JP4561621B2 - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP4561621B2
JP4561621B2 JP2005356869A JP2005356869A JP4561621B2 JP 4561621 B2 JP4561621 B2 JP 4561621B2 JP 2005356869 A JP2005356869 A JP 2005356869A JP 2005356869 A JP2005356869 A JP 2005356869A JP 4561621 B2 JP4561621 B2 JP 4561621B2
Authority
JP
Japan
Prior art keywords
intake
cylinder
helical
flow
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005356869A
Other languages
Japanese (ja)
Other versions
JP2007162517A (en
Inventor
倫行 高田
康夫 佐藤
寿記 伊藤
修 堀越
弘和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005356869A priority Critical patent/JP4561621B2/en
Publication of JP2007162517A publication Critical patent/JP2007162517A/en
Application granted granted Critical
Publication of JP4561621B2 publication Critical patent/JP4561621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関のシリンダに吸気を導入する内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine that introduces intake air into a cylinder of the internal combustion engine.

ディーゼルエンジン等の内燃機関に適用される吸気装置として、吸気バルブを中心にして螺旋状に旋回するヘリカル部と、このヘリカル部に続く導入部とを備えたヘリカルポートを有し、内燃機関のシリンダ内にスワール流を生成するようにした吸気装置が広く知られている。例えば、このようなヘリカルポートの上流と最下流とを結ぶバイパスポートを設け、このバイパスポートを開閉可能な開閉弁を閉じることにより吸気の流れを一部に集中させてスワール流を強化する一方で、この開閉弁を開くことにより吸気の流れを分散させてスワール流を弱めるようにした吸気装置がある(特許文献1)。その他、本発明に関連する先行技術文献として特許文献2が存在する。   As an intake device applied to an internal combustion engine such as a diesel engine, the cylinder of the internal combustion engine has a helical port having a helical portion that spirally turns around an intake valve and an introduction portion that follows the helical portion. An intake device that generates a swirl flow therein is widely known. For example, by providing a bypass port that connects the upstream and the most downstream of such a helical port, and closing the on-off valve that can open and close this bypass port, the flow of intake air is concentrated in part to enhance the swirl flow There is an intake device in which the flow of intake air is dispersed by opening the on-off valve to weaken the swirl flow (Patent Document 1). In addition, there is Patent Document 2 as a prior art document related to the present invention.

実開平5−042640号公報Japanese Utility Model Publication No. 5-042640 実開平2−147830号公報Japanese Utility Model Publication No. 2-147830

強いスワール流をシリンダ内に生成するとともに十分な吸気流量を確保するために、へリカルポートを同一のシリンダに対して複数設ける場合がある。この場合には、隣り合うポート間で生じ得る流れの干渉を考慮して、トータルとして要求されるスワール流と吸気流量とをそれぞれ確保する必要がある。しかしながら、特許文献1は、スワール流を強める弱めるといった記載はあるが、ヘリカルポートを単独で使用した場合についての開示に留まり他のヘリカルポートと組み合わせて使用することを考慮したものではない。そのため、特許文献1のヘリカルポートを他のポートと組み合わせた場合には、他のポートからの吸気流と干渉が生じ、十分な性能を発揮できないおそれがある。   In order to generate a strong swirl flow in the cylinder and secure a sufficient intake flow rate, a plurality of helical ports may be provided for the same cylinder. In this case, it is necessary to secure the swirl flow and intake flow rate required as a total in consideration of flow interference that may occur between adjacent ports. However, Patent Document 1 describes that the swirl flow is strengthened and weakened, but only discloses the case where the helical port is used alone, and does not consider using it in combination with other helical ports. Therefore, when the helical port of Patent Document 1 is combined with another port, there is a possibility that interference with the intake air flow from the other port may occur and sufficient performance may not be exhibited.

そこで、本発明は、隣り合う二つの吸気ポート間の流れの干渉を抑制して、所望のスワール流と吸気流量とを確保できる内燃機関の吸気装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide an intake device for an internal combustion engine that can suppress a flow interference between two adjacent intake ports to ensure a desired swirl flow and intake flow rate.

本発明の内燃機関の吸気装置は、内燃機関の同一のシリンダに設けられて互いに隣り合う二つの吸気ポートを有し、前記二つの吸気ポートのそれぞれが、前記シリンダの下方向に向かうようにして前記シリンダに開口しかつバルブシートが設けられた開口部と、前記開口部の周方向に沿って湾曲しながら前記開口部に続くヘリカル部と、前記ヘリカル部の上流側に接続された導入部とを備えたヘリカルポートとして構成され、前記シリンダ内にスワール流を生成する内燃機関の吸気装置において、前記二つの吸気ポートのうち、前記シリンダの中心線回りにスワール流の流れ方向と同方向に隣の吸気ポートまでの中心角を測った場合にその中心角が小さい側の吸気ポートには、前記導入部からヘリカル部へ導かれる吸気に対して前記シリンダの上方向に向かう流れ成分を与える吸気流制御部が設けられ、前記吸気流制御部として、前記シリンダに近い側の前記導入部の流路を前記導入部と前記ヘリカル部との境界位置に向かって徐々に絞る絞り部を有し、前記絞り部は、前記導入部の流路面積の減少が開始する開始位置と前記バルブシートの上面側の外周縁とを結ぶ仮想面を基準として前記ヘリカル部の湾曲の内側に向かう部分の高さのほうが前記ヘリカル部の湾曲の外側に向かう部分の高さよりも高くなるように前記導入部の底面が傾けられつつ、前記境界位置に向かって前記流路が徐々に絞られることによって構成されていることにより、上述した課題を解決する(請求項1)。
An intake device for an internal combustion engine according to the present invention has two intake ports which are provided in the same cylinder of the internal combustion engine and are adjacent to each other, and each of the two intake ports is directed downward of the cylinder. An opening that opens in the cylinder and is provided with a valve seat; a helical part that continues along the circumferential direction of the opening while continuing to the opening; and an introduction part that is connected to the upstream side of the helical part; In the intake device for an internal combustion engine that generates a swirl flow in the cylinder and is adjacent to the two intake ports in the same direction as the swirl flow direction around the center line of the cylinder. the cylinder with respect to intake air to the intake port of the central angle of the smaller side when measuring the center angle of the intake port, which is derived from the introduction part to the helical portion of the Intake flow control unit providing a flow component directed upward is provided, as the intake flow control unit, toward the flow path of the inlet portion close to the cylinder side to the boundary position between the helical portion and the inlet portion The throttle part has a throttle part that gradually throttles, and the throttle part is formed on the basis of a virtual plane that connects a starting position at which the flow passage area of the introduction part starts to decrease and an outer peripheral edge on the upper surface side of the valve seat. The flow path gradually moves toward the boundary position while the bottom surface of the introduction portion is inclined so that the height of the portion toward the inside of the curve is higher than the height of the portion of the helical portion toward the outside of the curve. The above-described problem is solved by being configured to be narrowed down to (Claim 1).

この吸気装置によれば、シリンダの中心線回りにスワール流の流れ方向と同方向に隣の吸気ポートまでの中心角を測った場合にその中心角が小さい側の吸気ポート、即ちスワール流の流れ方向の下流側に配置された吸気ポートに導かれる吸気に対してシリンダの上方向に向かう流れ成分が与えられる。そして、その流れ成分が与えられた吸気はヘリカル部を経て開口部に向かいシリンダ内に導入される。吸気流制御部にて付与される流れ成分は開口部の開口方向と反対向きであるので、一旦その成分が与えられた吸気は、そのような流れ成分が付与されずにヘリカル部へ導かれる吸気と比べて開口部への進入角度が深くなる。そのため、シリンダの下方向に向かう成分が相対的に増加する一方で、開口部から離れる方向へ向かう成分が減少する。更に、上方向に向かう成分の一部がヘリカル部に導かれて旋回成分に振り分けられる。これにより、スワール流の流れ方向の下流側に配置された吸気ポートから隣の吸気ポートへ向かう流れが弱められる。従って、スワール流の流れ方向の下流側に配置された吸気ポートに導かれる吸気の流れと、隣の吸気ポートに導かれる吸気の流れとの干渉を抑制することができる。
According to this intake device, when the central angle to the adjacent intake port is measured in the same direction as the flow direction of the swirl flow around the center line of the cylinder, the intake port having the smaller central angle, that is, the flow of the swirl flow A flow component directed upward of the cylinder is given to the intake air guided to the intake port disposed downstream in the direction. Then, the intake air to which the flow component is given is introduced into the cylinder through the helical portion toward the opening. Since the flow component applied by the intake flow control unit is in the opposite direction to the opening direction of the opening, the intake air once provided with the component is the intake air that is guided to the helical unit without being provided with such a flow component. Compared to the angle of entry into the opening becomes deeper. Therefore, the component toward the lower side of the cylinder relatively increases, while the component toward the direction away from the opening decreases. Further, a part of the upward component is guided to the helical part and distributed to the turning component. Accordingly, the flow from the intake port arranged on the downstream side in the swirl flow direction to the adjacent intake port is weakened. Therefore, it is possible to suppress interference with the intake flow directed to the intake port located on the downstream side of the flow direction of the swirl flow, and the flow of the intake air guided to the intake port of the next.

しかも、絞り部は仮想面を基準としてヘリカル部の湾曲の内側に向かう部分の高さのほうがその外側に向かう部分の高さよりも高くなるように導入部の底面が傾けられつつ、前記境界位置に向かって前記流路が徐々に絞られることによって構成されているので、ヘリカル部に導かれる吸気の流量を増大させることができる。これにより、各吸気ポートに導かれる吸気の流れ相互の干渉を抑制しつつ、導入部に絞り部を設けることによる流量の低下を抑制することができる。
In addition, the bottom of the introduction portion is tilted so that the height of the portion toward the inside of the curved portion of the helical portion with respect to the virtual surface is higher than the height of the portion toward the outside with respect to the virtual plane, On the other hand, since the flow path is gradually throttled , the flow rate of the intake air guided to the helical portion can be increased . Accordingly, it is possible to suppress a decrease in flow rate due to the provision of the throttle portion in the introduction portion while suppressing mutual interference between the intake air flows guided to the intake ports .

本発明の吸気装置においては、吸気流制御部が設けられる吸気ポートに隣接して配置される吸気ポートがヘリカルポートである限り、その態様に特段の制限はない。例えば、前記二つの吸気ポートのうち、前記シリンダの中心線回りにスワール流の流れ方向と同方向に隣の吸気ポートまでの中心角を測った場合にその中心角が大きい側の吸気ポートの前記導入部は、前記シリンダの上下方向に関して上側に位置する上側領域と下側に位置する下側領域とに区分されて前記ヘリカル部に接続される接続部を有し、前記接続部は、前記上側領域の横幅が前記下側領域の横幅よりも狭く、かつ前記ヘリカル部に近付くに従って前記上側領域と前記下側領域との横幅の差が徐々に拡大するように構成されていてもよい(請求項)。この態様によれば、上側領域によって旋回流を生成するとともに、下側領域によってシリンダの接線方向に向かう吸気の流れを強めることができる。このような吸気ポートとの干渉が吸気流制御部によって抑制されるので、その吸気ポートの利点を殺すことなく性能を最大限に引き出すことができる。
In the intake device of the present invention, as long as the intake port disposed adjacent to the intake port provided with the intake flow control unit is a helical port, there is no particular limitation on the mode. For example, of the two intake ports, when the central angle to the adjacent intake port in the same direction as the flow direction of the swirl flow around the center line of the cylinder is measured, The introduction portion has a connection portion that is divided into an upper region located on the upper side and a lower region located on the lower side with respect to the vertical direction of the cylinder and is connected to the helical portion, and the connection portion includes the upper portion The lateral width of the region may be narrower than the lateral width of the lower region, and the lateral width difference between the upper region and the lower region may be gradually increased as the region approaches the helical portion. 2 ). According to this aspect, the swirl flow can be generated by the upper region, and the intake air flow directed in the tangential direction of the cylinder can be strengthened by the lower region. Since the interference with the intake port is suppressed by the intake flow control unit, the performance can be maximized without losing the advantage of the intake port.

以上説明したように、本発明によれば、導入部からヘリカル部へ導かれる吸気に対してシリンダの上方向に向かう流れ成分を与える吸気流制御部がスワール流の下流側に配置された吸気ポートに設けられているので、シリンダの下方向に向かう成分が相対的に増加する一方で、開口部から離れる方向へ向かう成分が減少する。これにより、スワール流の流れ方向の下流側に配置された吸気ポートに導かれる吸気の流れと、スワール流の流れ方向の上流側に配置された吸気ポートに導かれる吸気の流れとの干渉を抑制できる。しかも、絞り部が導入部の底面が傾けられることによって構成されているのでヘリカル部に導かれる吸気の流量を増大させることができる。これにより、各吸気ポートに導かれる吸気の流れ相互の干渉を抑制しつつ、導入部に絞り部を設けることによる流量の低下を抑制することができる。 As described above, according to the present invention, the intake port control unit that provides the flow component directed upward from the cylinder to the intake air guided from the introduction unit to the helical unit is disposed on the downstream side of the swirl flow. Therefore, the component toward the bottom of the cylinder relatively increases, while the component toward the direction away from the opening decreases. This suppresses interference between the intake air flow guided to the intake port disposed downstream in the swirl flow direction and the intake flow directed to the intake port disposed upstream in the swirl flow direction. it can. Moreover, since the throttle portion is configured by tilting the bottom surface of the introduction portion, the flow rate of the intake air guided to the helical portion can be increased. Accordingly, it is possible to suppress a decrease in flow rate due to the provision of the throttle portion in the introduction portion while suppressing mutual interference between the intake air flows guided to the intake ports.

(第1の形態)
図1及び図2は本発明の吸気装置が組み込まれた内燃機関の要部を模式的に示している。内燃機関1はディーゼルエンジンとして構成されていて、シリンダ2へ吸気を導入するための二つの吸気ポート4、5と、燃焼後の排気をシリンダ2から排出するための二つの排気ポート6、6とを備えている。なお、排気ポート6、6については開口部を想像線で示して形状の図示を省略した。吸気ポート4、5のそれぞれの開口部4a、5aには、吸気バルブ7が一つずつ配置され、各排気ポート6の開口部にも排気バルブ(不図示)が配置されている。吸気ポート4、5及び排気ポート6は内燃機関1のシリンダヘッド8(図3)にそれぞれ形成されている。また、シリンダ2の上部にはシリンダ2内に燃料を噴射する燃料噴射ノズル9が設けられている。燃料噴射ノズル9は図示しないコモンレールに接続されて所定の燃圧で燃料が供給される。シリンダ2内にはピストン(不図示)が往復運動自在に設けられ、図示を省略したが、コネクティングロッドを介してクランク軸に連結されている。
(First form)
1 and 2 schematically show the main part of an internal combustion engine in which the intake device of the present invention is incorporated. The internal combustion engine 1 is configured as a diesel engine, and includes two intake ports 4 and 5 for introducing intake air into the cylinder 2, and two exhaust ports 6 and 6 for discharging exhaust gas after combustion from the cylinder 2. It has. In addition, about the exhaust ports 6 and 6, the opening part was shown with the imaginary line and illustration of the shape was abbreviate | omitted. One intake valve 7 is disposed in each of the openings 4 a and 5 a of the intake ports 4 and 5, and an exhaust valve (not shown) is also disposed in the opening of each exhaust port 6. The intake ports 4 and 5 and the exhaust port 6 are respectively formed in the cylinder head 8 (FIG. 3) of the internal combustion engine 1. A fuel injection nozzle 9 for injecting fuel into the cylinder 2 is provided at the top of the cylinder 2. The fuel injection nozzle 9 is connected to a common rail (not shown) and is supplied with fuel at a predetermined fuel pressure. A piston (not shown) is provided in the cylinder 2 so as to freely reciprocate. Although not shown, the piston is connected to a crankshaft via a connecting rod.

吸気ポート4、5は互いに隣り合うように配置されており、吸気ポート4、5のそれぞれはいわゆるヘリカルポートとして構成されている。吸気ポート4は、開口部4aの周方向s1(図2)に沿って湾曲しながら開口部4aに続くヘリカル部4bと、ヘリカル部4bの上流側(シリンダ2から離れる側)に接続された導入部4cとを備えている。吸気ポート5も同様に、ヘリカル部5b及び導入部5cをそれぞれ備えている。吸気ポート4の開口部4aには吸気バルブ7を着座させるためのバルブシート10が設けられている。これらの吸気ポート4、5は、図1及び図2に示す方向に流れるスワール流Fswがシリンダ2内に生成されるように配置されている。吸気ポート4はスワール流Fswの流れ方向の下流側に配置された吸気ポートに、吸気ポート5はスワール流Fswの流れ方向の上流側に配置された吸気ポートにそれぞれ相当する。   The intake ports 4 and 5 are disposed adjacent to each other, and each of the intake ports 4 and 5 is configured as a so-called helical port. The intake port 4 is curved along the circumferential direction s1 (FIG. 2) of the opening 4a, and is connected to the helical part 4b following the opening 4a and the upstream side (the side away from the cylinder 2) of the helical part 4b. Part 4c. Similarly, the intake port 5 includes a helical portion 5b and an introduction portion 5c. A valve seat 10 for seating the intake valve 7 is provided in the opening 4 a of the intake port 4. These intake ports 4 and 5 are arranged so that a swirl flow Fsw flowing in the direction shown in FIGS. 1 and 2 is generated in the cylinder 2. The intake port 4 corresponds to an intake port arranged on the downstream side in the flow direction of the swirl flow Fsw, and the intake port 5 corresponds to an intake port arranged on the upstream side in the flow direction of the swirl flow Fsw.

図3及び図4は吸気ポート4の詳細を示し、図3は図2のIII−III線に沿った断面を、図4は図3のa〜c線に沿った各断面をそれぞれ示している。図3に示すように、吸気ポート4には吸気流制御部としての絞り部4dが設けられている。図4(a)〜(c)にも示すように、絞り部4dは、シリンダ2に近い側(図3の下側)の導入部4cの流路を、導入部4cヘリカル部4bとの境界位置Xに向かって徐々に絞るように構成されている。換言すれば、絞り部4dは導入部4cの流路面積の減少が開始する開始位置xから境界位置Xまで延びており、この開始位置xとバルブシート10の上面側の外周縁10aとを結ぶ仮想面S1を基準とした場合、絞り部4dはこの仮想面S1から導入部4cの底面S2までのシリンダ2の中心軸線方向に関する高さHが境界位置Xに向かって徐々に大きくなるように構成されている。   3 and 4 show details of the intake port 4, FIG. 3 shows a cross section taken along line III-III in FIG. 2, and FIG. 4 shows each cross section taken along line a to c in FIG. . As shown in FIG. 3, the intake port 4 is provided with a throttle 4d as an intake flow control unit. As shown in FIGS. 4 (a) to 4 (c), the throttle portion 4d is configured such that the flow path of the introduction portion 4c on the side close to the cylinder 2 (the lower side in FIG. 3) passes through the boundary with the introduction portion 4c helical portion 4b. It is configured to gradually squeeze toward the position X. In other words, the throttle portion 4d extends from the start position x where the flow passage area of the introduction portion 4c starts to decrease to the boundary position X, and connects the start position x and the outer peripheral edge 10a on the upper surface side of the valve seat 10. When the virtual surface S1 is used as a reference, the throttle portion 4d is configured such that the height H in the central axis direction of the cylinder 2 from the virtual surface S1 to the bottom surface S2 of the introduction portion 4c gradually increases toward the boundary position X. Has been.

これにより、導入部4cに導かれた吸気流F1は絞り部4dにてシリンダ2の上方向に向かう流れ成分が与えられる。そのため、絞り部4dを通過した吸気は、仮想面S1に沿った流れF2と比べて開口部4aへの進入角度が深くなり、シリンダ2の下方向に向かう成分faが相対的に増加する一方で、開口部4aから離れる方向へ向かう成分fbが減少する。更に、上方向に向かう成分の一部がヘリカル部に導かれて旋回成分に振り分けられる。   Thus, the intake flow F1 guided to the introduction part 4c is given a flow component directed upward in the cylinder 2 by the throttle part 4d. Therefore, the intake air that has passed through the throttle portion 4d has a deeper entry angle into the opening 4a than the flow F2 along the virtual plane S1, and the component fa toward the lower side of the cylinder 2 is relatively increased. The component fb going away from the opening 4a decreases. Further, a part of the upward component is guided to the helical part and distributed to the turning component.

一方、吸気ポート5は、吸気ポート4の構成と相違している。図5(a)〜(c)は図2のd〜f線に沿った各断面を示している。これらの図に示すように、吸気ポート5の導入部5cは、シリンダ2の中心軸線方向に関して上側に位置する上側領域51と下側に位置する下側領域52とに区分されてヘリカル部5bに接続される接続部50を有している。接続部50は上側領域51の横幅が下側領域52の横幅よりも狭く、かつヘリカル部5bに近付くに従ってこれらの領域の横幅の差が徐々に拡大するように構成されている。また、図1に示すように、吸気ポート5のヘリカル部5bにおいては、開口部5aの周方向s2(図2)に沿って湾曲する過程で、シリンダ2の上下方向に関する縦幅が漸次小さくなるように構成されている。これにより、図2に示すように、上側領域51に導かれる流れFsよって旋回流を生成するとともに、下側領域52によってシリンダ2の接線方向に向かう吸気の流れFtを強めることができる。   On the other hand, the intake port 5 is different from the configuration of the intake port 4. FIGS. 5A to 5C show cross sections taken along the line df of FIG. As shown in these drawings, the inlet portion 5c of the intake port 5 is divided into an upper region 51 positioned on the upper side and a lower region 52 positioned on the lower side in the central axis direction of the cylinder 2, and is divided into a helical portion 5b. It has the connection part 50 connected. The connecting portion 50 is configured such that the lateral width of the upper region 51 is narrower than the lateral width of the lower region 52, and the difference between the lateral widths of these regions gradually increases as it approaches the helical portion 5b. Further, as shown in FIG. 1, in the helical portion 5b of the intake port 5, the vertical width in the vertical direction of the cylinder 2 gradually decreases in the process of bending along the circumferential direction s2 (FIG. 2) of the opening 5a. It is configured as follows. Accordingly, as shown in FIG. 2, a swirl flow can be generated by the flow Fs guided to the upper region 51, and the intake flow Ft directed in the tangential direction of the cylinder 2 can be strengthened by the lower region 52.

以上の形態によれば、一方の吸気ポート4から他方の吸気ポート5に向かう方向の流れが弱められて、吸気ポート4からの流れと吸気ポート5からの流れとの干渉を抑制することができる。なお、この形態においては、図6(a)〜(c)に示すように絞り部4dの構成を変更することができる。これらの図は図4(a)〜(c)にそれぞれ対応する。図6に示す形態では、絞り部4dは導入部4cの流路が境界位置X(図3参照)においてヘリカル部4bの湾曲の内側に向かう部分(図6(a)〜(c)の各図の右側の部分)よりも外側に向かう部分(同各図の左側の部分)が広くなるように構成されている。換言すれば、絞り部4dは導入部4cの底面S2が仮想面S1に対して内側に向かう部分の高さH1のほうが外側に向かう部分の高さH2よりも高くなるように傾けられている。高さH1、H2のそれぞれは、境界位置Xに向かって徐々に変化している。図6の構成によれば、ヘリカル部4bに導かれる吸気の流量を増大させることができるので、導入部4cに絞り部4dを設けることによる流量の低下を抑制することができる。   According to the above embodiment, the flow in the direction from one intake port 4 to the other intake port 5 is weakened, and interference between the flow from the intake port 4 and the flow from the intake port 5 can be suppressed. . In this embodiment, the configuration of the diaphragm portion 4d can be changed as shown in FIGS. 6 (a) to 6 (c). These figures correspond to FIGS. 4A to 4C, respectively. In the form shown in FIG. 6, the throttle portion 4d is a portion where the flow path of the introduction portion 4c faces the inside of the curve of the helical portion 4b at the boundary position X (see FIG. 3) (each figure in FIGS. 6A to 6C). The portion (the left portion in each figure) that faces outward from the right portion) is configured to be wider. In other words, the throttle portion 4d is inclined so that the height H1 of the portion where the bottom surface S2 of the introduction portion 4c faces inward with respect to the virtual surface S1 is higher than the height H2 of the portion facing outward. Each of the heights H1 and H2 gradually changes toward the boundary position X. According to the configuration of FIG. 6, since the flow rate of the intake air guided to the helical portion 4b can be increased, a decrease in the flow rate due to the provision of the throttle portion 4d in the introduction portion 4c can be suppressed.

(第2の形態)
次に、図7〜図10を参照しながら本発明の第2の形態について説明する。この形態に係る吸気ポート40の基本的な構成は第1の形態の吸気ポート4同様であるが、吸気流制御部の形態が異なっている。それ以外の構成は第1の形態と同様であるので、第1の形態と共通の構成には同一の符号を付して重複する説明を省略する。図7〜図9に示すように、吸気ポート40は、スワール流の流れ方向の下流側に配置されており、開口部40aの周方向s1(図7)に沿って湾曲しながら開口部40aに続くヘリカル部40bと、ヘリカル部40bの上流側(シリンダ2から離れる側)に接続された導入部40cとを備えている。導入部40cには吸気流制御部としての複数の突起部41…41が設けられている。複数の突起部41…41は、シリンダ2に近い側(図8の下側)の導入部40dの流路内に設けられ、かつ導入部40cとヘリカル部40bとの境界位置X(図8)に向かう方向及び導入部40cの流路を横切る方向に並べられている。各突起部41は突出方向に向かうに従って横幅が小さくなるような円錐状に構成されている。そのため、隣接する突起部41、41の間には隙間Gが形成される。また、図9に示すように、シリンダ2の中心軸線方向に関する各突起部41の高さH3は互いに同一である。
(Second form)
Next, a second embodiment of the present invention will be described with reference to FIGS. The basic configuration of the intake port 40 according to this embodiment is the same as that of the intake port 4 of the first embodiment, but the intake flow control unit is different. Since the other configuration is the same as that of the first embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted. As shown in FIGS. 7 to 9, the intake port 40 is disposed on the downstream side in the swirl flow direction, and is curved along the circumferential direction s1 (FIG. 7) of the opening 40a to the opening 40a. The helical part 40b which continues and the introducing | transducing part 40c connected to the upstream (side away from the cylinder 2) of the helical part 40b are provided. The introduction part 40c is provided with a plurality of protrusions 41... 41 as an intake air flow control part. The plurality of protrusions 41... 41 are provided in the flow path of the introduction part 40d on the side close to the cylinder 2 (the lower side in FIG. 8), and the boundary position X (FIG. 8) between the introduction part 40c and the helical part 40b. And a direction crossing the flow path of the introduction part 40c. Each protrusion 41 is configured in a conical shape such that the lateral width decreases as it goes in the protruding direction. Therefore, a gap G is formed between the adjacent protrusions 41 and 41. Further, as shown in FIG. 9, the heights H <b> 3 of the protrusions 41 in the central axis direction of the cylinder 2 are the same.

このように構成された複数の突起部41…41により、シリンダ2に近い側の流路内に沿う吸気の流れF1を渦流F11を伴って剥離させる。そのため、吸気流F1にはシリンダ2の上方向に向かう流れ成分が与えられる。これにより、複数の突起部41…41を通過した吸気は、これらの突起部41を有しない場合の流れF2と比べて開口部4aへの進入角度が深くなる。このため、シリンダ2の下方向に向かう成分faが相対的に増加する一方で、開口部4aから離れる方向へ向かう成分fbが減少する。更に、上方向に向かう成分の一部がヘリカル部に導かれて旋回成分に振り分けられる。しかも、隣接する突起部41、41の間には隙間Gが形成されるので、第1の形態のように流路面積を絞る場合と比べて流路面積が大きく低下しない。   The plurality of protrusions 41... 41 configured as described above separate the intake air flow F1 along the flow path near the cylinder 2 with the vortex F11. Therefore, an upward flow component of the cylinder 2 is given to the intake air flow F1. As a result, the intake air that has passed through the plurality of protrusions 41... 41 has a deeper entry angle into the opening 4a than the flow F2 when these protrusions 41 are not provided. For this reason, while the component fa which goes to the downward direction of the cylinder 2 increases relatively, the component fb which goes to the direction away from the opening part 4a reduces. Further, a part of the upward component is guided to the helical part and distributed to the turning component. In addition, since the gap G is formed between the adjacent protrusions 41, 41, the flow channel area is not significantly reduced as compared with the case where the flow channel area is reduced as in the first embodiment.

以上の形態によれば、、図7に示すように、一方の吸気ポート40から他方の吸気ポート5に向かう方向の流れが弱められて、吸気ポート40からの流れと吸気ポート5からの流れとの干渉を抑制することができる。なお、この形態においては、図10に示すように複数の突起部41…41の構成を変更することができる。この図は図9に対応する。図10に示す形態では、複数の突起部41…41は、導入部40cの流路が境界位置X(図8参照)においてヘリカル部40bの湾曲の内側に向かう部分(図10の右側の部分)に設けられた突起部41の高さH4が外側に向かう部分(同図の左側の部分)に設けられた突起部41の高さH5よりも高くなるように構成されている。これにより、ヘリカル部40bに導かれる吸気の流量を増大させることができるので、導入部40cに複数の突起部41…41を設けることによる流量の低下を抑制することができる。   According to the above configuration, as shown in FIG. 7, the flow in the direction from one intake port 40 to the other intake port 5 is weakened, and the flow from the intake port 40 and the flow from the intake port 5 are reduced. Interference can be suppressed. In this embodiment, the configuration of the plurality of protrusions 41... 41 can be changed as shown in FIG. This figure corresponds to FIG. In the form shown in FIG. 10, the plurality of protrusions 41... 41 is a portion where the flow path of the introduction portion 40 c faces the inside of the curvature of the helical portion 40 b at the boundary position X (see FIG. 8) The height H4 of the protrusion 41 provided on the outer side is configured to be higher than the height H5 of the protrusion 41 provided on the outer portion (the left portion in the figure). Thereby, since the flow rate of the intake air guided to the helical portion 40b can be increased, it is possible to suppress a decrease in the flow rate due to the provision of the plurality of protrusions 41.

本発明は以上の形態に限定されず、種々の形態で実現してもよい。本発明の吸気装置は、シリンダ内にスワール流を形成することが要望されるディーゼルエンジンに適用されることに適しているが、他の形式の内燃機関への本発明の適用を排除するものではなく、例えばガソリンエンジンに適用することもできる。また、スワール流の流れ方向の上流側に配置された吸気ポートの構成は、図5等に示したものに限定されず、他の形態のヘリカルポートでもよい。第2の形態の突起部の形状は、突出方向に向かって横幅を徐々に小さく設定された円錐形状に限定されず、横幅が突出方向に関して一定の柱状のものでもよい。また、吸気ポートの通路を横切る方向に関して突起部の高さが一様でなく、その高さが区々であっても構わない。   The present invention is not limited to the above form, and may be realized in various forms. The intake device of the present invention is suitable for application to a diesel engine in which it is desired to form a swirl flow in a cylinder, but does not exclude the application of the present invention to other types of internal combustion engines. For example, it can be applied to a gasoline engine. In addition, the configuration of the intake port arranged on the upstream side in the flow direction of the swirl flow is not limited to that shown in FIG. 5 and the like, and may be a helical port of another form. The shape of the protrusions of the second embodiment is not limited to the conical shape in which the lateral width is gradually reduced toward the projecting direction, and may be a columnar shape whose lateral width is constant in the projecting direction. Further, the height of the protrusion is not uniform in the direction crossing the passage of the intake port, and the height may vary.

なお、以上の説明では、互いに隣り合う二つの吸気ポートを区別するため、「スワール流の流れ方向の上流側の吸気ポート」及び「スワール流の流れ方向の下流側の吸気ポート」という表現を使用した。そこで、これらの表現の代りに、二つの吸気ポートを区別し得る他の表現について説明する。図11は二つの吸気ポートA、Bの位置関係を説明する説明図である。この図において、上述した形態の構成と同一構成には同一の参照符号が付されている。吸気ポートAは上述した吸気ポート4、40に、吸気ポートBは上述した吸気ポート5にそれぞれ相当する。   In the above description, the expressions “the upstream intake port in the swirl flow direction” and “the downstream intake port in the swirl flow direction” are used to distinguish two intake ports adjacent to each other. did. Therefore, instead of these expressions, other expressions that can distinguish the two intake ports will be described. FIG. 11 is an explanatory diagram for explaining the positional relationship between the two intake ports A and B. FIG. In this figure, the same reference numerals are assigned to the same components as those of the above-described embodiment. The intake port A corresponds to the intake ports 4 and 40 described above, and the intake port B corresponds to the intake port 5 described above.

図11に示すように、吸気ポートAから隣の吸気ポートBまでの中心角をシリンダ2の中心線CL回りにスワール流Fswの流れ方向と同方向に測った場合、その中心角はαとなる。一方、吸気ポートBから隣の吸気ポートAまでの中心角をシリンダ2の中心線CL回りにスワール流Fswの流れ方向と同方向に測った場合、その中心角はβとなる。この図から明らかなように、中心角α、βはα<βの関係になる。従って、二つの吸気ポートA、Bのうち、吸気ポートAは、シリンダの中心線回りにスワール流の流れ方向と同方向に隣の吸気ポートまでの中心角を測った場合にその中心角が小さい側の吸気ポートということができ、一方、吸気ポートBは、シリンダの中心線回りにスワール中の流れ方向と同方向に隣の吸気ポートまでの中心角を測った場合にその中心角が大きい側の吸気ポートということができる。こうして、二つの吸気ポートA、Bを互いに区別することができる。   As shown in FIG. 11, when the central angle from the intake port A to the adjacent intake port B is measured in the same direction as the flow direction of the swirl flow Fsw around the center line CL of the cylinder 2, the central angle is α. . On the other hand, when the central angle from the intake port B to the adjacent intake port A is measured in the same direction as the flow direction of the swirl flow Fsw around the center line CL of the cylinder 2, the central angle is β. As is apparent from this figure, the central angles α and β have a relationship of α <β. Therefore, of the two intake ports A and B, the intake port A has a small central angle when the central angle to the adjacent intake port is measured in the same direction as the swirl flow direction around the center line of the cylinder. On the other hand, the intake port B has a larger center angle when the center angle to the adjacent intake port is measured in the same direction as the flow direction in the swirl around the cylinder center line. It can be said that the intake port. Thus, the two intake ports A and B can be distinguished from each other.

本発明の吸気装置が組み込まれた内燃機関の要部を模式的に示した斜視図。The perspective view which showed typically the principal part of the internal combustion engine in which the intake device of this invention was integrated. 本発明の吸気装置が組み込まれた内燃機関の要部を模式的に示した平面図。The top view which showed typically the principal part of the internal combustion engine in which the intake device of this invention was integrated. 図2のIII−III線に沿った断面図。Sectional drawing along the III-III line of FIG. 図3の各部の断面を示し、(a)はa−a線に沿った断面図、(b)はb−b線に沿った断面図、(c)はc−c線に沿った断面図である。3A and 3B are cross-sectional views taken along the line aa, FIG. 3B is a cross-sectional view taken along the line bb, and FIG. 3C is a cross-sectional view taken along the line cc. It is. 図2の各部の断面を示し、(a)はd−d線に沿った断面図、(b)はe−e線に沿った断面図、(c)はf−f線に沿った断面図である。2A and 2B are cross-sectional views taken along the line dd, FIG. 2B is a cross-sectional view taken along the line ee, and FIG. 2C is a cross-sectional view taken along the line ff. It is. 変形例の各部の断面を図4に対応させて示し、(a)はa−a線に沿った断面図、(b)はb−b線に沿った断面図、(c)はc−c線に沿った断面図である。4 shows a cross section of each part of the modified example corresponding to FIG. 4, (a) is a cross sectional view along the line aa, (b) is a cross sectional view along the line bb, (c) is cc. It is sectional drawing along a line. 第2の形態に係る内燃機関の要部を模式的に示した平面図。The top view which showed typically the principal part of the internal combustion engine which concerns on a 2nd form. 図7のVIII−VIII線に沿った断面図。Sectional drawing along the VIII-VIII line of FIG. 図7のg−g線に沿った断面図。Sectional drawing along the gg line of FIG. 変形例の断面を示した断面図。Sectional drawing which showed the cross section of the modification. 二つの吸気ポートの位置関係を説明する説明図。Explanatory drawing explaining the positional relationship of two intake ports.

符号の説明Explanation of symbols

1 内燃機関
2 シリンダ
4、40 スワール流の流れ方向の下流側に配置された吸気ポート
4a、40a 開口部
4b、40b ヘリカル部
4c、40c 導入部
4d、40d 絞り部(吸気流制御部)
5 スワール流の流れ方向の上流側に配置された吸気ポート
5a 開口部
5b ヘリカル部
5c 導入部
41 突起部
50 接続部
51 上側領域
52 下側領域
X 境界位置
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 4, 40 Intake port 4a, 40a Opening part 4b, 40b Helical part 4c, 40c Introducing part 4d, 40d Restriction part (intake flow control part) arrange | positioned in the downstream of the flow direction of a swirl flow
5 Intake port 5a arranged on the upstream side in the flow direction of the swirl flow 5a Opening 5b Helical part 5c Introduction part 41 Projection part 50 Connection part 51 Upper area 52 Lower area X Boundary position

Claims (2)

内燃機関の同一のシリンダに設けられて互いに隣り合う二つの吸気ポートを有し、前記二つの吸気ポートのそれぞれが、前記シリンダの下方向に向かうようにして前記シリンダに開口しかつバルブシートが設けられた開口部と、前記開口部の周方向に沿って湾曲しながら前記開口部に続くヘリカル部と、前記ヘリカル部の上流側に接続された導入部とを備えたヘリカルポートとして構成され、前記シリンダ内にスワール流を生成する内燃機関の吸気装置において、
前記二つの吸気ポートのうち、前記シリンダの中心線回りにスワール流の流れ方向と同方向に隣の吸気ポートまでの中心角を測った場合にその中心角が小さい側の吸気ポートには、前記導入部からヘリカル部へ導かれる吸気に対して前記シリンダの上方向に向かう流れ成分を与える吸気流制御部が設けられ
前記吸気流制御部として、前記シリンダに近い側の前記導入部の流路を前記導入部と前記ヘリカル部との境界位置に向かって徐々に絞る絞り部を有し
前記絞り部は、前記導入部の流路面積の減少が開始する開始位置と前記バルブシートの上面側の外周縁とを結ぶ仮想面を基準として前記ヘリカル部の湾曲の内側に向かう部分の高さのほうが前記ヘリカル部の湾曲の外側に向かう部分の高さよりも高くなるように前記導入部の底面が傾けられつつ、前記境界位置に向かって前記流路が徐々に絞られることによって構成されていることを特徴とする内燃機関の吸気装置。
There are two intake ports provided in the same cylinder of the internal combustion engine and adjacent to each other. Each of the two intake ports opens downward in the cylinder and is provided with a valve seat. an opening that is, a helical portion following the opening while being curved along the circumferential direction of the opening, is configured as a helical port and a connected inlet portion upstream of the helical portion, wherein In an intake device for an internal combustion engine that generates a swirl flow in a cylinder,
Of the two intake ports, when the central angle to the adjacent intake port is measured in the same direction as the swirl flow direction around the center line of the cylinder , An intake air flow control unit is provided that applies a flow component directed upward of the cylinder to the intake air guided from the introduction unit to the helical unit ;
As the intake flow control unit, a throttle unit that gradually throttles the flow path of the introduction unit on the side close to the cylinder toward the boundary position between the introduction unit and the helical unit ,
The throttle portion is a height of a portion toward the inside of the curve of the helical portion with reference to a virtual plane connecting a start position where the flow passage area of the introduction portion starts to decrease and an outer peripheral edge on the upper surface side of the valve seat. The flow path is gradually narrowed toward the boundary position while the bottom surface of the introduction portion is inclined so that the height of the helical portion is higher than the height of the portion of the helical portion toward the outside . intake system of the internal combustion engine you wherein a.
前記二つの吸気ポートのうち、前記シリンダの中心線回りにスワール流の流れ方向と同方向に隣の吸気ポートまでの中心角を測った場合にその中心角が大きい側の吸気ポートの前記導入部は、前記シリンダの上下方向に関して上側に位置する上側領域と下側に位置する下側領域とに区分されて前記ヘリカル部に接続される接続部を有し、前記接続部は、前記上側領域の横幅が前記下側領域の横幅よりも狭く、かつ前記ヘリカル部に近付くに従って前記上側領域と前記下側領域との横幅の差が徐々に拡大するように構成されていることを特徴とする請求項1に記載の内燃機関の吸気装置。 Of the two intake ports, when the central angle to the adjacent intake port is measured in the same direction as the swirl flow direction around the center line of the cylinder, the introduction portion of the intake port on the side having the larger central angle Has a connecting portion that is divided into an upper region located on the upper side and a lower region located on the lower side in the vertical direction of the cylinder and connected to the helical portion, and the connecting portion is connected to the upper region. The lateral width is narrower than the lateral width of the lower region, and the difference in lateral width between the upper region and the lower region is gradually increased as it approaches the helical portion. 2. An intake device for an internal combustion engine according to 1 .
JP2005356869A 2005-12-09 2005-12-09 Intake device for internal combustion engine Expired - Fee Related JP4561621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356869A JP4561621B2 (en) 2005-12-09 2005-12-09 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356869A JP4561621B2 (en) 2005-12-09 2005-12-09 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007162517A JP2007162517A (en) 2007-06-28
JP4561621B2 true JP4561621B2 (en) 2010-10-13

Family

ID=38245728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356869A Expired - Fee Related JP4561621B2 (en) 2005-12-09 2005-12-09 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4561621B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923268B1 (en) * 2007-11-05 2013-11-22 Renault Sas HEAD OF AN INTERNAL COMBUSTION ENGINE COMPRISING AN INTAKE DUCT WITH A SLOPE SUITABLE FOR GENERATING A TOURBILLON IN THE CYLINDER
FR2924165A3 (en) * 2007-11-26 2009-05-29 Renault Sas Engine block's cylinder head for e.g. diesel engine, has inlet conduit including inner surface having wheel that is turned opposite to support plan of head's lower face and is linked to work areas to form edge toward inner side of conduit
FR3095236B1 (en) 2019-04-16 2021-04-09 Ifp Energies Now Gas inlet device provided with an oriented mask

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427436U (en) * 1987-08-10 1989-02-16
JPH02147830U (en) * 1989-05-18 1990-12-14
JPH0643225U (en) * 1992-11-11 1994-06-07 株式会社小松製作所 Intake port structure of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427436U (en) * 1987-08-10 1989-02-16
JPH02147830U (en) * 1989-05-18 1990-12-14
JPH0643225U (en) * 1992-11-11 1994-06-07 株式会社小松製作所 Intake port structure of internal combustion engine

Also Published As

Publication number Publication date
JP2007162517A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP2005248818A (en) Swirl formation device for engine
JP4356329B2 (en) Intake port of internal combustion engine
JP4277857B2 (en) Intake port of internal combustion engine
JP4561621B2 (en) Intake device for internal combustion engine
JP7431548B2 (en) engine
JP2006342746A (en) Intake structure for internal combustion engine
JP4285149B2 (en) Internal combustion engine
JP6304022B2 (en) Internal combustion engine
JP2004316609A (en) Internal combustion engine having intake port for forming tumble flow
JP2008255935A (en) Fuel direct injection engine
WO2016121482A1 (en) Intake port structure for engine
JP4375060B2 (en) Intake device for internal combustion engine
JP2008255860A (en) Intake port for internal combustion engine
JP2007198303A (en) Intake port of internal combustion engine
JP4850736B2 (en) Engine intake port structure
JP2006161584A (en) Internal combustion engine
JP2008019803A (en) Intake device for internal combustion engine
JP2007162516A (en) Intake device for internal combustion engine
JP2009007953A (en) Intake and exhaust port of internal combustion engine
JP4765819B2 (en) Intake port of internal combustion engine
JP3724353B2 (en) gasket
JP4887963B2 (en) Intake device for internal combustion engine
JPH08246885A (en) Multi-intake air device for internal combustion engine
JP2005330840A (en) Internal combustion engine and valve seat provided in intake port of internal combustion engine
JP3567295B2 (en) Intake device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4561621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees