force increases to the displacement amount. On the other hand, when the ratio x / y exceeds 0.33, the average diameter x of the non-conductive portion 6 increases, so that the potential drop caused by the non-conductive portion 6 increases, and a desired large displacement amount can be obtained. become unable.

そこで、本実施の形態では前記非導電部6の前記平均直径xとセラミック層yとの比x/yが0.08〜0.33となるように制御している。   Therefore, in the present embodiment, the ratio x / y between the average diameter x and the ceramic layer y of the nonconductive portion 6 is controlled to be 0.08 to 0.33.

また、内部電極層2の厚みzとセラミック層1の厚みyとの比z/yは0.04〜0.40とするのが好ましい。   The ratio z / y between the thickness z of the internal electrode layer 2 and the thickness y of the ceramic layer 1 is preferably 0.04 to 0.40.

すなわち、セラミック層1の厚みyを内部電極層2の厚みzに対し薄くするほど、セラミック層1に負荷される内部電極層2による残留応力や変位阻害力が相対的に増加し、十分な変位量の増加を得ることができなくなるおそれがあり、斯かる観点からは前記比z/yを0.04以上とするのが好ましい。一方、前記比z/yが0.40を超えると内部電極層2の厚みzがセラミック層1の厚みに対して相対的に厚くなり、その結果内部電極層2の変位阻害力が大きくなるため、変位量の低下を招くおそれがある。したがって前記比z/yは0.04〜0.40とするのが好ましい。   That is, as the thickness y of the ceramic layer 1 is made thinner than the thickness z of the internal electrode layer 2, the residual stress and the displacement inhibiting force due to the internal electrode layer 2 loaded on the ceramic layer 1 are relatively increased, and the sufficient displacement There is a possibility that an increase in the amount cannot be obtained. From this viewpoint, the ratio z / y is preferably 0.04 or more. On the other hand, if the ratio z / y exceeds 0.40, the thickness z of the internal electrode layer 2 becomes relatively thick with respect to the thickness of the ceramic layer 1, and as a result, the displacement inhibiting force of the internal electrode layer 2 becomes large. There is a risk of causing a decrease in the amount of displacement. Accordingly, the ratio z / y is preferably 0.04 to 0.40.

尚、内部電極層2の厚みzは薄くなるほど、内部電極層2による残留応力や変位阻害力は低減されることから,内部電極層2の厚みzは可能な限り薄いのが望ましく、好ましくは厚みzは1〜2.4μmの範囲となるように制御するのが望ましい。   Note that, as the thickness z of the internal electrode layer 2 is reduced, the residual stress and the displacement inhibition force due to the internal electrode layer 2 are reduced. Therefore, the thickness z of the internal electrode layer 2 is desirably as thin as possible, preferably the thickness. It is desirable to control z to be in the range of 1 to 2.4 μm.

また、内部電極層2に形成された空隙部6bは、非導電部6(セラミック部6a及び空隙部6b)中の60%以上を占めるのが好ましい。   Moreover, it is preferable that the space | gap part 6b formed in the internal electrode layer 2 occupies 60% or more in the nonelectroconductive part 6 (the ceramic part 6a and the space | gap part 6b).

すなわち、金属粉末よりも微粒のセラミック粉末を含有した導電性ペーストを使用して内部電極層2を形成することにより、共焼結時にセラミック粉末がセラミック層1にも分散し、これによりセラミック層1と内部電極層2との接合強度を向上させることができる。しかしながら、非導電部6中の空隙部6bの割合が60%未満になると、内部電極層2中にセラミック部6aが多数形成され、このため接合強度が大きくなり過ぎて変位量の低下を招くおそれがある。したがって前記空隙部6bは、非導電部6中、60%以上を占めるのが好ましい。   That is, by forming the internal electrode layer 2 using a conductive paste containing finer ceramic powder than the metal powder, the ceramic powder is dispersed in the ceramic layer 1 during co-sintering. And the bonding strength between the internal electrode layers 2 can be improved. However, when the ratio of the gap 6b in the non-conductive portion 6 is less than 60%, a large number of ceramic portions 6a are formed in the internal electrode layer 2, and therefore, the bonding strength becomes too high and the displacement amount may be reduced. There is. Therefore, the gap 6b preferably occupies 60% or more of the non-conductive portion 6.

また、導電部5は、Agを主成分とすることができ、例えばAgを70重量%以上含有したAg−Pdで形成することができる。   Further, the conductive portion 5 can contain Ag as a main component, and can be formed of, for example, Ag—Pd containing 70% by weight or more of Ag.

すなわち、Agを主成分として含有した内部電極層2では、Agが低融点材料のため、一般に被覆率が低下し、接合強度の低下が生じ易いが、内部電極層2の構造を上述のようにすることにより、接合強度の低下を抑制することが可能となり、比較的安価なAgを主成分とした金属粉末を使用することができ、製造コストの削減が可能となる。   That is, in the internal electrode layer 2 containing Ag as a main component, since Ag is a low-melting-point material, the covering rate generally decreases and the bonding strength is likely to decrease. However, the structure of the internal electrode layer 2 is as described above. By doing so, it is possible to suppress a decrease in bonding strength, and it is possible to use a relatively inexpensive metal powder containing Ag as a main component, thereby reducing manufacturing costs.

また、上記積層圧電アクチュエータは、セラミック層1の抗電界の1/10以上の高電界で駆動させることにより、より一層大きな変位量を得ることができる。これは駆動電界が大きくなるほど変位量が増加するため、セラミック層1に負荷される内部電極層2による残留応力や変位阻害力を低減する効果がより顕著に現れるためである。   Further, the multilayer piezoelectric actuator can be obtained with a larger displacement by being driven by a high electric field that is 1/10 or more of the coercive electric field of the ceramic layer 1. This is because the amount of displacement increases as the drive electric field increases, so that the effect of reducing residual stress and displacement inhibition force by the internal electrode layer 2 loaded on the ceramic layer 1 appears more prominently.

次に、上記積層圧電アクチュエータの製造方法について詳述する。   Next, a manufacturing method of the multilayer piezoelectric actuator will be described in detail.

まず、セラミック素原料としてPb、ZrO、TiO、必要に応じてNb、NiOを所定量秤量した後、該秤量物をジルコニアボール等の粉砕媒体が内有されたボールミルに投入し、十分に混合粉砕する。そしてその後、得られた混合粉末を所定温度(例えば、700〜1000℃)で仮焼して仮焼物を得、該仮焼物に溶剤と分散剤とを添加して再度ボールミル内で湿式粉砕し、PZT系セラミック原料粉末を作製する。First, a predetermined amount of Pb 3 O 4 , ZrO 2 , TiO 2 , and Nb 2 O 5 , NiO as required is weighed as a ceramic raw material, and then the weighed product is a ball mill containing a grinding medium such as zirconia balls And thoroughly mixed and pulverized. And after that, the obtained mixed powder is calcined at a predetermined temperature (for example, 700 to 1000 ° C.) to obtain a calcined product, a solvent and a dispersant are added to the calcined product, and wet pulverized again in a ball mill, A PZT ceramic raw material powder is produced.

次に、このようにして作製されたセラミック原料粉末に有機バインダや可塑剤を添加し、湿式で混合処理を行なってスラリー状とし、その後、ドクターブレード法等を使用して成形加工を施し、セラミックグリーンシートを作製する。   Next, an organic binder and a plasticizer are added to the ceramic raw material powder thus produced, and a wet mixing process is performed to form a slurry. Thereafter, a molding process is performed using a doctor blade method, etc. Make a green sheet.

一方、以下のようにして導電性ペーストを作製する。   On the other hand, a conductive paste is produced as follows.

まず、有機溶剤中に有機バインダを溶解させた有機ビヒクルを作製する。次いで、所定の比表面積(例えば1〜3m/g)を有する金属粉末を用意し、前記有機ビヒクルに前記金属粉末を混合させ、三本ロールミル等で混練し、これにより金属ペーストを得る。First, an organic vehicle in which an organic binder is dissolved in an organic solvent is prepared. Next, a metal powder having a predetermined specific surface area (for example, 1 to 3 m 2 / g) is prepared, the metal powder is mixed with the organic vehicle, and kneaded with a three-roll mill or the like, thereby obtaining a metal paste.

次に、前記セラミック原料粉末と少なくとも主成分が同一の組成成分を有するセラミック原料を用意し、該セラミック原料をビーズ攪拌型粉砕機等の強制撹拌装置に投入して粉砕処理を施し、これにより金属粉末の比表面積S1に対し5〜20倍の比表面積S2を有するセラミック粉末(セラミック共材)を作製する。   Next, a ceramic raw material having at least the same component as the ceramic raw material powder is prepared, and the ceramic raw material is put into a forced stirring device such as a bead stirring type pulverizer to perform a pulverization treatment, thereby making a metal A ceramic powder (ceramic co-material) having a specific surface area S2 of 5 to 20 times the specific surface area S1 of the powder is produced.

次いで、このセラミック粉末と上記有機ビヒクルとを混合し、上記ビーズ攪拌型粉砕機等の強制撹拌装置を使用してセラミック粉末を有機ビヒクル中に十分に分散させ、これによりセラミックペーストを得る。   Next, the ceramic powder and the organic vehicle are mixed, and the ceramic powder is sufficiently dispersed in the organic vehicle using a forced stirring device such as the bead stirring pulverizer, thereby obtaining a ceramic paste.

ここで、上述のようにセラミック粉末の比表面積S2を金属粉末の比表面積S1に対し5〜20倍となるようにしたのは以下の理由による。   Here, the reason why the specific surface area S2 of the ceramic powder is 5 to 20 times the specific surface area S1 of the metal powder as described above is as follows.

すなわち、セラミック粉末の比表面積S2を金属粉末の比表面積S1に対し5倍未満とした場合は、セラミック粉末の平均粒径が大きくなって導電性ペースト中のセラミック粉末の分散性が低下し、内部電極層2の非導電部6の径が大きくなったり被覆率が低くなるため、十分な変位量や接合強度を得ることができなくなるおそれがある。一方、セラミック粉末の比表面積S2が金属粉末の比表面積S1に対し20倍を超える場合は、導電性ペースト中に含まれるセラミック粉末セラミック粉末の平均粒径が過度に細かくなり、その結果これらセラミック粉末同士が凝集してしまい、このためセラミック粉末がセラミック層中に十分に拡散せず、内部電極層2の非導電部6の径が大きくなり、変位量や接合強度の低下を招くおそれがある。   That is, when the specific surface area S2 of the ceramic powder is less than 5 times the specific surface area S1 of the metal powder, the average particle size of the ceramic powder is increased and the dispersibility of the ceramic powder in the conductive paste is reduced, Since the diameter of the non-conductive portion 6 of the electrode layer 2 is increased or the coverage is lowered, there is a possibility that a sufficient amount of displacement and bonding strength cannot be obtained. On the other hand, when the specific surface area S2 of the ceramic powder exceeds 20 times the specific surface area S1 of the metal powder, the average particle size of the ceramic powder ceramic powder contained in the conductive paste becomes excessively fine. As a result, the ceramic powder does not sufficiently diffuse into the ceramic layer, and the diameter of the non-conductive portion 6 of the internal electrode layer 2 becomes large, which may cause a reduction in displacement and bonding strength.

このような理由から本実施の形態では、セラミック粉末の比表面積S2を金属粉末の比表面積S1に対し5〜20倍となるようにしている。   For this reason, in the present embodiment, the specific surface area S2 of the ceramic powder is set to 5 to 20 times the specific surface area S1 of the metal powder.

次に、固形分(金属粉末及びセラミック粉末)中のセラミック粉末の含有量が20〜50重量%となるように上記金属ペーストと上記セラミックペーストとを三本ロールミル等で混練し、これにより導電性ペーストが作製される。   Next, the metal paste and the ceramic paste are kneaded with a three-roll mill or the like so that the content of the ceramic powder in the solid content (metal powder and ceramic powder) is 20 to 50% by weight. A paste is made.

このようにセラミック粉末の含有量を固形分に対し、20〜50重量%とすることにより、焼成時にセラミック粉末をセラミックグリーンシート側に効果的に拡散することができる。   Thus, by making content of ceramic powder into 20 to 50 weight% with respect to solid content, ceramic powder can be effectively spread | diffused to the ceramic green sheet side at the time of baking.

尚、セラミック粉末の含有量を20〜50重量%としたのは、セラミック粉末の含有量が20重量%未満になると、内部電極層中の非導電部の径が大きくなって被覆率が低下し、60%以上の被覆率を確保するのが困難となる。また前記含有量が50重量%を超えるとセラミック層1に拡散しなかったセラミック粉末がセラミック部6aを形成するため接合強度が過度に大きくなり、このため変位量の低下を招くおそれがあるからである。   The ceramic powder content is set to 20 to 50% by weight. When the ceramic powder content is less than 20% by weight, the diameter of the non-conductive portion in the internal electrode layer is increased and the coverage is reduced. , It becomes difficult to ensure a coverage of 60% or more. On the other hand, if the content exceeds 50% by weight, the ceramic powder that has not diffused into the ceramic layer 1 forms the ceramic portion 6a, so that the bonding strength becomes excessively large, which may lead to a decrease in displacement. is there.

次いで、上述した導電性ペーストを使用し、上記セラミックグリーンシート上にスクリーン印刷を施して導電パターンを形成する。   Next, using the conductive paste described above, screen printing is performed on the ceramic green sheet to form a conductive pattern.

尚、本実施の形態では、導電性ペーストに含まれるセラミック粉末は、少なくとも主成分が、セラミックグリーンシートを形成するセラミック材料と同一の組成成分を有するセラミック原料を使用しているが、必ずしも主成分が同一の組成成分である必要はない。しかしながら、導電性ペーストに含まれるセラミック粉末は、焼成時にセラミック層側に拡散するため、特性変動を防止する観点から、少なくとも主成分が、セラミックグリーンシートを形成するセラミック材料と同一の組成成分を有するセラミック原料を使用するのがより好ましい。   In the present embodiment, the ceramic powder contained in the conductive paste uses a ceramic raw material having at least the main component having the same composition as the ceramic material forming the ceramic green sheet. Need not be the same compositional component. However, since the ceramic powder contained in the conductive paste diffuses to the ceramic layer side during firing, at least the main component has the same composition component as the ceramic material forming the ceramic green sheet from the viewpoint of preventing characteristic fluctuations. More preferably, ceramic raw materials are used.

次に、これら電極パターンがスクリーン印刷されたセラミックグリーンシートを積層した後、電極パターンがスクリーン印刷されていないセラミックグリーンシートで挟持し、圧着して積層体を作製する。次いで、この積層体を所定寸法に切断してアルミナ製の匣(さや)に収容し、所定温度(例えば、200〜500℃)で脱バインダ処理を行った後、酸素濃度が0.1〜15体積%の酸素濃度雰囲気下、所定温度(例えば、950〜1100℃)で焼成処理を施し、セラミック層1と内部電極層2とが交互に積層された圧電セラミック素体3を形成する。   Next, after laminating ceramic green sheets on which these electrode patterns are screen-printed, they are sandwiched between ceramic green sheets on which the electrode patterns are not screen-printed, and pressed to produce a laminate. Next, the laminate is cut to a predetermined size, accommodated in an alumina cocoon, and after a binder removal treatment at a predetermined temperature (for example, 200 to 500 ° C.), the oxygen concentration is 0.1 to 15 A firing process is performed at a predetermined temperature (for example, 950 to 1100 ° C.) in an oxygen concentration atmosphere of volume% to form the piezoelectric ceramic body 3 in which the ceramic layers 1 and the internal electrode layers 2 are alternately stacked.

ここで、焼成雰囲気を上記低酸素雰囲気としたのは以下の理由による。   Here, the reason why the firing atmosphere is the low oxygen atmosphere is as follows.

金属粉末よりも大きな比表面積を有するセラミック粉末をセラミック層中に積極的に拡散させることにより、微小な非導電部6を内部電極層2中に多数形成することができるが、さらに、大気中よりも低い酸素濃度0.1〜15体積%の酸素濃度雰囲気で焼成することにより、内部電極中の金属成分がセラミック層へ拡散することを防ぐと共に、非導電部6中の空隙部6bが焼結によって閉塞状態となるのを防止することができ、その結果、微小な空隙部6bを非導電部6全体に対し60%以上とすることができ、これにより上述した内部電極層2を有する積層圧電アクチュエータの製造が可能となる。   By actively diffusing a ceramic powder having a specific surface area larger than that of the metal powder into the ceramic layer, a large number of minute non-conductive portions 6 can be formed in the internal electrode layer 2. By firing in an oxygen concentration atmosphere with a low oxygen concentration of 0.1 to 15% by volume, the metal component in the internal electrode is prevented from diffusing into the ceramic layer, and the void portion 6b in the non-conductive portion 6 is sintered. As a result, the minute gap portion 6b can be made 60% or more with respect to the entire non-conductive portion 6, and thus the laminated piezoelectric element having the internal electrode layer 2 described above can be prevented. An actuator can be manufactured.

さらに、低酸素雰囲気で焼成した場合、内部電極層2の昇降温時の酸化膨張や還元収縮を抑制できるため、セラミック層1と内部電極層2との界面での接合強度を強固に維持することが可能となる。   Furthermore, when firing in a low oxygen atmosphere, the oxidative expansion and reduction shrinkage during the temperature rise and fall of the internal electrode layer 2 can be suppressed, so that the bonding strength at the interface between the ceramic layer 1 and the internal electrode layer 2 can be maintained firmly. Is possible.

そして、このような接合強度の強化と微小な非導電部6の形成との相乗効果により、より一層の変位量及び信頼性の向上した積層圧電アクチュエータを得ることが可能となる。   And, by such a synergistic effect of strengthening the bonding strength and forming the minute non-conductive portion 6, it is possible to obtain a laminated piezoelectric actuator with further improved displacement and reliability.

また、酸素濃度を0.1〜15体積%としたのは、酸素濃度が0.1体積%未満となると、被覆率が低下する傾向があり、空隙部6bの制御が難しくなるからであり、一方酸素濃度が15体積%を超えると焼成雰囲気が大気に近くなるため、空隙部6bが焼結により塞がれ易くなるため、上述した所望の内部電極層2を形成することができなくなり、変位量の向上を図ることができず、また接合強度の向上を図ることができなくなるからである。   Further, the reason why the oxygen concentration is 0.1 to 15% by volume is that when the oxygen concentration is less than 0.1% by volume, the coverage tends to decrease, and the control of the gap 6b becomes difficult. On the other hand, if the oxygen concentration exceeds 15% by volume, the firing atmosphere becomes close to the air, and the gap 6b is easily blocked by sintering, so that the desired internal electrode layer 2 described above cannot be formed, and the displacement This is because the amount cannot be improved and the bonding strength cannot be improved.

尚、上述した低酸素雰囲気では、金属粉末としてPdを含有したAg−Pd粉末を使用した場合、Pdの酸化還元反応自体を抑制することができるため、昇降温時のPdの体積変化による接合強度の劣化を抑制することができ、これにより変位量の低下を招くことなく、接合強度のより一層の向上を図ることができる。   In addition, in the low oxygen atmosphere mentioned above, when Ag-Pd powder containing Pd is used as the metal powder, the Pd oxidation-reduction reaction itself can be suppressed. Deterioration of this can be suppressed, and thereby the joint strength can be further improved without causing a decrease in displacement.

そしてこの後、圧電セラミック素体3の端面所定領域にAg等からなる外部電極用同導電性ペーストを塗布し、所定温度(例えば、750℃〜850℃)で焼付け処理を行って外部電極4a、4bを形成し、さらに所定の分極処理を行ない、これにより積層圧電アクチュエータが製造される。尚、外部電極4a、4bは、密着性が良好であればよく、例えばスパッタリング法や真空蒸着法等の薄膜形成方法で形成してもよい。   After that, the same conductive paste for external electrode made of Ag or the like is applied to a predetermined region of the end face of the piezoelectric ceramic body 3, and subjected to a baking process at a predetermined temperature (for example, 750 ° C. to 850 ° C.) to thereby form external electrodes 4a 4b is formed, and a predetermined polarization process is further performed, whereby a laminated piezoelectric actuator is manufactured. The external electrodes 4a and 4b may be formed by a thin film forming method such as a sputtering method or a vacuum vapor deposition method as long as the adhesion is good.

このように本実施の形態では、金属粉末の比表面積S1の5〜20倍の比表面積S2を有するセラミック粉末を固形分(金属粉末及びセラミック粉末)に対し20〜50重量%含有した導電性ペーストを使用し、酸素濃度が0.1〜15体積%の低酸素濃度雰囲気で焼成処理を施しているので、内部電極層2は、導電部5に非導電部6が点在した状態に形成されると共に、非導電部6の平均直径xとセラミック層2の厚みyとの比x/yが0.08〜0.33であり、内部電極層2の被覆率が60〜95%であり、さらに内部電極層2の厚みzとセラミック層1の厚みyとの比z/yが0.04〜0.40であり、しかも非導電部6中、空隙部6bが60%以上を占めるように内部電極層が形成されているので、変位量が大きくしかもセラミック層1と内部電極層2との間の接合強度が強く信頼性の優れた積層圧電アクチュエータを製造することができる。   Thus, in this Embodiment, the electrically conductive paste which contains 20-50 weight% of ceramic powder which has 5-20 times specific surface area S2 of metal powder specific surface area S1 with respect to solid content (metal powder and ceramic powder). Is used, and the baking process is performed in a low oxygen concentration atmosphere having an oxygen concentration of 0.1 to 15% by volume. Therefore, the internal electrode layer 2 is formed in a state where the nonconductive portions 6 are scattered in the conductive portions 5. In addition, the ratio x / y between the average diameter x of the non-conductive portion 6 and the thickness y of the ceramic layer 2 is 0.08 to 0.33, and the coverage of the internal electrode layer 2 is 60 to 95%. Further, the ratio z / y between the thickness z of the internal electrode layer 2 and the thickness y of the ceramic layer 1 is 0.04 to 0.40, and the gap 6b occupies 60% or more in the non-conductive portion 6. Since the internal electrode layer is formed, the displacement is large and the ceramic It is possible to produce a laminated piezoelectric actuator joint strength excellent strong reliability between the click layer 1 and the internal electrode layer 2.

尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、金属ペーストとセラミックペーストとを混練させて導電性ペーストを作製しているが、金属粉末とセラミック共材とを所定量の配合比で混合させた後、有機ビヒクルと混練させて導電性ペーストを作製するようにしてもよい。   The present invention is not limited to the above embodiment. In the above embodiment, the conductive paste is prepared by kneading the metal paste and the ceramic paste. However, the metal powder and the ceramic co-material are mixed in a predetermined amount and then kneaded with the organic vehicle. Thus, a conductive paste may be produced.

また、上記実施の形態では積層型圧電セラミック部品として積層圧電アクチュエータを例に説明したが、高い圧電定数が要求される積層圧電発音体や積層圧電センサに好適であり、また、積層構造、素子形状、変位や力の方向、分極方向、電圧印加方向も上記実施の形態に限定されるものでもない。   In the above embodiment, the multilayer piezoelectric actuator is described as an example of the multilayer piezoelectric ceramic component. However, the multilayer piezoelectric actuator is suitable for a multilayer piezoelectric sounding body or multilayer piezoelectric sensor that requires a high piezoelectric constant, and has a multilayer structure and element shape. Further, the direction of displacement or force, the direction of polarization, and the direction of voltage application are not limited to the above embodiment.

さらに、上記実施の形態では、セラミック素原料としてPb等の酸化物を使用したが、炭酸塩や水酸化物等を使用することもできるのはいうまでもない。Furthermore, in the above embodiment, using an oxide such as Pb 3 O 4 as a ceramic raw materials, it is needless to say it is also possible to use carbonates or hydroxides.

次に、本発明の実施例を具体的に説明する。   Next, examples of the present invention will be specifically described.

まず、セラミック素原料としてPb、ZrO、TiO、NiO、Nbを所定量秤量した後、該秤量物をジルコニア等の粉砕媒体が内有されたボールミルに投入し、24時間混合粉砕する。そしてその後、得られた混合粉末を温度900℃で仮焼して仮焼物を得た。次いでこの後、該仮焼物に溶剤と分散剤とを添加して再度ボールミルで24時間湿式粉砕し、組成式0.25Pb(Ni1/3Nb2/3)O3−0.35PbZrO3−0.40PbTiO3で表されるPZT系セラミック原料粉末を作製した。First, a predetermined amount of Pb 3 O 4 , ZrO 2 , TiO 2 , NiO, and Nb 2 O 5 was weighed as a ceramic raw material, and the weighed material was put into a ball mill containing a grinding medium such as zirconia. Mix and grind for hours. Then, the obtained mixed powder was calcined at a temperature of 900 ° C. to obtain a calcined product. Then, after that, a solvent and a dispersant are added to the calcined product, and wet pulverized again by a ball mill for 24 hours, and the composition formula 0.25Pb (Ni 1/3 Nb 2/3 ) O 3 −0.35PbZrO 3 −0. A PZT ceramic raw material powder represented by 40 PbTiO 3 was produced.

次に、上記セラミック粉末原料に対し、有機バインダとしてのエチルセルロース樹脂や分散剤としてのポリカルボン酸塩溶液を添加し、溶媒として水を用いてスラリーを作製し、ドクターブレード法を使用し、セラミックグリーンシートを作製した。尚、セラミックグリーンシートの厚みは、焼結後のセラミック層の厚みyが20μm又は40μmとなるように成形加工した。   Next, an ethyl cellulose resin as an organic binder and a polycarboxylate solution as a dispersant are added to the ceramic powder raw material, a slurry is prepared using water as a solvent, and a doctor blade method is used. A sheet was produced. The thickness of the ceramic green sheet was molded so that the thickness y of the sintered ceramic layer was 20 μm or 40 μm.

次に、AgとPdとの重量比Ag/Pdが7/3〜9/1に配合された比表面積が1〜3m/gの金属粉末と、前記PZT系セラミック原料粉末と同一組成成分を有する比表面積が15〜40m/gのセラミック粉末(セラミック共材)を、セラミック共材の含有量が固形分(金属粉末及びセラミック共材)の総計に対し0〜50重量%となるように配合し、該配合物をエチルセルロース樹脂(有機バインダ)と共にテルペン系溶剤(有機溶媒)中に分散させ、これにより、導電性ペーストを作製した。Next, a metal powder having a specific surface area of 1 to 3 m 2 / g, in which the weight ratio Ag / Pd of Ag to Pd is 7/3 to 9/1, and the same composition component as the PZT ceramic raw material powder Ceramic powder (ceramic co-material) having a specific surface area of 15 to 40 m 2 / g so that the content of the ceramic co-material is 0 to 50% by weight with respect to the total solid content (metal powder and ceramic co-material) It mix | blended and this compound was disperse | distributed in the terpene-type solvent (organic solvent) with ethylcellulose resin (organic binder), and, thereby, the electrically conductive paste was produced.

次に、焼結後の内部電極層の厚みzが1〜3μmとなるように塗布膜の厚みを調整しながら、上記セラミックグリーンシート上に上記内部電極用導電性ペーストをスクリーン印刷した。そして、これらスクリーン印刷が施されたセラミックグリーンシートを所定枚数積層した後、スクリーン印刷されていないセラミックグリーンシートで挟み、圧着して積層体を作製した。次いで、これらの積層体をアルミナ製の匣(さや)に収容し、脱バインダ処理を行った後、焼成温度が960℃〜1040℃、酸素濃度が0.3〜21体積%の焼成雰囲気で8時間焼成処理を施し、これにより各セラミック層の厚みyが20μm又は40μmで、総厚みが0.1〜0.6mmのセラミック素体を作製した。尚、焼成時の酸素濃度はNガスとOガスにより調整した。Next, the conductive paste for internal electrodes was screen-printed on the ceramic green sheet while adjusting the thickness of the coating film so that the thickness z of the internal electrode layer after sintering was 1 to 3 μm. Then, a predetermined number of the screen-printed ceramic green sheets were laminated, and then sandwiched between the ceramic green sheets that were not screen-printed, followed by pressure bonding to produce a laminate. Next, after these laminates were accommodated in an alumina pod and subjected to a binder removal treatment, the firing temperature was 960 ° C. to 1040 ° C. and the oxygen concentration was 0.3 to 21% by volume in a firing atmosphere. A timed baking treatment was performed, whereby a ceramic body having a thickness y of 20 μm or 40 μm and a total thickness of 0.1 to 0.6 mm was produced. The oxygen concentration during sintering was adjusted with N 2 gas and O 2 gas.

続いてセラミック素体を縦3mm、横13mmに切断し、Ni−Cuをターゲットとしてスパッタリング処理を施し、セラミック素体の上下両面から側面部に架けてNi−Cu膜を形成し、さらにAgをターゲットとしてスパッタリング処理を施し、Ni−Cu膜上にAg膜を成膜し、これによりNi−Cu膜及びAg膜の2層構造からなる外部電極を形成した。   Subsequently, the ceramic body is cut into a length of 3 mm and a width of 13 mm, a sputtering process is performed using Ni—Cu as a target, a Ni—Cu film is formed on both sides of the ceramic body from the upper and lower sides, and Ag is further targeted. Sputtering was performed, and an Ag film was formed on the Ni—Cu film, thereby forming an external electrode having a two-layer structure of the Ni—Cu film and the Ag film.

そしてその後、60℃の絶縁オイル中で、3kV/mmの電界を負荷して20分間分極処理を施し、これにより試料番号1〜24の積層圧電素子を作製した。   Then, a polarization process was performed for 20 minutes by applying an electric field of 3 kV / mm in insulating oil at 60 ° C., thereby producing laminated piezoelectric elements of sample numbers 1 to 24.

次に、試料番号1〜24の圧電定数|d31|及び引張強度Xを測定し、それぞれ積層圧電素子の変位量及び接合強度、すなわち信頼性を評価した。Next, the piezoelectric constants | d 31 | and tensile strength X of the sample numbers 1 to 24 were measured, and the displacement amount and the bonding strength, that is, the reliability of the laminated piezoelectric element were evaluated.

ここで、圧電定数|d31|は、今回使用したセラミック材料の抗電界である1000V/mmの1/2、すなわち500V/mmの電界を印加したときの変位量を接触式変位計で測定し、算出した。Here, the piezoelectric constant | d 31 | is measured with a contact displacement meter when the electric field of 1/2 of 1000 V / mm, ie, 500 V / mm, which is the coercive electric field of the ceramic material used this time, is applied. Calculated.

また、引張強度Xは、積層圧電素子の両主面に金属片をそれぞれ接着し、該金属片を引っ張り試験機で引っ張り、セラミック層と内部電極層との接合面が剥離したときの値を求めた。尚、本実施例では、引張強度で内部電極層とセラミック層との接合強度を評価した。   Further, the tensile strength X is obtained by bonding metal pieces to both main surfaces of the laminated piezoelectric element, pulling the metal pieces with a tensile tester, and peeling off the joint surface between the ceramic layer and the internal electrode layer. It was. In this example, the bonding strength between the internal electrode layer and the ceramic layer was evaluated based on the tensile strength.

また、試料番号1又は試料番号12を基準とし、圧電定数の増加率Δ|d31|及び引張強度の増加率ΔXを算出した。In addition, the increase rate Δ | d 31 | of the piezoelectric constant and the increase rate ΔX of the tensile strength were calculated using the sample number 1 or the sample number 12 as a reference.

次に、セラミック層と内部電極層との接合面を走査型電子顕微鏡(SEM)で観察し、内部電極の被覆率、非導電部の断面積を円換算した場合の平均直径xを画像解析により求めて、比x/y、及び比z/yを算出した。   Next, the bonding surface of the ceramic layer and the internal electrode layer is observed with a scanning electron microscope (SEM), and the average diameter x when the coverage of the internal electrode and the cross-sectional area of the non-conductive portion are converted into a circle is analyzed by image analysis. The ratio x / y and the ratio z / y were calculated.

表1は試料番号1〜24の積層圧電素子の作製条件を示し、表2はその測定結果を示している。   Table 1 shows the manufacturing conditions of the laminated piezoelectric elements of sample numbers 1 to 24, and Table 2 shows the measurement results.

Figure 0004565349
Figure 0004565349

Figure 0004565349
Figure 0004565349

試料番号1〜11はセラミック層の厚みyが40μmの場合である。このうち試料番号1は、内部電極層中にセラミック共材が含有されておらず、しかも酸素濃度が21体積%の大気雰囲気で焼成処理を行なった従来例であり、この試料番号1と試料番号2〜10とを対比することにより、各試料番号の変位量及び接合強度を評価することができる。   Sample numbers 1 to 11 are cases where the thickness y of the ceramic layer is 40 μm. Sample No. 1 is a conventional example in which the ceramic electrode material is not contained in the internal electrode layer and the baking treatment is performed in an air atmosphere having an oxygen concentration of 21% by volume. Sample No. 1 and Sample No. By comparing 2 to 10, the displacement amount and bonding strength of each sample number can be evaluated.

すなわち、試料番号6は、比x/yが0.37と大きく、非導電部の平均直径xが14.7μmと大きいため、被覆率が49%に低下し、このため圧電定数|d31|が324pC/Nと低く、試料番号1に対し1.5%も低下している。また、被覆率が49%と低いことから、引張強度Xも7.9MPaと低く、試料番号1に対し引張強度Xは7.1%も低下している。That is, in Sample No. 6, since the ratio x / y is as large as 0.37 and the average diameter x of the non-conductive portion is as large as 14.7 μm, the coverage is reduced to 49%, and therefore the piezoelectric constant | d 31 | Is as low as 324 pC / N, which is 1.5% lower than Sample No. 1. Moreover, since the coverage is as low as 49%, the tensile strength X is also as low as 7.9 MPa, and the tensile strength X is decreased by 7.1% with respect to the sample number 1.

試料番号10は、比x/yが0.41と大きく、非導電部の平均直径xが16.5μmと大きいため、被覆率が45%に低下し、このため圧電定数|d31|が315pC/Nと低く、試料番号1に対し4.3%も低下している。また、被覆率が45%と低いことから、引張強度Xも7.4MPaと低く、試料番号1に対し12.9%も低下している。In Sample No. 10, since the ratio x / y is as large as 0.41 and the average diameter x of the non-conductive portion is as large as 16.5 μm, the coverage is reduced to 45%, and therefore the piezoelectric constant | d 31 | is 315 pC. / N, which is 4.3% lower than Sample No. 1. Moreover, since the coverage is as low as 45%, the tensile strength X is also as low as 7.4 MPa, which is 12.9% lower than the sample number 1.

これに対して試料番号2〜5、7〜9、及び11は、比x/yが0.08〜0.33、被覆率が60〜94%であるので、圧電定数|d31|は338〜362pC/Nと大きく、試料番号1に対し2.7〜10.0%も増加しており、変位量が向上することが分かった。また、引張強度Xも8.5〜9.8MPaであり、試料番号11は試料番号1と引張強度Xは同等であるが、試料番号2〜5及び7〜9は、試料番号1に対し1.2〜21.2%も増加しており、接合強度が向上することが分かった。On the other hand, sample numbers 2 to 5, 7 to 9, and 11 have a ratio x / y of 0.08 to 0.33 and a coverage of 60 to 94%. Therefore, the piezoelectric constant | d 31 | It was as large as ˜362 pC / N and increased by 2.7 to 10.0% with respect to Sample No. 1, indicating that the amount of displacement was improved. Further, the tensile strength X is 8.5 to 9.8 MPa, the sample number 11 is equal to the sample number 1 and the tensile strength X, but the sample numbers 2 to 5 and 7 to 9 are 1 with respect to the sample number 1. .2 to 21.2%, which indicates that the bonding strength is improved.

試料番号12〜24はセラミック層の厚みyが20μmの場合である。このうち試料番号12は、内部電極層中にセラミック共材が含有されておらず、しかも酸素濃度が21体積%の大気雰囲気で焼成処理を行なった従来例であり、この試料番号12と試料番号13〜24とを対比することにより、各試料番号の変位量及び接合強度を評価することができる。   Sample numbers 12 to 24 are cases in which the thickness y of the ceramic layer is 20 μm. Sample No. 12 is a conventional example in which a ceramic co-material is not contained in the internal electrode layer and the baking treatment is performed in an air atmosphere having an oxygen concentration of 21% by volume. Sample No. 12 and Sample No. By comparing 13 to 24, the displacement amount and bonding strength of each sample number can be evaluated.

すなわち、試料番号17は、比x/yが0.65と大きく、非導電部の平均直径xが13.1μmと大きいため、被覆率が48%となって試料番号12に対し0.6%も低く、圧電定数|d31|も313pC/Nと低く、しかも、引張強度Xも8.4MPaとなって試料番号12に対し4.5%も低く、接合強度が低下している。これは金属粉末の比表面積S1に対するセラミック共材の比表面積S2の比S2/S1が「2」と小さく、したがってセラミック共材の平均粒径が大きいことから、該セラミック共材の分散性が低下し、その結果、上述のように内部電極層の非導電部の径が拡大して被覆率が低下し、諸特性の悪化を招いたものと思われる。That is, in the sample number 17, the ratio x / y is as large as 0.65 and the average diameter x of the non-conductive portion is as large as 13.1 μm, so that the coverage is 48%, which is 0.6% with respect to the sample number 12. The piezoelectric constant | d 31 | is as low as 313 pC / N, and the tensile strength X is 8.4 MPa, which is 4.5% lower than that of the sample number 12 and the bonding strength is reduced. This is because the ratio S2 / S1 of the specific surface area S2 of the ceramic co-material to the specific surface area S1 of the metal powder is as small as “2”, and thus the average particle size of the ceramic co-material is large. As a result, as described above, the diameter of the non-conductive portion of the internal electrode layer is increased, the coverage is lowered, and various characteristics are deteriorated.

試料番号20は、比x/yが0.73と大きく、非導電部の平均直径xが14.7μmと大きいため、被覆率が48%に低下し、このため圧電定数|d31|が309pC/Nと低く、試料番号12に対し1.9%も低下している。また、被覆率が48%と低いことから、引張強度Xも8.0MPaと低く、試料番号12に対し引張強度Xは9.1%も低下している。In Sample No. 20, the ratio x / y is as large as 0.73 and the average diameter x of the non-conductive portion is as large as 14.7 μm, so that the coverage is reduced to 48%, and therefore the piezoelectric constant | d 31 | is 309 pC. / N, which is 1.9% lower than Sample No. 12. Moreover, since the coverage is as low as 48%, the tensile strength X is also as low as 8.0 MPa, and the tensile strength X is decreased by 9.1% with respect to the sample number 12.

試料番号23は、比x/yが0.85と大きく、非導電部の平均直径xが17.0μmと大きいため、被覆率が41%に低下し、このため圧電定数|d31|が295pC/Nと低く、試料番号12に対し6.3%も低下している。また、被覆率が41%と低いことから、引張強度Xも7.1MPaと低く、試料番号12に対し19.3%も低下している。In Sample No. 23, since the ratio x / y is as large as 0.85 and the average diameter x of the non-conductive portion is as large as 17.0 μm, the coverage is reduced to 41%, and thus the piezoelectric constant | d 31 | is 295 pC. / N, which is 6.3% lower than Sample No. 12. Moreover, since the coverage is as low as 41%, the tensile strength X is also as low as 7.1 MPa, which is 19.3% lower than the sample number 12.

これに対して試料番号13〜16、18、19、21、22、及び24は、比x/yが0.16〜0.33、被覆率が61〜95%であるので、圧電定数|d31|は324〜357pC/Nと大きく、試料番号12に対し2.9〜13.3%も増加しており、変位量が向上することが分かった。また、引張強度Xも8.8〜10.8MPaであり、試料番号24は試料番号12と引張強度Xは同等であるが、試料番号13〜16、18、19、21、及び22は、試料番号12に対し1.1〜22.7%も増加しており、接合強度が向上することが分かった。On the other hand, sample numbers 13 to 16, 18, 19, 21, 22, and 24 have a ratio x / y of 0.16 to 0.33 and a coverage of 61 to 95%. 31 | is as large as 324 to 357 pC / N, which is increased by 2.9 to 13.3% with respect to Sample No. 12, indicating that the amount of displacement is improved. Further, the tensile strength X is also 8.8 to 10.8 MPa, the sample number 24 is equal to the sample number 12 and the tensile strength X, but the sample numbers 13 to 16, 18, 19, 21, and 22 are the samples. It increased by 1.1 to 22.7% with respect to No. 12, indicating that the bonding strength was improved.

また、表1から明らかなように、被覆率が60〜90%の範囲では、圧電定数の増加率Δ|d31|は5.8〜13.3%と大幅に増加し、また、被覆率が75〜95%の範囲で引張強度の増加率ΔXは4.5〜22.7%と大幅に増加することが分かった。Further, as is apparent from Table 1, when the coverage is in the range of 60 to 90%, the increase rate Δ | d 31 | of the piezoelectric constant is significantly increased to 5.8 to 13.3%, and the coverage is It was found that the tensile strength increase rate ΔX was significantly increased to 4.5 to 22.7% in the range of 75 to 95%.

図3は試料番号19(本発明実施例)のSEM画像であり、黒く見えるのが非導電部である。また図4は試料番号12(従来例)のSEM画像である。   FIG. 3 is an SEM image of sample number 19 (Example of the present invention), and the non-conductive portion appears black. FIG. 4 is an SEM image of sample number 12 (conventional example).

図4で示すように従来例は、セラミック層が内部電極層で完全に被覆されているのに対し、図3に示す本発明実施例は、非導電部が露出して均一に分布していることが観察され、したがって、セラミック共材を含有した導電性ペーストを使用し、低酸素濃度雰囲気で焼成することにより、内部電極の構造(被覆率及び非導電部の平均直径x)を制御できることが分かった。   As shown in FIG. 4, in the conventional example, the ceramic layer is completely covered with the internal electrode layer, whereas in the embodiment of the present invention shown in FIG. 3, the non-conductive portion is exposed and distributed uniformly. Therefore, by using a conductive paste containing a ceramic co-material and firing in a low oxygen concentration atmosphere, the structure of the internal electrode (coverage and average diameter x of non-conductive part) can be controlled. I understood.

まず、〔実施例1〕と同様の方法・手順で作製したセラミックグリーンシートを用意した。   First, a ceramic green sheet prepared by the same method and procedure as in [Example 1] was prepared.

また、AgとPdとの重量比Ag/Pdを7/3又は8/2に配合し、セラミック共材を固形分の総計に対し0重量%又は30重量%となるように配合した以外は、〔実施例1〕と同様の方法・手順で内部電極用導電性ペーストを作製した。   Moreover, the weight ratio Ag / Pd of Ag and Pd is blended to 7/3 or 8/2, and the ceramic co-material is blended so as to be 0% by weight or 30% by weight with respect to the total solid content, A conductive paste for internal electrodes was produced by the same method and procedure as in [Example 1].

次に、焼結後の内部電極層の厚みzが2.4μmとなるように上記セラミックグリーンシート上に上記内部電極用導電性ペーストをスクリーン印刷し、その後、〔実施例1〕と同様の方法・手順で積層体を作製した。次いで、これら積層体をアルミナ製の匣(さや)に収容し、脱バインダ処理を行った後、焼成温度が1000℃又は1040℃で、酸素濃度が0.5体積%又は21体積%の焼成雰囲気で8時間焼成処理を施し、これにより各セラミック層の厚みyが6〜100μmで、総厚みが0.1〜0.6mmのセラミック素体を作製し、その後は〔実施例1〕と同様の方法・手順で試料番号31〜41の積層圧電素子を作製した。   Next, the conductive paste for internal electrodes is screen-printed on the ceramic green sheet so that the thickness z of the sintered internal electrode layer is 2.4 μm, and then the same method as in [Example 1] -The laminated body was produced in the procedure. Next, after these laminates are housed in alumina pods and subjected to binder removal treatment, a firing atmosphere in which the firing temperature is 1000 ° C. or 1040 ° C. and the oxygen concentration is 0.5% by volume or 21% by volume. A ceramic body having a thickness y of 6 to 100 μm and a total thickness of 0.1 to 0.6 mm is prepared. Then, the same as in Example 1 is performed. The laminated piezoelectric elements of sample numbers 31 to 41 were produced by the method / procedure.

次に、〔実施例1〕と同様の方法・手順で試料番号31〜41の圧電定数|d31|、その増加率Δ|d31|、引張強度X、その増加率ΔXを求め、各積層圧電素子の変位量及び接合強度、すなわち信頼性を評価した。また、〔実施例1〕と同様の方法・手順で内部電極の被覆率、比x/y、及び比z/yを算出した。Next, the piezoelectric constants | d 31 |, the increase rate Δ | d 31 |, the tensile strength X, and the increase rate ΔX of sample numbers 31 to 41 were obtained by the same method and procedure as in [Example 1]. The displacement amount and bonding strength of the piezoelectric element, that is, reliability was evaluated. Further, the internal electrode coverage, the ratio x / y, and the ratio z / y were calculated by the same method and procedure as in [Example 1].

表3は試料番号31〜41の積層圧電素子の作製条件を示し、表4はその測定結果を示している。   Table 3 shows the manufacturing conditions of the laminated piezoelectric elements of sample numbers 31 to 41, and Table 4 shows the measurement results.

Figure 0004565349
Figure 0004565349

Figure 0004565349
Figure 0004565349

表3、4中、**印を付した試料番号31、33、35、37及び39は、セラミック層の厚みyが6〜100μmの範囲で異なるが、内部電極層がセラミック共材を含有せずAg/Pdが7/3に配合された金属粉末からなり、また大気雰囲気(酸素濃度:21体積%)下、温度1040℃で焼成した場合であり、従来例を示している。   In Tables 3 and 4, sample numbers 31, 33, 35, 37, and 39 marked with ** differ in the thickness y of the ceramic layer in the range of 6 to 100 μm, but the internal electrode layer contains the ceramic co-material. This is a case where it is made of a metal powder in which Ag / Pd is blended to 7/3 and is fired at a temperature of 1040 ° C. in an air atmosphere (oxygen concentration: 21% by volume), and shows a conventional example.

また、試料番号32、34、36、38及び40は、上記従来例に対応する本発明実施例であり、内部電極層に30重量%のセラミック共材を含有し、金属粉末をAg/Pdが8/2となるように配合し、また酸素濃度が0.5体積%の低酸素濃度雰囲気下、温度1000℃で焼成した場合を示している。   Sample numbers 32, 34, 36, 38 and 40 are examples of the present invention corresponding to the above-described conventional example, the internal electrode layer contains 30% by weight of ceramic co-material, and the metal powder is made of Ag / Pd. The case where it mix | blends so that it may become 8/2 and it baked at the temperature of 1000 degreeC in the low oxygen concentration atmosphere whose oxygen concentration is 0.5 volume% is shown.

従来例(**印)と本発明実施例との対比から明らかなように、本発明実施例は内部電極層中に30重量%のセラミック共材を含有し、酸素濃度が0.5体積%の低酸素濃度雰囲気で焼成しているので、比x/yが0.08〜0.33であって被覆率が80〜94%に低減されているため、それぞれの従来例に対し圧電定数|d31|は0.9〜8.4%増加しており変位量が向上することが分かった。また、引張強度Xも5.0〜7.8%増加しており、接合強度が向上することが分かった。As is clear from the comparison between the conventional example (marked with **) and the example of the present invention, the example of the present invention contains 30% by weight of ceramic co-material in the internal electrode layer, and the oxygen concentration is 0.5% by volume. Since the ratio x / y is 0.08 to 0.33 and the coverage is reduced to 80 to 94%, the piezoelectric constant | d 31 | increased by 0.9 to 8.4%, and it was found that the amount of displacement was improved. Moreover, the tensile strength X was also increased by 5.0 to 7.8%, and it was found that the bonding strength was improved.

また、試料番号41は、内部電極層中に30重量%のセラミック共材を含有し、酸素濃度が0.5体積%の低酸素濃度雰囲気で焼成しているものの、比x/yが0.38であり、0.33を超えており、したがって被覆率が97%と大きくても非導電部の平均直径xが大きくなるため、非導電部に起因した電位降下が大きくなり、圧電定数|d31|が270pC/Nとなって従来例よりも低下し、所望の大きな変位量を到底得ることができないことが分った。Sample No. 41 contains 30% by weight of a ceramic co-material in the internal electrode layer and fired in a low oxygen concentration atmosphere with an oxygen concentration of 0.5% by volume, but the ratio x / y is 0.00. 38, which exceeds 0.33. Therefore, even if the coverage is as large as 97%, the average diameter x of the non-conductive portion increases, so that the potential drop due to the non-conductive portion increases, and the piezoelectric constant | d 31 | was 270 pC / N, which was lower than the conventional example, and it was found that a desired large displacement could not be obtained.

まず、〔実施例1〕と同様の方法・手順で作製したセラミックグリーンシートを用意した。   First, a ceramic green sheet prepared by the same method and procedure as in [Example 1] was prepared.

また、AgとPdとの重量比Ag/Pdを7/3又は9/1に配合し、セラミック共材を固形分の総計に対し0重量%又は40重量%となるように配合した以外は、〔実施例1〕と同様の方法・手順で内部電極用導電性ペーストを作製した。   Moreover, the weight ratio Ag / Pd of Ag and Pd was blended to 7/3 or 9/1, and the ceramic co-material was blended so as to be 0% by weight or 40% by weight with respect to the total solid content, A conductive paste for internal electrodes was produced by the same method and procedure as in [Example 1].

次に、焼結後の内部電極層の厚みzが2μm又は3μmとなるように上記セラミックグリーンシート上に上記内部電極用導電性ペーストをスクリーン印刷し、その後、〔実施例1〕と同様の方法・手順で積層体を作製した。次いで、これら積層体をアルミナ製の匣(さや)に収容し、脱バインダ処理を行った後、焼成温度が960℃又は1040℃で、酸素濃度が0.5体積%又は21体積%の焼成雰囲気で8時間焼成処理を施し、これにより各セラミック層の厚みyが20μmで、総厚みが0.1〜0.6mmのセラミック素体を作製し、その後は〔実施例1〕と同様の方法・手順で試料番号51〜60の積層圧電素子を作製した。   Next, the conductive paste for internal electrodes is screen-printed on the ceramic green sheet so that the thickness z of the sintered internal electrode layer becomes 2 μm or 3 μm, and then the same method as in [Example 1] -The laminated body was produced in the procedure. Next, after these laminates are accommodated in an alumina pod and subjected to a binder removal treatment, a firing atmosphere in which the firing temperature is 960 ° C. or 1040 ° C. and the oxygen concentration is 0.5% by volume or 21% by volume. A ceramic body having a thickness y of each ceramic layer of 20 μm and a total thickness of 0.1 to 0.6 mm was prepared by the above-described method for 8 hours. The laminated piezoelectric element of sample numbers 51-60 was produced by the procedure.

次に、〔実施例1〕と同様の方法・手順で試料番号51〜60の圧電定数|d31|を駆動電界を変更して測定し、またその増加率Δ|d31|、引張強度X、その増加率ΔXを求め、各積層圧電素子の変位量及び接合強度、すなわち信頼性を評価した。また、〔実施例1〕と同様の方法・手順で内部電極の被覆率、比x/y、及び比z/yを算出した。Next, the piezoelectric constants | d 31 | of sample numbers 51 to 60 are measured by changing the driving electric field by the same method and procedure as in [Example 1], and the increase rate Δ | d 31 | The increase rate ΔX was obtained, and the displacement amount and the bonding strength, that is, the reliability of each laminated piezoelectric element were evaluated. Further, the internal electrode coverage, the ratio x / y, and the ratio z / y were calculated by the same method and procedure as in [Example 1].

表5は試料番号51〜60の積層圧電素子の作製条件を示し、表6はその測定結果を示している。   Table 5 shows the manufacturing conditions of the laminated piezoelectric elements of sample numbers 51 to 60, and Table 6 shows the measurement results.

Figure 0004565349
Figure 0004565349

Figure 0004565349
Figure 0004565349

表5、6中、**印を付した試料番号51、53、55、57及び59は、駆動電界が1〜1000V/mmの範囲で異なるが、内部電極層がセラミック共材を含有せずAg/Pdが7/3に配合された金属粉末からなり、また大気雰囲気(酸素濃度:21体積%)下、温度1040℃で焼成した場合であり、従来例を示している。   In Tables 5 and 6, sample numbers 51, 53, 55, 57 and 59 marked with ** differ in the driving electric field range of 1-1000 V / mm, but the internal electrode layer does not contain ceramic co-material. This is a case where it is made of a metal powder in which Ag / Pd is mixed in 7/3, and is fired at a temperature of 1040 ° C. in an air atmosphere (oxygen concentration: 21% by volume), which shows a conventional example.

また、試料番号52、54、56、58及び60は、上記従来例に対応する本発明実施例であり、内部電極層に40重量%のセラミック共材を含有し、金属粉末は、Ag/Pdが9/1に配合され、また酸素濃度が0.5体積%の低酸素濃度雰囲気下、温度960℃で焼成した場合を示している。   Sample numbers 52, 54, 56, 58 and 60 are examples of the present invention corresponding to the above-described conventional example, and the internal electrode layer contains 40% by weight of ceramic co-material, and the metal powder is Ag / Pd. Is blended in 9/1, and the case where firing is performed at a temperature of 960 ° C. in a low oxygen concentration atmosphere with an oxygen concentration of 0.5 vol% is shown.

従来例(**印)と本発明実施例との対比から明らかなように、本発明実施例は内部電極層中に40重量%のセラミック共材を含有し、酸素濃度が0.5体積%の低酸素濃度雰囲気で焼成しているので、比x/yが0.30であって被覆率が82%に低減されており、それぞれの従来例に対し圧電定数|d31|は2.9〜10.7%増加しており変位量が向上することが分かった。また、引張強度Xも3.4%増加しており、接合強度が向上し、信頼性の向上することが分かった。As is clear from the comparison between the conventional example (marked **) and the example of the present invention, the example of the present invention contains 40% by weight of the ceramic co-material in the internal electrode layer, and the oxygen concentration is 0.5% by volume. Since the ratio x / y is 0.30 and the coverage is reduced to 82%, the piezoelectric constant | d 31 | is 2.9 for each of the conventional examples. It was found that the displacement was improved by ˜10.7%. Moreover, the tensile strength X was also increased by 3.4%, and it was found that the bonding strength was improved and the reliability was improved.

また、本実施例で使用しているセラミック層の抗電界は1000V/mmであるが、この抗電界の1/10以上の電界、すなわち100〜1000V/mmで駆動させた場合(試料番号54、56、58及び60)は、圧電定数|d31|が5.0〜10.7%と大幅に増加しており、また引張強度の増加率ΔXは同等であるので、セラミック層の抗電界の1/10以上の高電界で駆動させることにより、接合強度(信頼性)を損なうことなくより一層大きな変位量を得ることができることが分かった。Further, the coercive electric field of the ceramic layer used in this example is 1000 V / mm, but when driven at an electric field of 1/10 or more of this coercive electric field, that is, 100 to 1000 V / mm (sample number 54, 56, 58 and 60), the piezoelectric constant | d 31 | is greatly increased to 5.0 to 10.7%, and the increase rate ΔX of the tensile strength is the same. It was found that by driving with a high electric field of 1/10 or more, a larger displacement amount can be obtained without impairing the bonding strength (reliability).

まず、〔実施例1〕と同様の方法・手順で作製したセラミックグリーンシートを用意した。   First, a ceramic green sheet prepared by the same method and procedure as in [Example 1] was prepared.

また、AgとPdとの重量比Ag/Pdを7/3又は8/2に配合し、セラミック共材を固形分の総計に対し0重量%又は25重量%となるように配合した以外は、〔実施例1〕と同様の方法・手順で内部電極用導電性ペーストを作製した。   Moreover, the weight ratio Ag / Pd of Ag and Pd is blended to 7/3 or 8/2, and the ceramic co-material is blended so as to be 0% by weight or 25% by weight based on the total solid content, A conductive paste for internal electrodes was produced by the same method and procedure as in [Example 1].

次に、焼結後の内部電極層の厚みzが2.4μmとなるように上記セラミックグリーンシート上に上記内部電極用導電性ペーストをスクリーン印刷し、その後、〔実施例1〕と同様の方法・手順で積層体を作製した。次いで、これら積層体をアルミナ製の匣(さや)に収容し、脱バインダ処理を行った後、焼成温度が1040℃で、酸素濃度が0.1〜21体積%の焼成雰囲気で8時間焼成処理を施し、これにより各セラミック層の厚みyが20μmで、総厚みが0.1〜0.6mmのセラミック素体を作製し、その後は〔実施例1〕と同様の方法・手順で試料番号61〜67の積層圧電素子を作製した。   Next, the conductive paste for internal electrodes is screen-printed on the ceramic green sheet so that the thickness z of the sintered internal electrode layer is 2.4 μm, and then the same method as in [Example 1] -The laminated body was produced in the procedure. Next, these laminates are accommodated in an alumina pod (sheath) and subjected to a binder removal treatment, followed by a firing treatment for 8 hours in a firing atmosphere at a firing temperature of 1040 ° C. and an oxygen concentration of 0.1 to 21% by volume. As a result, a ceramic body having a thickness y of 20 μm and a total thickness of 0.1 to 0.6 mm was prepared. After that, sample No. 61 was prepared by the same method and procedure as in [Example 1]. -67 laminated piezoelectric elements were produced.

次に、〔実施例1〕と同様の方法・手順で試料番号61〜67の圧電定数|d31|、その増加率Δ|d31|、引張強度X、その増加率ΔXを求め、各積層圧電素子の変位量及び接合強度、すなわち信頼性を評価した。また、〔実施例1〕と同様の方法・手順で内部電極の被覆率、比x/y、及び比z/yを算出した。また、内部電極層をSEMで観察し画像解析して非導電部中の空隙率を求めた。Next, the piezoelectric constants | d 31 |, the increase rate Δ | d 31 |, the tensile strength X, and the increase rate ΔX of Sample Nos. 61 to 67 are obtained by the same method and procedure as in [Example 1]. The displacement amount and bonding strength of the piezoelectric element, that is, reliability was evaluated. Further, the internal electrode coverage, the ratio x / y, and the ratio z / y were calculated by the same method and procedure as in [Example 1]. In addition, the internal electrode layer was observed with an SEM and image analysis was performed to determine the porosity in the non-conductive portion.

表7は試料番号61〜67の積層圧電素子の作製条件を示し、表8はその測定結果を示している。   Table 7 shows the production conditions of the laminated piezoelectric elements of sample numbers 61 to 67, and Table 8 shows the measurement results.

Figure 0004565349
Figure 0004565349

Figure 0004565349
Figure 0004565349

表7、表8中、**印を付した試料番号61は、内部電極層がセラミック共材を含有せずAg/Pdが7/3に配合された金属粉末からなり、また大気雰囲気(酸素濃度:21体積%)下、温度1040℃で焼成した場合であり、従来例を示している。   In Tables 7 and 8, Sample No. 61 marked with ** is made of a metal powder in which the internal electrode layer does not contain a ceramic co-material and Ag / Pd is blended in 7/3, and the atmosphere (oxygen) This is a case of baking at a temperature of 1040 ° C. under a concentration of 21% by volume, and shows a conventional example.

これに対し試料番号62〜67は、内部電極層中に25重量%のセラミック共材を含有し、酸素濃度が0.5〜15体積%の低酸素濃度雰囲気で焼成しているので、比x/yが0.18〜0.27であって被覆率が79〜94%に低減されており、また非導電部の空隙率も62〜95%となりセラミック部の過剰な形成が抑制されており、その結果、従来例に対し圧電定数|d31|は2.5〜9.2%と増加し、引張強度Xも1.1〜9.2%と増加し、変位量及び接合強度(信頼性)が向上することが分かった。On the other hand, sample numbers 62 to 67 contain 25% by weight of ceramic co-material in the internal electrode layer and fired in a low oxygen concentration atmosphere having an oxygen concentration of 0.5 to 15% by volume. / Y is 0.18 to 0.27, the coverage is reduced to 79 to 94%, and the porosity of the non-conductive part is also 62 to 95%, and excessive formation of the ceramic part is suppressed. As a result, the piezoelectric constant | d 31 | increased from 2.5 to 9.2%, and the tensile strength X also increased from 1.1 to 9.2%, compared to the conventional example. It was found that the property was improved.

また、酸素濃度が低くなるに伴い圧電定数の増加率Δ|d31|が増大し、変位量がより一層向上することも分かった。It was also found that the piezoelectric constant increase rate Δ | d 31 | increased as the oxygen concentration decreased, and the amount of displacement was further improved.

Claims (4)

セラミックグリーンシートの表面に導電性ペーストを塗布して内部電極層となるべき所定の導電パターンを形成し、該導電パターンの形成されたセラミックグリーンシートを積層した後、導電パターンの形成されていないセラミックグリーンシートで挟持し、圧着して積層体を形成し、その後前記積層体に焼成処理を施してセラミック層と内部電極層とが交互に積層されたセラミック素体を形成し、該セラミック素体の端面に外部電極を形成する積層型圧電セラミック部品の製造方法において、A ceramic without a conductive pattern formed by applying a conductive paste to the surface of the ceramic green sheet to form a predetermined conductive pattern to be an internal electrode layer, and laminating the ceramic green sheets with the conductive pattern formed thereon The ceramic body is sandwiched between green sheets and pressed to form a laminate, and then the laminate is fired to form a ceramic body in which ceramic layers and internal electrode layers are alternately stacked. In the manufacturing method of the multilayer piezoelectric ceramic component in which the external electrode is formed on the end face,
前記導電性ペーストが、金属粉末と、該金属粉末の5〜20倍の比表面積を有するセラミック粉末とを含有すると共に、該セラミック粉末の含有量が、金属粉末及びセラミック粉末の総計に対し、20〜50重量%となるように調製し、  The conductive paste contains a metal powder and a ceramic powder having a specific surface area 5 to 20 times that of the metal powder, and the content of the ceramic powder is 20 with respect to the total of the metal powder and the ceramic powder. Prepared to be ~ 50 wt%,
前記焼成処理を、酸素濃度が0.1〜15体積%の酸素雰囲気中で行ない、前記内部電極層が導電部と非導電部とを有するように該内部電極層を形成することを特徴とする積層型圧電セラミック部品の製造方法。  The firing process is performed in an oxygen atmosphere having an oxygen concentration of 0.1 to 15% by volume, and the internal electrode layer is formed so that the internal electrode layer has a conductive portion and a non-conductive portion. Manufacturing method of multilayer piezoelectric ceramic component.
前記セラミック粉末は、少なくとも主成分が、前記セラミックグリーンシートと同一の成分組成であることを特徴とする請求項1記載の積層型圧電セラミック部品の製造方法。2. The method of manufacturing a multilayer piezoelectric ceramic component according to claim 1, wherein the ceramic powder has at least a main component having the same composition as that of the ceramic green sheet. 前記非導電部の断面積を円換算した場合の平均直径xと前記セラミック層の厚みyとの比x/yが0.08〜0.33となるように前記非導電部を形成し、さらに前記内部電極層の厚みzと前記セラミック層の厚みyとの比z/yが0.04〜0.40であって前記内部電極層の前記セラミック層への被覆率が60〜95%となるように前記内部電極層を形成することを特徴とする請求項1又は請求項2記載の積層型圧電セラミック部品の製造方法。Forming the non-conductive portion so that a ratio x / y of the average diameter x and the thickness y of the ceramic layer when the cross-sectional area of the non-conductive portion is converted into a circle is 0.08 to 0.33; The ratio z / y of the thickness z of the internal electrode layer to the thickness y of the ceramic layer is 0.04 to 0.40, and the coverage of the internal electrode layer on the ceramic layer is 60 to 95%. 3. The method for manufacturing a multilayer piezoelectric ceramic component according to claim 1, wherein the internal electrode layer is formed as described above. 前記非導電部は、空隙部とセラミック粉末で充填されたセラミック部とを有し、前記空隙部が前記非導電部中の60%以上を占めるように前記非導電部を形成することを特徴とする請求項1乃至請求項3のいずれかに記載の積層型圧電セラミック部品の製造方法。The non-conductive portion has a void portion and a ceramic portion filled with ceramic powder, and the non-conductive portion is formed so that the void portion occupies 60% or more of the non-conductive portion. A method for manufacturing a multilayer piezoelectric ceramic component according to any one of claims 1 to 3.
JP2006522157A 2004-12-24 2005-12-22 Manufacturing method of multilayer piezoelectric ceramic component Active JP4565349B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004372671 2004-12-24
JP2004372671 2004-12-24
PCT/JP2005/023666 WO2006068245A1 (en) 2004-12-24 2005-12-22 Multilayer piezoelectric ceramic component and method for producing multilayer piezoelectric ceramic component

Publications (2)

Publication Number Publication Date
JPWO2006068245A1 JPWO2006068245A1 (en) 2008-06-12
JP4565349B2 true JP4565349B2 (en) 2010-10-20

Family

ID=36601842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006522157A Active JP4565349B2 (en) 2004-12-24 2005-12-22 Manufacturing method of multilayer piezoelectric ceramic component

Country Status (2)

Country Link
JP (1) JP4565349B2 (en)
WO (1) WO2006068245A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103301A (en) * 2008-10-23 2010-05-06 Ngk Insulators Ltd Method of manufacturing piezoelectric element, and piezoelectric element
JP5457789B2 (en) * 2009-10-21 2014-04-02 太平洋セメント株式会社 Electronic component manufacturing method and electronic component
JP5530172B2 (en) * 2009-12-25 2014-06-25 太平洋セメント株式会社 Method for manufacturing internal electrode of electronic component
JP6301629B2 (en) * 2013-10-24 2018-03-28 京セラ株式会社 Multilayer electronic components
JP6712162B2 (en) * 2016-03-30 2020-06-17 日本碍子株式会社 Piezoelectric element
JP7003741B2 (en) * 2018-03-02 2022-01-21 Tdk株式会社 Vibration devices and piezoelectric elements
KR20190116144A (en) 2019-07-29 2019-10-14 삼성전기주식회사 Multilayered electronic component
JP6725049B1 (en) * 2019-12-16 2020-07-15 Tdk株式会社 Multilayer piezoelectric element
JP2022191910A (en) * 2021-06-16 2022-12-28 株式会社村田製作所 Multilayer ceramic electronic component
WO2023063007A1 (en) * 2021-10-12 2023-04-20 太陽誘電株式会社 Multilayer piezoelectric element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035747A (en) * 1999-07-21 2001-02-09 Taiyo Yuden Co Ltd Laminated ceramic capacitor
JP2001250994A (en) * 2000-03-03 2001-09-14 Tdk Corp Laminated piezoelectric element
JP2003115416A (en) * 2001-10-05 2003-04-18 Murata Mfg Co Ltd Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP2004111939A (en) * 2002-08-29 2004-04-08 Ngk Insulators Ltd Laminated piezoelectric element and method of manufacturing the same
JP2004349688A (en) * 2003-04-28 2004-12-09 Kyocera Corp Ceramic substrate, piezo-electric actuator substrate, piezo-electric actuator, and manufacturing method for them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035747A (en) * 1999-07-21 2001-02-09 Taiyo Yuden Co Ltd Laminated ceramic capacitor
JP2001250994A (en) * 2000-03-03 2001-09-14 Tdk Corp Laminated piezoelectric element
JP2003115416A (en) * 2001-10-05 2003-04-18 Murata Mfg Co Ltd Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP2004111939A (en) * 2002-08-29 2004-04-08 Ngk Insulators Ltd Laminated piezoelectric element and method of manufacturing the same
JP2004349688A (en) * 2003-04-28 2004-12-09 Kyocera Corp Ceramic substrate, piezo-electric actuator substrate, piezo-electric actuator, and manufacturing method for them

Also Published As

Publication number Publication date
JPWO2006068245A1 (en) 2008-06-12
WO2006068245A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4565349B2 (en) Manufacturing method of multilayer piezoelectric ceramic component
KR100553226B1 (en) Method for manufacturing monolithic piezoelectric component and monolithic piezoelectric component
JP4945801B2 (en) Piezoelectric element and method for manufacturing piezoelectric element
JP4129931B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP2006188414A (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
EP2181976B1 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP4238271B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP2005174974A (en) Manufacturing method for laminated piezoelectric body
JP4640092B2 (en) Multilayer piezoelectric element and method for manufacturing the same
JP4992192B2 (en) Piezoelectric ceramic manufacturing method and piezoelectric element
JP2009200359A (en) Laminated piezoelectric element
JP2007258301A (en) Laminated piezoelectric element, and its manufacturing method
JPH10335168A (en) Laminated ceramic capacitor
KR100492813B1 (en) Method of manufacturing monolithic piezoelectric ceramic device
JP2007230839A (en) Piezoelectric ceramic composition, multilayer piezoelectric element and method of manufacturing the same
JP2009200358A (en) Laminated piezoelectric element
JP3971779B1 (en) Piezoelectric ceramic composition
JP2007188963A (en) Conductive paste and method of manufacturing laminated ceramic element employing the same
JP5196124B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP4736585B2 (en) Piezoelectric ceramic composition
JP5303823B2 (en) Piezoelectric element
JP2007126344A (en) Piezoelectric ceramic composition, laminated piezoelectric element, and method of manufacturing laminated piezoelectric element
JP4793579B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP2010225911A (en) Laminated piezoelectric element
WO2006046597A1 (en) Conductive paste and stacked type piezoelectric ceramic component

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4565349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3