JP4563213B2 - An optical diffraction structure including an optical diffraction structure replicated by the optical diffraction structure replication method and the replication method. - Google Patents

An optical diffraction structure including an optical diffraction structure replicated by the optical diffraction structure replication method and the replication method. Download PDF

Info

Publication number
JP4563213B2
JP4563213B2 JP2005045503A JP2005045503A JP4563213B2 JP 4563213 B2 JP4563213 B2 JP 4563213B2 JP 2005045503 A JP2005045503 A JP 2005045503A JP 2005045503 A JP2005045503 A JP 2005045503A JP 4563213 B2 JP4563213 B2 JP 4563213B2
Authority
JP
Japan
Prior art keywords
diffraction structure
optical diffraction
diffraction grating
optical
replicated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005045503A
Other languages
Japanese (ja)
Other versions
JP2005275383A (en
Inventor
洋 船田
文彦 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005045503A priority Critical patent/JP4563213B2/en
Publication of JP2005275383A publication Critical patent/JP2005275383A/en
Application granted granted Critical
Publication of JP4563213B2 publication Critical patent/JP4563213B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、光回折構造の複製方法及び光回折構造を含む光回折構造体に関する。   The present invention relates to a method for duplicating an optical diffraction structure and an optical diffraction structure including the optical diffraction structure.

ホログラム像の持つ立体感と回折格子の持つ明るさ及び明解さを加え合わせた光回折構造を作成する方法として、乾板にマスクパターンを介してホログラム及び回折格子を露光して現像することにより、回折格子とホログラム像を生じさせる干渉縞が混在した1つの光回折構造を得る技術が知られている(特許文献1参照)。   As a method of creating a light diffraction structure that combines the three-dimensional effect of a hologram image with the brightness and clarity of a diffraction grating, the hologram and diffraction grating are exposed to a dry plate through a mask pattern and developed to produce diffraction. A technique for obtaining one light diffraction structure in which interference fringes that generate a grating and a hologram image are mixed is known (see Patent Document 1).

また、近年、電子線によって回折格子の格子パターンや計算機によってシミュレートされたホログラムの干渉縞を直接描画して製造する方法が知られている(特許文献2、特許文献3、及び特許文献4参照)。   In recent years, a method of directly drawing and manufacturing a diffraction grating grating pattern or a hologram interference fringe simulated by a computer using an electron beam is known (see Patent Document 2, Patent Document 3, and Patent Document 4). ).

特開昭59−99475号公報JP 59-99475 特開平6−337315号公報JP-A-6-337315 特開平9−319290号公報JP-A-9-319290 特開平11−24539号公報Japanese Patent Laid-Open No. 11-24539

また、上記製造方法よりも簡便な方法として、光回折構造が施された原版へ熱エネルギー線を照射することによって、当該光回折構造を複製する方法も検討されているが、複製された光回折構造の画質、即ち、輝度や外観に問題がある場合が多い。例えば、光回折構造の回折光の輝度の低下、外観上のムラ等を引き起こし、また、光回折構造の回折光画像が持つ3Dの立体感や奥行き感が損なわれ、平坦な印象を与えることもある。   In addition, as a simpler method than the above manufacturing method, a method of replicating the light diffraction structure by irradiating the original plate with the light diffraction structure with thermal energy rays has been studied. There are often problems with the image quality of the structure, that is, the brightness and appearance. For example, the brightness of the diffracted light of the light diffractive structure is reduced, the appearance is uneven, and the 3D stereoscopic effect or depth of the diffracted light image of the light diffractive structure is impaired, giving a flat impression. is there.

そこで、本発明は、光回折構造の光学的効果を損なわない状態で光回折構造を複製する方法等を提供する。   Therefore, the present invention provides a method for replicating a light diffractive structure without impairing the optical effect of the light diffractive structure.

本発明の光回折構造複製方法は、所定方向(A)にのみ視差が考慮された計算機ホログラムの干渉縞が施された光回折構造原版(1)のその干渉縞と、基材層(2a)上に積層された溶融層(2b)とを重ね合わせ、その重ね合わされた部分にエネルギー線(L)を照射し、そのエネルギー線の熱に基づいて前記溶融層を溶融させて前記干渉縞を前記溶融層へ転写し、前記エネルギー線を移動させることにより、前記光回折構造原版の前記干渉縞を複製する光回折構造の複製方法であって、前記光回折構造原版には、R(赤)、G(緑)、B(青)のそれぞれに対応する回折格子の面積率に応じた色が表現されるように、前記各回折格子に対応する前記所定方向にのみ視差が考慮された干渉縞が前記面積率に応じて形成された回折格子画素(21)による回折格子画像(20)が形成され、前記エネルギー線を移動させる方向が、前記所定方向と同じになるように、かつ、前記エネルギー線の照射ピッチ(λ1)が、前記所定方向に関して直角方向の前記回折格子画素の幅(λ2)の正の整数倍になるように、前記エネルギー線を照射することにより、上記の課題を解決する。 The optical diffraction structure duplication method of the present invention includes the interference fringes of the optical diffraction structure original plate (1) provided with the interference fringes of the computer generated hologram in which the parallax is considered only in the predetermined direction (A), and the base material layer (2a). The molten layer (2b) laminated on top is overlaid, and the overlapped portion is irradiated with energy rays (L), and the molten layer is melted based on the heat of the energy rays to form the interference fringes. A method of replicating an optical diffraction structure for replicating the interference fringes of the optical diffraction structure original plate by transferring the energy beam to the molten layer, wherein the optical diffraction structure original plate has R (red), Interference fringes in which parallax is considered only in the predetermined direction corresponding to the diffraction gratings so that colors corresponding to the area ratios of the diffraction gratings corresponding to G (green) and B (blue) are expressed. Diffraction grating pixels formed according to the area ratio ( 1) the diffraction grating images (20) is formed by, a direction of moving the energy beam, to be the same as the predetermined direction, and irradiation pitch of said energy beam (.lambda.1) is perpendicular with respect to the predetermined direction The above-mentioned problem is solved by irradiating the energy rays so as to be a positive integer multiple of the width (λ2) of the diffraction grating pixel in the direction .

本発明のホログラム複製方法によれば、光学的効果を高めるための方向と同じ方向にエネルギー線を照射して、そのエネルギー線の熱に基づいて溶融層を溶融させて干渉縞を溶融層へ転写することによって、干渉縞の光学的効果を損なわずに当該干渉縞を複製することができる。干渉縞の「光学的効果を高める方向」とは、例えば、垂直方向に拡散する物体光は無視して、水平方向の視差のみを考慮したホログラム像を形成するホログラムにおける水平方向をいう。   According to the hologram duplicating method of the present invention, the energy rays are irradiated in the same direction as the direction for enhancing the optical effect, and the molten layer is melted based on the heat of the energy rays to transfer the interference fringes to the molten layer. By doing so, the interference fringes can be duplicated without impairing the optical effects of the interference fringes. The “direction to increase the optical effect” of the interference fringes refers to, for example, the horizontal direction in a hologram that forms a hologram image in consideration of only the parallax in the horizontal direction, ignoring the object light diffused in the vertical direction.

本発明のホログラム複製方法における干渉縞、計算機ホログラムの干渉縞である。「光学的効果を高める方向」は、垂直方向の視差を考慮しないで形成された計算機ホログラムにおいては、水平方向である。また、垂直方向の視差を考慮しないで形成されたレインボーホログラムの場合も、水平方向である。 The interference fringes in the hologram duplication method of the present invention are the interference fringes of a computer generated hologram . "Direction to increase the light biological effect" in the computer hologram formed without considering the vertical parallax in the horizontal direction. In the case of a rainbow hologram formed without considering vertical parallax, it is also in the horizontal direction.

「エネルギー線の熱」とは、エネルギー線自体が熱を有する場合と、エネルギー線が溶融層に照射されて熱を発生する場合とを含む。この複製方法によれば、加熱される照射範囲が狭く、照射範囲が移動すれば溶融した部分が硬化しやすいため、特に冷却設備を設ける必要がなく、エネルギー線を照射する設備さえあれば実現することができる。   The “heat of energy rays” includes a case where the energy rays themselves have heat and a case where the energy rays are irradiated to the molten layer to generate heat. According to this replication method, since the irradiation range to be heated is narrow and the melted portion is easily cured if the irradiation range moves, it is not particularly necessary to provide a cooling facility, and can be realized if there is only a facility for irradiating energy rays. be able to.

エネルギー線を照射する間隔である照射ピッチと、光学的効果を高める方向に対して直角方向の回折格子画素の幅の長さとの最小公倍数に当たる周期で複製物にモアレが発生するため、上記のような照射ピッチでエネルギー線を照射することにより、モアレの発生を防止することができる。「照射ピッチ」とは、例えばレーザーを水平方向に照射していく場合は、当該レーザーの垂直方向の間隔である。以下、光学的効果を高める方向に対して直角方向の回折格子画素の幅を「画素ピッチ」ということがある。「照射ピッチ」と「画素ピッチ」とは同じ方向である。更に、本発明は、上記複製方法によって複製された光回折格子を一部に有する、或いは全体とする光回折構造体として具現化されてもよい。   As described above, moire occurs in the replica at a period corresponding to the least common multiple of the irradiation pitch, which is the interval at which the energy rays are irradiated, and the width of the diffraction grating pixel perpendicular to the direction in which the optical effect is enhanced. The generation of moire can be prevented by irradiating the energy rays with an appropriate irradiation pitch. “Irradiation pitch” is, for example, an interval in the vertical direction of the laser when the laser is irradiated in the horizontal direction. Hereinafter, the width of the diffraction grating pixel in the direction perpendicular to the direction in which the optical effect is enhanced may be referred to as “pixel pitch”. “Irradiation pitch” and “pixel pitch” are in the same direction. Furthermore, the present invention may be embodied as an optical diffraction structure that partially or entirely includes the optical diffraction grating replicated by the replication method.

また、第1の回折格子画素の幅(λ2−1)で構成される回折格子画像と第2の回折格子画素の幅(λ2−2)で構成される回折格子画像とが含まれる場合、前記エネルギー線の照射ピッチ(λ1)は、第1の回折格子画素の幅(λ2−1)と第2の回折格子画素の幅(λ2−2)との最小公倍数とする。   When a diffraction grating image composed of the width (λ2-1) of the first diffraction grating pixel and a diffraction grating image composed of the width (λ2-2) of the second diffraction grating pixel are included, The energy beam irradiation pitch (λ1) is the least common multiple of the width (λ2-1) of the first diffraction grating pixel and the width (λ2-2) of the second diffraction grating pixel.

本発明によれば、エネルギー線を照射する方向を、光回折構造原版における光学的効果を高める方向に一致させることにより、光回折構造の光学的効果を損なわない状態で光回折構造を複製することができる。   According to the present invention, the light diffractive structure is replicated in a state in which the optical effect of the light diffractive structure is not impaired by matching the direction in which the energy beam is irradiated with the direction in which the optical effect in the light diffractive structure original plate is enhanced. Can do.

図1は、本発明の光回折構造原版としてのホログラム原版1に施された干渉縞の一例を示す図である。ホログラム原版1に施された干渉縞はホログラムを形成すべくコンピュータによってシミュレートされた計算機ホログラムである。ホログラム原版1の干渉縞は、垂直方向に並ぶ複数の帯状の干渉縞列1a…1aによって構成され、各干渉縞列1aにおける干渉縞1bは、垂直方向の視差を考慮せず、水平方向Aの視差のみを考慮して記録されている。   FIG. 1 is a diagram showing an example of interference fringes applied to a hologram master 1 as a light diffraction structure master of the present invention. The interference fringes applied to the hologram master 1 are computer generated holograms simulated by a computer to form a hologram. The interference fringes of the hologram master 1 are constituted by a plurality of strip-like interference fringe rows 1a... 1a arranged in the vertical direction. The interference fringes 1b in each interference fringe row 1a do not take vertical parallax into consideration, but in the horizontal direction A. It is recorded considering only the parallax.

従って、ホログラム原版1における「光学的効果を高める方向」は水平方向Aと同じ方向である。以下、方向Aを干渉縞方向Aという。計算機ホログラムの干渉縞は既に知られている方法にて作成すればよい。   Accordingly, the “direction for increasing the optical effect” in the hologram master 1 is the same as the horizontal direction A. Hereinafter, the direction A is referred to as an interference fringe direction A. What is necessary is just to produce the interference fringe of a computer hologram by the already known method.

次に、ホログラム原版1に刻まれているパターンを被複製体2へ複製する方法について図2(a)及び(b)を用いて説明する。本形態における被複製体2は、(a)に示すように、基材層2aに溶融層2bが積層されている。溶融層2bは、例えばカーボンが含まれたWAXで構成され、光が熱に変化され、熱によって溶融する。基材層2aは、後述するエネルギー線としてのレーザー光Lを透過し、溶融層2bよりも溶融温度が高い素材で構成されている。   Next, a method for replicating the pattern engraved on the hologram master 1 onto the replica 2 will be described with reference to FIGS. 2 (a) and 2 (b). As shown in (a), the replicated body 2 in this embodiment has a molten layer 2b laminated on a base material layer 2a. The molten layer 2b is made of, for example, WAX containing carbon, and light is changed into heat and melted by heat. The base material layer 2a is made of a material that transmits laser light L as an energy ray to be described later and has a melting temperature higher than that of the molten layer 2b.

ホログラム原版1に刻まれている干渉縞を複製するには、(a)及び(b)に示すように、ホログラム原版1の干渉縞、即ち凹凸のパターンが施された面と溶融層2bとを重ね合わせ、基材層2a側から熱エネルギーとしてレーザー光Lを照射する。このレーザー光Lが照射されると照射部分が熱せられ、溶融層2bが溶融温度に達して溶融する。溶融層2bが溶融すると、その部分に重ね合わせわれたホログラム原版1のパターンが溶融層2bに転写する。   In order to replicate the interference fringes engraved on the hologram master 1, the interference fringes of the hologram master 1, that is, the surface on which the concave / convex pattern is applied, and the molten layer 2b are formed as shown in FIGS. Laser beam L is irradiated as heat energy from the base material layer 2a side. When this laser beam L is irradiated, the irradiated portion is heated and the molten layer 2b reaches the melting temperature and melts. When the molten layer 2b is melted, the pattern of the hologram master 1 superimposed on that portion is transferred to the molten layer 2b.

以上の原理により、レーザー光Lを基材層2a上を方向Bに移動させることにより、ホログラム原版1の干渉縞パターンを溶融層2bへ転写させることができる。以下、方向Bを照射方向Bという。レーザー光Lによって加熱される照射範囲は小さいので、照射範囲は温度が上昇するが、レーザー光Lが移動して照射範囲でなくなればすぐに温度が低下する。従って、溶融層2bは特別な冷却設備による冷却工程を経なくても容易に硬化する。   Based on the above principle, the interference fringe pattern of the hologram master 1 can be transferred to the molten layer 2b by moving the laser light L in the direction B on the base material layer 2a. Hereinafter, the direction B is referred to as an irradiation direction B. Since the irradiation range heated by the laser light L is small, the temperature rises in the irradiation range. However, as soon as the laser light L moves out of the irradiation range, the temperature decreases. Therefore, the molten layer 2b is easily cured without going through a cooling process using special cooling equipment.

本形態では、レーザー光Lの移動する照射方向Bを、ホログラム原版1における干渉縞方向Aと一致するように、ホログラム原版1と被複製体2とを重ね合わせ、上記要領によって被複製体2上を間隔λ1で照射することにより、ホログラム原版1の干渉縞パターンをすべて被複製体2へ複製する。以下、本形態では間隔λ1を、照射ピッチλ1といい、20μmとする。レーザー光Lの移動速度は、照射範囲の温度が溶融層2bの溶融温度に達するように、適宜設定してよい。   In the present embodiment, the hologram original plate 1 and the copy body 2 are overlapped so that the irradiation direction B in which the laser beam L moves coincides with the interference fringe direction A in the hologram master plate 1, and on the copy body 2 according to the above procedure. Is reproduced at an interval λ 1, so that the entire interference fringe pattern of the hologram original plate 1 is replicated on the copy body 2. Hereinafter, in this embodiment, the interval λ1 is referred to as an irradiation pitch λ1 and is set to 20 μm. The moving speed of the laser beam L may be appropriately set so that the temperature in the irradiation range reaches the melting temperature of the molten layer 2b.

上述したレーザー光Lによる複製方法に基づいて、更にホログラム原版1の干渉縞パターンとして、図3に示すカラー画像20を形成する干渉縞を複製する場合について説明する。カラー画像20は複数の回折格子画素21…21で構成される。各回折格子画素21毎には、R(赤)、G(緑)、B(青)のそれぞれに対応する回折格子22R、22G及び22Bが形成されている。これにより、各回折格子22R、22G、22Bの面積率に応じた所定の色が所定方向に表現される。従って、カラー画像20は回折格子の回折光によって色が表現される回折格子画像である。尚、カラー画像20の場合、干渉縞方向Aは図3に示すように垂直方向である。以下、干渉縞方向Aに対して直角方向の回折格子画素21の幅を画素ピッチλ2という。   Based on the replication method using the laser beam L described above, a case where the interference fringes forming the color image 20 shown in FIG. The color image 20 is composed of a plurality of diffraction grating pixels 21. For each diffraction grating pixel 21, diffraction gratings 22R, 22G, and 22B corresponding to R (red), G (green), and B (blue) are formed. Thereby, a predetermined color corresponding to the area ratio of each diffraction grating 22R, 22G, 22B is expressed in a predetermined direction. Therefore, the color image 20 is a diffraction grating image in which color is expressed by the diffracted light of the diffraction grating. In the case of the color image 20, the interference fringe direction A is a vertical direction as shown in FIG. Hereinafter, the width of the diffraction grating pixel 21 perpendicular to the interference fringe direction A is referred to as a pixel pitch λ2.

ここで、R、G、Bのそれぞれに対応する回折格子について図4を使用して説明する。ある一定の方向αから白色光LL1を回折格子30に入射させると、所定の方向βに回折光LL2が観察される。この回折光LL2が観察される方向βを一般に観察方向βという。この観察方向βに回折する光LL2がRed(赤)になるような回折格子30を「Rに対応する回折格子22R」、Green(緑)になるような回折格子30を「Gに対応する回折格子22G」、Blue(青)になるような回折格子30を「Bに対応する回折格子22B」と定義する。   Here, diffraction gratings corresponding to R, G, and B will be described with reference to FIG. When the white light LL1 is incident on the diffraction grating 30 from a certain direction α, the diffracted light LL2 is observed in a predetermined direction β. A direction β in which the diffracted light LL2 is observed is generally referred to as an observation direction β. The diffraction grating 30 in which the light LL2 diffracted in the observation direction β becomes Red (red) is the diffraction grating 22R corresponding to R, and the diffraction grating 30 in the green (green) is “diffractive corresponding to G”. A diffraction grating 30 that becomes “grating 22G” and Blue (blue) is defined as “diffraction grating 22B corresponding to B”.

このような3つの回折格子22R、22G、22Bで構成される回折格子画素21によって形成されたカラー画像20は、白色光の一定の入射角と一定の観察条件によってフルカラーの回折格子画像として表現することができる。   The color image 20 formed by the diffraction grating pixel 21 composed of the three diffraction gratings 22R, 22G, and 22B is expressed as a full-color diffraction grating image according to a constant incident angle of white light and constant observation conditions. be able to.

レーザー光Lの照射によってカラー画像20を構成する干渉縞を複製する方法について、図5を用いて説明する。レーザー光Lの移動する照射方向Bを、ホログラム原版1における干渉縞方向Aと一致するようにホログラム原版1と被複製体2とを重ね合わせ、かつ、照射するレーザー光Lの照射ピッチλ1は、画素ピッチλ2の正の整数倍となるように、上記要領でレーザー光Lを照射する。   A method for duplicating the interference fringes constituting the color image 20 by irradiation with the laser light L will be described with reference to FIG. The hologram master 1 and the replication target 2 are overlapped so that the irradiation direction B in which the laser beam L moves coincides with the interference fringe direction A in the hologram master 1, and the irradiation pitch λ1 of the laser beam L to be irradiated is The laser beam L is irradiated in the above manner so as to be a positive integer multiple of the pixel pitch λ2.

以上のようにレーザー光Lを照射することによって、モアレの発生を防止しつつ、計算機ホログラムの干渉縞を、光学的効果を損なわない状態で複製することができる。この複製方法によって複製される干渉縞を、被複製体2の全体に複製する他、一部に複製することにより、他の光回折構造や図柄と組み合わせた光回折構造体を得ることもできる。   By irradiating the laser beam L as described above, the interference fringes of the computer generated hologram can be duplicated without impairing the optical effect while preventing the occurrence of moire. In addition to replicating the interference fringes that are replicated by this replication method to the entire body 2 to be replicated, it is also possible to obtain an optical diffraction structure combined with other optical diffraction structures and designs by replicating to a part.

本発明は、上述した形態に限定されず、種々の形態にて実施されてよい。例えば、被複製体2は、溶融層2bを最上層として上述した以外の層が基材層2a上に更に積層されていてもよい。レーザー光Lは、ホログラム原版1側から照射されてもよい。また、回折格子画素に用いられる回折格子はコンピュータによる計算機ホログラムの干渉縞に限定されず、2光束干渉による撮影によって作製された回折格子でもよい。   This invention is not limited to the form mentioned above, You may implement in a various form. For example, in the object 2 to be replicated, layers other than those described above with the molten layer 2b as the uppermost layer may be further laminated on the base material layer 2a. The laser beam L may be irradiated from the hologram master 1 side. Further, the diffraction grating used for the diffraction grating pixel is not limited to a computer generated hologram interference fringe, and may be a diffraction grating produced by photographing using two-beam interference.

また、ホログラム原版1の干渉縞列1a…1aの水平方向の長さや配置は、図1に示す態様に限らない。   Further, the horizontal length and arrangement of the interference fringe rows 1a... 1a of the hologram master 1 are not limited to the mode shown in FIG.

本形態で使用するホログラム原版の一例を示す図。The figure which shows an example of the hologram original plate used by this form. (a)は、ホログラム原版に被複製体が重ね合わされ、レーザー光が照射される様子を示す断面図であり、(b)は、ホログラム原版に被複製体が重ね合わされ、レーザー光が照射される様子を示す斜視図。(A) is sectional drawing which shows a mode that a to-be-replicated body is superimposed on a hologram original plate, and a laser beam is irradiated, (b) is a to-be-replicated body superimposed on a hologram original plate, and a laser beam is irradiated. The perspective view which shows a mode. 本形態で複製する回折格子画像を示す図。The figure which shows the diffraction grating image duplicated with this form. 一定方向から入射される白色光によって生じる回折光のようすを示す図Diagram showing the appearance of diffracted light caused by white light incident from a certain direction 回折格子画像を被複製体に複製するようすを示す図。FIG. 4 is a diagram showing a state in which a diffraction grating image is replicated on an object to be replicated.

符号の説明Explanation of symbols

1 ホログラム原版
2 被複製体
2b 溶融層
L レーザー光
A 干渉縞方向
B 照射方向
λ1 照射ピッチ
λ2 画素ピッチ
DESCRIPTION OF SYMBOLS 1 Hologram master 2 Duplicated body 2b Molten layer L Laser beam A Interference fringe direction B Irradiation direction λ1 Irradiation pitch λ2 Pixel pitch

Claims (2)

所定方向にのみ視差が考慮された計算機ホログラムの干渉縞が施された光回折構造原版のその干渉縞と、基材層上に積層された溶融層とを重ね合わせ、その重ね合わされた部分にエネルギー線を照射し、そのエネルギー線の熱に基づいて前記溶融層を溶融させて前記干渉縞を前記溶融層へ転写し、前記エネルギー線を移動させることにより、前記光回折構造原版の前記干渉縞を複製する光回折構造の複製方法であって、
前記光回折構造原版には、R(赤)、G(緑)、B(青)のそれぞれに対応する回折格子の面積率に応じた色が表現されるように、前記各回折格子に対応する前記所定方向にのみ視差が考慮された干渉縞が前記面積率に応じて形成された回折格子画素による回折格子画像が形成され、
前記エネルギー線を移動させる方向が、前記所定方向と同じになるように、かつ、前記エネルギー線の照射ピッチが、前記所定方向に対して直角方向に関する前記回折格子画素の幅の正の整数倍になるように、前記エネルギー線を照射する、ことを特徴とする光回折構造複製方法。
The interference fringes of the optical diffraction structure master plate provided with the interference fringes of a computer generated hologram with parallax taken into consideration only in a predetermined direction are superposed on the molten layer laminated on the base material layer, and energy is applied to the superposed portion. Irradiating a line, melting the molten layer based on the heat of the energy line, transferring the interference fringe to the molten layer, and moving the energy line, A method for replicating a light diffraction structure to be replicated, comprising:
The optical diffraction structure master corresponds to each diffraction grating so that colors corresponding to the area ratios of the diffraction grating corresponding to each of R (red), G (green), and B (blue) are expressed. A diffraction grating image is formed by a diffraction grating pixel in which an interference fringe considering parallax only in the predetermined direction is formed according to the area ratio,
The direction in which the energy beam is moved is the same as the predetermined direction , and the irradiation pitch of the energy beam is a positive integer multiple of the width of the diffraction grating pixel in the direction perpendicular to the predetermined direction. The method for replicating an optical diffraction structure , wherein the energy beam is irradiated.
請求項1に記載の光回折構造複製方法によって複製された光回折構造が含まれた光回折構造体。 An optical diffraction structure including an optical diffraction structure replicated by the optical diffraction structure replication method according to claim 1 .
JP2005045503A 2004-02-25 2005-02-22 An optical diffraction structure including an optical diffraction structure replicated by the optical diffraction structure replication method and the replication method. Expired - Fee Related JP4563213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045503A JP4563213B2 (en) 2004-02-25 2005-02-22 An optical diffraction structure including an optical diffraction structure replicated by the optical diffraction structure replication method and the replication method.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004048949 2004-02-25
JP2005045503A JP4563213B2 (en) 2004-02-25 2005-02-22 An optical diffraction structure including an optical diffraction structure replicated by the optical diffraction structure replication method and the replication method.

Publications (2)

Publication Number Publication Date
JP2005275383A JP2005275383A (en) 2005-10-06
JP4563213B2 true JP4563213B2 (en) 2010-10-13

Family

ID=35175059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045503A Expired - Fee Related JP4563213B2 (en) 2004-02-25 2005-02-22 An optical diffraction structure including an optical diffraction structure replicated by the optical diffraction structure replication method and the replication method.

Country Status (1)

Country Link
JP (1) JP4563213B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503214B (en) * 2014-12-02 2017-06-13 苏州大学 The preparation method and display device of the panorama colour rainbow hologram of computing mechanism half

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232616A (en) * 1986-03-31 1987-10-13 ゼロツクス コ−ポレ−シヨン Full color reproduction method and apparatus of continuous tone color image
JPH0875912A (en) * 1994-07-06 1996-03-22 Dainippon Printing Co Ltd Production of diffraction grating recording medium and producing device therefor
JPH0966U (en) * 1988-03-03 1997-01-28 エルゲーツエット・ランディス・ウント・ギール・ツーク・アクチエンゲゼルシャフト Writing
JPH09319290A (en) * 1996-05-27 1997-12-12 Dainippon Printing Co Ltd Computer hologram, data preparation method and device therefor
JPH11147059A (en) * 1997-08-04 1999-06-02 Hsm Holographic Syst Muenchen Gmbh Method and apparatus for making surface structure, especially hologram surface structure on base material
JP2003311831A (en) * 2002-04-26 2003-11-06 Nippon Sharyo Seizo Kaisha Ltd Method for forming rugged pattern
JP2005515098A (en) * 2002-01-25 2005-05-26 ライスター プロセス テクノロジーズ Method for forming microstructure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232616A (en) * 1986-03-31 1987-10-13 ゼロツクス コ−ポレ−シヨン Full color reproduction method and apparatus of continuous tone color image
JPH0966U (en) * 1988-03-03 1997-01-28 エルゲーツエット・ランディス・ウント・ギール・ツーク・アクチエンゲゼルシャフト Writing
JPH0875912A (en) * 1994-07-06 1996-03-22 Dainippon Printing Co Ltd Production of diffraction grating recording medium and producing device therefor
JPH09319290A (en) * 1996-05-27 1997-12-12 Dainippon Printing Co Ltd Computer hologram, data preparation method and device therefor
JPH11147059A (en) * 1997-08-04 1999-06-02 Hsm Holographic Syst Muenchen Gmbh Method and apparatus for making surface structure, especially hologram surface structure on base material
JP2005515098A (en) * 2002-01-25 2005-05-26 ライスター プロセス テクノロジーズ Method for forming microstructure
JP2003311831A (en) * 2002-04-26 2003-11-06 Nippon Sharyo Seizo Kaisha Ltd Method for forming rugged pattern

Also Published As

Publication number Publication date
JP2005275383A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US4421380A (en) Full-color hologram
JP4504037B2 (en) Optical element
JP2979951B2 (en) Display with diffraction grating pattern
US3669673A (en) Recording of a continuous tone focused image on a diffraction grating
JPS62232616A (en) Full color reproduction method and apparatus of continuous tone color image
US9001401B2 (en) Fabrication process of multi-image type hologram, and multi-image type hologram fabricated by that process
JP4905672B2 (en) Screen switching hologram manufacturing method and screen switching hologram manufactured by the method
JP4905673B2 (en) Screen switching hologram manufacturing method and screen switching hologram manufactured by the method
JP4646097B2 (en) Hologram recording film with additional information and recording method thereof
JP4270415B2 (en) Color hologram
JP4563213B2 (en) An optical diffraction structure including an optical diffraction structure replicated by the optical diffraction structure replication method and the replication method.
JP2007212529A (en) Imaging element and method of manufacturing imaging element
JP2006349874A (en) Master hologram and manufacturing method thereof, and manufacturing method of phase type volume hologram optical element using master hologram
KR100882385B1 (en) Method of transferring hologram or diffraction grating laid on thermal transfer sheet, and transferring medium
US20090040578A1 (en) Hologram and Its Method of Manufacture
JP2006003910A (en) Hologram recording medium
JP2871684B2 (en) Method for producing color holographic stereogram
JPH0419181A (en) Variable color printed matter and production thereof
JPH1055129A (en) Method for duplicating hologram array
JP3608747B2 (en) Multi-sided hologram and method for producing the same
JP2807254B2 (en) How to make a color filter
JPS59154482A (en) Hologram and its preparation
JPH0973014A (en) Hologram color filter and its production
JPH0667006A (en) Manufacture of diffraction grating assembly
JPH11167011A (en) Storage medium arranged with random dot streoscopically visible pattern using diffraction grating and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4563213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees