JP4549362B2 - Focus adjustment method in imaging apparatus - Google Patents

Focus adjustment method in imaging apparatus Download PDF

Info

Publication number
JP4549362B2
JP4549362B2 JP2007072242A JP2007072242A JP4549362B2 JP 4549362 B2 JP4549362 B2 JP 4549362B2 JP 2007072242 A JP2007072242 A JP 2007072242A JP 2007072242 A JP2007072242 A JP 2007072242A JP 4549362 B2 JP4549362 B2 JP 4549362B2
Authority
JP
Japan
Prior art keywords
imaging
test chart
focus
scanning direction
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007072242A
Other languages
Japanese (ja)
Other versions
JP2008233481A (en
Inventor
孝 増田
暁紅 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acutelogic Corp
Original Assignee
Acutelogic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acutelogic Corp filed Critical Acutelogic Corp
Priority to JP2007072242A priority Critical patent/JP4549362B2/en
Priority to KR1020097021810A priority patent/KR100991551B1/en
Priority to PCT/JP2008/055802 priority patent/WO2008114888A1/en
Priority to CN2008100867444A priority patent/CN101271245B/en
Priority to TW097109967A priority patent/TW200839342A/en
Publication of JP2008233481A publication Critical patent/JP2008233481A/en
Application granted granted Critical
Publication of JP4549362B2 publication Critical patent/JP4549362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/365Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals by analysis of the spatial frequency components of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Description

本発明は、撮像装置において、例えばCCD等の撮像素子を介して得られる画像信号を用いて、撮像レンズを合焦位置に設定する焦点調整方法及び焦点調整装置に関する。   The present invention relates to a focus adjustment method and a focus adjustment device for setting an imaging lens at a focus position using an image signal obtained via an imaging element such as a CCD in an imaging device.

従来、図6(a)に表したように、カメラ等の撮像装置201において、撮像される画像投影光のコントラストを検出し、そのコントラストが最大になるように撮像光学系を移動して焦点調整を行う山登り方式を用いた焦点調整方法が知られている。   Conventionally, as shown in FIG. 6A, in the imaging apparatus 201 such as a camera, the contrast of the image projection light to be captured is detected, and the focus is adjusted by moving the imaging optical system so that the contrast becomes maximum. A focus adjustment method using a hill-climbing method is known.

撮像装置201は、撮像レンズ202を介して被写体203像をCCD等の撮像素子204に導いて電気信号に変換し、焦点検出部205においてコントラストを検出するように構成されている。   The imaging apparatus 201 is configured to guide the subject 203 image to an imaging element 204 such as a CCD through an imaging lens 202 to convert it into an electrical signal, and detect the contrast in the focus detection unit 205.

山登り方式の焦点調整方法は、図6(b)に表したように、撮像レンズ202及び撮像素子204等の撮像光学系が被写体203に対して合焦点位置にあるときは、被写体203像が最大のコントラストになり、デフォーカス(焦点ずれ)が生じるとコントラストが低下するので、コントラスト特性の頂点を目指すように撮像レンズ202の位置を調整するものである。   As shown in FIG. 6B, the hill-climbing focus adjustment method is such that when the imaging optical system such as the imaging lens 202 and the imaging element 204 is in a focal position with respect to the subject 203, the subject 203 image is the maximum. Therefore, when the defocus (defocus) occurs, the contrast decreases. Therefore, the position of the imaging lens 202 is adjusted so as to aim at the top of the contrast characteristic.

また、焦点を調整する際には、撮像された被写体像のMTF(Modulaion Transfer Function)を計測して焦点を調整する方法が知られている。詳しくは、撮像レンズの移動に伴うMTFの変化を計測し、所定の空間周波数のMTFが最大となるように、撮像レンズの位置を設定する焦点調整方法がある(例えば、特許文献1、2参照)。
特開昭62−284314号公報 特開2005−258360号公報
In addition, when adjusting the focus, a method of adjusting the focus by measuring an MTF (Modulation Transfer Function) of a captured subject image is known. Specifically, there is a focus adjustment method for measuring the change of the MTF accompanying the movement of the imaging lens and setting the position of the imaging lens so that the MTF of a predetermined spatial frequency is maximized (see, for example, Patent Documents 1 and 2). ).
JP-A-62-284314 JP 2005-258360 A

しかしながら、従来のように山登り方式によるコントラストの最大値やMTFの最大値を求める焦点調整方法によれば、一般に、光軸方向の合焦位置を介して両側に撮像レンズを往復移動させて最もコントラストの良好な位置を検出しなければならないので、焦点調整のための作業性を損なう虞がある(つまり、撮像レンズを一方向に移動させて調整する方法に較べれば、作業性を損なう虞がある)。さらには、デフォーカス量に対するコントラスト特性やMTF特性がピーク点近傍において平坦に近くてピーク点が明確に表れない場合には、撮像レンズの合焦位置を精度良く調整することが困難になる虞もあった。
However, according to the conventional focus adjustment method for obtaining the maximum value of contrast and the maximum value of MTF by the hill-climbing method, generally, the imaging lens is reciprocally moved to both sides via the focus position in the optical axis direction, so that the highest contrast is obtained. since it is necessary to detect a good position of, Ru fear there impairing the workability for focus adjustment (i.e., as compared to the method of adjusting by moving the imaging lens in one direction, a possibility to impair the workability is there). Furthermore, when the contrast characteristics and the MTF characteristics with respect to the defocus amount are almost flat in the vicinity of the peak point and the peak point does not appear clearly, it may be difficult to accurately adjust the in-focus position of the imaging lens. there were.

そこで、本発明は、撮像装置において光軸方向に撮像レンズを移動させて合焦位置を調整する際に、撮像されたコントラスト特性やMTF特性における焦点評価値のピーク点が不明瞭であっても精度よく合焦位置を調整できるとともに、その調整を容易にできる焦点調整方法を提供することを目的とする。   Therefore, according to the present invention, when the focusing position is adjusted by moving the imaging lens in the optical axis direction in the imaging apparatus, even if the peak point of the focus evaluation value in the captured contrast characteristic or MTF characteristic is unclear. It is an object of the present invention to provide a focus adjustment method capable of adjusting the in-focus position with high accuracy and facilitating the adjustment.

かかる目的を達成するためになされた請求項1に記載の発明は、被写体像を撮像素子に導く撮像レンズと、前記撮像レンズを介して導かれた前記被写体像を光電変換し、画像信号を出力する前記撮像素子と、を用いた撮像装置において、前記被写体と前記撮像素子とを結ぶ光軸上に沿って、前記被写体の目標位置を介して前後に、白色と黒色とに画成された撮像模様を有する第一、第二のテストチャートを設定し、前記撮像レンズを前記光軸方向に移動させ、前記第一、第二のテストチャートの夫々毎に、前記撮像レンズの移動量に対応付けて、前記撮像素子に結像された前記撮像模様の焦点評価値をもとめ、前記第一のテストチャートにおける焦点評価値と前記第二のテストチャートにおける焦点評価値とが一致するように前記撮像レンズの位置を設定する焦点調整方法であって、前記光軸に直交する直交線を介して、前記第一のテストチャートと前記第二のテストチャートとを対称に配置して、夫々が重なり合わない位置に配置すると共に、前記第一のテストチャートの撮像模様の白色と黒色とのエッジ部分と、前記第二のテストチャートの撮像模様の白色と黒色とのエッジ部分とを対称に配置し、前記撮像模様のエッジが、前記撮像素子の画素の配置方向に対して傾斜角度が形成され、前記画素配置の一つの方向を主走査方向とし該主走査方向に直交する方向を副走査方向とした際に、前記傾斜角度に基づいて、前記撮像素子の画素配置の主走査方向に対する走査の基本となるサンプリング数が、前記傾斜エッジが前記副走査方向に略1画素分だけ変位するのに要する前記主走査方向の画素の変位数となるように、前記主走査方向のサンプリング数を求め、次いで、前記主走査方向に対しては前記サンリング数をもって1ライン分の走査とするようにして前記撮像素子に撮影された画像を画素毎にスキャンし、1ライン分のスキャンが終わったら副走査方向に1画素ずつスキャン位置をずらして主走査方向のスキャンを繰り返し、各スキャン位置の画素値を取得することによって、前記エッジのステップ応答を求め、次いで、前記ステップ応答を微分することによってインパルス応答を求めて、該インパルス応答をフーリエ変換することによってMTF(Modulation Transfer Function)を求め、前記MTFを前記焦点評価値の指標とする、ことを特徴とする。

The invention according to claim 1, which has been made to achieve the above object, photoelectrically converts an imaging lens that guides a subject image to an imaging device, and the subject image guided through the imaging lens, and outputs an image signal. In the imaging apparatus using the imaging device, the imaging device is defined in white and black along the optical axis connecting the subject and the imaging device, before and after the target position of the subject. First and second test charts having a pattern are set, the imaging lens is moved in the optical axis direction, and the movement amount of the imaging lens is associated with each of the first and second test charts. Then, the focus evaluation value of the imaging pattern imaged on the image sensor is obtained, and the imaging lens so that the focus evaluation value in the first test chart matches the focus evaluation value in the second test chart. A focus adjustment method for setting a position, wherein the first test chart and the second test chart are arranged symmetrically via an orthogonal line orthogonal to the optical axis, and the positions do not overlap each other And the white and black edge portions of the imaging pattern of the first test chart and the white and black edge portions of the imaging pattern of the second test chart are arranged symmetrically, and the imaging When an edge of the pattern has an inclination angle with respect to the pixel arrangement direction of the image sensor, and one direction of the pixel arrangement is a main scanning direction and a direction orthogonal to the main scanning direction is a sub-scanning direction Based on the tilt angle, the number of samplings that is the basis of scanning in the main scanning direction of the pixel arrangement of the image sensor is the main number required for the tilt edge to be displaced by approximately one pixel in the sub-scanning direction. The number of samplings in the main scanning direction is determined so that the number of pixel displacements in the scanning direction is obtained, and then the number of samplings in the main scanning direction is set to scan for one line. Scan the image taken for each pixel, and when the scanning for one line is completed, shift the scanning position by one pixel in the sub-scanning direction and repeat the scanning in the main scanning direction to obtain the pixel value at each scanning position. Then, the step response of the edge is obtained, and then an impulse response is obtained by differentiating the step response, and an MTF (Modulation Transfer Function) is obtained by Fourier-transforming the impulse response, and the MTF is evaluated by the focus evaluation. It is used as an index of value .

請求項1に記載の撮像装置における焦点調整方法によれば、被写体と撮像素子とを結光軸上に沿って、被写体の目標位置を介して前後に、白色と黒色とに画成されている撮像模様を備えた第一、第二のテストチャートを設定し、撮像レンズを光軸方向に移動させ、第一、第二のテストチャートの夫々毎に、撮像レンズの移動量に対応付けて、撮像素子に結像された撮像模様の焦点評価値をもとめ、第一のテストチャートにおける焦点評価値と第二のテストチャートにおける焦点評価値とが一致するように撮像レンズの位置を設定するので、撮像レンズを介して撮像した被写体像の焦点評価値のピーク点が不明瞭であっても精度よく合焦位置を調整できるとともに、その調整を容易にできる。また、光軸に直交する直交線を介して、第一のテストチャートと第二のテストチャートとを対称に配置して、夫々が重なり合わない位置に配置すると共に、第一のテストチャートの撮像模様の白色と黒色とのエッジ部分と、第二のテストチャートの撮像模様の白色と黒色とのエッジ部分とを対称に配置し、焦点評価値が、撮像模様の白色と黒色のエッジ部分における空間周波数の成分量を表す指標であることにより、撮像レンズの合焦を精度良く調整できる。

According to the focus adjustment method in the imaging apparatus according to claim 1, the subject and the imaging element are defined in white and black along the optical axis and back and forth through the target position of the subject. First and second test charts with an imaging pattern are set, the imaging lens is moved in the optical axis direction, and each of the first and second test charts is associated with the moving amount of the imaging lens, Since the focus evaluation value of the imaging pattern imaged on the image sensor is obtained and the position of the imaging lens is set so that the focus evaluation value in the first test chart matches the focus evaluation value in the second test chart, together it can be adjusted also accurately focus position unclear peak point of the focus evaluation value of the subject image captured through the imaging lens, as possible left the adjustment easily. In addition, the first test chart and the second test chart are arranged symmetrically via an orthogonal line orthogonal to the optical axis, arranged at positions where they do not overlap, and imaging of the first test chart The white and black edge portions of the pattern and the white and black edge portions of the imaging pattern of the second test chart are arranged symmetrically, and the focus evaluation value is a space in the white and black edge portions of the imaging pattern. By using the index representing the frequency component amount, the focusing of the imaging lens can be accurately adjusted.

つまり、撮像レンズを光軸上に沿って移動させ、第一のテストチャートの焦点評価値と第二のテストチャートの焦点評価値とが一致する際の撮像レンズの位置を合焦位置とすればよいので、従来の山登り方式に較べて精度良く合焦位置を求めることができるとともに、その調整時間を短縮できる。また、第一のテストチャートにおける焦点評価値と第二のテストチャートにおける焦点評価値を、光軸を介して対称の位置において精度良く得ることができ、延いては光軸を中心とする同心円上において得ることができる。

That is, if the imaging lens is moved along the optical axis, and the focus evaluation value of the first test chart and the focus evaluation value of the second test chart coincide with each other, the position of the imaging lens is set as the in-focus position. Since it is good, the in-focus position can be obtained with higher accuracy than in the conventional hill-climbing method, and the adjustment time can be shortened . In addition, the focus evaluation value in the first test chart and the focus evaluation value in the second test chart can be accurately obtained at symmetrical positions via the optical axis, and thus on a concentric circle centered on the optical axis. Can be obtained in

つまり、撮像模様が撮像素子に合焦して結像するとエッジが明確に表れて空間周波数の高域成分が強い映像となり、一方、撮像素子に対する合焦位置がずれているとエッジがぼけて表れて空間周波数の高域成分が弱い映像となるので、エッジ像を検知し、検知したエッジ像を微分して点像に変換し、この点像をフーリエ変換して光学系のMTFを求めればよい。また、MTFを測定する際の、主走査方向のサンプリング数がエッジの傾斜角度に関連づけられ、この傾斜角度が第一のテストチャートと第二のテストチャートとの間で対称であるので、第一、第二のテストチャート間の焦点検出のバラツキを防止できる。

In other words, when the imaging pattern is focused on the image sensor and the image is formed, the edge appears clearly and the high frequency component of the spatial frequency is strong. On the other hand, if the in-focus position with respect to the image sensor is shifted, the edge appears blurred. Therefore, it is only necessary to detect the edge image, differentiate the detected edge image into a point image, and Fourier transform the point image to obtain the MTF of the optical system. . Further, since the number of samplings in the main scanning direction when measuring the MTF is related to the inclination angle of the edge, and this inclination angle is symmetric between the first test chart and the second test chart, The focus detection variation between the second test charts can be prevented.

また、請求項1に記載の撮像装置の焦点調整方法は、請求項2に記載の発明のように、前記第一のテストチャート及び第二のテストチャートには、前記撮像模様が複数並設されていることにより、撮像模様が単数であるよりも、ノイズの影響を低減できて精度良く焦点評価値を得ることができる。つまり、撮像模様が複数であることにより、夫々の撮像模様から得られる焦点評価値を比較してノイズによるバラツキがあれば、ノイズが重畳された撮像模様を除去して適性な撮像模様の焦点評価値を選択できる。また、複数の撮像模様を画像の中央や中央から離間した位置に配置することにより、用途に応じて、画像における焦点位置を設定でき、利便性を向上できる。また、複数の撮像模様が第一、第二のチャート間で対称に配置されているので、第一のテストチャートにおける焦点評価値と第二のテストチャートにおける焦点評価値を、光軸を中心とする複数の同心円上において求めることができ、精度良く焦点を調整できる。

According to a first aspect of the present invention, the focus adjustment method for the imaging apparatus includes a plurality of the imaging patterns arranged in parallel in the first test chart and the second test chart. As a result, the influence of noise can be reduced and the focus evaluation value can be obtained with higher accuracy than when there is a single imaging pattern. In other words, if there are variations due to noise by comparing the focus evaluation values obtained from each imaging pattern due to multiple imaging patterns, the focus evaluation of an appropriate imaging pattern is performed by removing the imaging pattern on which the noise is superimposed. A value can be selected. In addition, by arranging a plurality of image pickup patterns at the center of the image or at positions separated from the center, the focal position in the image can be set according to the application, and convenience can be improved. In addition, since the plurality of imaging patterns are arranged symmetrically between the first and second charts, the focus evaluation value in the first test chart and the focus evaluation value in the second test chart are centered on the optical axis. Can be obtained on a plurality of concentric circles, and the focus can be adjusted with high accuracy.

本発明の撮像装置における焦点調整方法によれば、被写体と撮像素子を結ぶ光軸上に沿って、被写体の目標位置を介して前後に、白色と黒色とに画成されている撮像模様を備えた第一、第二のテストチャートを設定し、撮像レンズを光軸方向に移動させ、第一、第二のテストチャートの夫々毎に、撮像レンズの移動量に対応付けて、撮像素子に結像された撮像模様の焦点評価値をもとめ、第一のテストチャートにおける焦点評価値と第二のテストチャートにおける焦点評価値とが一致するように撮像レンズの位置を設定する焦点調整方法であって、光軸に直交する直交線を介して、第一のテストチャートと第二のテストチャートとを対称に配置して、夫々が重なり合わない位置に配置すると共に、第一のテストチャートの撮像模様の白色と黒色とのエッジ部分と、第二のテストチャートの撮像模様の白色と黒色とのエッジ部分とを対称に配置し、撮像模様のエッジが、撮像素子の画素の配置方向に対して傾斜角度が形成され、画素配置の一つの方向を主走査方向とし該主走査方向に直交する方向を副走査方向とした際に、傾斜角度に基づいて、撮像素子の画素配置の主走査方向に対する走査の基本となるサンプリング数が、傾斜エッジが副走査方向に略1画素分だけ変位するのに要する主走査方向の画素の変位数となるように、主走査方向のサンプリング数を求め、次いで、主走査方向に対してはサンリング数をもって1ライン分の走査とするようにして撮像素子に撮影された画像を画素毎にスキャンし、1ライン分のスキャンが終わったら副走査方向に1画素ずつスキャン位置をずらして主走査方向のスキャンを繰り返し、各スキャン位置の画素値を取得することによって、エッジのステップ応答を求め、次いで、ステップ応答を微分することによってインパルス応答を求めて、該インパルス応答をフーリエ変換することによってMTF(Modulation Transfer Function)を求め、MTFを焦点評価値の指標とすることにより、撮像レンズの合焦を精度良く調整できる。

According to the focus adjustment method in the imaging apparatus of the present invention, the imaging pattern defined in white and black is provided before and after the target position of the subject along the optical axis connecting the subject and the imaging device. The first and second test charts are set, the imaging lens is moved in the optical axis direction, and each of the first and second test charts is associated with the moving amount of the imaging lens and connected to the imaging device. A focus adjustment method for obtaining a focus evaluation value of an imaged image pattern and setting a position of an imaging lens so that a focus evaluation value in a first test chart and a focus evaluation value in a second test chart coincide with each other The first test chart and the second test chart are arranged symmetrically via an orthogonal line orthogonal to the optical axis, and are arranged at positions where they do not overlap with each other, and the imaging pattern of the first test chart White and black Are arranged symmetrically with the white and black edge portions of the imaging pattern of the second test chart, and the edges of the imaging pattern are inclined with respect to the pixel arrangement direction of the imaging device. , When one direction of pixel arrangement is the main scanning direction and the direction orthogonal to the main scanning direction is the sub-scanning direction, this is the basis of scanning in the main scanning direction of the pixel arrangement of the image sensor based on the tilt angle. Obtain the number of samples in the main scanning direction so that the number of samplings is the number of pixels in the main scanning direction required for the inclined edge to be displaced by about one pixel in the sub-scanning direction. In this case, the image taken on the image sensor is scanned pixel by pixel so that the number of samplings is one line, and when scanning for one line is completed, the scan position is set one pixel at a time in the sub-scanning direction. Thus, by repeating the scanning in the main scanning direction and obtaining the pixel value of each scanning position, the step response of the edge is obtained, and then the impulse response is obtained by differentiating the step response, and the impulse response is Fourier transformed. By doing this, MTF (Modulation Transfer Function) is obtained, and by using MTF as an index of the focus evaluation value, the focus of the imaging lens can be adjusted with high accuracy.

また、本発明の撮像装置における焦点調整方法及によれば、光軸上に沿って離間した第一のテストチャートと第二のテストチャートとを同時に撮像でき、焦点調整のための作業性が良好であって、且つ、精度良く撮像レンズの合焦位置を検出できる。また、第一のテストチャートにおける焦点評価値と第二のテストチャートにおける焦点評価値を、光軸を中心とする同心円上において求めることができ、精度良く焦点を調整できる。

In addition, according to the focus adjustment method and the image pickup apparatus of the present invention, the first test chart and the second test chart separated along the optical axis can be simultaneously imaged, and the workability for focus adjustment is good. In addition, the in-focus position of the imaging lens can be detected with high accuracy. Further, the focus evaluation value in the first test chart and the focus evaluation value in the second test chart can be obtained on a concentric circle centered on the optical axis, and the focus can be adjusted with high accuracy.

次に、本発明の撮像装置における焦点調整方法の一実施例を図面にもとづいて説明する。

Next, an embodiment of the focus adjustment method in the image pickup apparatus of the present invention will be described with reference to the drawings.

図1は、本実施例の撮像装置における焦点調整方法を表した略図であって、(a)図に第一、第二のテストチャ−トの設置例を表し、(b)図にその際に検出されるMTF特性を表している。また、図2が同実施例における撮像装置の構成を表すブロック図、図3が同実施例におけるMTFの測定方法を表す図、図4が同実施例における焦点調整方法の手順を表したフローチャート、図5が図1(a)におけるテストチャートの変形例を表した図である。   FIG. 1 is a schematic diagram showing a focus adjustment method in the image pickup apparatus of the present embodiment. FIG. 1A shows an example of installation of first and second test charts, and FIG. The detected MTF characteristic is represented. FIG. 2 is a block diagram showing the configuration of the image pickup apparatus in the embodiment, FIG. 3 is a view showing the MTF measurement method in the embodiment, and FIG. 4 is a flowchart showing the procedure of the focus adjustment method in the embodiment. FIG. 5 is a diagram showing a modification of the test chart in FIG.

図1(a)に表したように、本実施例の撮像装置における焦点調整方法は、撮像装置1に、光軸X方向に移動可能に構成されたフォーカスレンズ(所謂、本発明における撮像レンズである)3と、フォーカスレンズ3を介して導かれた被写体像を光電変換して画像信号を出力する撮像素子5とが備えられ、被写体Pと撮像素子5とを結ぶ光軸X上に沿って、被写体Pの目標位置を介して前後に、白色と黒色とに画成されている撮像模様を備えた第一のテストチャートCH1と第二のテストチャートCH2を設定し、フォーカスレンズ3を光軸Xに沿って移動させ、焦点調整装置15を介して、撮像素子5に結像する被写体P像の焦点が合うように、フォーカスレンズ3の位置を調整する。
As shown in FIG. 1A, the focus adjustment method in the imaging apparatus of the present embodiment is a focus lens (so-called imaging lens in the present invention) configured to be movable in the optical axis X direction. 3) and an image sensor 5 that photoelectrically converts a subject image guided through the focus lens 3 and outputs an image signal, and is provided along an optical axis X that connects the subject P and the image sensor 5. A first test chart CH1 and a second test chart CH2 having an imaging pattern defined in white and black are set in front and back through the target position of the subject P, and the focus lens 3 is set to the optical axis. The position of the focus lens 3 is adjusted so that the subject P image focused on the image sensor 5 is in focus via the focus adjustment device 15 .

図1(a)中において、Mがフォーカスレンズ3から被写体Pまでの距離、Nがフォーカスレンズ3から第一のテストチャートCH1までの距離、Fがフォーカスレンズ3から第二のテストチャートCH2までの距離であって、第一のテストチャートCH1と第二のテストチャートCH2が、被写体Pの目標位置に対して、略同じ距離だけ離間して配置されている。また、第一のテストチャートCH1及び第二のテストチャートCH2の位置については、夫々、フォーカスレンズ3の焦点距離やF値などの光学情報から予めMTFを算出し、算出されたMTFが等しくなるように求めてもよいし、さらには、チューニングされたレンズを用いて実験的に求めてもよい。   In FIG. 1A, M is the distance from the focus lens 3 to the subject P, N is the distance from the focus lens 3 to the first test chart CH1, and F is the distance from the focus lens 3 to the second test chart CH2. The first test chart CH1 and the second test chart CH2 are arranged at a distance from the target position of the subject P by substantially the same distance. For the positions of the first test chart CH1 and the second test chart CH2, MTFs are calculated in advance from optical information such as the focal length and F value of the focus lens 3 so that the calculated MTFs are equal. Or may be obtained experimentally using a tuned lens.

詳しくは、図1(b)に表したように、フォーカスレンズ3を光軸X方向に移動させ、第一のテストチャートCH1と第二のテストチャートCH2の夫々毎に、フォーカスレンズ3の移動量に対応付けて撮像素子5に結像される撮像模様の焦点評価値をもとめ、第一のテストチャートCH1における焦点評価値と第二のテストチャートCH2における焦点評価値とが一致するように、フォーカスレンズ3の位置を設定する。   Specifically, as shown in FIG. 1B, the focus lens 3 is moved in the direction of the optical axis X, and the amount of movement of the focus lens 3 for each of the first test chart CH1 and the second test chart CH2. The focus evaluation value of the imaging pattern that is imaged on the image sensor 5 is obtained in association with the focus evaluation value so that the focus evaluation value in the first test chart CH1 matches the focus evaluation value in the second test chart CH2. The position of the lens 3 is set.

次に、図2に表したように、撮像装置1には、前部レンズ2、フォーカスレンズ3、有害な赤外線及び有害な反射光などを除去するフィルタ(赤外線除去フィルタや光学フィルタである)4、撮像素子(CCD:Charge Coupled Devices)5、撮像素子5から出力されるアナログ画像信号をデジタル画像信号Cに変換して出力するAFE(Analog Front End)6、撮像素子5及びAFE6を所定の周期で制御するTG(Timing Generator)13、フォーカスレンズ3の光軸方向のスライド駆動を行うフォーカス駆動部12、センサ11を介してフォーカスレンズ3のスライド量を検出するフォーカス検出部10等が備えられている。   Next, as illustrated in FIG. 2, the imaging device 1 includes a front lens 2, a focus lens 3, a filter (which is an infrared filter or an optical filter) 4 that removes harmful infrared rays, harmful reflected light, and the like. , An image pickup device (CCD: Charge Coupled Devices) 5, an analog image signal output from the image pickup device 5 is converted into a digital image signal C, and AFE (Analog Front End) 6 is output. TG (Timing Generator) 13 to be controlled by, a focus drive unit 12 that performs slide drive of the focus lens 3 in the optical axis direction, a focus detection unit 10 that detects the slide amount of the focus lens 3 via the sensor 11, and the like. Yes.

撮像素子5は、複数の光電変換素子が並設されて構成され、夫々の光電変換素子毎に撮像信号Sを光電変換してアナログ画像信号を出力するように構成されている。   The imaging element 5 is configured by arranging a plurality of photoelectric conversion elements in parallel, and is configured to photoelectrically convert the imaging signal S for each photoelectric conversion element and output an analog image signal.

AFE6は、撮像素子5を介して出力されたアナログ画像信号に対してノイズを除去する相関二重サンプリング回路(CDS:Corelated Double Sampling)7、相関二重サンプリング回路7で相関二重サンプリングされた画像信号を増幅する可変利得増幅器(AGC:Automatic Gain Control)8、可変利得増幅器8を介して入力された撮像素子5からのアナログ画像信号をデジタル画像信号に変換するA/D変換器9、等によって構成され、撮像素子5から出力された画像信号を、所定のサンプリング周波数でデジタル画像信号に変換し、焦点調整装置15に出力する。
The AFE 6 is a correlated double sampling circuit (CDS: Correlated Double Sampling) 7 that removes noise from the analog image signal output via the image sensor 5, and an image that has been correlated double sampled by the correlated double sampling circuit 7. A variable gain amplifier (AGC) 8 that amplifies the signal, an A / D converter 9 that converts an analog image signal from the image sensor 5 input via the variable gain amplifier 8 into a digital image signal, and the like The image signal configured and output from the image sensor 5 is converted into a digital image signal at a predetermined sampling frequency and output to the focus adjustment device 15.

焦点調整装置15は、撮像装置1から出力されたデジタル画像信号Cを処理して第一のチャートCH1及び第二のチャートCH2における撮像模様のMTFを演算するMTF演算部16、第一のチャートCH1のMTF値と第二のチャートCH2のMTFとが一致するか否かを比較するMTF比較部25、ROM(Read Only Memory)23、CPU(Central Processing Unit)24、AFE6から出力された画像データを一時的に記憶するバッファ26等を備え、CPU24が、ROM23に格納された制御用プログラムに従って、焦点調整装置15の各処理を制御する。   The focus adjustment device 15 processes the digital image signal C output from the imaging device 1 to calculate the MTF of the imaging pattern in the first chart CH1 and the second chart CH2, and the first chart CH1. Image data output from the MTF comparison unit 25, the ROM (Read Only Memory) 23, the CPU (Central Processing Unit) 24, and the AFE 6 for comparing whether or not the MTF value of the second chart CH2 matches the MTF of the second chart CH2. A buffer 26 or the like that temporarily stores data is provided, and the CPU 24 controls each process of the focus adjustment device 15 in accordance with a control program stored in the ROM 23.

なお、本発明における焦点評価値がMTFによってその機能が発現する。

In addition, the focus evaluation value in this invention expresses the function by MTF.

また、MTF演算部16は、第一のテストチャートCH1のMTFを演算する第一演算部17と、第二のテストチャートCH2のMTFを演算する第二演算部18とによって構成されている。   In addition, the MTF calculator 16 includes a first calculator 17 that calculates the MTF of the first test chart CH1, and a second calculator 18 that calculates the MTF of the second test chart CH2.

次に、図3にもとづいて、本実施例におけるMTFの測定方法を説明する。まず、MTFを求める際には、第一のテストチャートCH1及び第二のテストチャートCH2をフォーカスレンズ3を介して撮像素子5に結像させ、AFE6より画像データ(デジタル信号C)を出力する。
Next, based on FIG. 3, the measuring method of MTF in a present Example is demonstrated. First, when obtaining the MTF, the first test chart CH1 and the second test chart CH2 are imaged on the image sensor 5 through the focus lens 3, and image data (digital signal C) is output from the AFE 6.

そして、図3(a)に表したように、第一演算部17及び第二演算部18において、撮影した第一のテストチャートCH1及び第二のテストチャートCH2の撮像模様のエッジの傾斜角度に基づいてサンプリング数を算出し、次いで、算出されたサンプリング数を用いて、画像データを走査して画素値を取得することによりエッジのステップ応答を求め、次いで、ステップ応答を微分することによってエッジのインパルス応答を求め、次いで、インパルス応答をフーリエ変換してMTFを求める。   Then, as shown in FIG. 3A, in the first calculation unit 17 and the second calculation unit 18, the inclination angle of the edge of the imaging pattern of the first test chart CH1 and the second test chart CH2 taken is set. The sampling number is calculated based on the obtained value, and then the step number response of the edge is obtained by scanning the image data to obtain the pixel value by using the calculated sampling number, and then differentiating the edge response by differentiating the step response. An impulse response is obtained, and then the MTF is obtained by Fourier transforming the impulse response.

詳しくは、まず、図3(a)(b)に表したように、サンプリング数算出部17a、18aにおいて、第一のテストチャートCH1及び第二のテストチャートCH2におけるエッジの傾斜角度αを算出し画像の一方向の走査の基本単位となるサンプリング数Pを算出する。   Specifically, first, as shown in FIGS. 3A and 3B, the sampling number calculation units 17a and 18a calculate the edge inclination angle α in the first test chart CH1 and the second test chart CH2. A sampling number P that is a basic unit of scanning in one direction of the image is calculated.

次に、図3(c)に表したように、画像の一方向を主走査方向、他方向を副走査方向とし(本実施例では、垂直方向を主走査方向、水平方向を副走査方向とする)、撮像素子5で撮影された画像をスキャンする。この際、主走査方向に対しては、サンプリング数Pを1ライン分の走査とするようにして、画像を順次スキャンする。そして、図3(d)に表したように、各スキャン位置の画素値を取得することにより、エッジのステップ応答を求める。
Next, as shown in FIG. 3C, one direction of the image is the main scanning direction and the other direction is the sub-scanning direction (in this embodiment, the vertical direction is the main scanning direction, and the horizontal direction is the sub-scanning direction. The image captured by the image sensor 5 is scanned. At this time, in the main scanning direction, the image is sequentially scanned by setting the sampling number P to one line. Then, as shown in FIG. 3D , the edge step response is obtained by acquiring the pixel value at each scan position.

図3(b)に表したように、テストチャートCH1、CH2の撮像模様のエッジが垂直方向に対してわずかに傾斜している場合、主走査方向を垂直方向とし、エッジラインが垂直方向に1画素分だけ変位するようにサンプリング数Pを設定する。図3(b)は、撮像して得られた画像データを表しており、四角い枠の1つ1つが画素を表し、画素内の△、□、●、○等が画素値を表している。

As shown in FIG. 3B, when the edges of the imaging patterns of the test charts CH1 and CH2 are slightly inclined with respect to the vertical direction, the main scanning direction is the vertical direction, and the edge line is 1 in the vertical direction. The sampling number P is set so as to be displaced by the amount of pixels. FIG. 3B shows image data obtained by imaging, and each square frame represents a pixel, and Δ, □, ●, ○, etc. in the pixel represent pixel values.

また、第一のチャートCH1では、画像データのエッジを介して左側の輝度が暗く、右側の輝度が明るく発現し、第二のチャートCH2では、第一のチャートと対称に表れ、エッジを介して右側の輝度が暗く、左側の輝度が明るく発現する。   In the first chart CH1, the left side luminance is dark and the right side luminance is bright through the edge of the image data, and the second chart CH2 appears symmetrically with the first chart, and passes through the edge. The right luminance is dark and the left luminance is bright.

また、傾斜角度αを求める際には、図3(e)に表したように、第一のテストチャートCH1、第二のテストチャートCH2のエッジに対して、y方向(垂直方向)にS個のウィンドウwを配置する。この際、1つのウィンドウは、x方向(水平方向)に複数の単位要素を有し、各単位要素の高さは画素1個分と同じ値、幅は画素1個分より小さい値とする。   Further, when obtaining the inclination angle α, as shown in FIG. 3E, S pieces in the y direction (vertical direction) with respect to the edges of the first test chart CH1 and the second test chart CH2. The window w is arranged. At this time, one window has a plurality of unit elements in the x direction (horizontal direction), and the height of each unit element is the same value as that of one pixel and the width is a value smaller than that of one pixel.

次に、(式1)を用いて、各ウィンドウw内で2次微分を行う。
(x)=2*P(x)−P(x−1)−P(x+1)・・・(式1)
Next, second order differentiation is performed in each window w using (Equation 1).
L W (x) = 2 * P W (x) −P W (x−1) −P W (x + 1) (Formula 1)

(式1)において、P(x)がウィンドウw内の点(x,Ey)における画素値であり、L(x)がその点における2次微分値である。また、点(x,Ey)は、1つの単位要素をx座標およびy座標の一目盛とした場合の位置であって、Eyが図3(e)中の1,2,3,・・・,Sに相当する。 In (Expression 1), P W (x) is a pixel value at a point (x, Ey W ) in the window w, and L W (x) is a secondary differential value at that point. A point (x, Ey W ) is a position when one unit element is a scale of x and y coordinates, and Ey W is 1, 2, 3,. .., corresponds to S.

次に、各ウィンドウw内において、2次微分値L(x)の最大値Lmaxと最小値Lminを求め、それらの点のx座標Xmax、Xminを求め、(式2)を用いて、ウィンドウw内でのエッジ点のx座標Exを求める。
Ex=(Xmin*|Lmax|+Xmax*|Lmin|)/(|Lmax|+|Lmin|)・・・(式2)
Next, in each window w, the maximum value Lmax W and the minimum value Lmin W of the secondary differential value L W (x) are obtained, and the x-coordinates Xmax W and Xmin W of those points are obtained. used to determine the x-coordinate Ex W of edge points in the window w.
Ex W = (Xmin W * | Lmax W | + Xmax W * | Lmin W |) / (| Lmax W | + | Lmin W |) (Formula 2)

次に、(式2)より得られたエッジ点群からエッジラインの傾斜角度αを求め、この際のcotαを四捨五入して得られた整数値をサンプリング数Pとする。   Next, the inclination angle α of the edge line is obtained from the edge point group obtained from (Equation 2), and the integer value obtained by rounding off cot α at this time is set as the sampling number P.

次に、ステップ応答算出部17b、18bに移り、図3(c)に表したように、まず、1列目の画素を垂直方向に沿ってサンプリング数Pの分だけスキャンし、1列目のスキャンが終了したら、水平方向にスキャン位置を移し、再び垂直方向に沿ってサンプリング数Pの分だけスキャンし、順次、画像データを垂直方向に沿ってサンプリング数ずつスキャンする。
Next, the process proceeds to the step response calculation units 17b and 18b. As shown in FIG. 3C, first, the pixels in the first column are scanned by the number of samplings P along the vertical direction. When the scan is completed, the scan position is moved in the horizontal direction, the scan is again performed by the sampling number P along the vertical direction, and the image data is sequentially scanned by the sampling number along the vertical direction.

次に、図3(d)に表したように、各スキャン位置の画素値を一元的に並べ、エッジのステップ応答を得る。図3(d)において、縦軸に輝度値、横軸には、各スキャン位置を一元的に展開した場合の位置を表している。すなわち、ステップ応答算出部17b、18bにおいて、エッジ付近の画素値を垂直方向にサンプリング数Pずつスキャンして、スキャンした順番に画素値を並べることにより、エッジのステップ応答を得ることができる。   Next, as shown in FIG. 3D, the pixel values at the respective scan positions are arranged in a unified manner to obtain an edge step response. In FIG. 3D, the vertical axis represents the luminance value, and the horizontal axis represents the position when each scan position is developed in an integrated manner. That is, the step response calculation units 17b and 18b can scan the pixel values near the edge by the sampling number P in the vertical direction and arrange the pixel values in the scanned order to obtain the edge step response.

次に、インパルス応答算出部17c、18cに移り、ステップ応答算出部17b、18bで得られたステップ応答を微分することによってインパルス応答に変換する。ここで行う微分は、例えば、ステップ応答の隣接する画素間の差分をとることによって行うことができる。
Next, the impulse response calculation units 17c and 18c are moved to and converted into impulse responses by differentiating the step responses obtained by the step response calculation units 17b and 18b . The differentiation performed here can be performed, for example, by taking the difference between adjacent pixels of the step response.

次に、MTF算出部17d、18dに移り、インパルス応答算出部17c、18cにより求められたインパルス応答をフーリエ変換することによりMTFを求める。この際、フーリエ変換することより、周波数毎に実数部分と虚数部分が得られ、この実数部分と虚数部分を加算してMTFを取得する。また、MTFの算出方法については、これに限らず、例えば、ISO12233に記載の解像度測定方法を用いてもよい。   Next, the process shifts to the MTF calculation units 17d and 18d, and the MTF is obtained by Fourier transforming the impulse responses obtained by the impulse response calculation units 17c and 18c. At this time, a real part and an imaginary part are obtained for each frequency by performing Fourier transform, and the MTF is obtained by adding the real part and the imaginary part. Further, the MTF calculation method is not limited to this, and for example, the resolution measurement method described in ISO12233 may be used.

次に、図4に基づいて、第一のテストチャートCH1と第二のテストチャートCH2とを用いて、フォーカスレンズ3の合焦位置を求める際の手順を説明する。この手順は、CPU24がROM23に格納されたプログラムにもとづいて、各機能部に指令信号を与えて実行する。また、図4におけるSはステップを表している。
Next, based on FIG. 4, the procedure for obtaining the in-focus position of the focus lens 3 using the first test chart CH1 and the second test chart CH2 will be described . This procedure is executed by giving a command signal to each functional unit based on a program stored in the ROM 23 by the CPU 24 . Further, S in FIG. 4 represents a step.

まず、この手順は、オペレータによって焦点調整装置15に起動信号が入力された際にスタートする。   First, this procedure starts when an activation signal is input to the focus adjustment device 15 by the operator.

次いで、S101において、フォーカスレンズ3を所定の初期位置に移動させてS102に移る。   Next, in S101, the focus lens 3 is moved to a predetermined initial position, and the process proceeds to S102.

次いで、S102において、第一のテストチャートCH1及び第二のテストチャートCH2の撮影を開始し、S103において、AFE6を介して出力された画像データを焦点調整装置15に出力する。
Next, imaging of the first test chart CH1 and the second test chart CH2 is started in S102, and the image data output via the AFE 6 is output to the focus adjustment device 15 in S103.

次いで、S104において、第一演算部17において第一のテストチャートCH1における撮像模様のMTFを演算して求めるとともに、第二演算部18において第二のテストチャートCH2における撮像模様のMTFを演算して求め、その後、S105に移る。
Next, in S104, the first calculation unit 17 calculates and obtains the MTF of the imaging pattern in the first test chart CH1, and the second calculation unit 18 calculates the MTF of the imaging pattern in the second test chart CH2. After that, the process proceeds to S105.

次いで、S105において、第一演算部17で算出した所定周波数におけるMTFと第二演算部18で算出した所定周波数におけるMTFとの差を算出し、その後、S106に移る。この際、MTFは、周波数成分毎の算出が可能であるので、予め定められた高域の周波数成分に対応するMTFを比較すればよい。
Next, in S105, the difference between the MTF at the predetermined frequency calculated by the first calculation unit 17 and the MTF at the predetermined frequency calculated by the second calculation unit 18 is calculated, and then the process proceeds to S106. At this time, since the MTF can be calculated for each frequency component, the MTF corresponding to a predetermined high frequency component may be compared.

次いで、S106において、第一演算部17で算出されたMTFと第二演算部18で算出されたMTFとの差がゼロであるか否かを判定し(所謂、第一のテストチャートCH1を撮影して得られたMTFと第二のテストチャートCH2を撮影して獲られたMTFが一致するか否かを判定する)、S106において、両者の差がゼロである(Yes)の場合には、フォーカスレンズ3が合焦位置にあるとして本処理を終了(END)し、両者の差がゼロでない(No)の場合には、S107に移る。
Next, in S106, it is determined whether or not the difference between the MTF calculated by the first calculation unit 17 and the MTF calculated by the second calculation unit 18 is zero (so-called first test chart CH1 is photographed). If the difference between the two is zero (Yes) in S106, it is determined whether or not the MTF obtained by photographing the second test chart CH2 and the MTF obtained by photographing are the same. If the focus lens 3 is at the in-focus position, the present process is terminated (END). If the difference between the two is not zero (No), the process proceeds to S107.

次いで、S107において、フォーカスレンズ3を光軸Xに沿って所定量分だけ移動させ、その後、S103からS106を繰り返し、S106において両者の差がゼロに至った際に本処理を終了する。   Next, in S107, the focus lens 3 is moved by a predetermined amount along the optical axis X. Thereafter, S103 to S106 are repeated, and when the difference between the two reaches zero in S106, this processing is terminated.

以上のように、実施例に記載の撮像装置1における焦点調整方法及び焦点調整装置によれば、被写体Pの目標位置を介して光軸X上の前後に、白色と黒色とに画成されている撮像模様を備えた第一のテストチャートCH1及び第二のテストチャートCH2を設定し、フォーカスレンズ3を光軸X方向に移動させ、第一のテストチャートCH1及び第二のテストチャートCH2の夫々毎に、フォーカスレンズ3の移動量に対応付けて、撮像素子5に結像された撮像模様のMTFをもとめ、第一のテストチャートCH1におけるMTFと第二のテストチャートCH2におけるMTFとが一致するようにフォーカスレンズ3の位置を設定するので、焦点評価値のピーク点が不明瞭であっても精度よく合焦位置を調整できるとともに、その調整を容易にできる。
As described above , according to the focus adjustment method and the focus adjustment device in the image pickup apparatus 1 described in the embodiment, white and black are defined before and after the target position of the subject P on the optical axis X. The first test chart CH1 and the second test chart CH2 having the imaging pattern are set, the focus lens 3 is moved in the optical axis X direction, and each of the first test chart CH1 and the second test chart CH2 is set. Each time, the MTF of the imaging pattern imaged on the imaging device 5 is determined in association with the amount of movement of the focus lens 3, and the MTF in the first test chart CH1 matches the MTF in the second test chart CH2. Since the position of the focus lens 3 is set as described above, the focus position can be adjusted accurately even if the peak point of the focus evaluation value is unclear, and the adjustment is easy. It can be.

また、本発明の実施例に記載の撮像装置1における焦点調整方法及び焦点調整装置によれば、光軸X上に沿って離間した第一のテストチャートCH1と第二のテストチャートCH2を同時に撮像でき、焦点調整のための作業が容易であって、且つ、精度良くフォーカスレンズ3の合焦位置を検出できる。
Further, according to the focus adjustment method and the focus adjustment device in the imaging apparatus 1 described in the embodiment of the present invention, the first test chart CH1 and the second test chart CH2 that are separated along the optical axis X are simultaneously imaged. In addition, the focus adjustment operation is easy and the focus position of the focus lens 3 can be detected with high accuracy.

以上、本発明の一実施例について説明したが、本発明は、前記実施例に限定されるものでなく、種各の態様を取ることができる。   As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example, It can take various aspects.

例えば、図5に表したように、第一のテストチャートCH1及び第二のテストチャートCH2において、夫々、傾斜エッジを有する複数の撮像模様を備えてもよい。これにより、撮像模様が単数であるよりも、ノイズの影響を低減できて精度良く焦点評価値を得ることができる。また、複数の撮像模様を複数の位置に配置することにより、用途に応じて、画像における焦点位置を設定でき、付加価値を向上できる。   For example, as illustrated in FIG. 5, the first test chart CH1 and the second test chart CH2 may each include a plurality of imaging patterns having inclined edges. As a result, the influence of noise can be reduced and the focus evaluation value can be obtained with higher accuracy than when there is a single imaging pattern. Further, by arranging a plurality of imaging patterns at a plurality of positions, the focal position in the image can be set according to the application, and the added value can be improved.

また、本実施例では、第一のテストチャートCH1のMTF値と第二のテストチャートCH2のMTF値との差がゼロになる位置を合焦位置としたが、ゼロに代えて予め定められた所定値の範囲に至った際に、合焦位置とするようにしてもよい。   In the present embodiment, the position at which the difference between the MTF value of the first test chart CH1 and the MTF value of the second test chart CH2 becomes zero is set as the in-focus position. When the predetermined range is reached, the focus position may be set.

また、本実施例では、白色と黒色の撮像模様を有するチャートを用いたが、その他の色(例えば、赤色、緑色、青色)を有するチャートを用い、特定色成分に対する合焦調整を行ってもよい。   In this embodiment, a chart having white and black imaging patterns is used. However, even when a chart having other colors (for example, red, green, and blue) is used and focus adjustment for a specific color component is performed. Good.

また、本実施例では、フォーカスレンズ3の駆動部12(電動)を有する、所謂オートフォーカス機能を備えた撮像装置について記載したが、本発明は、オートフォーカス機能を備えた撮像装置に限定されるものではなく、フォーカスレンズ3の位置を手動で調整する撮像装置にも適用できる。また、その際には、例えば、フォーカスレンズ3を、光軸Xに沿って羅合させて合焦位置でネジ止めしてもよい。   In the present embodiment, an imaging apparatus having a so-called autofocus function having the drive unit 12 (electric) of the focus lens 3 is described. However, the present invention is limited to an imaging apparatus having an autofocus function. In addition, the present invention can be applied to an imaging apparatus that manually adjusts the position of the focus lens 3. In this case, for example, the focus lens 3 may be aligned along the optical axis X and screwed at the in-focus position.

また、本発明をオートフォカスを有する撮像装置に適用する際には、本発明を用いてフォーカスレンズ3の合焦点を求め、それらをROM23に記憶してオートフォーカスのパラメータとしてもよい。   Further, when the present invention is applied to an image pickup apparatus having autofocus, the focal point of the focus lens 3 may be obtained using the present invention and stored in the ROM 23 as an autofocus parameter.

本発明の一実施例の、撮像装置における焦点調整方法を表した略図であって、(a)図に第一、第二のテストチャ−トの設置例を表し、(b)図に検出されるMTF特性を表している。。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic showing the focus adjustment method in an imaging device of one Example of this invention, Comprising: (a) A figure shows the installation example of the 1st, 2nd test chart, (b) It detects in FIG. It represents the MTF characteristics. . 同実施例における、撮像装置の構成を表すブロック図である。It is a block diagram showing the structure of the imaging device in the Example. 同実施例における、MTFの測定方法を表す図である。It is a figure showing the measuring method of MTF in the Example. 同実施例における、焦点調整方法の手順を表したフローチャートである。6 is a flowchart showing a procedure of a focus adjustment method in the embodiment. 図1(a)に表したテストチャートの変形例である。It is a modification of the test chart represented to Fig.1 (a). 従来の焦点調整方法の説明図である。It is explanatory drawing of the conventional focus adjustment method.

符号の説明Explanation of symbols

1…撮像装置、2…前部レンズ、3…フォーカスレンズ、4…フィルタ、5…撮像素子、6…AFE(Analog Front End)、7…相関二重サンプリング回路、8…可変利得増幅器(AGC:Automatic Gain Control)、9…A/D変換器、10…フォーカス検出部、11…センサ、12…フォーカス駆動部、13…TG(Timing Generator)、15…焦点調整装置、16…MTF演算部、17…第一演算部、17a,18a…サンプリング数算出部、17b,18b…ステップ応答算出部、17c,18c…インパルス応答算出部、17d,18d…MTF算出部、18…第二演算部、23…ROM(Read Only Memory)、24…CPU(Central Processing Unit)、25…MTF比較部、26…バッファ。
DESCRIPTION OF SYMBOLS 1 ... Imaging device, 2 ... Front lens, 3 ... Focus lens, 4 ... Filter, 5 ... Imaging element, 6 ... AFE (Analog Front End), 7 ... Correlated double sampling circuit, 8 ... Variable gain amplifier (AGC: (Automatic Gain Control), 9 ... A / D converter, 10 ... focus detection unit, 11 ... sensor, 12 ... focus drive unit, 13 ... TG (Timing Generator), 15 ... focus adjustment device, 16 ... MTF calculation unit, 17 ... 1st calculating part, 17a, 18a ... Sampling number calculating part, 17b, 18b ... Step response calculating part, 17c, 18c ... Impulse response calculating part, 17d, 18d ... MTF calculating part, 18 ... 2nd calculating part, 23 ... ROM (Read Only Memory), 24 ... CPU (Central Processi g Unit), 25 ... MTF comparing unit, 26 ... buffer.

Claims (2)

被写体像を撮像素子に導く撮像レンズと、
前記撮像レンズを介して導かれた前記被写体像を光電変換し、画像信号を出力する前記撮像素子と、を用いた撮像装置において、
前記被写体と前記撮像素子とを結ぶ光軸上に沿って、前記被写体の目標位置を介して前後に、白色と黒色とに画成された撮像模様を有する第一、第二のテストチャートを設定し、
前記撮像レンズを前記光軸方向に移動させ、前記第一、第二のテストチャートの夫々毎に、前記撮像レンズの移動量に対応付けて、前記撮像素子に結像された前記撮像模様の焦点評価値をもとめ、前記第一のテストチャートにおける焦点評価値と前記第二のテストチャートにおける焦点評価値とが一致するように前記撮像レンズの位置を設定する焦点調整方法であって、
前記光軸に直交する直交線を介して、前記第一のテストチャートと前記第二のテストチャートとを対称に配置して、夫々が重なり合わない位置に配置すると共に、前記第一のテストチャートの撮像模様の白色と黒色とのエッジ部分と、前記第二のテストチャートの撮像模様の白色と黒色とのエッジ部分とを対称に配置し、
前記撮像模様のエッジが、前記撮像素子の画素の配置方向に対して傾斜角度が形成され、前記画素配置の一つの方向を主走査方向とし該主走査方向に直交する方向を副走査方向とした際に、
前記傾斜角度に基づいて、前記撮像素子の画素配置の主走査方向に対する走査の基本となるサンプリング数が、前記傾斜エッジが前記副走査方向に略1画素分だけ変位するのに要する前記主走査方向の画素の変位数となるように、前記主走査方向のサンプリング数を求め、
次いで、前記主走査方向に対しては前記サンリング数をもって1ライン分の走査とするようにして前記撮像素子に撮影された画像を画素毎にスキャンし、1ライン分のスキャンが終わったら副走査方向に1画素ずつスキャン位置をずらして主走査方向のスキャンを繰り返し、各スキャン位置の画素値を取得することによって、前記エッジのステップ応答を求め、
次いで、前記ステップ応答を微分することによってインパルス応答を求めて、該インパルス応答をフーリエ変換することによってMTF(Modulation Transfer Function)を求め、
前記MTFを前記焦点評価値の指標とする、
ことを特徴とする撮像装置における焦点調整方法。
An imaging lens for guiding the subject image to the imaging device;
In the imaging apparatus using the imaging element that photoelectrically converts the subject image guided through the imaging lens and outputs an image signal,
First and second test charts having imaging patterns defined in white and black are set back and forth through the target position of the subject along the optical axis connecting the subject and the imaging device. And
The imaging lens is moved in the optical axis direction, and the focal point of the imaging pattern imaged on the imaging element in association with the movement amount of the imaging lens for each of the first and second test charts. A focus adjustment method for obtaining an evaluation value and setting a position of the imaging lens so that a focus evaluation value in the first test chart and a focus evaluation value in the second test chart coincide with each other,
The first test chart and the second test chart are arranged symmetrically via an orthogonal line orthogonal to the optical axis, and are arranged at positions where they do not overlap, and the first test chart The white and black edge portions of the image pickup pattern and the white and black edge portions of the image pickup pattern of the second test chart are arranged symmetrically ,
The edge of the imaging pattern is inclined with respect to the pixel arrangement direction of the image sensor, and one direction of the pixel arrangement is a main scanning direction and a direction orthogonal to the main scanning direction is a sub-scanning direction. When
Based on the tilt angle, the main scanning direction required for the number of samplings, which is the basis of scanning in the main scanning direction of the pixel arrangement of the image sensor, to be displaced by approximately one pixel in the sub-scanning direction of the tilt edge The number of samplings in the main scanning direction is calculated so that the number of pixel displacements becomes,
Next, in the main scanning direction, the image taken on the image sensor is scanned for each pixel so that the number of sanding is set to scan for one line, and when scanning for one line is completed, sub-scanning is performed. By repeating the scanning in the main scanning direction by shifting the scanning position by one pixel in the direction, and obtaining the pixel value of each scanning position, the step response of the edge is obtained,
Next, an impulse response is obtained by differentiating the step response, and an MTF (Modulation Transfer Function) is obtained by Fourier transforming the impulse response,
The MTF is used as an index of the focus evaluation value.
A focus adjustment method in an imaging apparatus.
前記第一のテストチャート及び第二のテストチャートには、前記撮像模様が複数並設されている、
ことを特徴とする請求項1に記載の撮像装置における焦点調整方法。

In the first test chart and the second test chart, a plurality of the imaging patterns are arranged side by side.
The focus adjustment method in the imaging apparatus according to claim 1 .

JP2007072242A 2007-03-20 2007-03-20 Focus adjustment method in imaging apparatus Expired - Fee Related JP4549362B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007072242A JP4549362B2 (en) 2007-03-20 2007-03-20 Focus adjustment method in imaging apparatus
KR1020097021810A KR100991551B1 (en) 2007-03-20 2008-03-19 Focal point adjusting method in imaging apparatus
PCT/JP2008/055802 WO2008114888A1 (en) 2007-03-20 2008-03-19 Focal point adjusting method and focal point adjusting device in imaging apparatus
CN2008100867444A CN101271245B (en) 2007-03-20 2008-03-20 Focal point adjusting method in imaging apparatus
TW097109967A TW200839342A (en) 2007-03-20 2008-03-20 Focal point adjusting method and focal point adjusting device in imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072242A JP4549362B2 (en) 2007-03-20 2007-03-20 Focus adjustment method in imaging apparatus

Publications (2)

Publication Number Publication Date
JP2008233481A JP2008233481A (en) 2008-10-02
JP4549362B2 true JP4549362B2 (en) 2010-09-22

Family

ID=39765987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072242A Expired - Fee Related JP4549362B2 (en) 2007-03-20 2007-03-20 Focus adjustment method in imaging apparatus

Country Status (5)

Country Link
JP (1) JP4549362B2 (en)
KR (1) KR100991551B1 (en)
CN (1) CN101271245B (en)
TW (1) TW200839342A (en)
WO (1) WO2008114888A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773652B2 (en) * 2009-08-11 2014-07-08 Ether Precision, Inc. Method and device for aligning a lens with an optical system
KR101113129B1 (en) * 2010-10-25 2012-02-15 삼성전기주식회사 Focusing method for camera module and image capturing device
JP5780756B2 (en) 2010-12-24 2015-09-16 キヤノン株式会社 Focus adjustment apparatus and method
JP5781351B2 (en) * 2011-03-30 2015-09-24 日本アビオニクス株式会社 Imaging apparatus, pixel output level correction method thereof, infrared camera system, and interchangeable lens system
JP2012256795A (en) * 2011-06-10 2012-12-27 Disco Abrasive Syst Ltd Processing device
CN103149789B (en) * 2013-02-28 2015-08-26 宁波舜宇光电信息有限公司 The method of testing of module motor curve is evaluated based on image MTF
JP6196148B2 (en) * 2013-12-24 2017-09-13 エルジー ディスプレイ カンパニー リミテッド Defocus control device and defocus control method
CN104297896B (en) * 2014-09-01 2018-07-06 联想(北京)有限公司 A kind of focusing method and electronic equipment
CN104280995B (en) * 2014-09-19 2017-04-19 北京空间机电研究所 Quick imaging method of camera focal plane charge coupled device
CN104811692B (en) * 2015-04-09 2017-09-29 南昌欧菲光电技术有限公司 Method for testing camera module
CN107783250A (en) * 2016-08-26 2018-03-09 昆山丘钛微电子科技有限公司 Picture pick-up device quick focusing method with automatic focusing function
CN107995386B (en) * 2016-10-26 2021-01-26 光宝电子(广州)有限公司 Camera module
CN110290313B (en) * 2019-06-05 2020-09-15 河南大学 Method for guiding automatic focusing equipment to be out of focus
JP2023165051A (en) * 2020-10-05 2023-11-15 Cctech Japan株式会社 Test chart, camera manufacturing device, manufacturing method of camera, and focus detection program
CN112822483B (en) * 2021-01-08 2022-10-14 重庆创通联智物联网有限公司 Automatic focusing test method and device, sampling equipment and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235911A (en) * 1988-03-16 1989-09-20 Asahi Optical Co Ltd Focused position detecting method
JPH0949965A (en) * 1995-08-08 1997-02-18 Nikon Corp Focal position detector
JPH1198315A (en) * 1997-09-18 1999-04-09 Fuji Photo Film Co Ltd Picture reading device
JP2006064969A (en) * 2004-08-26 2006-03-09 Fujinon Corp Automatic focusing system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438428B2 (en) * 2004-01-26 2010-03-24 ソニー株式会社 Video camera, in-focus position search method, camera body and interchangeable lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235911A (en) * 1988-03-16 1989-09-20 Asahi Optical Co Ltd Focused position detecting method
JPH0949965A (en) * 1995-08-08 1997-02-18 Nikon Corp Focal position detector
JPH1198315A (en) * 1997-09-18 1999-04-09 Fuji Photo Film Co Ltd Picture reading device
JP2006064969A (en) * 2004-08-26 2006-03-09 Fujinon Corp Automatic focusing system

Also Published As

Publication number Publication date
JP2008233481A (en) 2008-10-02
CN101271245B (en) 2011-01-12
CN101271245A (en) 2008-09-24
KR100991551B1 (en) 2010-11-04
KR20090125184A (en) 2009-12-03
WO2008114888A1 (en) 2008-09-25
TW200839342A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4549362B2 (en) Focus adjustment method in imaging apparatus
US8730373B2 (en) Image forming apparatus
US8872962B2 (en) Focus detection apparatus and image pickup apparatus
CN104104849B (en) Picture pick-up device and its control method
JP5398346B2 (en) Imaging apparatus and signal processing apparatus
US8908026B2 (en) Imaging method and microscope device
JP6021780B2 (en) Image data processing device, distance calculation device, imaging device, and image data processing method
JP5211714B2 (en) Imaging device
KR20120060202A (en) 2 image-capture system and method with two operating modes
KR20080028764A (en) Imaging apparatus with af optical zoom
JP2016038414A (en) Focus detection device, control method thereof, and imaging apparatus
US10630882B2 (en) Image pickup apparatus having function of correcting defocusing and method for controlling the same
CN108429873B (en) Focus detection apparatus and image pickup apparatus
JP4611342B2 (en) MTF measuring method and MTF measuring apparatus in imaging system
JP4334784B2 (en) Autofocus device and imaging device using the same
KR20090127171A (en) Method and device for detecting chromatic aberration in imaging device
JP4972902B2 (en) Imaging apparatus and imaging method
JP4754587B2 (en) MTF measuring method and MTF measuring apparatus
US10200622B2 (en) Image processing method, image processing apparatus, and imaging apparatus
JP7023673B2 (en) Focus control device, focus control method, and image pickup device
JP7250428B2 (en) Imaging device and its control method
JP6136364B2 (en) Defocus amount detection device and camera
JP6493444B2 (en) Imaging device
JP2015022028A (en) Imaging device
JP2008258786A (en) Brightness signal generating method and brightness signal generating device, and focus detecting method and focus detecting device in imaging apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees