JP4554122B2 - Resist composition for chemically amplified positive type liquid crystal device - Google Patents

Resist composition for chemically amplified positive type liquid crystal device Download PDF

Info

Publication number
JP4554122B2
JP4554122B2 JP2001238039A JP2001238039A JP4554122B2 JP 4554122 B2 JP4554122 B2 JP 4554122B2 JP 2001238039 A JP2001238039 A JP 2001238039A JP 2001238039 A JP2001238039 A JP 2001238039A JP 4554122 B2 JP4554122 B2 JP 4554122B2
Authority
JP
Japan
Prior art keywords
liquid crystal
component
resist composition
resist
chemically amplified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001238039A
Other languages
Japanese (ja)
Other versions
JP2003050460A (en
Inventor
和行 新田
哲也 加藤
知三郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2001238039A priority Critical patent/JP4554122B2/en
Priority to TW091116898A priority patent/TW594391B/en
Priority to KR1020020046088A priority patent/KR100585301B1/en
Publication of JP2003050460A publication Critical patent/JP2003050460A/en
Application granted granted Critical
Publication of JP4554122B2 publication Critical patent/JP4554122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain

Description

【0001】
【発明の属する技術分野】
本発明は、高解像性、高感度で膜減りが少ない等の優れた特性を有し、薄膜トランジスタ(THIN FILM TRANSISTOR)などの液晶素子製造に使用される化学増幅型ポジ型液晶素子用レジスト組成物、及びこれを用いた液晶素子用レジストパターンに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、液晶を用いたディスプレイが様々な電子機器に搭載され急速に普及しているが、その背景には液晶ディスプレイの低価格化がある。当然、そのような低価格化に伴い、その製造時使用されるレジストなどの各種材料のコストダウンも要望されている。このような背景から、今日の液晶素子製造用のレジストは、第一に安価であることが産業上重要な要件となっている。
また、低温ポリシリコン膜や連続粒界結晶膜が設けられた基板用のレジストとして、近年いっそうの高解像度化の要求が強まっている。
また、未露光部の現像後レジスト膜厚が現像前のレジスト膜厚より低くなる、いわゆる膜減りが大きくなると、後の工程のドライエッチング時の下地基板との選択比が小さくなり、不具合を起こすため、液晶素子製造用レジストには膜減りの低減も求められている。
さらに、液晶素子製造用レジストは、シリコンウエーハとは比べものにならない、最新の基板では縦680mm×横880mm、600mm×720mm、550mm×670mm、旧世代でも360mm×460mmという超大型のガラス基板へ適用されるため、露光量の増大が必要なことから、高スルートップを達成するために高感度化が必要である。さらにまた、超大型のガラス基板への適用のため半導体素子製造用のレジストとは全く異なる以下の要求をも満たさねばならない。
【0003】
(プレベークマージンの向上)
液晶素子製造用レジストにおいては、上記のような大型基板全体で均一なサイズのレジストパターンが得られる必要がある。近年、低コスト化のためガラス基板一枚からなるべく多くの液晶表示デバイスを得る必要性が高まり、このため急速にガラス基板の大型化が進められ、このようなレジストパターンのサイズの均一性が求められるようになった。しかしながら、従来のレジストでは、プレベーク温度により影響を受けやすく、得られるレジストパターンサイズにバラツキがあった。
【0004】
(現像マージンの向上)
基板の大型化が進むことにより、カーテンフロータイプの現像方式が採用されている。この現像方式は、基板の横端からこれに対する横端迄、スリットから現像液を滴下するものである。このような現像方式では、現像開始時と現像終了時まで約5秒間の時差が発生する。この時差により現像開始時のレジストパターンサイズと現像終了時のレジストパターンサイズにずれが生じるという問題が発生している。したがって、この時差による影響をできるだけ少なくし、レジストパターンサイズを均一にすることが求められている。
【0005】
(剥離性の向上)
液晶素子製造工程では、レジストパターンを形成後、該レジストパターンをマスクとし、ウェットエッチング、ドライエッチング又はイオンプランテーションなどの各種処理が各ユーザー毎の製造プロセスに応じて異なった条件で施される。このような各種処理が施されるとレジストパターンは変質し、レジスト剥離液で剥離しにくいものへ変化する。したがって、剥離しにくいものへ変化したとしても、剥離性を向上させる必要がある。
【0006】
しかしながら、従来のナフトキノンジアジト系非化学増幅型ポジレジストでは、高感度化すると膜減りが大きくなるというトレードオフの関係があり、両者を満足することは困難であった。また、上記のように、基板の大型化に対する課題は認識されていたが、これらを解決するための手段は見出されていなかった。
【0007】
また、従来の液晶素子製造用レジストは、半導体素子製造用のg線やi線ポジレジストとして長く実用に供され高い信頼性を有する点、低コスト化という観点からナフトキノンジアジド系の非化学増幅型レジストが用いられてきた。
一方、半導体素子製造用レジストでは、近年の半導体素子の超微細化及び高感度化の要望を受け、0.35μm以下の一部のプロセスでは、化学増幅型レジストが採用され、今後のより微細なプロセスでは、化学増幅型レジストが主流となりつつある。そのような半導体素子製造用レジストの流れからすると、液晶素子製造用レジストにおいても化学増幅型レジストを採用することは、考えられないわけではない。
【0008】
しかしながら、高解像性及び高感度化が達成できるとしても、それだけでは液晶素子製造用レジストとして十分とは言えない上に、従来の化学増幅型レジストは非常に高価であるという決定的問題を有することから、あまり検討されなかった。
【0009】
本発明においては、従来の化学増幅型レジストを液晶素子製造用レジストに適用しようとしても、達成されなかった上記問題点、即ち、低価格であって、解像性及び感度に優れ、膜減りが小さい等の優れた特性を有する化学増幅型ポジ型液晶素子用レジスト組成物及びそれを用いたレジストパターンを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究した結果、特定のアルカリ溶解性を有するノボラック樹脂、放射線照射により酸を発生する化合物及び架橋性ポリビニルエーテルを有機溶剤に溶解してなる化学増幅型ポジ型液晶素子用レジスト組成物が、低価格であって、解像性及び感度に優れ、膜減りが小さい等の優れた特性を有することを見出し、本発明を完成した。
【0011】
すなわち、本発明は、次の成分(A)〜(C)、
(A)2.38重量%テトラメチルアンモニムヒドロキシド(TMAH)水溶液に対するアルカリ溶解性が375〜1000Å/秒の範囲であるノボラック樹脂からなるアルカリ可溶性樹脂、
(B)放射線の照射により酸を発生する化合物、及び
(C)架橋性ポリビニルエーテル化合物、
を有機溶剤に溶解してなる化学増幅型ポジ型液晶素子用レジスト組成物を提供するものである。
本発明はまた、ガラス角基板上に請求項1〜5のいずれか1項に記載の化学増幅型ポジ型液晶素子用レジスト組成物を用いて塗布膜を設け、乾燥後、マスクパターンを介して露光し、露光後加熱処理し、次いでアルカリ現像する工程により得られる液晶素子用レジストパターンを提供するものである。
【0012】
【発明の実施の形態】
液晶素子製造用レジストは、大型化の傾向にあり、基板が大きいほど露光量を大きくする必要があることから、高スルートップを達成するために高感度化への要求は高かった。しかしながら、高感度化と膜減りとはトレードオフの関係にあることから、これら両特性及び高解像性の3特性に優れたレジスト組成物はこれまで知られていなかった。
従来化学増幅型で使用されなかった特定のノボラック樹脂を用いた本発明によって、はじめて上記3特性に優れた液晶素子用のレジスト組成物が得られたのである。
【0013】
(A)成分について
(A)成分は、23℃における2.38重量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液に対するアルカリ溶解性が、375〜1000Å/秒の範囲であるノボラック樹脂からなるアルカリ可溶性樹脂を用いる必要がある。その好ましい範囲は、500〜750Å/秒である。1000Åを超えると、現像後未露光部の膜減りが大きくなり、375Åより低くなると、スカムが発生しやすく、また像形成が困難になる。
なお、この数値は、アルカリ可溶性樹脂を所定膜厚で基板上に設け、これを2.38重量%TMAH水溶液に浸漬し、該膜厚が0となるのに要する時間であり、アルカリ可溶性樹脂の単位時間当たりのアルカリ溶解性である。
【0014】
そのようなアルカリ可溶性樹脂とは、上記定義のアルカリ可溶性を有するものであれば特に限定されない。例えば、従来ポジ型フォトレジスト組成物において被膜形成用物質として慣用されているもの、例えばフェノール、クレゾール、キシレノール、トリメチルフェノールなどの芳香族ヒドロキシ化合物とホルムアルデヒドなどのアルデヒド類とを酸性触媒の存在下に縮合させたものなどが用いられる。具体的には、
・重量平均分子量5000〜14000のm−クレゾール100%を酸触媒下ホルムアルデヒド類と縮合して得られるm−クレゾールホルムノボラック樹脂、
・m−クレゾール30〜80モル%、好ましくは30〜50モル%とp−クレゾール70〜20モル%、好ましくは70〜50モル%の混合クレゾールを酸触媒下ホルムアルデヒド類と縮合して得られる、重量平均分子量2500〜10000のクレゾールホルムノボラック樹脂などが挙げられる。
酸触媒としては、シュウ酸、p−トルエンスルホン酸、酢酸などが挙げられるが、シュウ酸を用いることが、安価で容易に入手でき好ましい。
ホルムアルデヒド類としては、ホルムアルデヒド、ホルムアルデヒドを水に溶解したホルマリン又はトリオキサンなどを挙げることができるが、通常ホルマリンが用いられる。
【0015】
(B)成分について
(B)成分は、(A)成分と(C)成分は、プレベーク時に熱により架橋して基板全面にアルカリ不溶化レジスト層を形成するので、露光部で露光により酸を発生させ、該酸により該架橋を分解し、該不溶化したレジスト層をアルカリ可溶へ変化させる機能を有するものであればよい。
そのような機能を有する放射線の照射により酸を発生する化合物とは、化学増幅型レジストに用いられるいわゆる酸発生剤であり、これまで多数のものが提案されており、これらの中から任意に選択して用いればよい。
液晶素子製造用レジストでは、g線、h線、i線の共存する紫外線が用いられるので、これらのうち、このような紫外線の照射を受け、酸発生効率の高い化合物が好ましい。
そのような化合物としては、例えば以下のような化合物が挙げられる。
【0016】
【化2】

Figure 0004554122
【0017】
【化3】
Figure 0004554122
【0018】
(式中、mは0又は1、Xは1又は2、R1は1又はそれ以上のC1−C12アルキル基が置換していてもよいフェニル基、CN等、R1’はC2−C12アルキレン基等、R2はR1と同義等、R3はC1−C18アルキル基等、R3’はR3と同義等、R4、R5は独立に水素原子等、AはS、O等を示す。)で表される化合物(USP6004724)。具体的には、例えば
【0019】
【化4】
Figure 0004554122
【0020】
のようなチオレン含有オキシムスルホネートが挙げられる。
【0021】
【化5】
Figure 0004554122
【0022】
(式中、R6、R7は、それぞれ炭素数1〜3のアルキル基を示す。)で表されるビス(トリクロロメチル)トリアジン化合物、又は該化合物(IV)と
【0023】
【化6】
Figure 0004554122
【0024】
(式中、Zは、4−アルコキシフェニル基等を示す。)で表されるビス(トリクロロメチル)トリアジン化合物とを組み合わせたもの(特開平6−289614号公報、特開平7−134412号公報)。
具体的には、例えば2‐[2‐(3,4‐ジメトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐メトキシ‐4‐エトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐メトキシ‐4‐プロポキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐エトキシ‐4‐メトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3,4‐ジエトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐エトキシ‐4‐プロポキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐プロポキシ‐4‐メトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐プロポキシ‐4‐エトキシフェニル)エテニル]−4,6−ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3,4‐ジプロポキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジンなどを挙げることができる。これらのトリアジン化合物は単独で用いてもよいし、また2種以上を組み合わせて用いてもよい。
【0025】
一方、前記トリアジン化合物(IV)と、所望に応じて組み合わせて用いられる前記トリアジン化合物(V)としては、例えば2‐(4‐メトキシフェニル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(4‐エトキシフェニル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(4‐プロポキシフェニル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(4‐ブトキシフェニル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(4‐メトキシナフチル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(4‐エトキシナフチル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(4‐プロポキシナフチル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(4‐ブトキシナフチル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(4‐メトキシ‐6‐カルボキシナフチル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(4‐メトキシ‐6‐ヒドロキシナフチル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(2‐フリル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(5‐メチル‐2‐フリル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(5‐エチル‐2‐フリル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(5‐プロピル‐2‐フリル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3,5‐ジメトキシフェニル)エテニル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐メトキシ‐5‐エトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐メトキシ‐5‐プロポキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐エトキシ‐5‐メトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3,5‐ジエトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐エトキシ‐5‐プロポキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐プロポキシ‐5‐メトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3‐プロポキシ‐5‐エトキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3,5‐ジプロポキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐(3,4−メチレンジオキシフェニル)‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジン、2‐[2‐(3,4‐メチレンジオキシフェニル)エテニル]‐4,6‐ビス(トリクロロメチル)‐1,3,5‐トリアジンなどが挙げられる。これらのトリアジン化合物は1種用いてもよいし、2種以上を組み合わせて用いてもよい。
【0026】
(C)成分について
(C)成分の架橋性ポリビニルエーテル化合物は、(A)成分ともに、プレベーク時の加熱により架橋して基板全面にアルカリ不溶化レジスト層を形成する。そして、(B)成分から発生した酸の作用により、該架橋が分解され、露光部はアルカリ可溶性へ変化し、未露光部はアルカリ不溶のまま変化しない。したがって、(A)成分ともに、プレベーク時の加熱により架橋して基板全面にアルカリ不溶化レジスト層を形成する機能を有する(C)成分であれば、その種類に特に制限はない。
このようなポリビニルエーテル化合物は、特開平6−148889号公報、特開平6−230574号公報に多数列挙されており、これらの中から任意に選択して使用することができるが、特には熱架橋性と酸による分解性に起因するレジストプロファイル形状、及び露光部と未露光部のコントラストの特性を考慮すると、次の一般式で表されるアルコール
【0027】
【化7】
Figure 0004554122
【0028】
(式中、Rは、直鎖基、分岐基又は環基のアルカンからn個の水素原子を除いた基であり、nは2、3及び4の整数を示す。)の水酸基の一部又は全部をビニル基でエーテル化した化合物が好ましい。具体的には、工チレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,3−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4−シクロヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、シクロヘキサンジメタノールジビニルエーテルなどが挙げられる。これらの中では、架橋性ジビニルエーテル化合物がより好ましく、シクロヘキサンジメタノールジビニルエーテルが特に好ましい。
【0029】
(B)成分、(C)成分の配合量は、(A)成分100重量部に対し、(B)成分は1〜30重量部、特に1〜20重量部が好ましく、(C)成分は0.1〜25重量部、特に1〜15重量部が好ましい。
【0030】
(D)成分について
露光部からの酸の過剰拡散防止及びレジストパターンの経時安定性の観点から、本発明の化学増幅型ポジ型液晶素子用レジスト組成物には、アミン類を配合することが好ましい。アミン類としては、例えばプレベーク時の加熱によりレジスト膜中から揮散しにくいジエタノールアミン、トリエタノールアミン、トリブタノールアミン、トリイソプロパノールアミンなどの第2級又は第3級アルカノールアミンや、ジエチルアミン、トリエチルアミン、ジブチルアミン、トリブチルアミンなどの第2級又は第3級アルキルアミンが挙げられる。その配合量は、(A)成分100重量部に対して0.01〜5重量部が好ましく、0.1〜1重量部が特に好ましい。
【0031】
本発明に用いる有機溶剤としては、例えばアセトン、メチルエチルケトン、シクロヘキサノン、イソブチルメチルケトン、イソアミルメチルケトン、1,1,1‐トリメチルアセトンなどのケトン類;エチレングリコール、プロピレングリコール、ジエチレングリコール、エチレングリコールモノアセテート又はジエチレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノイソプロピルエーテル、モノブチルエーテル又はモノフェニルエーテルなどの多価アルコール類及びその誘導体;ジオキサンのような環式エーテル類;及び酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、ピルビン酸メチル、ピルビン酸エチル、3‐エトキシプロピオン酸エチルなどのエステル類を挙げることができる。これらは単独でも、また2種以上を混合して用いてもよい。
【0032】
本発明の化学増幅型ポジ型液晶素子用レジスト組成物には、本発明の目的を損なわない範囲で、必要に応じて相容性のある添加物、例えばレジスト膜の性能などを改良するための付加的樹脂、可塑剤、安定剤、界面活性剤、現像した像をより一層可視的にするための着色料、より増感効果を向上させるための増感剤やハレーション防止用染料、密着性向上剤などの慣用の添加物を含有させることができる。
【0033】
本発明の化学増幅型ポジ型液晶素子用レジスト組成物は、(A)成分、(B)成分、(C)成分及び必要に応じてその他の成分を、有機溶剤に溶解することにより調製することができる。
【0034】
本発明の液晶素子用レジストパターンは、かかる化学増幅型ポジ型液晶素子用レジスト組成物を用いて得られるものである。すなわち、まずガラス角基板上に、上記化学増幅型ポジ型液晶素子用レジスト組成物をスピンナー等を用いて塗布し、塗布膜を設ける。これを、例えばホットプレート等でプレベークして乾燥した後、マスクパターンを介して露光する。これを加熱処理(PEB)した後、TMAH等のアルカリ現像液をカーテンフロー方式等により塗布するか、又はアルカリ現像液に浸漬等し、洗浄、乾燥することにより、レジストパターンが形成される。
【0035】
【実施例】
次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
【0036】
実施例1
(A)成分として、m−クレゾール100モル%にシュウ酸とホルマリンを加え、縮合反応して得られた重量平均分子量10000のm−クレゾールホルムノボラック樹脂を用いた。この樹脂の2.38重量%TMAH水溶液に対するアルカリ溶解性は、750Å/秒であった。(B)成分として、
【0037】
【化8】
Figure 0004554122
【0038】
を用いた。
(A)成分100重量部、(B)成分6重量部、(C)成分としてシクロヘキサンジメタノールジビニルエーテル8重量部、(D)成分としてトリイソプロパノールアミン0.2重量部及び非イオン性フッ素・シリコーン系界面活性剤(商品名メガファックR−08(大日本インキ化学工業社製))0.04重量部を、プロピレングリコールモノメチルエーテルアセテート395重量部に溶解し、化学増幅型ポジ型液晶素子用レジスト組成物を調製した。
次いで、クロム膜付きガラス基板(150mm×150mm)上に、調製した化学増幅型ポジ型液晶素子用レジスト組成物を、膜厚1.5μmになるようにスピンナー塗布したのち、ホットプレートの温度を130℃(プレベーク)として、90秒間乾燥し、乾燥塗膜を得た。次いでテストチャートマスクを介してミラープロジェクション・アライナーMPA−600FA(キャノン社製)を用いて露光した。次いで、ホットプレートの温度を120℃とし90秒間露光後加熱処理(PEB)した。次いで、23℃にて2.38重量%TMAH水溶液中に60秒間浸漬し、純水で30秒間リンスし、乾燥することにより、露光部分を除去し、基板上にレジストパターンを形成した。
【0039】
このようにして得られたレジストパターンを走査型電子顕微鏡により観察した。限界解像度とその際の露光量を感度とし表1に示す。また、同様にレジストパターンの断面形状が矩形となるレジストパターンサイズを表1に示す。
また、上記パターン形成プロセスにおいて、現像時間を120秒とした場合の未露光部の現像前から現像後の膜厚の変化を膜減り量として表1に示す。
また、上記パターン形成プロセスにおいて、プレベーク温度のみを10℃の範囲で変化させ、各温度で得られるレジストパターンサイズから、単位温度当たりのレジストパターンの寸法変化量をプレベークマージンとして求めた。その結果を表1に示す。
また、上記パターン形成プロセスにおいて、現像処理のみを浸漬からカーテンフ口ー式に変え、現像開始時のレジストパターンサイズと現像終了時のレジストパターンサイズからその差を現像マージンとして求めた。その結果を表1に示す。
また、上記パターン形成プロセス後200℃のポストベークを行いレジスト変質膜を形成し、該変質膜を代表的レジスト剥離液であるST−106(商品名、東京応化工業株式会社製)で剥離に要する時間を剥離性として評価した。その結果を表1に示す。
【0040】
実施例2
実施例1の化学増幅型ポジ型液晶素子用レジスト組成物の組成を次のように変えた以外は、実施例1と同様にして、各特性を評価した。
(A)成分として、m−クレゾール35モル%とp−クレゾール65モル%にシュウ酸とホルマリンを加え、縮合反応して得られた重量平均分子量4000のクレゾールホルムノボラック樹脂を用いた。なお、この樹脂の2.38重量%TMAH水溶液に対するアルカリ溶解性は500Å/秒であった。(B)成分、(C)成分、(D)成分は実施例1と同じである。
(A)成分100重量部、(B)成分3重量部、(C)成分4重量部、(D)成分0.1重量部及び非イオン性フッ素・シリコーン系界面活性剤(商品名メガファックR−08(大日本インキ化学工業社製))0.04重量部を、プロピレングリコールモノメチルエーテルアセテート395重量部に溶解し、化学増幅型ポジ型液晶素子用レジスト組成物を調製した。
結果を表1に示す。
【0041】
比較例1(ナフトキノンジアジド系レジスト)
実施例1の化学増幅型ポジ型液晶素子用レジスト組成物の組成を次のように変えた以外は、実施例1と同様にして、各特性を評価した。
m−クレゾール35モル%とp−クレゾール65モル%にシュウ酸とホルマリンを加え、縮合反応して得られた重量平均分子量4000のクレゾールホルムノボラック樹脂を、アルカリ可溶性樹脂成分とした。なお、この樹脂の2.38重量%TMAH水溶液に対するアルカリ溶解性は500Å/秒であった。感光性成分として2,3,4,4’−テトラヒドロキシベンゾフェノン1モルに対しナフトキノン−1,2−ジアジド−5−スルホン酸クロライド2.4モルを反応させたエステル化物を用いた。
該樹脂100重量部、該感光性成分25重量部、増感剤としてビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)−2−ヒドロキシフェニルメタン10重量部、非イオン性フッ素・シリコーン系界面活性剤(商品名メガファックR−08(大日本インキ化学工業社製))0.04重量部を、プロピレングリコールモノメチルエーテルアセテート395重量部に溶解し、化学増幅型ポジ型液晶素子用レジスト組成物を調製した。結果を表1に示す。
【0042】
比較例2(3成分系化学増幅型ポジレジスト)
実施例1の化学増幅型ポジ型液晶素子用レジスト組成物の組成を次のように変えた以外は、実施例1と同様にして、各特性を評価した。
m−クレゾール100モル%にシュウ酸とホルマリンを加え、縮合反応して得られた重量平均分子量10000のクレゾールノボラック樹脂をアルカリ可溶性樹脂成分として用いた。なお、この樹脂の2.38重量%TMAH水溶液に対するアルカリ溶解性は750Å/秒であった。酸発生剤成分は実施例1と同じである。溶解抑制剤成分1は、
【0043】
【化9】
Figure 0004554122
【0044】
の水酸基の水素原子の一部又は全部がtert−ブトキシカルボニルメチル基で置換された化合物を用いた。溶解抑制剤成分2は、デオキシコール酸のカルボキシル基及び水酸基の水素原子の一部又は全部が1−エトキン−1−エチル基で置換された化合物を用いた。アミン成分は実施例1と同じである。
アルカリ可溶性樹脂成分100重量部、酸発生成分5重量部、溶解抑制剤成分1 8重量部、溶解抑制剤成分2 8重量部、トリイソプロパノールアミン0.1重量部、非イオン性フッ素・シリコーン系界面活性剤(商品名メガファックR−08(大日本インキ化学工業社製))0.04重量部をプロピレングリコールモノメチルエーテルアセテート395重量部に溶解し、化学増幅型ポジ型液晶素子用レジスト組成物を調製した。結果を表1に示す。
【0045】
【表1】
Figure 0004554122
【0046】
表1から明らかなように、いずれの項目についても、実施例1、2は、比較例1、2よりも優れていた。
【0047】
【発明の効果】
本発明の化学増幅型ポジ型液晶素子用レジスト組成物を用いた液晶素子用レジストパターンは、以下の効果を有する。
(1)高解像性、高感度及び膜減りの低減の3つの特性を有する。従来のナフトキノンジアジド系非化学増幅型ポジレジストでは、高感度化すると、膜減りが大きくなるというトレードオフの関係があり、両者を満足することは困難であったが、本発明組成物により、両者を満足させることが可能となった。また、本発明組成物により、高い限界解像度を達成できる。実施例1、2とも約1.3μmの限界解像度である。なお、従来の液晶素子製造用ナフトキノンジアジド系非化学増幅型ポジレジストの限界解像度は約1.4μmであった。また、3成分系化学増幅型ポジ型レジストの限界解像度は約2.5μmであった。
(2)レジストパターン形状の矩形性向上
(3)プレベークマージンの向上:レジストパターンサイズ変化量を、従来に比べて1/3以下とすることができた。従来レジストの温度あたりのレジストパターンサイズ変化量は、0.41μm/℃であった。これに対し、実施例1、2では、0.08〜0.12μm/℃が達成できた。
(4)現像マージンの向上:レジストパターンサイズずれを大幅に減少させることができる。従来のレジストパターンサイズずれは0.75μmであった。これに対し、実施例1、2では、0.03〜0.04μmまで抑制できた。
(5)剥離性の向上:レジストパターンの変質を大幅に抑制することができる。
従来のレジストでは、ポストベーク160℃で形成した変質膜を剥離液温度60℃で剥離に要する時間が10分であったのに対し、本発明組成物ではポストベーク200℃で形成した変質膜を剥離液温度23℃で剥離に要する時間が2分以内であった。
(6)低コスト化:液晶素子用レジストは、パソコンなどの液晶デバイスを搭載した電子機器の値下がりの影響を受け、強い低コスト化の要求がある。本発明の化学増幅型ポジ型液晶素子用レジスト組成物は、上記(1)から(5)の特性を有しながら、かつ低コスト化に対応することができ、化学増幅型液晶素子用レジスト組成物の商業化が容易になった。[0001]
BACKGROUND OF THE INVENTION
The present invention has excellent characteristics such as high resolution, high sensitivity and little film loss, and is a resist composition for chemically amplified positive liquid crystal elements used in the production of liquid crystal elements such as thin film transistors (THIN FILM TRANSISTOR). And a resist pattern for a liquid crystal element using the same.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, displays using liquid crystals have been installed in various electronic devices and are rapidly spreading. However, the background of this is the low price of liquid crystal displays. Naturally, with such a reduction in price, there is a demand for cost reduction of various materials such as a resist used at the time of manufacture. Against this background, it is an industrially important requirement that today's resist for manufacturing liquid crystal elements is inexpensive.
Further, as a resist for a substrate provided with a low-temperature polysilicon film or a continuous grain boundary crystal film, there has been an increasing demand for higher resolution in recent years.
In addition, when the resist film thickness after development in the unexposed area is lower than the resist film thickness before development, that is, so-called film reduction becomes large, the selectivity with the base substrate at the time of dry etching in the subsequent process becomes small, causing problems. For this reason, the resist for manufacturing liquid crystal elements is also required to reduce film thickness.
In addition, resists for manufacturing liquid crystal elements are not comparable to silicon wafers, and are applied to ultra-large glass substrates that are 680 mm long x 880 mm wide, 600 mm x 720 mm, 550 mm x 670 mm in the latest substrate, and 360 mm x 460 mm in the previous generation. Therefore, since it is necessary to increase the exposure amount, high sensitivity is required to achieve a high through-top. Furthermore, the following requirements that are completely different from resists for manufacturing semiconductor elements must be satisfied for application to ultra-large glass substrates.
[0003]
(Improved pre-bake margin)
In the resist for manufacturing a liquid crystal element, it is necessary to obtain a resist pattern having a uniform size over the entire large substrate as described above. In recent years, the need to obtain as many liquid crystal display devices as possible from a single glass substrate has been increased for cost reduction, and as a result, the size of the glass substrate has been rapidly increased, and uniformity in the size of such resist patterns is required. It came to be able to. However, conventional resists are easily affected by the pre-bake temperature, and the resulting resist pattern size varies.
[0004]
(Improve development margin)
As the size of the substrate increases, a curtain flow type developing method is adopted. In this developing method, a developing solution is dropped from the slit from the lateral end of the substrate to the lateral end of the substrate. In such a development system, a time difference of about 5 seconds occurs between the start of development and the end of development. Due to this time difference, there is a problem that a difference occurs between the resist pattern size at the start of development and the resist pattern size at the end of development. Therefore, it is required to make the resist pattern size uniform by minimizing the influence of this time difference as much as possible.
[0005]
(Improvement of peelability)
In the liquid crystal element manufacturing process, after forming a resist pattern, various processes such as wet etching, dry etching, or ion plantation are performed under different conditions depending on the manufacturing process for each user, using the resist pattern as a mask. When such various treatments are performed, the resist pattern is altered, and the resist pattern is changed to one that is difficult to remove with the resist stripping solution. Therefore, it is necessary to improve releasability even if it is changed to a material that is difficult to peel.
[0006]
However, the conventional naphthoquinone diazite non-chemically amplified positive resist has a trade-off relationship that the film loss increases as the sensitivity increases, and it is difficult to satisfy both. In addition, as described above, problems for increasing the size of the substrate have been recognized, but no means for solving these problems has been found.
[0007]
In addition, conventional liquid crystal element manufacturing resists are long-practical as g-line and i-line positive resists for semiconductor element manufacturing, have high reliability, and are naphthoquinonediazide-based non-chemical amplification types from the viewpoint of cost reduction. Resist has been used.
On the other hand, in resists for manufacturing semiconductor elements, in response to the recent demand for ultra-miniaturization and high sensitivity of semiconductor elements, chemically amplified resists have been adopted in some processes of 0.35 μm or less, which will become finer in the future. In the process, chemically amplified resists are becoming mainstream. In view of the flow of such semiconductor element manufacturing resists, it is not unthinkable to employ chemically amplified resists in liquid crystal element manufacturing resists.
[0008]
However, even if high resolution and high sensitivity can be achieved, it cannot be said that it is sufficient as a resist for manufacturing a liquid crystal element, and the conventional chemically amplified resist has a decisive problem that it is very expensive. Therefore, it was not examined much.
[0009]
In the present invention, even if a conventional chemically amplified resist is applied to a resist for manufacturing a liquid crystal element, the above-mentioned problem that has not been achieved, that is, low cost, excellent resolution and sensitivity, and reduction in film thickness. An object of the present invention is to provide a resist composition for a chemically amplified positive-type liquid crystal device having excellent characteristics such as smallness and a resist pattern using the resist composition.
[0010]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors have made chemical amplification by dissolving a novolak resin having a specific alkali solubility, a compound capable of generating an acid upon irradiation with radiation, and a crosslinkable polyvinyl ether in an organic solvent. The present inventors have found that a resist composition for a positive-type positive liquid crystal element has excellent properties such as low cost, excellent resolution and sensitivity, and small film loss.
[0011]
That is, the present invention includes the following components (A) to (C),
(A) an alkali-soluble resin composed of a novolak resin having an alkali solubility in a 2.38 wt% tetramethylammonium hydroxide (TMAH) aqueous solution in a range of 375 to 1000 kg / second,
(B) a compound that generates an acid upon irradiation with radiation, and
(C) a crosslinkable polyvinyl ether compound,
The present invention provides a resist composition for chemically amplified positive type liquid crystal elements, which is obtained by dissolving a bismuth in an organic solvent.
The present invention also provides a coating film using a resist composition for a chemically amplified positive liquid crystal element according to any one of claims 1 to 5 on a glass square substrate, and after drying, through a mask pattern The present invention provides a resist pattern for a liquid crystal element obtained by a step of exposing, post-exposure heat treatment, and then alkali development.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Resist for manufacturing liquid crystal elements has a tendency to increase in size, and the larger the substrate, the greater the amount of exposure required. Therefore, the demand for high sensitivity has been high in order to achieve a high through-top. However, since high sensitivity and film reduction are in a trade-off relationship, a resist composition excellent in both of these characteristics and the three characteristics of high resolution has not been known so far.
According to the present invention using a specific novolak resin that has not been used in the conventional chemical amplification type, a resist composition for a liquid crystal device excellent in the above three characteristics was obtained for the first time.
[0013]
(A) About component
As the component (A), it is necessary to use an alkali-soluble resin composed of a novolak resin having an alkali solubility in a 2.38 wt% tetramethylammonium hydroxide (TMAH) aqueous solution at 23 ° C. in a range of 375 to 1000 kg / sec. . The preferred range is 500 to 750 K / sec. If it exceeds 1000 mm, the film thickness of the unexposed area after development becomes large, and if it is lower than 375 mm, scum tends to occur and image formation becomes difficult.
This numerical value is the time required for the alkali-soluble resin to be provided on the substrate with a predetermined film thickness, immersed in a 2.38 wt% TMAH aqueous solution, and the film thickness to become zero. Alkali solubility per unit time.
[0014]
Such an alkali-soluble resin is not particularly limited as long as it has alkali solubility as defined above. For example, those conventionally used as film forming substances in positive photoresist compositions, for example, aromatic hydroxy compounds such as phenol, cresol, xylenol and trimethylphenol and aldehydes such as formaldehyde in the presence of an acidic catalyst. A condensed product is used. In particular,
An m-cresol form novolak resin obtained by condensing 100% of m-cresol having a weight average molecular weight of 5000 to 14000 with formaldehyde under an acid catalyst,
-It is obtained by condensing mixed cresol of m-cresol 30-80 mol%, preferably 30-50 mol% and p-cresol 70-20 mol%, preferably 70-50 mol% with formaldehyde under acid catalyst. Examples thereof include cresol form novolak resins having a weight average molecular weight of 2500 to 10,000.
Examples of the acid catalyst include oxalic acid, p-toluenesulfonic acid, acetic acid, and the like. It is preferable to use oxalic acid because it can be easily obtained at low cost.
Examples of formaldehydes include formaldehyde, formalin in which formaldehyde is dissolved in water, and trioxane. Formalin is usually used.
[0015]
About component (B)
(B) Component (A) and Component (C) are crosslinked by heat during pre-baking to form an alkali-insolubilized resist layer over the entire surface of the substrate. What is necessary is just to have a function which decomposes | disassembles bridge | crosslinking and changes this insolubilized resist layer to alkali solubility.
A compound that generates an acid upon irradiation with radiation having such a function is a so-called acid generator used in a chemically amplified resist, and a large number of compounds have been proposed so far, and can be arbitrarily selected from these. Can be used.
In the resist for manufacturing a liquid crystal element, ultraviolet rays in which g-line, h-line and i-line coexist are used, and among these, a compound which is irradiated with such ultraviolet rays and has high acid generation efficiency is preferable.
Examples of such compounds include the following compounds.
[0016]
[Chemical 2]
Figure 0004554122
[0017]
[Chemical 3]
Figure 0004554122
[0018]
(Wherein m is 0 or 1, X is 1 or 2, R 1 Is one or more C 1 -C 12 An alkyl group optionally substituted by a phenyl group, CN, etc., R 1 'C 2 -C 12 Alkylene group, R 2 Is R 1 Synonymous with R Three Is C 1 -C 18 Alkyl group, R Three 'Is R Three Synonymous with R Four , R Five Independently represents a hydrogen atom or the like, and A represents S, O or the like. ) (USP 6004724). Specifically, for example
[0019]
[Formula 4]
Figure 0004554122
[0020]
And thiolene-containing oxime sulfonates.
[0021]
[Chemical formula 5]
Figure 0004554122
[0022]
(Wherein R 6 , R 7 Each represents an alkyl group having 1 to 3 carbon atoms. Bis (trichloromethyl) triazine compound represented by the formula (IV)
[0023]
[Chemical 6]
Figure 0004554122
[0024]
(Wherein Z represents a 4-alkoxyphenyl group or the like) and a bis (trichloromethyl) triazine compound represented by the formula (JP-A-6-289614, JP-A-7-134212) .
Specifically, for example, 2- [2- (3,4-dimethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-methoxy- 4-ethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-methoxy-4-propoxyphenyl) ethenyl] -4,6-bis ( Trichloromethyl) -1,3,5-triazine, 2- [2- (3-ethoxy-4-methoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,4-diethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-ethoxy-4-propoxyphenyl) ethenyl] -4,6-bi (Trichloromethyl) -1,3,5-triazine, 2- [2- (3-propoxy-4-methoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2 -[2- (3-Propoxy-4-ethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,4-dipropoxyphenyl) ethenyl -4,6-bis (trichloromethyl) -1,3,5-triazine and the like. These triazine compounds may be used alone or in combination of two or more.
[0025]
On the other hand, as the triazine compound (V) used in combination with the triazine compound (IV) as desired, for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3 , 5-triazine, 2- (4-ethoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-propoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-butoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxynaphthyl) -4,6-bis (Trichloromethyl) -1,3,5-triazine, 2- (4-ethoxynaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-propoxyna Til) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-butoxynaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-Methoxy-6-carboxynaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxy-6-hydroxynaphthyl) -4,6-bis (trichloromethyl) ) -1,3,5-triazine, 2- [2- (2-furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (5-methyl) -2-furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (5-ethyl-2-furyl) ethenyl] -4,6-bis (trichloro Methyl) -1,3,5-triazi 2- [2- (5-Propyl-2-furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,5-dimethoxyphenyl) ethenyl ) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-methoxy-5-ethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1, 3,5-triazine, 2- [2- (3-methoxy-5-propoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3- Ethoxy-5-methoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,5-diethoxyphenyl) ethenyl] -4,6-bis (Trichloromethyl) -1, 3,5-triazine, 2- [2- (3-ethoxy-5-propoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3- Propoxy-5-methoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-propoxy-5-ethoxyphenyl) ethenyl] -4,6- Bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,5-dipropoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2 -(3,4-methylenedioxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,4-methylenedioxyphenyl) ethenyl] -4 6-bis (g Etc. chloromethyl) -1,3,5-triazine. These triazine compounds may be used alone or in combination of two or more.
[0026]
About component (C)
The crosslinkable polyvinyl ether compound of component (C) is crosslinked together with component (A) by heating during pre-baking to form an alkali-insolubilized resist layer on the entire surface of the substrate. And by the effect | action of the acid which generate | occur | produced from (B) component, this bridge | crosslinking is decomposed | disassembled, an exposed part changes to alkali solubility, and an unexposed part remains insoluble in an alkali. Accordingly, the type of component (A) is not particularly limited as long as it is a component (C) having a function of forming an alkali-insolubilized resist layer on the entire surface of the substrate by crosslinking by heating during pre-baking.
A large number of such polyvinyl ether compounds are listed in JP-A-6-148889 and JP-A-6-230574, and can be arbitrarily selected from these, and in particular, thermal crosslinking. Considering the resist profile shape due to the property and decomposability by acid and the contrast characteristics of the exposed and unexposed areas, the alcohol represented by the following general formula
[0027]
[Chemical 7]
Figure 0004554122
[0028]
(Wherein R is a group obtained by removing n hydrogen atoms from a linear, branched or cyclic alkane, and n represents an integer of 2, 3 and 4) Compounds in which all are etherified with vinyl groups are preferred. Specifically, engineered glycol glycol divinyl ether, triethylene glycol divinyl ether, 1,3-butanediol divinyl ether, tetramethylene glycol divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, trimethylolethane trivinyl ether, Examples include hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, tetraethylene glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether, and cyclohexanedimethanol divinyl ether. Among these, a crosslinkable divinyl ether compound is more preferable, and cyclohexane dimethanol divinyl ether is particularly preferable.
[0029]
The blending amount of the component (B) and the component (C) is preferably 1 to 30 parts by weight, particularly 1 to 20 parts by weight with respect to 100 parts by weight of the component (A). .1 to 25 parts by weight, particularly 1 to 15 parts by weight is preferred.
[0030]
About component (D)
From the viewpoint of preventing excessive diffusion of acid from the exposed area and stability over time of the resist pattern, it is preferable to add amines to the resist composition for a chemically amplified positive liquid crystal element of the present invention. Examples of amines include secondary or tertiary alkanolamines such as diethanolamine, triethanolamine, tributanolamine, and triisopropanolamine, which are difficult to evaporate from the resist film by heating during pre-baking, diethylamine, triethylamine, and dibutylamine. Secondary or tertiary alkyl amines such as tributylamine. The blending amount is preferably 0.01 to 5 parts by weight, particularly preferably 0.1 to 1 part by weight based on 100 parts by weight of the component (A).
[0031]
Examples of the organic solvent used in the present invention include ketones such as acetone, methyl ethyl ketone, cyclohexanone, isobutyl methyl ketone, isoamyl methyl ketone, 1,1,1-trimethylacetone; ethylene glycol, propylene glycol, diethylene glycol, ethylene glycol monoacetate or Polyhydric alcohols such as monomethyl ether, monoethyl ether, monopropyl ether, monoisopropyl ether, monobutyl ether or monophenyl ether of diethylene glycol monoacetate and derivatives thereof; cyclic ethers such as dioxane; and methyl acetate, ethyl acetate Esters such as butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, ethyl 3-ethoxypropionate It can gel. These may be used alone or in admixture of two or more.
[0032]
The resist composition for a chemical amplification type positive liquid crystal device of the present invention is used in order to improve the compatibility of additives, for example, the performance of a resist film, if necessary, as long as the object of the present invention is not impaired. Additional resins, plasticizers, stabilizers, surfactants, colorants to make developed images more visible, sensitizers and antihalation dyes to improve the sensitization effect, improved adhesion Conventional additives such as agents can be included.
[0033]
The resist composition for a chemically amplified positive type liquid crystal device of the present invention is prepared by dissolving the component (A), the component (B), the component (C) and other components as required in an organic solvent. Can do.
[0034]
The resist pattern for liquid crystal elements of the present invention is obtained using such a resist composition for chemically amplified positive type liquid crystal elements. That is, first, the resist composition for a chemically amplified positive liquid crystal element is applied onto a glass square substrate using a spinner or the like to provide a coating film. This is pre-baked with, for example, a hot plate and dried, and then exposed through a mask pattern. After this is heat-treated (PEB), an alkali developer such as TMAH is applied by a curtain flow method or the like, or immersed in an alkali developer, washed, and dried to form a resist pattern.
[0035]
【Example】
EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to a following example.
[0036]
Example 1
As component (A), m-cresol form novolak resin having a weight average molecular weight of 10,000 obtained by adding oxalic acid and formalin to 100 mol% of m-cresol and performing a condensation reaction was used. The alkali solubility of this resin in a 2.38 wt% TMAH aqueous solution was 750 kg / sec. As component (B),
[0037]
[Chemical 8]
Figure 0004554122
[0038]
Was used.
100 parts by weight of component (A), 6 parts by weight of component (B), 8 parts by weight of cyclohexanedimethanol divinyl ether as component (C), 0.2 parts by weight of triisopropanolamine as component (D) and nonionic fluorine / silicone 0.04 parts by weight of a surfactant (trade name: Megafax R-08 (manufactured by Dainippon Ink Chemical Co., Ltd.)) is dissolved in 395 parts by weight of propylene glycol monomethyl ether acetate, and a chemically amplified positive resist for liquid crystal elements A composition was prepared.
Next, the prepared chemically amplified resist composition for a positive type liquid crystal element is applied onto a glass substrate with a chromium film (150 mm × 150 mm) so as to have a film thickness of 1.5 μm, and then the temperature of the hot plate is set to 130. Drying was performed for 90 seconds as a temperature (pre-baking) to obtain a dry coating film. Subsequently, it exposed using the mirror projection aligner MPA-600FA (made by Canon Inc.) through the test chart mask. Next, the temperature of the hot plate was set to 120 ° C., and post-exposure heat treatment (PEB) was performed for 90 seconds. Subsequently, it was immersed in a 2.38 wt% TMAH aqueous solution at 23 ° C. for 60 seconds, rinsed with pure water for 30 seconds, and dried to remove the exposed portion and form a resist pattern on the substrate.
[0039]
The resist pattern thus obtained was observed with a scanning electron microscope. Table 1 shows the sensitivity as the limit resolution and the exposure amount at that time. Similarly, the resist pattern size in which the cross-sectional shape of the resist pattern is rectangular is shown in Table 1.
Further, in the pattern forming process, the change in film thickness before and after development of the unexposed area when the development time is 120 seconds is shown in Table 1 as the film reduction amount.
In the pattern forming process, only the pre-baking temperature was changed within a range of 10 ° C., and the dimensional change amount of the resist pattern per unit temperature was obtained as a pre-baking margin from the resist pattern size obtained at each temperature. The results are shown in Table 1.
Further, in the pattern formation process, only the development process was changed from dipping to a curtain mouth type, and the difference was obtained as a development margin from the resist pattern size at the start of development and the resist pattern size at the end of development. The results are shown in Table 1.
Further, after the pattern formation process, post-baking at 200 ° C. is performed to form a resist-modified film, and the modified film is required for peeling with ST-106 (trade name, manufactured by Tokyo Ohka Kogyo Co., Ltd.) which is a typical resist stripping solution Time was evaluated as peelability. The results are shown in Table 1.
[0040]
Example 2
Each characteristic was evaluated in the same manner as in Example 1 except that the composition of the resist composition for a chemically amplified positive liquid crystal element in Example 1 was changed as follows.
As component (A), a cresol form novolak resin having a weight average molecular weight of 4000 obtained by adding oxalic acid and formalin to m-cresol 35 mol% and p-cresol 65 mol% and performing a condensation reaction was used. The alkali solubility of the resin in a 2.38 wt% TMAH aqueous solution was 500 kg / second. The components (B), (C), and (D) are the same as those in Example 1.
100 parts by weight of component (A), 3 parts by weight of component (B), 4 parts by weight of component (C), 0.1 part by weight of component (D) and a nonionic fluorine / silicone surfactant (trade name: Megafax R 0.08 part by weight (manufactured by Dainippon Ink & Chemicals, Inc.)) was dissolved in 395 parts by weight of propylene glycol monomethyl ether acetate to prepare a resist composition for a chemically amplified positive type liquid crystal element.
The results are shown in Table 1.
[0041]
Comparative Example 1 (Naphthoquinonediazide resist)
Each characteristic was evaluated in the same manner as in Example 1 except that the composition of the resist composition for a chemically amplified positive liquid crystal element in Example 1 was changed as follows.
A cresol form novolak resin having a weight average molecular weight of 4000 obtained by adding oxalic acid and formalin to 35 mol% of m-cresol and 65 mol% of p-cresol and performing a condensation reaction was used as an alkali-soluble resin component. The alkali solubility of the resin in a 2.38 wt% TMAH aqueous solution was 500 kg / second. As a photosensitive component, an esterified product obtained by reacting 2.4 mol of naphthoquinone-1,2-diazide-5-sulfonic acid chloride with 1 mol of 2,3,4,4′-tetrahydroxybenzophenone was used.
100 parts by weight of the resin, 25 parts by weight of the photosensitive component, 10 parts by weight of bis (4-hydroxy-2,3,5-trimethylphenyl) -2-hydroxyphenylmethane as a sensitizer, nonionic fluorine / silicone series A resist composition for a chemically amplified positive liquid crystal element is prepared by dissolving 0.04 part by weight of a surfactant (trade name Megafax R-08 (manufactured by Dainippon Ink & Chemicals)) in 395 parts by weight of propylene glycol monomethyl ether acetate. A product was prepared. The results are shown in Table 1.
[0042]
Comparative Example 2 (3-component chemical amplification type positive resist)
Each characteristic was evaluated in the same manner as in Example 1 except that the composition of the resist composition for a chemically amplified positive liquid crystal element in Example 1 was changed as follows.
A cresol novolac resin having a weight average molecular weight of 10,000 obtained by adding oxalic acid and formalin to 100 mol% of m-cresol and performing a condensation reaction was used as an alkali-soluble resin component. The alkali solubility of the resin in a 2.38 wt% TMAH aqueous solution was 750 kg / sec. The acid generator component is the same as in Example 1. Dissolution inhibitor component 1 is
[0043]
[Chemical 9]
Figure 0004554122
[0044]
A compound in which some or all of the hydrogen atoms of the hydroxyl group were substituted with a tert-butoxycarbonylmethyl group was used. As the dissolution inhibitor component 2, a compound in which some or all of the carboxyl groups of deoxycholic acid and the hydrogen atoms of the hydroxyl group were substituted with a 1-ethyne-1-ethyl group was used. The amine component is the same as in Example 1.
100 parts by weight of an alkali-soluble resin component, 5 parts by weight of an acid generating component, 8 parts by weight of a dissolution inhibitor component 1, 8 parts by weight of a dissolution inhibitor component 2, 0.1 part by weight of triisopropanolamine, a nonionic fluorine / silicone interface 0.04 parts by weight of an activator (trade name: Megafax R-08 (manufactured by Dainippon Ink Chemical Co., Ltd.)) is dissolved in 395 parts by weight of propylene glycol monomethyl ether acetate to obtain a resist composition for a chemically amplified positive type liquid crystal element. Prepared. The results are shown in Table 1.
[0045]
[Table 1]
Figure 0004554122
[0046]
As is apparent from Table 1, Examples 1 and 2 were superior to Comparative Examples 1 and 2 for any item.
[0047]
【The invention's effect】
The resist pattern for liquid crystal elements using the resist composition for chemical amplification type positive liquid crystal elements of the present invention has the following effects.
(1) It has three characteristics of high resolution, high sensitivity, and reduced film loss. The conventional naphthoquinonediazide non-chemically amplified positive resist has a trade-off relationship that when the sensitivity is increased, film loss increases, and it is difficult to satisfy both. Can be satisfied. Moreover, a high limit resolution can be achieved by the composition of the present invention. Both Examples 1 and 2 have a limit resolution of about 1.3 μm. The limit resolution of a conventional naphthoquinone diazide non-chemically amplified positive resist for manufacturing liquid crystal elements was about 1.4 μm. The limit resolution of the three-component chemical amplification type positive resist was about 2.5 μm.
(2) Improvement of rectangularity of resist pattern shape
(3) Improvement of pre-bake margin: The amount of change in resist pattern size could be reduced to 1/3 or less compared to the conventional case. The amount of change in resist pattern size per temperature of the conventional resist was 0.41 μm / ° C. In contrast, in Examples 1 and 2, 0.08 to 0.12 μm / ° C. could be achieved.
(4) Improvement of development margin: Resist pattern size deviation can be greatly reduced. The conventional resist pattern size deviation was 0.75 μm. On the other hand, in Example 1, 2, it was able to suppress to 0.03-0.04 micrometer.
(5) Improved peelability: The resist pattern can be greatly prevented from being altered.
In the conventional resist, the altered film formed at 160 ° C. after the post baking is 10 minutes at the peeling liquid temperature of 60 ° C., whereas the altered film formed at 200 ° C. after the post baking is used in the composition of the present invention. The time required for stripping at a stripping solution temperature of 23 ° C. was within 2 minutes.
(6) Cost reduction: Resist for liquid crystal elements is strongly demanded for cost reduction due to the drop in price of electronic devices equipped with liquid crystal devices such as personal computers. The resist composition for a chemical amplification type positive liquid crystal device of the present invention has the characteristics (1) to (5) and can cope with cost reduction. It became easier to commercialize things.

Claims (6)

次の成分(A)〜(C)、
(A)2.38重量%テトラメチルアンモニムヒドロキシド水溶液に対するアルカリ溶解性が375〜1000Å/秒の範囲であるノボラック樹脂からなるアルカリ可溶性樹脂、
(B)放射線の照射により酸を発生する化合物、及び
(C)架橋性ポリビニルエーテル化合物、
を有機溶剤に溶解してなる化学増幅型ポジ型液晶素子用レジスト組成物。
The following components (A) to (C),
(A) an alkali-soluble resin comprising a novolak resin having an alkali solubility in a 2.38 wt% tetramethylammonium hydroxide aqueous solution in the range of 375 to 1000 kg / sec,
(B) a compound that generates an acid upon irradiation with radiation, and (C) a crosslinkable polyvinyl ether compound,
A resist composition for a chemically amplified positive type liquid crystal device, which is obtained by dissolving an organic solvent in an organic solvent.
(A)成分のアルカリ溶解性が、500〜750Å/秒の範囲であるm-クレゾールホルムノボラック樹脂である請求項1記載の化学増幅型ポジ型液晶素子用レジスト組成物。2. The resist composition for a chemically amplified positive type liquid crystal element according to claim 1, wherein the alkali solubility of the component (A) is an m-cresol form novolak resin having a range of 500 to 750 K / sec. (B)成分が、g(436nm)線、h(405)線及びi(365nm)線のいずれかの照射により酸を発生する化合物である請求項1又は2記載の化学増幅型ポジ型液晶素子用レジスト組成物。3. The chemical amplification type positive liquid crystal element according to claim 1, wherein the component (B) is a compound that generates an acid upon irradiation with any of g (436 nm), h (405), and i (365 nm) rays. Resist composition. (C)成分が次の一般式(I)で表されるアルコール
Figure 0004554122
(式中Rは、直鎖基、分岐基又は環基を含むアルカンからn個の水素原子を除いた基であり、nは2、3及び4の整数を示す)の水酸基の一部又は全部をビニル基でエーテル化した化合物である請求項1〜3のいずれか1項に記載の化学増幅型ポジ型液晶素子用レジスト組成物。
(C) Alcohol whose component is represented by the following general formula (I)
Figure 0004554122
(Wherein R is a group obtained by removing n hydrogen atoms from an alkane containing a linear group, a branched group or a cyclic group, and n represents an integer of 2, 3 and 4). The resist composition for chemically amplified positive type liquid crystal elements according to any one of claims 1 to 3, which is a compound obtained by etherification of
さらに、(D)成分として、アミン類を(A)成分100重量部に対し、0.01〜5重量部配合してなる請求項1〜4のいずれか1項に記載の化学増幅型ポジ型液晶素子用レジスト組成物。Furthermore, 0.01-5 weight part of amines are mix | blended as (D) component with respect to 100 weight part of (A) component, The chemical amplification type positive type of any one of Claims 1-4. Resist composition for liquid crystal element. ガラス角基板上に請求項1〜5のいずれか1項に記載の化学増幅型ポジ型液晶素子用レジスト組成物を用いて塗布膜を設け、乾燥後、マスクパターンを介して露光し、露光後加熱処理し、次いでアルカリ現像する工程により得られる液晶素子用レジストパターン。A coating film is provided on a glass square substrate using the resist composition for chemically amplified positive type liquid crystal element according to any one of claims 1 to 5, and after drying, exposed through a mask pattern, after exposure A resist pattern for a liquid crystal element obtained by a step of heat treatment and then alkali development.
JP2001238039A 2001-08-06 2001-08-06 Resist composition for chemically amplified positive type liquid crystal device Expired - Fee Related JP4554122B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001238039A JP4554122B2 (en) 2001-08-06 2001-08-06 Resist composition for chemically amplified positive type liquid crystal device
TW091116898A TW594391B (en) 2001-08-06 2002-07-29 Chemical amplified type positive resist composition for liquid crystal element
KR1020020046088A KR100585301B1 (en) 2001-08-06 2002-08-05 Chemical amplified type positive resist composition for liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238039A JP4554122B2 (en) 2001-08-06 2001-08-06 Resist composition for chemically amplified positive type liquid crystal device

Publications (2)

Publication Number Publication Date
JP2003050460A JP2003050460A (en) 2003-02-21
JP4554122B2 true JP4554122B2 (en) 2010-09-29

Family

ID=19069026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238039A Expired - Fee Related JP4554122B2 (en) 2001-08-06 2001-08-06 Resist composition for chemically amplified positive type liquid crystal device

Country Status (3)

Country Link
JP (1) JP4554122B2 (en)
KR (1) KR100585301B1 (en)
TW (1) TW594391B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759895B2 (en) * 2001-09-20 2011-08-31 住友ベークライト株式会社 Resin for photoresist and photoresist composition
TWI282907B (en) * 2003-05-20 2007-06-21 Tokyo Ohka Kogyo Co Ltd Chemical amplification type positive photoresist composition and resist pattern forming method using the same
TWI331255B (en) * 2003-05-22 2010-10-01 Tokyo Ohka Kogyo Co Ltd Chemical amplification type positive photoresist composition and resist pattern forming method using the same
JP2005010213A (en) * 2003-06-16 2005-01-13 Tokyo Ohka Kogyo Co Ltd Chemically amplified positive photoresist composition and resist pattern forming method
JP4355591B2 (en) * 2004-02-23 2009-11-04 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
JP4924813B2 (en) * 2004-10-29 2012-04-25 日産化学工業株式会社 Dye-containing resist composition containing photoacid generator and color filter using the same
US8420520B2 (en) 2006-05-18 2013-04-16 Megica Corporation Non-cyanide gold electroplating for fine-line gold traces and gold pads
KR101385946B1 (en) * 2007-04-02 2014-04-16 주식회사 동진쎄미켐 Photoresist composition and method of forming photoresist pattern using the same
US8715918B2 (en) 2007-09-25 2014-05-06 Az Electronic Materials Usa Corp. Thick film resists
TWI717543B (en) 2016-08-09 2021-02-01 德商馬克專利公司 Photoresist composition and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140661A (en) * 1993-06-18 1995-06-02 Hitachi Chem Co Ltd Photosensitive resin composition and production of resist image
JPH0894829A (en) * 1994-09-28 1996-04-12 Kansai Paint Co Ltd Production of color filter
JP2000292919A (en) * 1999-04-02 2000-10-20 Clariant (Japan) Kk Radiation sensitive resin composition
JP2000292927A (en) * 1999-04-12 2000-10-20 Hitachi Ltd Pattern forming material and pattern forming method by using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536690B1 (en) * 1991-10-07 1998-09-09 Fuji Photo Film Co., Ltd. Light-sensitive composition
JP3518158B2 (en) * 1996-04-02 2004-04-12 信越化学工業株式会社 Chemically amplified positive resist material
JPH10133379A (en) * 1996-08-27 1998-05-22 Hitachi Chem Co Ltd Positive chemically amplifying photosensitive resin composition and production of resist image
US6284427B1 (en) * 1997-09-22 2001-09-04 Clariant Finance (Bvi) Limited Process for preparing resists
KR100421034B1 (en) * 1999-04-21 2004-03-04 삼성전자주식회사 Resist composition and fine pattern forming method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140661A (en) * 1993-06-18 1995-06-02 Hitachi Chem Co Ltd Photosensitive resin composition and production of resist image
JPH0894829A (en) * 1994-09-28 1996-04-12 Kansai Paint Co Ltd Production of color filter
JP2000292919A (en) * 1999-04-02 2000-10-20 Clariant (Japan) Kk Radiation sensitive resin composition
JP2000292927A (en) * 1999-04-12 2000-10-20 Hitachi Ltd Pattern forming material and pattern forming method by using same

Also Published As

Publication number Publication date
JP2003050460A (en) 2003-02-21
KR100585301B1 (en) 2006-06-01
KR20030035831A (en) 2003-05-09
TW594391B (en) 2004-06-21

Similar Documents

Publication Publication Date Title
JP5320631B2 (en) Photoresist composition for thick film formation
TWI417682B (en) Method for producing a miniaturised pattern and treatment liquid for resist substrate using therewith
JP4554122B2 (en) Resist composition for chemically amplified positive type liquid crystal device
EP4066059B1 (en) Chemically amplified photoresist
US6733949B2 (en) Novolak resin mixtures and photosensitive compositions comprising the same
US5069996A (en) Process for developing selected positive photoresists
JP4053402B2 (en) Positive photoresist composition for LCD production and method for forming resist pattern
EP1877865B1 (en) Nanocomposite photoresist composition for imaging thick films
JPH02217855A (en) Negative type electron beam resist composition
JP3135585B2 (en) Positive photoresist composition containing 2,4-dinitro-1-naphthol
JP3765582B2 (en) Mixed solvent system for positive photoresist
JP2005173369A (en) Method for removing resist pattern
JPH0210348A (en) Formation of positive type photosensitive composition and resist pattern
JP3076523B2 (en) Positive photoresist composition
JP2001264968A (en) Positive type resist composition
KR100649921B1 (en) Method for forming resist pattern
JP3592332B2 (en) Positive photosensitive composition
JP2005010213A (en) Chemically amplified positive photoresist composition and resist pattern forming method
JP3636503B2 (en) Radiation sensitive resin composition
KR0124949B1 (en) Radiation sensitive resin composition
JPH06118649A (en) Resist composition
JP2011203708A (en) Negative resist composition, method for producing relief pattern and method for producing photomask using the resist composition
JP3099528B2 (en) Radiation-sensitive resin composition for dry development
JPH112899A (en) Negative radiation sensitive resist composition and these hardened product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees