JP4544404B2 - Lithium manganese composite oxide, method for producing the same, and use thereof - Google Patents

Lithium manganese composite oxide, method for producing the same, and use thereof Download PDF

Info

Publication number
JP4544404B2
JP4544404B2 JP2004106641A JP2004106641A JP4544404B2 JP 4544404 B2 JP4544404 B2 JP 4544404B2 JP 2004106641 A JP2004106641 A JP 2004106641A JP 2004106641 A JP2004106641 A JP 2004106641A JP 4544404 B2 JP4544404 B2 JP 4544404B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
average particle
manganese composite
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004106641A
Other languages
Japanese (ja)
Other versions
JP2005289720A (en
Inventor
真幸 芳尾
昌樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004106641A priority Critical patent/JP4544404B2/en
Publication of JP2005289720A publication Critical patent/JP2005289720A/en
Application granted granted Critical
Publication of JP4544404B2 publication Critical patent/JP4544404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は新規なリチウムマンガン複合酸化物に関するものであって、詳しくは、平均粒子径が1〜20μmの四三酸化マンガンと、平均粒子径が0.01〜0.2μmのリチウム化合物と、平均粒子径が0.01〜0.2μmのMg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInから選ばれる少なくとも一種以上の金属化合物とを用いて合成された、BET比表面積が0.1〜0.5/gで一般式Li1+XMn2−Y−Z4+δ(式中MはMg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInから選ばれる少なくとも一種類以上であり、0≦X≦1/3,0≦Y≦1/3,0<Z≦1/4,0.0≦δ≦0.2)で表されるスピネル型結晶構造のリチウムマンガン複合酸化物に関するものである。 The present invention relates to a novel lithium manganese composite oxide, specifically, trimanganese tetraoxide having an average particle diameter of 1 to 20 μm, a lithium compound having an average particle diameter of 0.01 to 0.2 μm , and an average BET synthesized using at least one metal compound selected from Mg, Ni, Co, Fe, Cr, Ti, Cu, B, Al, Ga and In having a particle size of 0.01 to 0.2 μm formula Li 1 + X Mn 2-Y -Z M Z O 4 + δ ( wherein M is a specific surface area of 0.1~ 0.5 m 2 / g Mg, Ni, Co, Fe, Cr, Ti, Cu, B, At least one selected from Al, Ga and In, and 0 ≦ X ≦ 1/3, 0 ≦ Y ≦ 1/3, 0 <Z ≦ 1/4, 0.0 ≦ δ ≦ 0.2) The lithium-manganese complex oxide with spinel type crystal structure Is.

マンガン系材料は、原料のマンガンが資源的に豊富で安価であり、環境に対して優しい材料であることから、各種用途に対して有望な材料のひとつである。   Manganese-based materials are one of the promising materials for various applications because the raw material manganese is abundant in resources and inexpensive, and is an environmentally friendly material.

また、リチウム二次電池は、理論上、高いエネルギー密度の電池が構成可能であることから、次世代を担う新型二次電池として幅広い分野への適用が進められており、一部で既に実用化されたものも含めて、高性能化を目指した研究が進められている。   In addition, since lithium secondary batteries can theoretically be constructed with a high energy density, they are being applied to a wide range of fields as new secondary batteries that will lead the next generation. The research aiming at high performance is being promoted.

パーソナルユースのモバイル機器の普及に伴って、小型、軽量でエネルギー密度の高いリチウム二次電池の開発が強く望まれるようになり、負極にリチウムを吸蔵、放出可能な炭素質材料を用いたリチウムイオン電池が実用化されている。   With the spread of personal use mobile devices, the development of small, lightweight and high energy density lithium secondary batteries has become strongly desired. Lithium ions using carbonaceous materials that can store and release lithium in the negative electrode Batteries are in practical use.

現在のリチウムイオン電池の正極材料には、リチウムコバルト酸化物(以下LiCoOと表記)が主に使用されているが、コバルト原料が高価であることや資源的な制約があることから、代替材料の開発が望まれている。LiCoOに代わる4V級の起電力を示す正極材料としては、リチウムニッケル酸化物(以下LiNiOと表記)やリチウムマンガンスピネル(以下LiMnと表記)が挙げられ,それぞれ実用化に向けた研究が進められている。 Lithium cobalt oxide (hereinafter referred to as LiCoO 2 ) is mainly used as the positive electrode material of current lithium ion batteries, but it is an alternative material because the cobalt raw material is expensive and has limited resources. Development is desired. Examples of the positive electrode material exhibiting a 4V class electromotive force replacing LiCoO 2 include lithium nickel oxide (hereinafter referred to as LiNiO 2 ) and lithium manganese spinel (hereinafter referred to as LiMn 2 O 4 ). Research is ongoing.

LiNiOに関しては,最近,Niの1/2をMnで置換した材料(LiNi1/2Mn1/2)やNiの2/3をCoとMnで半分ずつ置換した材料(LiNi1/3Co1/3Mn1/3)が研究されているが,出力特性が低いこと、正極性能が組成や構造に鋭敏なため合成が複雑となり、さらに合成条件の厳密な制御が必要であることから、現在のところ実用化には至っていない.
LiMnにおいては、原料のMnが資源的に豊富で安価であり、環境への影響が小さいこと、他の正極材料に比べて安全性が高く、LiMnを正極に使用した場合、電池の安全性の確保が容易になることから、民生用の小型二次電池用途に留まらず,電気自動車、ハイブリッド自動車、スクーターおよび電動自転車用などの駆動用電源や、産業用途、燃料電池の補助電源、電力貯蔵や電力負荷平準用途などの比較的大きな二次電池への適用に対して有望であると考えられ、一部で既に実用化が始まっている。
Regarding LiNiO 2 , recently, a material in which 1/2 of Ni is replaced with Mn (LiNi 1/2 Mn 1/2 O 2 ) and a material in which 2/3 of Ni is replaced with Co and Mn in half (LiNi 1 1 / 3 Co 1/3 Mn 1/3 O 2 ) has been studied, but the output characteristics are low, the positive electrode performance is sensitive to the composition and structure, the synthesis is complicated, and the synthesis conditions must be strictly controlled. Because of this, it has not been put into practical use at present.
In LiMn 2 O 4 , the raw material Mn is abundant in resources and inexpensive, has little impact on the environment, and is safer than other positive electrode materials. When LiMn 2 O 4 is used for the positive electrode Since it is easy to ensure the safety of batteries, it is not limited to small-sized secondary batteries for consumer use, but also power sources for driving electric vehicles, hybrid vehicles, scooters and electric bicycles, industrial applications, and fuel cells. It is considered promising for application to relatively large secondary batteries such as auxiliary power supplies, power storage and power load leveling, and some of them have already been put into practical use.

最近、特に注目されているリチウム二次電池の用途として、ハイブリッド自動車用電池が挙げられるが、この用途においては、自動車が発進する際や加速する際のパワーアシスト性能、および減速時の運動エネルギーの回生性能が重要とされ、短時間で大きな電流を出し入れする能力(=ハイレート充放電特性)が必要となる。このため、4V級正極材料の中で最も出力特性が優れているLiMnを正極に使用するリチウム二次電池の実用化に期待が寄せられている。しかし、LiMnはLiCoOに比べて高温安定性が劣ることから、この点の改善が実用化への最重要課題とされてきた。 Recently, lithium automobile batteries that have attracted particular attention include batteries for hybrid vehicles. In this application, the power assist performance when the vehicle starts and accelerates, and the kinetic energy during deceleration. Regenerative performance is important, and the ability to take in and out a large current in a short time (= high rate charge / discharge characteristics) is required. Therefore, we expect the practical application of lithium secondary batteries have been asked to use the LiMn 2 O 4 which is excellent most output characteristics among the 4V class positive electrode material for the positive electrode. However, since LiMn 2 O 4 is inferior to LiCoO 2 in high-temperature stability, improvement of this point has been regarded as the most important issue for practical use.

LiMnの高温安定性の改善策として、{Li}[Li・M・Mn(2−x−y)]O4+d(ただし、{}内は構造中の酸素四面***置,[]内は構造中の酸素八面***置を表す。0<x≦0.33,0<y≦1.0,−0.5<d<0.8,MはLiおよびMn以外の元素)の組成で表され、LiおよびMn以外の少なくとも1種類の他種元素(M)を含有するスピネル構造リチウムマンガン系酸化物が提案されている(特許文献1)。このLiおよびMn以外の少なくとも1種類の他種元素,(M)を含有するスピネル構造リチウムマンガン系酸化物は、マンガン化合物とリチウム化合物と含有他種元素の化合物を混合、焼成することにより他種元素を含有するスピネル構造リチウムマンガン系酸化物とすることが提案されている。 As a measure for improving the high temperature stability of LiMn 2 O 4 , {Li} [Li x · M y · Mn (2-xy) ] O 4 + d (where {} is the position of the oxygen tetrahedron in the structure, [ ] Represents the oxygen octahedron position in the structure: 0 <x ≦ 0.33, 0 <y ≦ 1.0, −0.5 <d <0.8, M is an element other than Li and Mn) There has been proposed a spinel structure lithium manganese oxide represented by a composition and containing at least one other element (M) other than Li and Mn (Patent Document 1). This spinel structure lithium manganese oxide containing at least one other kind of element other than Li and Mn and (M) is mixed with a manganese compound, a lithium compound, and a compound of the other kind of element, and then fired. It has been proposed to use a spinel lithium manganese oxide containing an element.

しかしながら、この特許文献1の図3に示されている様に、従来のリチウムマンガン複合酸化物は大きい粒子と小さい粒子の混合体であり,粒径が不均一なスピネル構造リチウムマンガン系酸化物しか得られず、従って、第7頁の表1に示されている様に、50℃の容量維持率が、50サイクル/10サイクルとマイルドな条件にも係らず、95%以下と低い値のものしか得られていなかった。
従って、高温安定性により優れたリチウムマンガン複合酸化物の開発が望まれている。
However, as shown in FIG. 3 of Patent Document 1, the conventional lithium manganese composite oxide is a mixture of large particles and small particles, and only a spinel structure lithium manganese oxide having a nonuniform particle size. Therefore, as shown in Table 1 on page 7, the capacity maintenance rate at 50 ° C. is as low as 95% or less regardless of mild conditions of 50 cycles / 10 cycles. It was only obtained.
Therefore, development of a lithium manganese composite oxide that is superior in high-temperature stability is desired.

又、マンガン原料として上記の様に二酸化マンガンを使用する方法があるが、目的とするスピネル構造リチウムマンガン系酸化物と結晶構造的に酸素の配置の同一なスピネル構造のマンガン酸化物、即ち、四三酸化マンガン(構造式:Mn)を使用することにより、結晶構造が整ったスピネル構造リチウムマンガン系酸化物が得られると推定して製造した場合もある(例えば、特許文献2)。しかしながら、Li、Mn及び他の金属との混合が十分でなく、特許文献2の第10頁の表3に示されている様に、室温と低い温度にも係らず、20サイクル/1サイクルで表される容量維持率が95%以下と低い値のものしか得られていなかった。 In addition, there is a method of using manganese dioxide as a manganese raw material as described above, but the spinel structure manganese oxide having the same crystal arrangement as that of the target spinel structure lithium manganese oxide, ie, four In some cases, it is presumed that a spinel structure lithium manganese oxide having a well-defined crystal structure can be obtained by using manganese trioxide (structural formula: Mn 3 O 4 ) (for example, Patent Document 2). However, mixing with Li, Mn and other metals is not sufficient, and as shown in Table 3 on page 10 of Patent Document 2, it is 20 cycles / 1 cycle regardless of room temperature and low temperature. Only those having a capacity retention rate as low as 95% or less were obtained.

特開平11−071115号公報(請求項1、図3、第7頁の表1)JP 11-071115 (Claim 1, FIG. 3, Table 1 on page 7)

特開平9−086933号公報(第5頁左欄1行〜10行、第10頁の表3)JP-A-9-086933 (page 5, left column, lines 1-10, table 3 on page 10)

本発明の目的は、高温安定性を備えた新規なリチウムマンガン複合酸化物とその製造方法を提案し、この複合酸化物を正極活物質に用いたリチウム二次電池を提供することにある。   An object of the present invention is to propose a novel lithium manganese composite oxide having high temperature stability and a method for producing the same, and to provide a lithium secondary battery using the composite oxide as a positive electrode active material.

LiMnの高温安定性向上を目的に鋭意検討を行った結果、Mn原料に平均粒子径が1〜20μmの四三酸化マンガンと、平均粒子径が0.01〜0.2μmのリチウム化合物およびMg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInから選ばれる少なくとも一種以上の金属化合物を用いて、800℃以上、1050℃以下の温度にて焼成を行い、焼成後、500℃までの冷却を1時間あたり100℃以下の速度で行うことにより、従来には得られなかった一次粒子の粒径が揃ったBET比表面積が0.1〜1.0m/gのリチウムマンガン複合酸化物が得られ、その様なリチウムマンガン複合酸化物は高温安定性に優れ、これをリチウム二次電池の正極活物質に用いることで、高温安定性を備えたマンガン系リチウム二次電池が構成できることを見出し、本発明を完成するに至った。 As a result of intensive studies aimed at improving the high-temperature stability of LiMn 2 O 4 , manganese trioxide having an average particle diameter of 1 to 20 μm and a lithium compound having an average particle diameter of 0.01 to 0.2 μm as a Mn raw material And firing at a temperature of 800 ° C. or more and 1050 ° C. or less using at least one metal compound selected from Mg, Ni, Co, Fe, Cr, Ti, Cu, B, Al, Ga and In, After firing, cooling to 500 ° C. is performed at a rate of 100 ° C. or less per hour, so that the BET specific surface area in which the particle diameters of primary particles that have not been conventionally obtained are uniform is 0.1 to 1.0 m 2 / g of lithium manganese composite oxide is obtained, and such lithium manganese composite oxide is excellent in high-temperature stability. By using this as a positive electrode active material of a lithium secondary battery, manganese having high-temperature stability is obtained. It found that can be configured lithium secondary battery, and completed the present invention.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明のリチウムマンガン複合酸化物は、一般式Li1+XMn2−Y−Z4+δ(式中MはMg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInから選ばれる少なくとも一種類以上であり、0≦X≦1/3,0≦Y≦1/3,0<Z≦1/4,0.0≦δ≦0.2)で表されるスピネル型結晶構造であり、立方密充填した酸素配列中の四面***置の8aサイトをリチウムが、八面***置の16dサイトをマンガンと金属元素M、またはリチウムとマンガン並びに金属元素Mが占有しているものである。リチウム、マンガン、金属元素Mの各サイトの占有率は上記一般式の範囲であればスピネル型結晶構造のリチウムマンガン複合酸化物となる。 Lithium-manganese composite oxide of the present invention have the general formula Li 1 + X Mn 2-Y -Z M Z O 4 + δ ( wherein M is Mg, Ni, Co, Fe, Cr, Ti, Cu, B, Al, Ga and In A spinel type represented by 0 ≦ X ≦ 1/3, 0 ≦ Y ≦ 1/3, 0 <Z ≦ 1/4, 0.0 ≦ δ ≦ 0.2) A crystal structure in which the 8a site at the tetrahedral position in the cubically packed oxygen array is occupied by lithium, and the 16d site at the octahedral position is occupied by manganese and the metal element M, or lithium and manganese, and the metal element M It is. If the occupation ratio of each site of lithium, manganese, and metal element M is within the range of the above general formula, a lithium manganese composite oxide having a spinel crystal structure is obtained.

本発明のリチウムマンガン複合酸化物は、Mg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInから選ばれる少なくとも一種類以上の元素を含むことが必須である。マンガン、リチウムおよび酸素の各元素以外にこれら元素を含有させることによって、高温での安定性が向上する。   The lithium manganese composite oxide of the present invention must contain at least one element selected from Mg, Ni, Co, Fe, Cr, Ti, Cu, B, Al, Ga and In. By containing these elements in addition to manganese, lithium and oxygen, the stability at high temperature is improved.

本発明のリチウムマンガン複合酸化物は、BET比表面積が0.1〜0.5/gであることが必須である。BET比表面積が0.5/gを越えると、高温時の保存安定性や充放電サイクル安定性の低下が顕著となると共に、電極作製時の作業性が悪くなる。一方、BET比表面積が0.1m/g未満の場合には、高温安定性は向上するものの、ハイレート充放電特性が著しく低下してしまう。このため、BET比表面積は0.1〜0.5/gが最適となる。 The lithium manganese composite oxide of the present invention must have a BET specific surface area of 0.1 to 0.5 m 2 / g. When the BET specific surface area exceeds 0.5 m 2 / g, the storage stability at high temperature and the charge / discharge cycle stability are significantly lowered, and the workability at the time of electrode preparation is deteriorated. On the other hand, when the BET specific surface area is less than 0.1 m 2 / g, high-temperature stability is improved, but high-rate charge / discharge characteristics are significantly deteriorated. For this reason, the BET specific surface area is optimally 0.1 to 0.5 m 2 / g.

本発明のリチウムマンガン複合酸化物は、平均粒子径が1〜20μmの四三酸化マンガンと、平均粒子径が0.01〜0.2μmのリチウム化合物および平均粒子径が0.01〜0.2μmのMg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInから選ばれる少なくとも一種以上の金属化合物を用いて合成することが重要である。   The lithium manganese composite oxide of the present invention is composed of trimanganese tetraoxide having an average particle size of 1 to 20 μm, a lithium compound having an average particle size of 0.01 to 0.2 μm, and an average particle size of 0.01 to 0.2 μm. It is important to synthesize using at least one metal compound selected from Mg, Ni, Co, Fe, Cr, Ti, Cu, B, Al, Ga and In.

本発明者らが行ったリチウムマンガン複合酸化物生成反応の解析によれば、反応は、マンガン原料の粒子を母体として、そこにリチウム化合物および金属元素Mの化合物それぞれが複合化しながら進む。そのため、均一に反応を進めるためには、リチウム原料および金属元素Mの化合物の粒子は同程度の大きさで、且つマンガン原料の粒子サイズに対して充分小さくすることが好ましい。   According to the analysis of the lithium manganese composite oxide formation reaction performed by the present inventors, the reaction proceeds with the composite of the lithium compound and the metal element M compound using the manganese raw material particles as a base. Therefore, in order to proceed the reaction uniformly, it is preferable that the particles of the lithium raw material and the compound of the metal element M have the same size and are sufficiently small with respect to the particle size of the manganese raw material.

この考えに沿って合成を行えば、組成が均一で局所的な異常な粒子の成長が抑制され、サイズが揃った均一な粒子からなる結晶構造が発達したリチウムマンガン複合酸化物が合成可能であり、マンガン原料に平均粒子径が1〜20μmの四三酸化マンガンを、リチウム化合物および金属元素Mの化合物に平均粒子径が0.01〜0.2μmのものを使用することによって、BET比表面積が0.1〜0.5/gで一次粒径の揃ったのリチウムマンガン複合酸化物が合成できる。 If synthesis is performed in accordance with this idea, it is possible to synthesize lithium-manganese composite oxides with a uniform composition that suppresses local abnormal particle growth and develops a crystal structure consisting of uniform particles of uniform size. By using trimanganese tetraoxide having an average particle diameter of 1 to 20 μm as a manganese raw material and a compound of lithium compound and metal element M having an average particle diameter of 0.01 to 0.2 μm, the BET specific surface area can be increased. A lithium manganese composite oxide having a primary particle size of 0.1 to 0.5 m 2 / g can be synthesized.

原料として用いる四三酸化マンガンは平均粒径以外は特に限定するものではないが、例えば、2価マンガンを溶解した水溶液のアルカリ中和と酸化処理によって合成する手法や、二酸化マンガンの還元によって合成したものが例示される。   The trimanganese tetraoxide used as a raw material is not particularly limited except for the average particle diameter. For example, it is synthesized by alkali neutralization and oxidation treatment of an aqueous solution in which divalent manganese is dissolved, or by reduction of manganese dioxide. Are illustrated.

用いるリチウム化合物の種類も平均粒径以外は特に限定するものではないが、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、ヨウ化リチウムなどが例示される。   The type of lithium compound to be used is not particularly limited except for the average particle diameter, and examples thereof include lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, and lithium iodide.

金属元素MのMg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInの化合物の種類も平均粒径以外は特に限定するものではないが、単体、炭酸塩、硝酸塩、水酸化物および酸化物などが例示され、特に含有水分量の少ないものや低融点のものが好ましい。   The types of compounds of Mg, Ni, Co, Fe, Cr, Ti, Cu, B, Al, Ga and In of the metal element M are not particularly limited except for the average particle diameter, but are simple substance, carbonate, nitrate, Examples thereof include hydroxides and oxides, and those having a low water content and those having a low melting point are particularly preferred.

本発明のリチウムマンガン複合酸化物の合成においては、マンガン原料の四三酸化マンガンと、リチウム化合物と、Mg、Ni、Co、Fe、Cr、Ti、Cu、B、Al、GaおよびInから選ばれる少なくとも一種類以上の金属化合物との混合物を、800℃以上、1050℃以下の温度で焼成を行った後に、500℃までの冷却を1時間あたり20℃以下の速度で行うことが好ましい。   In the synthesis of the lithium manganese composite oxide of the present invention, it is selected from manganese trioxide of manganese, a lithium compound, and Mg, Ni, Co, Fe, Cr, Ti, Cu, B, Al, Ga, and In. After firing the mixture with at least one metal compound at a temperature of 800 ° C. or higher and 1050 ° C. or lower, cooling to 500 ° C. is preferably performed at a rate of 20 ° C. or lower per hour.

本発明では、800℃以上の焼成によって、結晶構造が充分発達したBET比表面積が0.1〜0.5/gのリチウムマンガン複合酸化物が合成できる。焼成温度が高いほどBET比表面積の小さなリチウムマンガン複合酸化物が得られるが、リチウムの散逸やそれに伴う分解反応が起こり易くなるため、焼成温度には上限が存在する。本発明者らの検討によれば、1050℃を超えない範囲で焼成を行えば所望のリチウムマンガン複合酸化物を得ることが可能である。なお、特に制限するものではないが、焼成は、1段でも多段で行っても良い。 In the present invention, a lithium manganese composite oxide having a BET specific surface area of 0.1 to 0.5 m 2 / g with a sufficiently developed crystal structure can be synthesized by baking at 800 ° C. or higher. A lithium manganese composite oxide having a smaller BET specific surface area can be obtained as the firing temperature is higher. However, since the dissipation of lithium and the accompanying decomposition reaction are liable to occur, there is an upper limit to the firing temperature. According to the study by the present inventors, it is possible to obtain a desired lithium manganese composite oxide by firing within a range not exceeding 1050 ° C. In addition, although it does not restrict | limit in particular, you may perform baking by multistage.

また、リチウムマンガン酸化物は高温時に酸素を放出吸収する性質を示す。このため、酸素の吸収を考慮して焼成後の冷却速度を制御することが必要である。本発明のリチウムマンガン複合酸化物を合成するためには、1時間当たり100℃以下の速度で行うことが重要であり、この条件によって酸素欠損のない正極性能に優れるリチウムマンガン複合酸化物を得ることができる。なお、焼成は酸素を含有する雰囲気であれば特に制限されないが、大気中もしくは酸素含有量が18%以上の気体気流中で行うことが好ましい。   Moreover, lithium manganese oxide exhibits the property of releasing and absorbing oxygen at high temperatures. For this reason, it is necessary to control the cooling rate after baking in consideration of oxygen absorption. In order to synthesize the lithium manganese composite oxide of the present invention, it is important to carry out at a rate of 100 ° C. or less per hour. Under these conditions, a lithium manganese composite oxide excellent in positive electrode performance without oxygen deficiency is obtained. Can do. The firing is not particularly limited as long as it is an atmosphere containing oxygen, but is preferably performed in the air or in a gas stream having an oxygen content of 18% or more.

以上の本発明の合成方法により、局所的な異常粒成長が抑制され、サイズが揃った均一な粒子からなり、BET比表面積が0.1〜0.5/gの範囲のリチウムマンガン複合酸化物が合成可能となる。 By the above synthesis method of the present invention, local abnormal grain growth is suppressed, the particles are made of uniform particles of uniform size, and a lithium manganese composite having a BET specific surface area of 0.1 to 0.5 m 2 / g. An oxide can be synthesized.

本発明のリチウムマンガン複合酸化物は、リチウム二次電池の正極として用いることが出来るが、当該リチウム二次電池の負極としては、リチウム金属、リチウム合金、リチウムを吸蔵放出可能な物質、およびリチウムを予め吸蔵したリチウムを吸蔵放出可能な化合物を用いることができる。リチウム合金としては、例えばリチウム/スズ合金、リチウム/アルミニウム合金、リチウム/鉛合金等が例示される。リチウムを吸蔵放出可能な物質としては、例えば、グラファイトや黒鉛等の炭素材料や、鉄の酸化物、コバルトの酸化物が例示される。また、本発明のリチウム二次電池の電解質は、特に制限されないが、例えば、炭酸プロレン、炭酸ジエチル等のカーボネート類や、スルホラン、ジメチルスルホキシド等のスルホラン類、γブチロラクトン等のラクトン類、ジメチルスルホキシド等のエーテル類の少なくとも1種類以上の有機溶媒に、過塩素酸リチウム、四フッ化ホウ酸リチウム、六フッ化リン酸リチウム、トリフルオロメタンスルホン酸等のリチウム塩の少なくとも1種類以上を溶解したものや、無機系および有機系のリチウムイオン導電性の固体電解質などを用いることができる。   The lithium manganese composite oxide of the present invention can be used as a positive electrode of a lithium secondary battery. As the negative electrode of the lithium secondary battery, lithium metal, a lithium alloy, a substance capable of occluding and releasing lithium, and lithium are used. A compound that can occlude and release lithium that has been occluded in advance can be used. Examples of the lithium alloy include a lithium / tin alloy, a lithium / aluminum alloy, and a lithium / lead alloy. Examples of the substance capable of occluding and releasing lithium include carbon materials such as graphite and graphite, iron oxides, and cobalt oxides. The electrolyte of the lithium secondary battery of the present invention is not particularly limited. For example, carbonates such as prolene carbonate and diethyl carbonate; sulfolanes such as sulfolane and dimethyl sulfoxide; lactones such as γ-butyrolactone; dimethyl sulfoxide A solution obtained by dissolving at least one lithium salt such as lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate, trifluoromethanesulfonic acid in at least one organic solvent of Inorganic and organic lithium ion conductive solid electrolytes can be used.

本発明で得られたリチウムマンガン複合酸化物を正極活物質に用いたリウム二次電池の構造例を図1に示す。

The structure of Li Chi Um secondary battery using a lithium-manganese composite oxide obtained by the present invention as the positive electrode active material shown in FIG.

本発明のリチウムマンガン複合酸化物は、一次粒径が均一であり、高温安定性に優れ、リチウム二次電池の正極として用いた場合、優れた性能を発揮する。   The lithium manganese composite oxide of the present invention has a uniform primary particle size, excellent high-temperature stability, and exhibits excellent performance when used as a positive electrode of a lithium secondary battery.

以下に、本発明の具体例として実施例を示すが、本発明はこれらの実施例により制限されるものではない。   Examples are shown below as specific examples of the present invention, but the present invention is not limited to these examples.

実施例1
[Li1.00Mn1.90Al0.104.00の合成]
平均粒子径が10μmの四三酸化マンガン(東ソー日向(株)製)と、平均粒子径が0.05μmの酸化アルミニウム(Al)および平均粒子径が0.07μmの水酸化リチウム水和物(LiOH・0.9HO)とを、モル比でLi:Mn:Al=1.00:1.90:0.10となるように混合し、これを大気中で焼成した。焼成は、はじめに5時間で1000℃まで昇温し、この温度で10時間保持した。次いで、これを500℃まで10時間かけて降温した後に、室温まで自然放冷した。粉末X線回折測定の結果から、得られた化合物はスピネル構造を持つことが分かった。化学組成、BET比表面積を表1に示した。
Example 1
[Synthesis of Li 1.00 Mn 1.90 Al 0.10 O 4.00 ]
Trimanganese tetraoxide with an average particle size of 10 μm (manufactured by Tosoh Hinata Co., Ltd.), aluminum oxide (Al 2 O 3 ) with an average particle size of 0.05 μm, and lithium hydroxide hydrate with an average particle size of 0.07 μm The product (LiOH.0.9H 2 O) was mixed at a molar ratio of Li: Mn: Al = 1.00: 1.90: 0.10, and calcined in the atmosphere. Firing was first heated to 1000 ° C. in 5 hours and held at this temperature for 10 hours. Next, the temperature was lowered to 500 ° C. over 10 hours, and then naturally cooled to room temperature. From the result of the powder X-ray diffraction measurement, it was found that the obtained compound had a spinel structure. The chemical composition and BET specific surface area are shown in Table 1.

実施例2
[Li1.00Mn1.85Al0.154.00の合成]
実施例2として、モル比でLi:Mn:Al=1.00:1.85:0.15とした以外は、実施例1と同様にしてリチウムマンガン複合酸化物を焼成した。粉末X線回折測定の結果から、得られた化合物はスピネル構造を持つことが分かった。化学組成、BET比表面積を表1示した。
Example 2
[Synthesis of Li 1.00 Mn 1.85 Al 0.15 O 4.00 ]
As Example 2, a lithium manganese composite oxide was fired in the same manner as in Example 1 except that Li: Mn: Al = 1.00: 1.85: 0.15 was used in a molar ratio. From the result of the powder X-ray diffraction measurement, it was found that the obtained compound had a spinel structure. Table 1 shows the chemical composition and the BET specific surface area.

実施例3
[Li1.00Mn1.90Mg0.104.00の合成]
実施例3として、Alの代わりに平均粒子径が0.05μmの酸化マグネシウム(MgO)を使用した以外は、実施例1と同様にしてリチウムマンガン複合酸化物を焼成した。粉末X線回折測定の結果から、得られた化合物はスピネル構造を持つことが分かった。化学組成、BET比表面積を表1に示した。
Example 3
[Synthesis of Li 1.00 Mn 1.90 Mg 0.10 O 4.00 ]
As Example 3, a lithium manganese composite oxide was fired in the same manner as in Example 1 except that magnesium oxide (MgO) having an average particle diameter of 0.05 μm was used instead of Al 2 O 3 . From the result of the powder X-ray diffraction measurement, it was found that the obtained compound had a spinel structure. The chemical composition and BET specific surface area are shown in Table 1.

図3に得られたリチウムマンガン複合酸化物の一次粒径のSEM像を示す。粒径が均一であり、従来の方法で得られる粉末の様に異常粒成長がなく、均一な一次粒径の粉末が得られた。   FIG. 3 shows an SEM image of the primary particle size of the obtained lithium manganese composite oxide. A powder having a uniform primary particle size was obtained with a uniform particle size and no abnormal grain growth as in the case of a powder obtained by a conventional method.

実施例4
[Li1.00Mn1.85Mg0.154.00の合成]
実施例4として、Alの代わりに平均粒子径が0.05μmの酸化マグネシウム(MgO)を使用した以外は、実施例2と同様にしてリチウムマンガン複合酸化物を焼成した。粉末X線回折測定の結果から、得られた化合物はスピネル構造を持つことが分かった。化学組成、BET比表面積を表1示した。
Example 4
[Synthesis of Li 1.00 Mn 1.85 Mg 0.15 O 4.00 ]
As Example 4, a lithium manganese composite oxide was fired in the same manner as in Example 2 except that magnesium oxide (MgO) having an average particle diameter of 0.05 μm was used instead of Al 2 O 3 . From the result of the powder X-ray diffraction measurement, it was found that the obtained compound had a spinel structure. Table 1 shows the chemical composition and the BET specific surface area.

実施例5〜13
実施例5〜13として,Alの代わりに平均粒子径が0.05μmの水酸化ニッケル(Ni(OH))、四三酸化コバルト(Co)、三二酸化鉄(Fe)、三二酸化クロム(Cr)、酸化チタン(TiO)、酸化銅(CuO)、ホウ酸(HBO)、酸化ガリウム(Ga)、酸化インジウム(In)をそれぞれ使用した以外は、実施例1と同様にしてリチウムマンガン複合酸化物を焼成した。粉末X線回折測定の結果から、得られた化合物はいずれもスピネル構造を持つことが分かった。化学組成、BET比表面積を表1に示した。
Examples 5-13
As Examples 5 to 13, nickel hydroxide (Ni (OH) 2 ), cobalt tetroxide (Co 3 O 4 ), and iron sesquioxide (Fe 2 ) having an average particle size of 0.05 μm instead of Al 2 O 3 O 3 ), chromium trioxide (Cr 2 O 3 ), titanium oxide (TiO 2 ), copper oxide (CuO), boric acid (H 3 BO 3 ), gallium oxide (Ga 2 O 3 ), indium oxide (In 2) A lithium manganese composite oxide was fired in the same manner as in Example 1 except that each of O 3 ) was used. From the results of powder X-ray diffraction measurement, it was found that all of the obtained compounds had a spinel structure. The chemical composition and BET specific surface area are shown in Table 1.

比較例1
[Li1.00Mn1.90Al0.104.00の合成]
平均粒子径が10μmの四三酸化マンガン(東ソー日向(株)製)と、平均粒子径が5μmの酸化アルミニウム(Al)および平均粒子径が5μmの水酸化リチウム水和物(LiOH・HO)とを、モル比でLi:Mn:Al=1.00:1.90:0.10となるように混合し、これを大気中で焼成した。焼成は、はじめに5時間で1000℃まで昇温し、この温度で10時間保持した。次いで、これを500℃まで10時間かけて降温した後に、室温まで自然放冷した。粉末X線回折測定の結果から、得られた化合物はスピネル構造であったが、BET比表面積は0.8m/gとなった。化学組成を表1に示した。
Comparative Example 1
[Synthesis of Li 1.00 Mn 1.90 Al 0.10 O 4.00 ]
Trimanganese tetraoxide with an average particle size of 10 μm (manufactured by Tosoh Hinata Co., Ltd.), aluminum oxide (Al 2 O 3 ) with an average particle size of 5 μm, and lithium hydroxide hydrate (LiOH. H 2 O) was mixed at a molar ratio of Li: Mn: Al = 1.00: 1.90: 0.10, and calcined in the atmosphere. Firing was first heated to 1000 ° C. in 5 hours and held at this temperature for 10 hours. Next, the temperature was lowered to 500 ° C. over 10 hours, and then naturally cooled to room temperature. From the result of the powder X-ray diffraction measurement, the obtained compound had a spinel structure, but the BET specific surface area was 0.8 m 2 / g. The chemical composition is shown in Table 1.

比較例2
[Li1.00Mn1.90Mg0.104.00の合成]
比較例2として、Alの代わりに平均粒子径が5μmの酸化マグネシウム(MgO)を使用した以外は、比較例1と同様にしてリチウムマンガン複合酸化物を焼成した。粉末X線回折測定の結果から、得られた化合物はスピネル構造であったが、BET比表面積は1.0m/gとなった。化学組成、BET比表面積を表1に示した。
Comparative Example 2
[Synthesis of Li 1.00 Mn 1.90 Mg 0.10 O 4.00 ]
As Comparative Example 2, a lithium manganese composite oxide was fired in the same manner as in Comparative Example 1, except that magnesium oxide (MgO) having an average particle diameter of 5 μm was used instead of Al 2 O 3 . From the result of the powder X-ray diffraction measurement, the obtained compound had a spinel structure, but the BET specific surface area was 1.0 m 2 / g. The chemical composition and BET specific surface area are shown in Table 1.

実施例14
[電池評価]
実施例1〜13及び比較例1、2で製造したリチウムマンガン複合酸化物と、導電剤のポリテトラフルオロエチレンとアセチレンブラックとの混合物(商品名:TAB−2)とを重量比で2:1になるように混合した。電気化学容量が2.7mAhになるように混合物を分取し、1ton・cm−2の圧力で16mmφのメッシュ(SUS 316)上にペレット状に成形し、200℃で5時間、減圧乾燥処理を行い、正極とした。
Example 14
[Battery evaluation]
The lithium manganese composite oxide produced in Examples 1 to 13 and Comparative Examples 1 and 2 and a mixture of polytetrafluoroethylene and acetylene black (trade name: TAB-2) as a conductive agent in a weight ratio of 2: 1. It mixed so that it might become. The mixture was fractionated so that the electrochemical capacity was 2.7 mAh, formed into a pellet on a 16 mmφ mesh (SUS 316) at a pressure of 1 ton · cm −2 , and dried under reduced pressure at 200 ° C. for 5 hours. And made a positive electrode.

これを、図1の3の正極に用いて、図1の5の負極には、炭素材料(MCMB6−28(大阪ガス(株)製)とPVDF(呉羽化学製)の重量比9:1の混合物を16mmφのメッシュ(SUS 316)上に電気化学容量が3mAhとなるように分取、成形したものを用いて、電解液にはプロピレンカーボネートと炭酸ジメチルの体積比1:2の混合溶媒に六フッ化リン酸リチウムを1mol・dm−3の濃度に溶解した有機電解液を図1の4のセパレータに含浸させて、2032型のコイン電池を構成した。 This is used for the positive electrode 3 in FIG. 1, and the negative electrode 5 in FIG. 1 has a carbon material (MCMB6-28 (manufactured by Osaka Gas Co., Ltd.)) and PVDF (manufactured by Kureha Chemical) in a weight ratio of 9: 1. The mixture was separated and molded on a 16 mmφ mesh (SUS 316) so as to have an electrochemical capacity of 3 mAh. The electrolyte was mixed with a mixed solvent of propylene carbonate and dimethyl carbonate in a volume ratio of 1: 2. A 2032 type coin battery was configured by impregnating the separator of 4 in FIG. 1 with an organic electrolytic solution in which lithium fluorophosphate was dissolved in a concentration of 1 mol · dm −3 .

構成した電池を,60℃にて、電池電圧が4.3Vと3.0Vの間で、0.4mA/cmの定電流で50サイクル充放電して、1サイクル目の放電容量に対する50サイクル目の放電容量の割合を容量維持率として求めた。 The configured battery was charged and discharged for 50 cycles at a constant current of 0.4 mA / cm 2 at a battery voltage of 4.3 V and 3.0 V at 60 ° C., and 50 cycles for the discharge capacity of the first cycle. The ratio of the eye discharge capacity was determined as the capacity retention rate.

実施例1〜13で合成したリチウムマンガン酸化物は、いずれも90%以上の高い容量維持率を示した。一方、比較例で合成したリチウムマンガン複合酸化物の容量維持率は、85%以下であった。合成した各リチウムマンガン複合酸化物の容量維持率を表1に示した。   The lithium manganese oxides synthesized in Examples 1 to 13 all showed a high capacity retention rate of 90% or more. On the other hand, the capacity retention rate of the lithium manganese composite oxide synthesized in the comparative example was 85% or less. Table 1 shows the capacity retention rates of the synthesized lithium manganese composite oxides.

実施例15
[SEM観察]
実施例1〜13で合成したリチウムマンガン複合酸化物をSEM観察した結果、いずれも局所的な異常な粒子の成長は認められず、サイズが揃った均一な粒子からなる化合物であった。これに対して、比較例で合成したリチウムマンガン複合酸化物は、局所的に異常な粒子の成長が認められ、不均一な粒子からなる化合物であった。これらの例示として、図2に実実施例3で合成したLi1.00Mn1.90Mg0.104.00のSEMイメージを示した。
Example 15
[SEM observation]
As a result of SEM observation of the lithium manganese composite oxide synthesized in Examples 1 to 13, no local abnormal particle growth was observed, and all the compounds were composed of uniform particles of uniform size. On the other hand, the lithium manganese composite oxide synthesized in the comparative example was a compound consisting of non-uniform particles in which abnormal particle growth was observed locally. As an illustration of these, FIG. 2 shows an SEM image of Li 1.00 Mn 1.90 Mg 0.10 O 4.00 synthesized in Example 3.

Figure 0004544404
Figure 0004544404

実施例及び比較例で構成した電池の実施態様を示す図である。It is a figure which shows the embodiment of the battery comprised by the Example and the comparative example. Li1.00Mn1.90Mg0.104.00のSEM像。(実施例3)SEM image of Li 1.00 Mn 1.90 Mg 0.10 O 4.00 . (Example 3)

符号の説明Explanation of symbols

1 正極缶
2 スぺーサー
3 正極集電用メッシュ
4 正極
5 セパレータ
6 ガスケット
7 負極
8 負極集電用メッシュ
9 負極缶
DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Spacer 3 Positive electrode current collection mesh 4 Positive electrode 5 Separator 6 Gasket 7 Negative electrode 8 Negative electrode current collection mesh 9 Negative electrode can

Claims (3)

平均粒子径が1〜20μmの四三酸化マンガンと、平均粒子径が0.01〜0.2μmのリチウム化合物と、平均粒子径が0.01〜0.2μmのMg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInから選ばれる少なくとも一種以上の金属化合物とを用いて合成された、BET比表面積が0.1〜0.5/gで一般式Li1+XMn2−Y−Z4+δ(式中MはMg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInから選ばれる少なくとも一種類以上であり、0≦X≦1/3,0≦Y≦1/3,0<Z≦1/4,0.0≦δ≦0.2)で表されるスピネル型結晶構造のリチウムマンガン複合酸化物。 Trimanganese tetraoxide having an average particle size of 1 to 20 μm, a lithium compound having an average particle size of 0.01 to 0.2 μm, and Mg, Ni, Co, Fe having an average particle size of 0.01 to 0.2 μm , Synthesized with at least one metal compound selected from Cr, Ti, Cu, B, Al, Ga and In, and having a BET specific surface area of 0.1 to 0.5 m 2 / g and a general formula Li 1 + X Mn 2-Y-Z M Z O 4 + δ (M in the formula is a Mg, Ni, Co, Fe, Cr, Ti, Cu, B, Al, at least one or more selected from Ga and in, 0 ≦ X ≦ 1/3, 0 ≦ Y ≦ 1/3, 0 <Z ≦ 1/4, 0.0 ≦ δ ≦ 0.2). A lithium manganese composite oxide having a spinel crystal structure. 平均粒子径が1〜20μmの四三酸化マンガンと、平均粒子径が0.01〜0.2μmのリチウム化合物と、平均粒子径が0.01〜0.2μmのMg、Ni、Co、Fe、Cr、Ti、Cu,B、Al、GaおよびInから選ばれる少なくとも一種以上の金属化合物との混合物を、800℃以上、1050℃以下の温度にて焼成を行い、焼成後、500℃までの冷却を1時間あたり100℃以下の速度で行うことを特徴とする請求項1のリチウムマンガン複合酸化物の製造方法。   Trimanganese tetraoxide having an average particle size of 1 to 20 μm, a lithium compound having an average particle size of 0.01 to 0.2 μm, and Mg, Ni, Co, Fe having an average particle size of 0.01 to 0.2 μm, A mixture of at least one metal compound selected from Cr, Ti, Cu, B, Al, Ga and In is fired at a temperature of 800 ° C. or higher and 1050 ° C. or lower, and then cooled to 500 ° C. Is carried out at a rate of 100 ° C. or less per hour. リチウム、リチウム合金及びリチウムを吸蔵放出可能な物質から選ばれる少なくとも1種類以上を負極に、非水電解質を電解質に、請求項1記載のリチウムマンガン複合酸化物を正極に用いたリチウム二次電池。   A lithium secondary battery using at least one selected from lithium, a lithium alloy and a substance capable of occluding and releasing lithium as a negative electrode, a non-aqueous electrolyte as an electrolyte, and the lithium manganese composite oxide according to claim 1 as a positive electrode.
JP2004106641A 2004-03-31 2004-03-31 Lithium manganese composite oxide, method for producing the same, and use thereof Expired - Fee Related JP4544404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106641A JP4544404B2 (en) 2004-03-31 2004-03-31 Lithium manganese composite oxide, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106641A JP4544404B2 (en) 2004-03-31 2004-03-31 Lithium manganese composite oxide, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2005289720A JP2005289720A (en) 2005-10-20
JP4544404B2 true JP4544404B2 (en) 2010-09-15

Family

ID=35323106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106641A Expired - Fee Related JP4544404B2 (en) 2004-03-31 2004-03-31 Lithium manganese composite oxide, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4544404B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224081B2 (en) * 2006-04-19 2013-07-03 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2011105594A (en) * 2010-12-13 2011-06-02 Mitsubishi Chemicals Corp Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
JP5716923B2 (en) * 2011-03-31 2015-05-13 戸田工業株式会社 Nonaqueous electrolyte secondary battery active material powder and nonaqueous electrolyte secondary battery
KR102030866B1 (en) * 2012-04-05 2019-10-10 도소 가부시키가이샤 Metal-containing trimanganese tetraoxide composite particles and method for producing same
KR102228322B1 (en) 2012-11-13 2021-03-15 도다 고교 가부시끼가이샤 Lithium-manganate-particle powder for use in non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP2014139128A (en) * 2014-01-17 2014-07-31 Tosoh Corp Lithium manganese-based complex oxide
CN110474031B (en) * 2019-08-20 2022-10-18 齐鲁工业大学 Method for preparing copper-doped manganous-manganic oxide composite material by using polymeric complexing agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217452A (en) * 1995-02-14 1996-08-27 Tosoh Corp Needle manganese complex oxide, production and use thereof
JP2001122626A (en) * 1999-08-16 2001-05-08 Nippon Chem Ind Co Ltd Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2001206722A (en) * 1999-11-15 2001-07-31 Mitsubishi Chemicals Corp Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode, lithium secondary cell, and manufacturing method of lithium manganese multiple oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217452A (en) * 1995-02-14 1996-08-27 Tosoh Corp Needle manganese complex oxide, production and use thereof
JP2001122626A (en) * 1999-08-16 2001-05-08 Nippon Chem Ind Co Ltd Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2001206722A (en) * 1999-11-15 2001-07-31 Mitsubishi Chemicals Corp Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode, lithium secondary cell, and manufacturing method of lithium manganese multiple oxide

Also Published As

Publication number Publication date
JP2005289720A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4533822B2 (en) Nonaqueous electrolyte battery and negative electrode active material
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
JP5014218B2 (en) Nonaqueous electrolyte secondary battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3922040B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP2007042393A (en) Nonaqueous electrolyte battery and anode active material
JP3876673B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JP4876316B2 (en) Novel lithium manganese composite oxide, method for producing the same, and use thereof
JPH1064516A (en) Lithium battery
JP4544404B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
WO2017017208A1 (en) Active cathode material and its use in rechargeable electrochemical cells
US20040208818A1 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JP2000182616A (en) Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
JP5482755B2 (en) Novel lithium manganese composite oxide, method for producing the same, and use thereof
JP3835235B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP2013004401A (en) Positive electrode active material for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
JP2000154022A (en) Lithium manganese double oxide, its production and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4544404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees