JP4560871B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4560871B2
JP4560871B2 JP2000045987A JP2000045987A JP4560871B2 JP 4560871 B2 JP4560871 B2 JP 4560871B2 JP 2000045987 A JP2000045987 A JP 2000045987A JP 2000045987 A JP2000045987 A JP 2000045987A JP 4560871 B2 JP4560871 B2 JP 4560871B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
total
weight
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000045987A
Other languages
Japanese (ja)
Other versions
JP2001233936A (en
Inventor
大祐 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000045987A priority Critical patent/JP4560871B2/en
Publication of JP2001233936A publication Critical patent/JP2001233936A/en
Application granted granted Critical
Publication of JP4560871B2 publication Critical patent/JP4560871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、エリア実装型半導体装置での成形後や半田処理時の反りが小さく、耐半田クラック性に優れる半導体封止用エポキシ樹脂組成物、及び半導体装置に関するものである。
【0002】
【従来の技術】
近年の電子機器の小型化、軽量化、高機能化の市場動向において、半導体の高集積化が年々進み、又半導体装置の表面実装化が促進されるなかで、新規にエリア実装型の半導体装置が開発され、従来構造の半導体装置から移行し始めている。
エリア実装型半導体装置としてはボールグリッドアレイ(以下、BGAという)、あるいは更に小型化を追求したチップサイズパッケージ(以下、CSPという)が代表的であるが、これらは、従来のQFP、SOPに代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。構造としては、ビスマレイミド・トリアジン(以下、BTという)樹脂/銅箔回路基板に代表される硬質回路基板、あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その半導体素子搭載面、即ち基板の片面のみがエポキシ樹脂組成物等で成形・封止されている。又基板の半導体素子搭載面の反対面には半田ボールを2次元的に並列して形成し、半導体装置を実装する回路基板との接合を行う特徴を有している。更に、半導体素子を搭載する基板としては、上記有機回路基板以外にもリードフレーム等の金属基板を用いる構造も考案されている。
【0003】
これらエリア実装型半導体装置の構造は基板の半導体素子搭載面のみを樹脂組成物で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。ごく希に、リードフレーム等の金属基板等では、半田ボール形成面でも数十μm程度の封止樹脂層が存在することもあるが、半導体素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため、有機基板や金属基板と樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合、あるいは樹脂組成物の成形・硬化時の硬化収縮による影響により、これらの半導体装置では成形直後から反りが発生しやすい。又これらの半導体装置を実装する回路基板上に半田接合を行う場合、200℃以上の加熱工程を経るが、この際に半導体装置の反りが発生し、多数の半田ボールが平坦とならず、半導体装置を実装する回路基板から浮き上がってしまい、電気的接合信頼性が低下する問題も起こる。
【0004】
基板上の実質的に片面のみを樹脂組成物で封止した半導体装置において、反りを低減するには、基板の線膨張係数と樹脂組成物の硬化物の線膨張係数を近づけること、及び樹脂組成物の硬化収縮を小さくする二つの方法が重要である。
基板としては有機基板では、BT樹脂やポリイミド樹脂のような高いガラス転移温度(以下、Tgという)の樹脂が広く用いられており、これらは樹脂組成物の成形温度である170℃近辺よりも高いTgを有する。従って、成形温度から室温までの冷却過程では有機基板のα1の領域のみで収縮するので、樹脂組成物もTgが高く、かつα1が回路基板と同じであり、更に硬化収縮がゼロであれば反りはほぼゼロであると考えられる。このため、トリフェノールメタン型エポキシ樹脂とトリフェノールメタン型フェノール樹脂との組合せによりTgを高くし、無機充填材の配合量でα1を合わせる手法が既に提案されている。
【0005】
又赤外線リフロー、ベーパーフェイズソルダリング、半田浸漬等の手段での半田処理による半田接合を行う場合、樹脂組成物の硬化物並びに有機基板からの吸湿により半導体装置内部に存在する水分が高温で急激に気化することによる応力で半導体装置にクラックが発生したり、基板の半導体素子搭載面と樹脂組成物の硬化物との界面で剥離が発生することもあり、硬化物の高強度化、低応力化、低吸湿化とともに、基板との高密着も求められる。
従来のBGAやCSP等のエリア実装型半導体装置には、反りの低減のためにトリフェノールメタン型エポキシ樹脂とトリフェノールメタン型フェノール樹脂を樹脂成分とする樹脂組成物が用いられてきた。この樹脂組成物の硬化物は、Tgが高く、硬化性、熱時曲げ強度に優れた特性を有しているが、硬化物の吸水率が高く、又樹脂組成物の溶融粘度が比較的高く、無機充填材の高充填化には限界があり、低吸湿化が不十分で、耐半田クラック性には問題があった。
【0006】
一方、従来のQFPやSOP等の表面実装型半導体装置では、半田実装時のクラックや各素材界面での剥離防止のために、ビフェニル型エポキシ樹脂に代表されるような結晶性エポキシ樹脂を使用しているが、トリフェノールメタン型エポキシ樹脂を用いた樹脂組成物の硬化物と比較して熱時曲げ強度が低く、かつ硬化が遅いのが問題であった。そこで、反りが小さく、硬化性、熱時曲げ強度に優れ、かつ低吸湿、耐半田クラック性に優れる樹脂組成物を得るため、トリフェノールメタン型エポキシ樹脂と結晶性エポキシ樹脂の特徴を生かすべく、樹脂組成物の製造時に両方のエポキシ樹脂を適正量併用したり、予め両方のエポキシ樹脂を溶融混合したものを用いても、トリフェノールメタン型エポキシ樹脂を用いた時の反りが小さく、硬化性、熱時曲げ強度に優れるという特徴と、結晶性エポキシ樹脂を用いた時の低吸湿、耐半田クラック性に優れるという特徴を両立することはできておらず、不十分であった。
【0007】
【発明が解決しようとする課題】
本発明は、エリア実装型半導体装置での成形後や半田処理時の反りが小さく、耐半田クラック性に優れる半導体封止用エポキシ樹脂組成物、及び半導体装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、
[1] (A)一般式(1)で示されるビスフェノールF類(a)と、結晶性エポキシ樹脂の前駆体であるフェノール類(b)とを混合しグリシジルエーテル化したエポキシ樹脂を総エポキシ樹脂中に30〜100重量%含むエポキシ樹脂、(B)一般式(2)で示される樹脂硬化剤を総樹脂硬化剤中に30〜100重量%含む樹脂硬化剤、(C)無機充填材、及び(D)硬化促進剤を必須成分とし、前記一般式(1)で示されるビスフェノールF類(a)が、一般式(1)において無置換で、2つの水酸基がp−配向である4、4’−ジヒドロキシビスフェノールであり、(a)と(b)との重量比(a/b)が0.1〜19、総エポキシ樹脂のエポキシ基と総樹脂硬化剤のフェノール性水酸基の当量比が0.5〜2であり、無機充填材(C)の含有量が、総エポキシ樹脂と総樹脂硬化剤の合計量100重量部当たり250〜1400重量部で、硬化促進剤の含有量が、総エポキシ樹脂と総樹脂硬化剤の合計量100重量部当たり0.4〜20重量部であることを特徴とする半導体用エポキシ樹脂組成物、
【化3】

Figure 0004560871
(ただし、式中のR1は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なってもよい。nは0〜4の整数)
【0009】
【化4】
Figure 0004560871
(ただし、nは平均値で、1〜10の正数)
[2] 基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみが第[1]項記載のエポキシ樹脂組成物を用いて封止されてなることを特徴とする半導体装置、
を提供するものであり、エリア実装型半導体素子での成形後や半田処理時の反りが小さく、耐半田クラック性に優れる。
【0010】
【発明の実施の形態】
本発明に用いられるエポキシ樹脂は、低粘度・低分子量のビスフェノールF類(a)と結晶性エポキシ樹脂の前駆体であるフェノール類(b)との重量比(a/b)を0.1〜19とした混合物(以下、混合フェノールという)をグリシジルエーテル化した樹脂で、ビスフェノールF型エポキシ樹脂に由来する低粘度化が図られており、従来のビフェニル型エポキシ樹脂より、更に加熱時の溶融粘度の低い樹脂となるため、ビフェニル型エポキシ樹脂を主として用いた樹脂組成物よりも流動性が向上し、無機充填材をより高充填化することができ、ひいてはエポキシ樹脂組成物の低吸湿化が可能となるため、耐半田クラック性の向上に寄与する。又高い結晶性を持つエポキシ樹脂の前駆体であるフェノール類と共にグリシジルエーテル化させることによって、常温で固体として取り扱うことができるようになる。
【0011】
一般式(1)で示されるビスフェノールF類(a)としては、特に分子量、粘度を制限するものはないが、できるだけ低分子量であることが望ましく、より好ましいのは一般式(1)において無置換で、2つの水酸基がp−配向である4、4’−ジヒドロキシビスフェノールである。これにより低粘度化への寄与が大きくなり、かつ無置換ゆえにグリシジルエーテル化した場合、高い反応性を有するエポキシ樹脂を得ることができる。
結晶性エポキシ樹脂の前駆体であるフェノール類(b)としては、例えば、一般式(3)のビフェニル型フェノール類、一般式(4)のスチルベン型フェノール類等が挙げられる。
【化5】
Figure 0004560871
(ただし、式中のR2は炭素数1〜6のアルキル基で、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。)
【0012】
【化6】
Figure 0004560871
(ただし、式中のR3は水素原子、炭素数1〜6のアルキル基で、それらは互いに同一であっても異なっていてもよい。R4は炭素数1〜6のアルキル基で、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。)
【0013】
一般式(3)のビフェニル型フェノール類としては、例えば、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルビフェニル、2,2’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラターシャリブチルビフェニル等(置換位置の異なる異性体を含む)が挙げられる。
【0014】
一般式(4)のスチルベン型フェノール類としては、例えば、3−ターシャリブチル−4,4’−ジヒドロキシ−5,3’−ジメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,6−ジメチルスチルベン、3−ターシャリブチル−2,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5,5’−トリメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジメチルスチルベン、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルスチルベン、4,4’−ジヒドロキシ−3,3’,5,5’−テトラターシャリブチルスチルベン等(置換位置の異なる異性体を含む)が挙げられる。
【0015】
これらの内では、入手のし易さ、性能、原料価格等の点から、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、(以上2種のフェノール類を、以下a群という)、3−ターシャリブチル−2,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5,5’−トリメチルスチルベン(以上3種のフェノール類を、以下b群という)、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、又は4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルスチルベン(以上6種のフェノール類を、以下c群という)から選択される1種以上が好ましい。
特にビフェニル型フェノール類では、低粘度化効果が大きく、かつ反応性に富む4,4’−ジヒドロキシビフェニルが含まれていることが好ましい。又スチルベン型フェノール類では、b群、c群それぞれ単独ではその結晶性の高さから融点が高くなる傾向にあるが、それぞれから選択される1種以上の混合物にすることにより、グリシジルエーテル化物の融点を低下させる効果があるので混合物にすることが好ましい。これらの混合比、混合方法は限定しない。
【0016】
一般式(1)で示されるビスフェノールF類(a)と結晶性エポキシ樹脂の前駆体であるフェノール類(b)との混合方法は特に限定しないが、溶剤による溶解や加熱による溶融混合等の方法により、均一に混合することが好ましい。これは、不均一に混合されたものをグリシジルエーテル化しても、それぞれ単独にグリシジルエーテル化したものの混合物と同様の性状になるため、期待する低粘度化や常温での固形化がはかれないためである。
一般式(1)で示されるビスフェノールF類(a)と結晶性エポキシ樹脂の前駆体であるフェノール類(b)との混合比は、重量比(a/b)で0.1〜19が好ましく、より好ましくは0.5〜9である。0.1未満だと、一般式(1)で示されるビスフェノールF類に由来する低粘度化効果が薄いため好ましくない。又、19を越えると、結晶性エポキシ樹脂による作業性の向上が見られないので好ましくない。
【0017】
本発明のエポキシ樹脂の合成方法については特に限定しないが、例えば、混合フェノールを過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下で50〜150℃、好ましくは60〜120℃で1〜10時間反応させる方法が挙げられる。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより目的のエポキシ樹脂を得ることができる。生成したエポキシ樹脂の塩素イオン、ナトリウムイオン、その他フリーのイオンは極力少ないことが望ましい。
【0018】
本発明に用いられるエポキシ樹脂は、その配合量を調整することによりその特性を最大限引き出すことができる。配合量としては、総エポキシ樹脂中に30〜100重量%で、30重量%未満では半田処理時に反りが大きくなり、又流動性が低下するため好ましくない。併用できるエポキシ樹脂としては、特には限定しないが、例えば、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは単独でも混合して用いてもよい。
【0019】
本発明に用いられる一般式(2)で示される樹脂硬化剤は、剛直なナフトール骨格を1分子中少なくとも2個以上有するため、樹脂組成物の硬化物の吸水率が低いという特性を有している。更に、β−ナフトール骨格の樹脂硬化剤と比較して、硬化時の樹脂組成物の成形収縮率が小さく、硬化物のTgの低下等が生じにくい特徴を有しているため樹脂組成物の硬化物の反りが小さい。更に疎水性の芳香族環を有しているため吸水率が比較的低く、従って本発明の樹脂組成物を用いた半導体装置は、実装時の半田処理下でも高い信頼性を得ることができる。
本発明に用いられる一般式(2)の樹脂硬化剤は、その配合量を調整することによりその特性を最大限引き出すことができる。配合量としては、総樹脂硬化剤中に30〜100重量%で、30%未満だと半田処理時に反りが大きくなり、耐湿信頼性が低下するため好ましくない。併用できる樹脂硬化剤としては、特には限定しないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、テルペン変性フェノール樹脂、トリフェノールメタン化合物等が挙げられ、これらは単独でも混合して用いてもよい。
更に、エポキシ樹脂のエポキシ基と樹脂硬化剤のフェノール性水酸基の当量比が0.5〜2であり、当量比が0.5未満であっても、2を越えても、樹脂組成物の硬化性、耐湿信頼性あるいは硬化物のTgの低下等が生じるので好ましくない。
【0020】
本発明に用いられる無機充填材の種類については特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えば、溶融破砕シリカ粉末、溶融球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末、アルミナ、チタンホワイト、水酸化アルミニウム等が挙げられ、特に溶融球状シリカが好ましい。球状シリカの形状としては、流動性改善のために限りなく真球状であり、かつ粒度分布がブロードであることが好ましい。無機充填材の含有量としては、成形性と信頼性のバランスから、総エポキシ樹脂と総樹脂硬化剤の合計量100重量部当たり250〜1400重量部が好ましい。250重量部未満だと難燃性が得られず、1400重量部を越えると成形性の問題が生じ好ましくない。
本発明で用いる無機充填材は、予め十分に混合しておくことが好ましい。又必要に応じて無機充填材をカップリング剤やエポキシ樹脂あるいはフェノール樹脂で予め処理して用いてもよく、処理の方法としては、溶剤を用いて混合した後に溶媒を除去する方法や直接無機充填材に添加し、混合機を用いて処理する方法等がある。
【0021】
本発明で用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に用いられているものを広く用いることができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィン、ベンジルジメチルアミン、2−メチルイミダゾール等を単独でも混合して用いてもよい。
本発明のエポキシ樹脂組成物は、硬化促進剤を総エポキシ樹脂と総樹脂硬化剤の合計量100重量部あたり0.4〜20重量部含有する。0.4重量部未満であると、加熱成形時において十分な硬化性が得られないおそれがある。一方、20重量部を越えると、硬化が速すぎて成形時に流動性の低下により充填不良などが生ずるおそれがある。
【0022】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他、必要に応じて酸化ビスマス水和物等の無機イオン交換体、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を適宜配合しても差し支えない。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分、及びその他の添加剤等をミキサーを用いて常温混合し、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕して得られる。 本発明の樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。
【0023】
【実施例】
以下に、実施例で本発明を更に詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例及び比較例で用いたエポキシ樹脂、樹脂硬化剤の略号及び構造を、まとめて以下に示す。
実施例及び比較例のエポキシ樹脂A〜Dの合成に使用したビスフェノールFの構造式(5)、及び結晶性エポキシ樹脂前駆体であるフェノールの構造式(6)を示す。式(5)と式(6)を表1の配合割合で常法によりグリシジルエーテル化して得た。その特性を表1に示す。
【化7】
Figure 0004560871
【0024】
【化8】
Figure 0004560871
【0025】
【表1】
Figure 0004560871
【0026】
・エポキシ樹脂1:式(7)を主成分とするエポキシ樹脂(融点:105℃、エポキシ当量:191g/eq)
・エポキシ樹脂2:式(8)のエポキシ樹脂(軟化点:59℃、エポキシ当量:171g/eq)
・フェノール樹脂1:式(9)のフェノール樹脂(軟化点:87℃、水酸基当量:210g/eq)
・フェノール樹脂2:式(10)のフェノール樹脂(軟化点:110℃、水酸基当量:98g/eq)
・フェノール樹脂3:式(11)のフェノール樹脂(軟化点:70℃、水酸基当量:170g/eq)
【化9】
Figure 0004560871
【0027】
【化10】
Figure 0004560871
【0028】
Figure 0004560871
を常温においてミキサーで混合し、90℃と45℃の2本のロールを用いて混練し、冷却後粉砕して樹脂組成物を得た。得られた樹脂組成物を以下の方法で評価した。
【0029】
・スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。単位はcm。
・吸水率:トランスファー成形機を用いて、金型温度175℃、注入圧力75kg/cm2、硬化時間2分で直径50mm、厚さ3mmの成形品を成形し、175℃、8時間で後硬化し、得られた成形品を85℃、相対湿度60%の環境下で168時間放置し、重量変化を測定して吸水率を求めた。単位は重量%。
・パッケージ反り量:トランスファー成形機を用いて、金型温度180℃、注入圧力75kg/cm2、硬化時間2分で225pBGA(基板は厚さ0.36mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を成形した。更に175℃、8時間で後硬化した。
室温に冷却後パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。単位はμm。
・ 耐半田クラック性:トランスファー成形機を用いて、金型温度180℃、注入圧力75kg/cm2、硬化時間2分で225pBGA(基板は厚さ0.36mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を成形した。更に175℃、8時間で後硬化したパッケージ10個を、60℃、相対湿度60%で120時間、及び85℃、相対湿度60%で168時間処理した後、IRリフロー処理(240℃)を別々に行った。処理後の内部の剥離、及びクラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/10と表示する。
【0030】
実施例2〜5、比較例1〜6
実施例1と同様にして、表2、表3の組成に従って配合して得られた樹脂組成物について評価した。評価結果を表2、表3に示す。なお、実施例4に用いるオルソクレゾールノボラック型エポキシ樹脂のエポキシ当量は196g/eq、実施例5に用いるフェノールノボラック樹脂の水酸基当量は104g/eqである。
【0031】
【表2】
Figure 0004560871
【0032】
【表3】
Figure 0004560871
【発明の効果】
本発明のエポキシ樹脂組成物は、成形後及び半田処理時の反りが小さく、耐半田クラック性に優れる特性を有しており、これで封止された半導体装置は信頼性に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for encapsulating a semiconductor and a semiconductor device, which have small warpage after molding in an area-mounting semiconductor device or during soldering and have excellent solder crack resistance.
[0002]
[Prior art]
In recent years, with the trend toward miniaturization, weight reduction, and high functionality of electronic devices, higher integration of semiconductors has progressed year by year, and surface mounting of semiconductor devices has been promoted. Has been developed and is beginning to migrate from semiconductor devices having a conventional structure.
Typical area-mounted semiconductor devices are a ball grid array (hereinafter referred to as BGA) or a chip size package (hereinafter referred to as CSP) in pursuit of further miniaturization, but these are representative of conventional QFP and SOP. The surface mount type semiconductor device to be developed has been developed to meet the demand for higher pin count and higher speed, which are approaching the limit. As a structure, a semiconductor element is formed on one side of a hard circuit board represented by a bismaleimide-triazine (hereinafter referred to as BT) resin / copper foil circuit board or a flexible circuit board represented by a polyimide resin film / copper foil circuit board. The semiconductor element mounting surface, that is, only one surface of the substrate is molded and sealed with an epoxy resin composition or the like. Also, solder balls are two-dimensionally formed in parallel on the surface opposite to the semiconductor element mounting surface of the substrate, and are joined to the circuit substrate on which the semiconductor device is mounted. Furthermore, as a substrate on which a semiconductor element is mounted, a structure using a metal substrate such as a lead frame in addition to the organic circuit substrate has been devised.
[0003]
These area-mounted semiconductor devices have a single-side sealing configuration in which only the semiconductor element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface side is not sealed. Very rarely, a metal substrate such as a lead frame may have a sealing resin layer of about several tens of μm on the solder ball forming surface, but a sealing of about several hundred μm to several mm on the semiconductor element mounting surface. Since the resin layer is formed, it is substantially single-sided sealed. For this reason, in these semiconductor devices, due to the mismatch of thermal expansion / shrinkage between the organic substrate or metal substrate and the cured product of the resin composition, or the influence of cure shrinkage during molding / curing of the resin composition, Warpage is likely to occur immediately after molding. In addition, when solder bonding is performed on a circuit board on which these semiconductor devices are mounted, a heating process of 200 ° C. or more is performed, but at this time, warping of the semiconductor device occurs, and a large number of solder balls are not flattened. A problem arises in that the electrical connection reliability is lowered due to floating from the circuit board on which the device is mounted.
[0004]
In a semiconductor device in which only one surface on a substrate is sealed with a resin composition, in order to reduce warpage, the linear expansion coefficient of the substrate and the linear expansion coefficient of the cured product of the resin composition are made closer, and the resin composition Two methods for reducing the cure shrinkage of objects are important.
As an organic substrate, a resin having a high glass transition temperature (hereinafter referred to as Tg) such as a BT resin or a polyimide resin is widely used as the substrate, and these are higher than around 170 ° C. which is a molding temperature of the resin composition. Tg. Therefore, in the cooling process from the molding temperature to room temperature, the shrinkage occurs only in the α1 region of the organic substrate. Therefore, the resin composition also has a high Tg, the same α1 as that of the circuit board, and warpage if the cure shrinkage is zero. Is considered to be almost zero. For this reason, a method of increasing Tg by combining a triphenolmethane type epoxy resin and a triphenolmethane type phenolic resin and adjusting α1 with the blending amount of the inorganic filler has already been proposed.
[0005]
In addition, when solder bonding is performed by means of soldering using means such as infrared reflow, vapor phase soldering, or solder dipping, moisture present in the semiconductor device rapidly increases due to moisture absorption from the cured resin composition and organic substrate. Cracks may occur in the semiconductor device due to stress caused by vaporization, or peeling may occur at the interface between the semiconductor element mounting surface of the substrate and the cured product of the resin composition, resulting in higher strength and lower stress of the cured product. In addition to low moisture absorption, high adhesion to the substrate is also required.
Conventional area-mounted semiconductor devices such as BGA and CSP have used a resin composition containing a triphenolmethane type epoxy resin and a triphenolmethane type phenol resin as resin components in order to reduce warpage. The cured product of this resin composition has a high Tg, and has excellent properties such as curability and hot bending strength, but the cured product has a high water absorption rate and a relatively high melt viscosity of the resin composition. However, there is a limit to the high filling of the inorganic filler, the low moisture absorption is insufficient, and there is a problem with the solder crack resistance.
[0006]
On the other hand, conventional surface mount type semiconductor devices such as QFP and SOP use crystalline epoxy resins typified by biphenyl type epoxy resins in order to prevent cracks during solder mounting and peeling at the interface of each material. However, compared with the cured product of the resin composition using the triphenolmethane type epoxy resin, the problem is that the bending strength during heating is low and the curing is slow. Therefore, in order to obtain a resin composition with low warpage, excellent curability, bending strength during heat, low moisture absorption, and excellent solder crack resistance, in order to take advantage of the characteristics of triphenolmethane type epoxy resin and crystalline epoxy resin, Even when using a proper amount of both epoxy resins at the time of manufacturing the resin composition, or using a mixture of both epoxy resins previously melted, the warp when using the triphenolmethane type epoxy resin is small, curability, The characteristics of excellent bending strength when heated and the characteristics of low moisture absorption and excellent resistance to solder cracks when using a crystalline epoxy resin cannot be achieved at the same time.
[0007]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation and a semiconductor device that have small warpage after molding in an area-mounting semiconductor device or during solder processing, and are excellent in solder crack resistance.
[0008]
[Means for Solving the Problems]
The present invention
[1] (A) An epoxy resin obtained by mixing a bisphenol F (a) represented by the general formula (1) and a phenol (b) which is a precursor of a crystalline epoxy resin to form a glycidyl ether, is a total epoxy resin. An epoxy resin containing 30 to 100% by weight in the resin, (B) a resin curing agent containing 30 to 100% by weight of the resin curing agent represented by the general formula (2) in the total resin curing agent, (C) an inorganic filler, and (D) A curing accelerator is an essential component, and the bisphenol Fs (a) represented by the general formula (1) are unsubstituted in the general formula (1) and the two hydroxyl groups are p-oriented. ' -Dihydroxybisphenol, the weight ratio (a / b) of (a) to (b) is 0.1 to 19, and the equivalent ratio of the epoxy group of the total epoxy resin to the phenolic hydroxyl group of the total resin curing agent is 0 .5 to 2, inorganic filler (C) The content is 250 to 1400 parts by weight per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent, and the content of the curing accelerator is 0 per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent. 4-20 parts by weight of an epoxy resin composition for semiconductors,
[Chemical 3]
Figure 0004560871
(However, R1 in the formula represents an alkyl group having 1 to 6 carbon atoms, and they may be the same or different from each other. N is an integer of 0 to 4)
[0009]
[Formula 4]
Figure 0004560871
(Where n is an average value and is a positive number from 1 to 10)
[2] A semiconductor element is mounted on one side of the substrate, and substantially only one side of the substrate side on which the semiconductor element is mounted is sealed with the epoxy resin composition described in the item [1]. A semiconductor device characterized by
The warpage after molding in an area-mounted semiconductor element or during soldering is small, and the solder crack resistance is excellent.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin used in the present invention has a weight ratio (a / b) of 0.1 to 0.1 wt% of low viscosity / low molecular weight bisphenol Fs (a) and phenols (b) which are precursors of crystalline epoxy resins. 19 is a resin obtained by glycidyl etherification of a mixture (hereinafter referred to as “mixed phenol”), which has a low viscosity derived from bisphenol F-type epoxy resin, and has a higher melt viscosity during heating than conventional biphenyl-type epoxy resins. Therefore, fluidity is improved compared to resin compositions that mainly use biphenyl type epoxy resins, inorganic fillers can be filled more highly, and thus the moisture absorption of the epoxy resin composition can be reduced. Therefore, it contributes to improvement of solder crack resistance. In addition, by glycidyl etherification with phenols which are precursors of epoxy resins having high crystallinity, it can be handled as a solid at room temperature.
[0011]
As the bisphenol Fs (a) represented by the general formula (1), there is no particular limitation on the molecular weight and viscosity, but it is desirable that the molecular weight is as low as possible. And 4,4′-dihydroxybisphenol in which two hydroxyl groups are p-oriented. As a result, the contribution to lowering the viscosity is increased, and an epoxy resin having high reactivity can be obtained when glycidyl etherification is performed because there is no substitution.
Examples of the phenols (b) that are precursors of the crystalline epoxy resin include biphenyl type phenols of the general formula (3), stilbene type phenols of the general formula (4), and the like.
[Chemical formula 5]
Figure 0004560871
(However, R 2 in the formula is an alkyl group having 1 to 6 carbon atoms, and they may be the same or different. M is an integer of 0 to 4.)
[0012]
[Chemical 6]
Figure 0004560871
(In the formula, R 3 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and they may be the same or different from each other. R 4 is an alkyl group having 1 to 6 carbon atoms; May be the same as or different from each other, m is an integer of 0 to 4.)
[0013]
Examples of the biphenyl type phenols of the general formula (3) include 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl, and 4,4′-dihydroxy. −3,3′-ditertiarybutyl-6,6′-dimethylbiphenyl, 2,2′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylbiphenyl, 4,4′-dihydroxy-3 , 3′-ditertiarybutyl-5,5′-dimethylbiphenyl, 4,4′-dihydroxy-3,3 ′, 5,5′-tetratertiarybutylbiphenyl and the like (including isomers having different substitution positions). Can be mentioned.
[0014]
Examples of the stilbene type phenols represented by the general formula (4) include 3-tert-butyl-4,4′-dihydroxy-5,3′-dimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-3. ', 6-dimethylstilbene, 3-tert-butyl-2,4'-dihydroxy-3', 5 ', 6-trimethylstilbene, 3-tert-butyl-4,4'-dihydroxy-3', 5 ', 6-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-3 ′, 5,5′-trimethylstilbene, 4,4′-dihydroxy-3,3′-dimethylstilbene, 4,4′-dihydroxy -3,3 ', 5,5'-tetramethylstilbene, 4,4'-dihydroxy-3,3'-ditertiarybutylstilbene, 4,4'-dihydroxy-3,3'-ditertiary rib 6,6′-dimethylstilbene, 2,2′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2,4′-dihydroxy-3,3′-ditertiarybutyl 6,6′-dimethylstilbene, 2,2′-dihydroxy-3,3 ′, 5,5′-tetramethylstilbene, 4,4′-dihydroxy-3,3′-ditertiarybutyl-5,5′- Examples include dimethyl stilbene, 4,4′-dihydroxy-3,3 ′, 5,5′-tetratertiary butyl stilbene (including isomers having different substitution positions).
[0015]
Among these, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl, (from the viewpoint of availability, performance, raw material price, etc. These two phenols are hereinafter referred to as group a), 3-tert-butyl-2,4′-dihydroxy-3 ′, 5 ′, 6-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy. -3 ′, 5 ′, 6-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-3 ′, 5,5′-trimethylstilbene (the above three phenols are hereinafter referred to as group b), 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylstilbene, 4,4′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2,2′- Dihydroxy-3,3′-ditarsi Ributyl-6,6′-dimethylstilbene, 2,4′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2,2′-dihydroxy-3,3 ′, 5,5 ′ -One or more selected from tetramethylstilbene or 4,4'-dihydroxy-3,3'-ditertiarybutyl-5,5'-dimethylstilbene (the above 6 types of phenols are hereinafter referred to as group c) Is preferred.
In particular, biphenyl type phenols preferably contain 4,4′-dihydroxybiphenyl which has a large effect of reducing viscosity and is highly reactive. In the stilbene type phenols, the b group and the c group each tend to have a high melting point due to their high crystallinity. However, by using one or more mixtures selected from each, Since it has the effect of lowering the melting point, it is preferable to use a mixture. These mixing ratios and mixing methods are not limited.
[0016]
The mixing method of the bisphenol Fs represented by the general formula (1) (a) and the phenols (b) which are the precursors of the crystalline epoxy resin is not particularly limited, but is a method such as dissolution with a solvent or melt mixing by heating. Therefore, it is preferable to mix uniformly. This is because even if glycidyl etherification is performed on a non-uniformly mixed material, it will have the same properties as the mixture of each glycidyl etherified, so the expected low viscosity and solidification at room temperature will not be achieved. It is.
The mixing ratio of the bisphenol Fs (a) represented by the general formula (1) and the phenols (b) which are precursors of the crystalline epoxy resin is preferably 0.1 to 19 in terms of weight ratio (a / b). More preferably, it is 0.5-9. If it is less than 0.1, the effect of reducing the viscosity derived from the bisphenol Fs represented by the general formula (1) is thin, which is not preferable. On the other hand, if it exceeds 19, the workability is not improved by the crystalline epoxy resin, which is not preferable.
[0017]
Although it does not specifically limit about the synthesis | combining method of the epoxy resin of this invention, For example, after melt | dissolving mixed phenol in excess epichlorohydrin, 50-150 degreeC in presence of alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide. , Preferably, the method of making it react at 60-120 degreeC for 1 to 10 hours is mentioned. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the target epoxy is removed by distilling off the solvent. A resin can be obtained. It is desirable that chlorine ions, sodium ions, and other free ions in the produced epoxy resin be as small as possible.
[0018]
The characteristics of the epoxy resin used in the present invention can be maximized by adjusting the blending amount. The blending amount is 30 to 100% by weight in the total epoxy resin, and if it is less than 30% by weight, warpage is increased during solder processing and fluidity is lowered, which is not preferable. Although it does not specifically limit as an epoxy resin which can be used together, For example, an ortho cresol novolak type epoxy resin, a bisphenol A type epoxy resin, a dicyclopentadiene modified phenol type epoxy resin etc. are mentioned, These are used alone or in mixture. Also good.
[0019]
Since the resin curing agent represented by the general formula (2) used in the present invention has at least two rigid naphthol skeletons in one molecule, the resin composition has a property of low water absorption. Yes. Furthermore, compared with a resin curing agent having a β-naphthol skeleton, the resin composition has a small molding shrinkage at the time of curing, and has a characteristic that the Tg of the cured product is not easily lowered. The warp of the object is small. Furthermore, since it has a hydrophobic aromatic ring, its water absorption is relatively low. Therefore, a semiconductor device using the resin composition of the present invention can obtain high reliability even under soldering treatment during mounting.
The characteristics of the resin curing agent represented by the general formula (2) used in the present invention can be maximized by adjusting the blending amount. The blending amount is 30 to 100% by weight in the total resin curing agent, and if it is less than 30%, warpage is increased during solder processing, and the moisture resistance reliability is lowered, which is not preferable. Examples of resin curing agents that can be used in combination include, but are not limited to, phenol novolac resins, cresol novolac resins, dicyclopentadiene-modified phenol resins, phenol aralkyl resins, terpene-modified phenol resins, triphenolmethane compounds, and the like. May be used alone or in combination.
Furthermore, the equivalent ratio of the epoxy group of the epoxy resin to the phenolic hydroxyl group of the resin curing agent is 0.5 to 2, and even if the equivalent ratio is less than 0.5 or exceeds 2, the resin composition is cured. , Moisture resistance reliability, or a decrease in Tg of the cured product, which is not preferable.
[0020]
There is no restriction | limiting in particular about the kind of inorganic filler used for this invention, What is generally used for the sealing material can be used. Examples thereof include fused crushed silica powder, fused spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, alumina, titanium white, aluminum hydroxide, and the like, and fused spherical silica is particularly preferable. As the shape of the spherical silica, it is preferable that the shape is spherical as much as possible for improving fluidity, and the particle size distribution is broad. The content of the inorganic filler is preferably 250 to 1400 parts by weight per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent from the balance between moldability and reliability. If it is less than 250 parts by weight, flame retardancy cannot be obtained, and if it exceeds 1400 parts by weight, there is a problem in moldability, which is not preferable.
The inorganic filler used in the present invention is preferably mixed well in advance. If necessary, an inorganic filler may be used after pretreatment with a coupling agent, epoxy resin or phenol resin. The treatment method may be a method of removing the solvent after mixing with a solvent or direct inorganic filling. There is a method of adding to a material and processing using a mixer.
[0021]
As a hardening accelerator used by this invention, what is necessary is just to accelerate | stimulate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for the sealing material can be used widely. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like may be used alone or in combination.
The epoxy resin composition of the present invention contains a curing accelerator in an amount of 0.4 to 20 parts by weight per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent. If it is less than 0.4 parts by weight, there is a possibility that sufficient curability cannot be obtained at the time of heat molding. On the other hand, when the amount exceeds 20 parts by weight, curing is too fast and there is a risk of poor filling due to a decrease in fluidity during molding.
[0022]
The epoxy resin composition of the present invention includes components (A) to (D), an inorganic ion exchanger such as bismuth oxide hydrate as necessary, and a coupling agent such as γ-glycidoxypropyltrimethoxysilane. , Colorants such as carbon black and bengara, low stress components such as silicone oil and silicone rubber, natural waxes, synthetic waxes, mold release agents such as higher fatty acids and their metal salts or paraffin, and various additives such as antioxidants May be blended appropriately.
In the epoxy resin composition of the present invention, the components (A) to (D) and other additives are mixed at room temperature using a mixer, melt-kneaded in a kneader such as a roll, a kneader, or an extruder, and then cooled. It is obtained by grinding. What is necessary is just to carry out hardening shaping | molding by shaping | molding methods, such as a transfer mold, a compression mold, and an injection mold, in order to seal electronic components, such as a semiconductor element, and to manufacture a semiconductor device using the resin composition of this invention.
[0023]
【Example】
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The abbreviations and structures of the epoxy resins and resin curing agents used in Examples and Comparative Examples are collectively shown below.
The structural formula (5) of bisphenol F used for the synthesis of the epoxy resins A to D of Examples and Comparative Examples and the structural formula (6) of phenol which is a crystalline epoxy resin precursor are shown. Formulas (5) and (6) were obtained by glycidyl etherification in the conventional manner at the blending ratios in Table 1. The characteristics are shown in Table 1.
[Chemical 7]
Figure 0004560871
[0024]
[Chemical 8]
Figure 0004560871
[0025]
[Table 1]
Figure 0004560871
[0026]
Epoxy resin 1: epoxy resin mainly composed of formula (7) (melting point: 105 ° C., epoxy equivalent: 191 g / eq)
Epoxy resin 2: epoxy resin of formula (8) (softening point: 59 ° C., epoxy equivalent: 171 g / eq)
Phenol resin 1: phenol resin of formula (9) (softening point: 87 ° C., hydroxyl group equivalent: 210 g / eq)
Phenol resin 2: phenol resin of formula (10) (softening point: 110 ° C., hydroxyl group equivalent: 98 g / eq)
Phenol resin 3: phenol resin of formula (11) (softening point: 70 ° C., hydroxyl equivalent: 170 g / eq)
[Chemical 9]
Figure 0004560871
[0027]
[Chemical Formula 10]
Figure 0004560871
[0028]
Figure 0004560871
Were mixed with a mixer at room temperature, kneaded using two rolls at 90 ° C. and 45 ° C., cooled and pulverized to obtain a resin composition. The obtained resin composition was evaluated by the following methods.
[0029]
Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The unit is cm.
Water absorption: Using a transfer molding machine, a molded product having a mold temperature of 175 ° C., an injection pressure of 75 kg / cm 2 , a curing time of 2 minutes and a diameter of 50 mm and a thickness of 3 mm is molded and post-cured at 175 ° C. for 8 hours. The molded product thus obtained was left in an environment of 85 ° C. and a relative humidity of 60% for 168 hours, and the weight change was measured to determine the water absorption rate. The unit is% by weight.
Package warpage amount: Using a transfer molding machine, mold temperature 180 ° C., injection pressure 75 kg / cm 2 , curing time 2 minutes, 225 pBGA (substrate thickness 0.36 mm, bismaleimide / triazine resin / glass cloth substrate, The package size is 24 × 24 mm, the thickness is 1.17 mm, the silicon chip is 9 × 9 mm, the thickness is 0.35 mm, and the chip and the bonding pad of the circuit board are bonded with a 25 μm diameter gold wire. did. Further, post-curing was performed at 175 ° C. for 8 hours.
After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the value with the largest displacement difference was taken as the amount of warpage. The unit is μm.
Solder crack resistance: Using a transfer molding machine, the mold temperature is 180 ° C., the injection pressure is 75 kg / cm 2 , the curing time is 2 minutes, and 225 pBGA (the substrate is 0.36 mm thick, bismaleimide / triazine resin / glass cloth substrate) The package size is 24 × 24 mm, the thickness is 1.17 mm, the silicon chip is 9 × 9 mm, the thickness is 0.35 mm, and the chip and the bonding pad of the circuit board are bonded with a gold wire with a diameter of 25 μm). Molded. Further, 10 packages post-cured at 175 ° C. for 8 hours were treated at 60 ° C. and 60% relative humidity for 120 hours, and 85 ° C. and 60% relative humidity for 168 hours, followed by separate IR reflow treatment (240 ° C.). Went to. The internal peeling after processing and the presence or absence of cracks were observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.
[0030]
Examples 2-5, Comparative Examples 1-6
In the same manner as in Example 1, the resin compositions obtained by blending according to the compositions in Tables 2 and 3 were evaluated. The evaluation results are shown in Tables 2 and 3. The epoxy equivalent of the ortho-cresol novolak type epoxy resin used in Example 4 is 196 g / eq, and the hydroxyl equivalent of the phenol novolak resin used in Example 5 is 104 g / eq.
[0031]
[Table 2]
Figure 0004560871
[0032]
[Table 3]
Figure 0004560871
【The invention's effect】
The epoxy resin composition of the present invention has a small warp after molding and during soldering and has excellent solder crack resistance, and the semiconductor device sealed with this has excellent reliability.

Claims (2)

(A)一般式(1)で示されるビスフェノールF類(a)と、結晶性エポキシ樹脂の前駆体であるフェノール類(b)とを混合しグリシジルエーテル化したエポキシ樹脂を総エポキシ樹脂中に30〜100重量%含むエポキシ樹脂、(B)一般式(2)で示される樹脂硬化剤を総樹脂硬化剤中に30〜100重量%含む樹脂硬化剤、(C)無機充填材、及び(D)硬化促進剤を必須成分とし、前記一般式(1)で示されるビスフェノールF類(a)が、一般式(1)において無置換で、2つの水酸基がp−配向である4、4’−ジヒドロキシビスフェノールであり、(a)と(b)との重量比(a/b)が0.1〜19、総エポキシ樹脂のエポキシ基と総樹脂硬化剤のフェノール性水酸基の当量比が0.5〜2であり、無機充填材(C)の含有量が、総エポキシ樹脂と総樹脂硬化剤の合計量100重量部当たり250〜1400重量部で、硬化促進剤の含有量が、総エポキシ樹脂と総樹脂硬化剤の合計量100重量部当たり0.4〜20重量部であることを特徴とする半導体用エポキシ樹脂組成物。
Figure 0004560871
(ただし、式中のR1は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なってもよい。nは0〜4の整数)
Figure 0004560871
(ただし、nは平均値で、1〜10の正数)
(A) An epoxy resin obtained by mixing bisphenol Fs (a) represented by the general formula (1) and phenols (b), which is a precursor of a crystalline epoxy resin, into glycidyl ether is added to the total epoxy resin. Epoxy resin containing ˜100% by weight, (B) resin curing agent containing 30% to 100% by weight of the resin curing agent represented by the general formula (2) in the total resin curing agent, (C) inorganic filler, and (D) 4,4′-dihydroxy, which contains a curing accelerator as an essential component, the bisphenol F (a) represented by the general formula (1) is unsubstituted in the general formula (1), and two hydroxyl groups are p-oriented. a bisphenol, 0.5 weight ratio (a / b) is 0.1 to 19, the equivalent ratio of the phenolic hydroxyl groups of the epoxy group and the total resin curing agent of the total epoxy resin (a) and (b) 2. Content of inorganic filler (C) Is 250 to 1400 parts by weight per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent, and the content of the curing accelerator is 0.4 per 100 parts by weight of the total amount of the total epoxy resin and the total resin curing agent. An epoxy resin composition for a semiconductor, which is ˜20 parts by weight.
Figure 0004560871
(However, R1 in the formula represents an alkyl group having 1 to 6 carbon atoms, and they may be the same or different. N is an integer of 0 to 4)
Figure 0004560871
(Where n is an average value and is a positive number from 1 to 10)
基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみが請求項1記載のエポキシ樹脂組成物を用いて封止されてなることを特徴とする半導体装置。  A semiconductor device comprising a semiconductor element mounted on one surface of a substrate, and substantially only one surface of the substrate surface side on which the semiconductor device is mounted is sealed with the epoxy resin composition according to claim 1. apparatus.
JP2000045987A 2000-02-23 2000-02-23 Epoxy resin composition and semiconductor device Expired - Fee Related JP4560871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045987A JP4560871B2 (en) 2000-02-23 2000-02-23 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045987A JP4560871B2 (en) 2000-02-23 2000-02-23 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2001233936A JP2001233936A (en) 2001-08-28
JP4560871B2 true JP4560871B2 (en) 2010-10-13

Family

ID=18568483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045987A Expired - Fee Related JP4560871B2 (en) 2000-02-23 2000-02-23 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4560871B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009147A1 (en) 2004-07-22 2006-01-26 Sumitomo Bakelite Company, Ltd. Resin composition for semiconductor sealing and semiconductor device
US8008410B2 (en) 2006-11-15 2011-08-30 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for encapsulating semiconductor and semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003887B2 (en) * 1992-01-30 2000-01-31 住友ベークライト株式会社 Resin composition for semiconductor encapsulation
JPH10324795A (en) * 1997-05-27 1998-12-08 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP3734602B2 (en) * 1997-05-29 2006-01-11 ジャパンエポキシレジン株式会社 Epoxy resin composition and epoxy resin composition for semiconductor encapsulation
JP3894628B2 (en) * 1997-08-29 2007-03-22 日本化薬株式会社 Modified epoxy resin, epoxy resin composition and cured product thereof

Also Published As

Publication number Publication date
JP2001233936A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP4395923B2 (en) Epoxy resin composition and semiconductor device
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JPH1167982A (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4560871B2 (en) Epoxy resin composition and semiconductor device
JP4568945B2 (en) Epoxy resin composition and semiconductor device
JP2000327883A (en) Epoxy resin composition and semiconductor device
JP4639427B2 (en) Epoxy resin composition and semiconductor device
JP4517433B2 (en) Epoxy resin composition and semiconductor device
JP2001040180A (en) Epoxy resin composition and semiconductor device
JP3649554B2 (en) Epoxy resin composition and semiconductor device
JP4743932B2 (en) Epoxy resin composition and semiconductor device
JPH1192629A (en) Epoxy resin composition and semiconductor device
JP2000344858A (en) Epoxy resin composition and semiconductor device sealed therewith
JPH11106612A (en) Epoxy resin composition and semiconductor device
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JP2002020460A (en) Epoxy resin composition and semiconductor device
JP4639461B2 (en) Epoxy resin composition and semiconductor device
JP2002284844A (en) Epoxy resin composition and semiconductor device
JP2001335618A (en) Epoxy resin composition and semiconductor device
JPH1192630A (en) Epoxy resin composition and semiconductor device
JP4524837B2 (en) Epoxy resin composition and semiconductor device
JPH11181237A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4560871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees