JP4543700B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4543700B2
JP4543700B2 JP2004055421A JP2004055421A JP4543700B2 JP 4543700 B2 JP4543700 B2 JP 4543700B2 JP 2004055421 A JP2004055421 A JP 2004055421A JP 2004055421 A JP2004055421 A JP 2004055421A JP 4543700 B2 JP4543700 B2 JP 4543700B2
Authority
JP
Japan
Prior art keywords
film
oxide film
layer
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004055421A
Other languages
Japanese (ja)
Other versions
JP2005244128A5 (en
JP2005244128A (en
Inventor
孝夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2004055421A priority Critical patent/JP4543700B2/en
Publication of JP2005244128A publication Critical patent/JP2005244128A/en
Publication of JP2005244128A5 publication Critical patent/JP2005244128A5/ja
Application granted granted Critical
Publication of JP4543700B2 publication Critical patent/JP4543700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、発光ダイオードや半導体レーザなどの半導体発光素子に関し、例えば窒化物系半導体を積層した半導体層を用いて形成した窒化物半導体素子に関する。   The present invention relates to a semiconductor light emitting device such as a light emitting diode or a semiconductor laser, and more particularly to a nitride semiconductor device formed using a semiconductor layer in which nitride semiconductors are stacked.

従来から、半導体発光素子として、基板上にp型半導体層及びn型半導体層が積層され、p型及びn型の半導体層のそれぞれと電気的に接続する電極が形成された構造が知られている。また、p型の半導体層と電気的に接続する電極として、p型半導体層上全面に透光性材料による電極を形成し、その上に金属電極を形成する構造が知られている。   Conventionally, a structure in which a p-type semiconductor layer and an n-type semiconductor layer are stacked on a substrate and an electrode electrically connected to each of the p-type and n-type semiconductor layers is formed as a semiconductor light emitting device. Yes. Further, as an electrode electrically connected to the p-type semiconductor layer, a structure is known in which an electrode made of a translucent material is formed on the entire surface of the p-type semiconductor layer, and a metal electrode is formed thereon.

このような構成の半導体発光素子では、光の取り出し効率を向上させるため、p型半導体層上の全面電極として、金属薄膜や、ITO、ZnO、In23、SnO2等の透明な導電性酸化物膜が用いられている(例えば特許文献1参照)。
特開2001−196633号公報
In the semiconductor light emitting device having such a configuration, in order to improve the light extraction efficiency, a transparent film such as a metal thin film, ITO, ZnO, In 2 O 3 , SnO 2 or the like is used as the entire surface electrode on the p-type semiconductor layer. An oxide film is used (see, for example, Patent Document 1).
JP 2001-196633 A

しかしながら、例えば導電性酸化物自体はn型の半導体特性を示すことから、必ずしも半導体層とオーミック性が良好ではなく、半導体層の種類、導電型、成膜方法等の種々の要因から、ショットキー障壁が形成され、コンタクト抵抗を増大させることがあった。電極と半導体層との界面でのシート抵抗が大きくなると、損失が増大し出力が低下する上、発熱が生じて素子寿命も低下するという問題が生じる。   However, for example, the conductive oxide itself exhibits n-type semiconductor characteristics, so that it does not necessarily have good ohmic properties with the semiconductor layer. Due to various factors such as the type of semiconductor layer, conductivity type, and film formation method, Schottky A barrier may be formed, increasing the contact resistance. When the sheet resistance at the interface between the electrode and the semiconductor layer is increased, there is a problem that the loss is increased and the output is decreased, and further, heat is generated and the element life is also decreased.

本発明は、このような課題に鑑みてなされたものであり、その主な目的は、電極として透明な導電性酸化物膜を用い、十分な透明性を維持しながらオーミックコンタクトが得られ、かつ発光効率にも優れた半導体発光素子を提供することにある。   The present invention has been made in view of such a problem, and its main purpose is to use a transparent conductive oxide film as an electrode, to obtain an ohmic contact while maintaining sufficient transparency, and An object of the present invention is to provide a semiconductor light emitting device having excellent luminous efficiency.

以上の目的を達成するために本発明の半導体発光素子は、第1の元素Aとしてガリウムを含む半導体層が表面に位置する半導体積層構造を備える。この半導体発光素子は、半導体層の表面に、酸化インジウムスズよりなる導電性酸化物膜と、第2の元素Bを含む酸化物膜とを有する。導電性酸化物膜は、前記第2の元素Bを含む酸化物膜との界面近傍における膜中酸素濃度が、前記半導体層との界面近傍における膜中酸素濃度よりも高く、かつ前記半導体層との界面近傍における膜中スズ濃度が、前記第2の元素Bを含む酸化物膜との界面近傍における膜中スズ濃度よりも高くしている。 In order to achieve the above object, the semiconductor light emitting device of the present invention has a semiconductor stacked structure in which a semiconductor layer containing gallium as the first element A is located on the surface. This semiconductor light emitting element has a conductive oxide film made of indium tin oxide and an oxide film containing the second element B on the surface of the semiconductor layer. Conductive oxide film, film oxygen concentration in the vicinity of the interface between oxide film containing the second element B is higher rather than the membrane oxygen concentration in the vicinity of the interface between the semiconductor layer and the semiconductor layer film of tin concentration in the vicinity of the interface between have higher comb than film tin concentration in the vicinity of the interface between oxide film containing the second element B.

また、本発明の他の形態を以下に述べる。本発明の他の形態の半導体発光素子は、第2の元素Bを含む酸化物膜は、絶縁性酸化物膜であることが好ましい。さらに第2の元素Bは、電気陰性度を示すPauling値がインジウム及びスズよりも大きいことが好ましい。さらにまた第2の元素Bは、電気陰性度を示すPauling値が第1の金属よりも大きいことが好ましい。また第1の元素Aは、ガリウムであることが好ましい。さらに半導体層は、ガリウムを含む窒化物半導体層であることが好ましい。さらにまた導電性酸化物膜は元素Cに加えて、微量元素Dを含むことが好ましい。さらに微量元素Dは、スズ、亜鉛、ガリウム、アルミニウムから選択される少なくとも1種の元素であることが好ましい。さらに導電性酸化物膜は、半導体層との界面近傍における膜中微量元素Dの濃度が、導電性酸化物膜の他の部分の膜中微量元素Dの濃度よりも高い。さらにまた導電性酸化物膜はITOであることが好ましい。さらに第2の元素Bは、ケイ素又はスズのいずれかであることが好ましい。さらにまた導電性酸化物膜の膜中酸素濃度は、第2の元素Bを含む酸化物膜との界面から半導体層との界面に向かって徐々に低下することが好ましい。 Further, another embodiment of the present invention will be described below. In another embodiment of the semiconductor light emitting device of the present invention, the oxide film containing the second element B is preferably an insulating oxide film. Further, the second element B preferably has a Pauling value indicating electronegativity greater than that of indium and tin . Further, the second element B preferably has a Pauling value indicating an electronegativity greater than that of the first metal. The first element A is preferably gallium. Further, the semiconductor layer is preferably a nitride semiconductor layer containing gallium. Furthermore, the conductive oxide film preferably contains a trace element D in addition to the element C. Furthermore, the trace element D is preferably at least one element selected from tin, zinc, gallium, and aluminum. Further, in the conductive oxide film, the concentration of the trace element D in the vicinity of the interface with the semiconductor layer is higher than the concentration of the trace element D in the other part of the conductive oxide film. Furthermore, the conductive oxide film is preferably ITO. Furthermore, the second element B is preferably either silicon or tin. Furthermore, it is preferable that the oxygen concentration in the film of the conductive oxide film gradually decreases from the interface with the oxide film containing the second element B toward the interface with the semiconductor layer.

本発明の半導体発光素子によれば、導電性酸化物膜の第2の元素Bを含む酸化物膜との界面近傍における膜中酸素濃度が、半導体層との界面近傍における膜中酸素濃度よりも高いので、第2の元素Bを含む酸化物膜との界面近傍において結晶性に優れ、発光層からの光を十分に外部に取り出すことができる。また、導電性酸化物膜の半導体層との界面近傍における膜中酸素濃度を、第2の元素Bを含む酸化物膜との界面近傍よりも低くすることで、欠損した酸素はキャリアと同じ動向を示すことから、導電性酸化物膜の半導体層側においてのみキャリアを多く配置することができ、その結果第1の元素Aを含む半導体層とのショットキー障壁を小さくすることができる。また導電性酸化物膜は、第1の元素Aを含む半導体層が表面にある半導体積層構造側との界面でシート抵抗を低くでき、半導体積層構造に最も効率よく電流注入が行える結果、発光効率の高い半導体発光素子を得ることができる。このように、膜中酸素濃度を均一とせず、酸化物膜との界面近傍の濃度を高くすることで光取り出し効率の改善とシート抵抗の低減を両立させ、高品質の半導体発光素子を実現できる。また導電性酸化物膜が元素Cに加えて、微量元素Dを含む場合、半導体層との界面近傍における微量元素Dの濃度を高くすることで、さらに半導体層側においてキャリアを多く配置することができ、ショットキー障壁をさらに小さく、また半導体積層構造側のシート抵抗をさらに低くすることができ、極めて優れた半導体発光素子を構成できる。   According to the semiconductor light emitting device of the present invention, the oxygen concentration in the film near the interface with the oxide film containing the second element B of the conductive oxide film is higher than the oxygen concentration in the film near the interface with the semiconductor layer. Since it is high, the crystallinity is excellent in the vicinity of the interface with the oxide film containing the second element B, and light from the light-emitting layer can be extracted to the outside sufficiently. Further, the oxygen concentration in the vicinity of the interface between the conductive oxide film and the semiconductor layer is lower than that in the vicinity of the interface with the oxide film containing the second element B, so that the deficient oxygen has the same trend as the carrier. Therefore, a large number of carriers can be arranged only on the semiconductor layer side of the conductive oxide film, and as a result, the Schottky barrier with the semiconductor layer containing the first element A can be reduced. In addition, the conductive oxide film can reduce the sheet resistance at the interface with the semiconductor multilayer structure side on which the semiconductor layer containing the first element A is on the surface, so that current can be injected most efficiently into the semiconductor multilayer structure. A semiconductor light emitting device having a high level can be obtained. As described above, by improving the light extraction efficiency and reducing the sheet resistance by increasing the concentration in the vicinity of the interface with the oxide film without making the oxygen concentration in the film uniform, a high-quality semiconductor light emitting device can be realized. . In addition, when the conductive oxide film contains the trace element D in addition to the element C, the concentration of the trace element D in the vicinity of the interface with the semiconductor layer can be increased to further dispose more carriers on the semiconductor layer side. In addition, the Schottky barrier can be further reduced, the sheet resistance on the semiconductor multilayer structure side can be further reduced, and an extremely excellent semiconductor light emitting device can be configured.

以下、本発明の実施の形態を図面に基づいて説明する。ただし以下に示す実施の形態は、本発明の技術思想を具体化するための半導体発光素子を例示するものであって、本発明は半導体発光素子を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a semiconductor light emitting element for embodying the technical idea of the present invention, and the present invention does not specify the semiconductor light emitting element as follows. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, but are merely described. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

図1に、本発明の一実施の形態に係る半導体発光素子の構成を示す。半導体発光素子は、典型的には発光ダイオード(LED)や半導体レーザ(LD)等であり、半導体層上に形成された導電性酸化物膜と酸化物膜とによって構成される。半導体層としては特に限定されるものではなく、シリコン、ゲルマニウム等の元素半導体、III−V族、II−VI族、VI−VI族等の化合物半導体等が挙げられる。特に、InXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)等の窒化ガリウム系化合物半導体が好適に用いられる。半導体層は、単層構造でもよいが、MIS接合、PIN接合又はPN接合を有したホモ構造、ヘテロ構造又はダブルへテロ構造であってもよく、超格子構造や、量子効果が生ずる薄膜を積層した単一量子井戸構造又は多重量子井戸構造であってもよい。また、n型、p型のいずれかの不純物がドーピングされていてもよい。この半導体層は、例えば有機金属気相成長法(MOCVD)、ハイドライド気相成長法(HVPE)、分子線エピタキシャル成長法(MBE)等の公知の技術により形成することができる。半導体層の膜厚は特に限定されるものではなく、用途や目的に応じて種々の膜厚のものを適用することができる。 FIG. 1 shows a configuration of a semiconductor light emitting device according to an embodiment of the present invention. The semiconductor light emitting element is typically a light emitting diode (LED), a semiconductor laser (LD), or the like, and includes a conductive oxide film and an oxide film formed on a semiconductor layer. The semiconductor layer is not particularly limited, and examples thereof include elemental semiconductors such as silicon and germanium, and compound semiconductors such as III-V group, II-VI group, and VI-VI group. In particular, a gallium nitride-based compound semiconductor such as In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is preferably used. The semiconductor layer may be a single layer structure, but may be a homo structure, a hetero structure or a double hetero structure having a MIS junction, a PIN junction or a PN junction, and a superlattice structure or a thin film generating a quantum effect is laminated. It may be a single quantum well structure or a multiple quantum well structure. Further, either n-type or p-type impurities may be doped. This semiconductor layer can be formed by known techniques such as metal organic chemical vapor deposition (MOCVD), hydride vapor deposition (HVPE), molecular beam epitaxy (MBE), and the like. The film thickness of the semiconductor layer is not particularly limited, and various film thicknesses can be applied depending on applications and purposes.

導電性酸化物膜としては、亜鉛(Zn)、インジウム(In)、スズ(Sn)及びマグネシウム(Mg)よりなる群から選択された少なくとも一種の元素Cを含む酸化物からなる膜であり、具体的には、ITO、ZnO、In23、SnO2、MgO等が挙げられる。なかでも、ITO(酸化インジウムスズ)膜が好ましい。これらITO膜等は、当該分野で通常用いられている透光性を有する膜であり、上述した半導体層に対して良好なオーミック接続を形成し、導電性酸化物膜に投入された電流を膜全体に拡散させ、さらに半導体層に均一に拡散させることができる膜である。また、後述する酸化物膜との密着性を良好にする。このため、導電性酸化物膜は、半導体層上に形成され、さらに後述する酸化物膜との間に形成されており、酸化物膜との界面近傍における膜中酸素濃度が、導電性酸化物膜の他の部分、例えば導電性酸化物膜の厚み方向の中央部分や半導体層との界面近傍の膜中酸素濃度よりも低い。換言すると、酸化物膜との界面側において、これに隣接する領域、つまり導電性酸化物膜の内部であって、半導体層側から酸化物膜側にかけて膜中酸素濃度から増加する傾向の膜中酸素濃度を有している。 The conductive oxide film is a film made of an oxide containing at least one element C selected from the group consisting of zinc (Zn), indium (In), tin (Sn), and magnesium (Mg). Specifically, ITO, ZnO, In 2 O 3 , SnO 2 , MgO and the like can be mentioned. Of these, an ITO (indium tin oxide) film is preferable. These ITO films and the like are light-transmitting films that are usually used in the field, and form a good ohmic connection with the above-described semiconductor layer, so that a current supplied to the conductive oxide film is applied to the film. It is a film that can be diffused throughout and evenly diffused into the semiconductor layer. Further, the adhesion with the oxide film described later is improved. Therefore, the conductive oxide film is formed on the semiconductor layer and further between the oxide film described later, and the oxygen concentration in the film in the vicinity of the interface with the oxide film is such that the conductive oxide film The oxygen concentration in the film is lower than other portions of the film, for example, the central portion in the thickness direction of the conductive oxide film and the vicinity of the interface with the semiconductor layer. In other words, on the interface side with the oxide film, in the region adjacent to the oxide film, that is, inside the conductive oxide film, the film tends to increase from the oxygen concentration in the film from the semiconductor layer side to the oxide film side. It has an oxygen concentration.

導電性酸化物膜は、膜中酸素濃度が半導体層側に低い膜と酸化物膜側に高い膜との2層としても良く、また膜中酸素濃度が半導体層側から酸化物膜側にかけて段階的に高くなる多層膜としてもよいが、単一の膜で膜中酸素濃度が高い領域と低い領域とを有するような導電性酸化物膜とすることで、発光層からの光を好適に外部に取り出すことができ、好ましい。これをSIMSにより測定すると図2のような傾向になる。図2(a)は連続的に酸素濃度に濃度勾配がある場合であり、(b)、(c)は段階的に酸素濃度に濃度勾配がある場合を、(d)はこれらを総括した酸素濃度の傾向を示す図である。なお、導電性酸化物膜の膜厚は、特に限定されるものではなく、数オングストローム〜数μm程度が挙げられる。具体的には、4000〜7000Å程度とすることが適当である。   The conductive oxide film may have two layers, a film having a low oxygen concentration on the semiconductor layer side and a film having a high oxygen side on the oxide film side, and a step in which the oxygen concentration in the film extends from the semiconductor layer side to the oxide film side. Although it may be a multi-layer film that becomes higher, the light from the light-emitting layer can be suitably transmitted to the outside by forming a conductive oxide film having a single film with a high oxygen concentration region and a low oxygen concentration region. It is possible to take it out. When this is measured by SIMS, it tends to be as shown in FIG. FIG. 2 (a) shows a case where there is a concentration gradient in the oxygen concentration continuously, (b) and (c) show a case where there is a concentration gradient in the oxygen concentration step by step, and (d) shows oxygen that summarizes these. It is a figure which shows the tendency of a density | concentration. Note that the thickness of the conductive oxide film is not particularly limited, and may be about several angstroms to several micrometers. Specifically, it is appropriate to set it to about 4000 to 7000 mm.

膜中酸素濃度は、例えばAES(Auger Electron Spectroscopy:オージェ電子分光測定装置)により測定することができる。AESは、電子線を照射し、放出されるオージェ電子を検出して試料の元素分析を行う方法で、試料の化学組成や同位体組成、特に深さ方向の組成変化を知ることができる。また、SIMS(Secondary Ion-microprobe Mass Spectrometer(又はSpectrometry):二次イオン質量分析計(又は分析法))により測定することもできる。SIMSは、試料に一次イオンを照射して、質量分離された二次イオンの数を数えることによって、同じく試料の化学組成や同位体組成、特に深さ方向の組成変化を知ることができる。   The oxygen concentration in the film can be measured by, for example, AES (Auger Electron Spectroscopy). AES is a method of irradiating an electron beam, detecting emitted Auger electrons and performing elemental analysis of the sample, and can know the chemical composition and isotope composition of the sample, particularly the composition change in the depth direction. Moreover, it can also measure by SIMS (Secondary Ion-microprobe Mass Spectrometer (or Spectrometry): secondary ion mass spectrometer (or analysis method)). In SIMS, by irradiating a sample with primary ions and counting the number of secondary ions separated by mass, the chemical composition and isotope composition of the sample, particularly the composition change in the depth direction, can be known.

膜中酸素濃度が異なる導電性酸化物膜は、従来から公知の方法で形成することができる。例えばスパッタ法、反応性スパッタ法、真空蒸着法、イオンビームアシスト蒸着法、イオンプレーティング法、レーザアブレーション法、CVD法、スプレー法、スピンコート法、ディップ法又はこれらの方法と熱処理の組み合わせ等、種々の方法を利用することができる。   Conductive oxide films having different oxygen concentrations in the film can be formed by a conventionally known method. For example, sputtering method, reactive sputtering method, vacuum deposition method, ion beam assisted deposition method, ion plating method, laser ablation method, CVD method, spray method, spin coating method, dipping method or a combination of these methods and heat treatment, etc. Various methods can be used.

具体的には、スパッタ法により導電性酸化物膜、例えばITO膜を成膜する際に、スパッタガスとして酸素分圧の小さいガス又はゼロのガスから、大きいガスに切り替えるか、徐々に酸素分圧を増加させて用いる方法、導電性酸化物膜成膜用のターゲットの他に、例えばIn量が多いターゲット、又は酸素量が少ないターゲットを用いる方法、スパッタ装置の投入電力を徐々に増加させて成膜する方法等が挙げられる。また、真空蒸着により導電性酸化物膜を成膜する際に、半導体層の温度を急激又は徐々に上昇させる方法、成膜レートを急激に上昇させる方法、イオン銃を用いて酸素イオンを成膜時の後半にのみ照射する方法等が挙げられる。   Specifically, when forming a conductive oxide film such as an ITO film by sputtering, the sputtering gas is switched from a gas having a low oxygen partial pressure or a gas having a low oxygen partial pressure to a gas having a large oxygen partial pressure. In addition to the target for forming a conductive oxide film, for example, a method using a target with a large amount of In or a target with a small amount of oxygen, and gradually increasing the input power of the sputtering apparatus. Examples include a film forming method. Also, when forming a conductive oxide film by vacuum deposition, a method of rapidly or gradually increasing the temperature of the semiconductor layer, a method of rapidly increasing the film formation rate, and a film of oxygen ions using an ion gun A method of irradiating only in the latter half of the time is mentioned.

さらに、イオンプレーティング法により導電性酸化物膜を成膜する際に、成膜時後半に酸素ガスをプラズマ化させてこの酸素プラズマを導電性酸化物膜中に取り込ませて、導電性酸化物膜を成膜する方法、導電性酸化物の微粒子を溶媒に溶解又は分散、懸濁させてスプレー法、スピンコート法、ディップ法により成膜する際に、導電性酸化物を含有する溶液等の金属元素含有量又は酸素含有量を変化させた複数種類の溶液等を用いるか、乾燥又は焼成時の雰囲気、温度等を制御する方法、CVD法により導電性酸化物膜を形成する際に、酸素ガス又は原料酸素含有ガスの流量を制御する方法が挙げられる。   Further, when the conductive oxide film is formed by the ion plating method, oxygen gas is turned into plasma in the latter half of the film formation, and this oxygen plasma is taken into the conductive oxide film, thereby forming the conductive oxide film. A method of forming a film, such as a solution containing a conductive oxide, when a conductive oxide fine particle is dissolved or dispersed or suspended in a solvent to form a film by a spray method, a spin coating method, or a dip method. When forming a conductive oxide film by CVD, a method for controlling the atmosphere, temperature, etc. at the time of drying or baking, using a plurality of types of solutions with varying metal element content or oxygen content, oxygen, etc. A method for controlling the flow rate of the gas or the raw material oxygen-containing gas may be mentioned.

加えて、導電性酸化物膜を形成した後、例えば酸化性ガス(具体的には酸素、窒素、ハロゲン)雰囲気下、200〜650℃程度、導電性酸化物膜の膜厚に応じて所定時間アニール処理する方法が挙げられる。アニール処理の方法としては、例えばランプアニール処理、加熱炉によるアニール処理などがある。また導電性酸化物膜を成膜した後に処理する方法として、電子線照射やレーザアブレーションを利用してもよい。さらに、これらの方法を任意に組み合わせて利用してもよい。   In addition, after forming the conductive oxide film, for example, in an oxidizing gas (specifically, oxygen, nitrogen, halogen) atmosphere, about 200 to 650 ° C. for a predetermined time according to the thickness of the conductive oxide film A method of annealing treatment may be mentioned. Examples of the annealing process include a lamp annealing process and an annealing process using a heating furnace. Further, as a method of processing after forming a conductive oxide film, electron beam irradiation or laser ablation may be used. Furthermore, these methods may be used in any combination.

第2の元素Bを含む酸化物膜としては、種々の酸化物膜を用いることができるが、第2の元素Bは、インジウムに対して、電気陰性度を示すPauling値(ポーリング値)が大きい元素を選択することが好ましい。また、導電性酸化物膜がITOに限らず、亜鉛、インジウム、スズ及びマグネシウムよりなる群から選択された少なくとも一種の元素Cを含む酸化物よりなる導電性酸化物膜において、これらの元素Cに対して、Pauling値(ポーリング値)が同様の関係となる第2の元素Bを含むことが好ましい。このような元素を含む酸化物膜とすることで、酸化物膜との界面近傍における膜中酸素濃度が、導電性酸化物膜の他の部分の膜中酸素濃度よりも高い導電性酸化物膜が容易に得られやすい。これは酸化物膜中の酸素が電気陰性度の小さい導電性酸化物膜の方に移動することによると考えられる。酸化物膜形成時もしくは酸化物膜形成後に、界面近傍の膜中酸素濃度が他の部分より高くなるように形成もしくは処理すればよい。   Although various oxide films can be used as the oxide film containing the second element B, the second element B has a Pauling value (polling value) indicating electronegativity greater than that of indium. It is preferable to select an element. Further, the conductive oxide film is not limited to ITO, and in the conductive oxide film made of an oxide containing at least one element C selected from the group consisting of zinc, indium, tin, and magnesium, On the other hand, it is preferable to include the second element B having a similar relationship between the Pauling value (polling value). By using an oxide film containing such an element, the conductive oxide film has a higher oxygen concentration in the vicinity of the interface with the oxide film than in the other portions of the conductive oxide film. Is easily obtained. This is considered to be due to the movement of oxygen in the oxide film toward the conductive oxide film having a low electronegativity. What is necessary is just to form or process so that the oxygen concentration in the film | membrane of an interface vicinity may become higher than another part at the time of an oxide film formation or after an oxide film formation.

また第2の元素Bは、第1の元素Aに対して、電気陰性度を示すPauling値(ポーリング値)が大きい元素を選択することがさらに好ましい。このような元素を含む酸化物膜とすることで、酸化物膜中の酸素が導電性酸化物膜に移動しやすくなり、さらに第1の元素Aを含む半導体層へも引き寄せられて、導電性酸化物膜の膜全体にわたって酸素濃度が傾斜した導電性酸化物膜が得られやすくなる。このように、導電性酸化物膜の膜全体にわたって酸素濃度が傾斜した導電性酸化物膜とすることで、導電性酸化物膜に投入された電流を膜全体に最も効率よく拡散させ、発光効率の高い半導体発光素子を得ることができる。またこれにより、導電性酸化物膜の膜厚を薄くすることも可能となり、透光性においても優れた導電性酸化物膜とすることができる。   In addition, it is more preferable that the second element B is an element having a larger Pauling value (Pauling value) indicating electronegativity than the first element A. By using an oxide film containing such an element, oxygen in the oxide film can easily move to the conductive oxide film, and is also attracted to the semiconductor layer containing the first element A, so that the conductive film becomes conductive. It becomes easy to obtain a conductive oxide film having an oxygen concentration gradient over the entire oxide film. In this way, by using a conductive oxide film having a gradient of oxygen concentration throughout the conductive oxide film, the current input to the conductive oxide film is most efficiently diffused throughout the film, and the luminous efficiency is improved. A semiconductor light emitting device having a high level can be obtained. This also makes it possible to reduce the thickness of the conductive oxide film, and a conductive oxide film that is excellent in translucency can be obtained.

また第2の元素Bを含む酸化物膜が絶縁性酸化物膜とすることで、半導体発光素子の保護膜としても機能し、信頼性にも優れた半導体発光素子を得ることができる。好ましい第2の元素Bの具体的構成としては、ケイ素(Si)又はスズ(Sn)が挙げられる。   In addition, when the oxide film containing the second element B is an insulating oxide film, a semiconductor light-emitting element that functions as a protective film of the semiconductor light-emitting element and has excellent reliability can be obtained. Specific examples of the preferable second element B include silicon (Si) and tin (Sn).

一方第1の元素Aは、ガリウム(Ga)であることが好ましい。例えばGaAs系半導体層(ただしAlやIn等を含んでもよい)や、GaN系半導体層(ただしAlやIn等を含んでもよい)などが挙げられ、これらの半導体積層構造からなる半導体発光素子の好適な電極として導電性酸化物膜が機能することができる。   On the other hand, the first element A is preferably gallium (Ga). For example, a GaAs-based semiconductor layer (however, Al or In may be included), a GaN-based semiconductor layer (which may include Al, In, or the like), and the like. A conductive oxide film can function as a simple electrode.

さらに第1の元素Aを含む半導体層は、ガリウム(Ga)を含む窒化物半導体層であることが好ましい。つまり、AlxInyGa1-x-yN(0≦x、0≦y、x+y<1)からなる半導体層であることで、半導体層表面にほぼ均一に電流が注入できる全面電極として好適に機能すると共に、発光層からの光を効率よく外部に取り出すことができるからである。第1の元素Aを含む半導体層は、少なくともガリウムを含む窒化物半導体であればよく、SiやMgなどの導電型を決定する不純物をドープしたり、その他の元素を含んでいてもよい。 Further, the semiconductor layer containing the first element A is preferably a nitride semiconductor layer containing gallium (Ga). In other words, it is a semiconductor layer made of Al x In y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y <1), and thus functions suitably as a full-surface electrode that can inject current almost uniformly into the surface of the semiconductor layer In addition, the light from the light emitting layer can be efficiently extracted to the outside. The semiconductor layer containing the first element A may be a nitride semiconductor containing at least gallium, and may be doped with an impurity that determines the conductivity type such as Si or Mg, or may contain other elements.

さらに導電性酸化物膜は元素Cに加えて、微量元素Dを含む場合、半導体層との界面近傍における微量元素Dが、導電性酸化物膜の他の部分の膜中微量元素Dの濃度よりも高いことが好ましい。この微量元素Dにより、導電性酸化物膜はさらにキャリアが多くなり導電性がよくなる。この微量元素Dは、膜厚方向において、特有の濃度分布を持つことで、結晶性および導電性に優れた導電性酸化物膜とすることができる。くわしくは、微量元素Dが多すぎると導電性はよくなる傾向にあるが、結晶性が悪くなり、透光性の電極として好ましくない。すなわり、微量元素Dは膜厚方向において、濃度の高い領域と低い領域とが共存することが好ましい。特に、第1の元素Aを含む半導体層との界面近傍における膜中微量元素Dの濃度が、導電性酸化物膜の他の部分の膜中微量元素Dの濃度よりも高いことがさらに好ましい。たとえば導電性酸化物膜がITOの場合、微量元素Dはスズとなる。ITOは、酸素欠損量が多いことで高いキャリア濃度が得られると共に、スズのドープ量が多いことでも高いキャリア濃度が得られる。ただしスズのドープ量が多すぎるとキャリアは高くなるが結晶性が悪くなってしまうため、一般に透光性の電極としては好ましくない。しかし本発明の実施の形態では、半導体層との界面近傍においてスズのドープ量が多いことで、導電性酸化物膜と半導体層との間において良好なオーミックコンタクトが得られるとともに、他の領域ではスズのドープ量が少ないことで、良好な結晶性の膜となるので好ましい。この様子をSIMSにより測定すると、図3のような傾向になる。図3(a)は連続的にスズ濃度に濃度勾配がある場合、(b)は総括したスズ濃度の傾向を示す図である。またスズのドープ量を、移動度の高い状態を維持した範囲で、つまり導電性が最も良い範囲のドープ量のスズを半導体層との界面近傍に設けることで、導電性酸化物膜に投入された電流を膜全体に拡散させ、さらに半導体層に均一に拡散させることができる膜となり、好ましい。これら、微量元素Dを含む構成としては、例えばIn23にドープされたスズ、In23にドープされた亜鉛など、またZnOにドープされたガリウム、ZnOにドープされたアルミニウムなどがこのような特有の濃度分布の導電性酸化物膜が得られるので好ましい。本発明において、微量元素Dを含む導電性酸化物とは、具体的には元素Cに対して、およそ20パーセント以下の元素Dを含むことを意味する。 Further, when the conductive oxide film contains a trace element D in addition to the element C, the trace element D in the vicinity of the interface with the semiconductor layer is less than the concentration of the trace element D in the other part of the conductive oxide film. Is preferably high. By this trace element D, the conductive oxide film has more carriers and better conductivity. The trace element D has a specific concentration distribution in the film thickness direction, whereby a conductive oxide film having excellent crystallinity and conductivity can be obtained. Specifically, if there is too much trace element D, the conductivity tends to improve, but the crystallinity deteriorates, which is not preferable as a translucent electrode. In other words, it is preferable that the high concentration region and the low concentration region of the trace element D coexist in the film thickness direction. In particular, the concentration of the trace element D in the film in the vicinity of the interface with the semiconductor layer containing the first element A is more preferably higher than the concentration of the trace element D in the other part of the conductive oxide film. For example, when the conductive oxide film is ITO, the trace element D is tin. ITO can obtain a high carrier concentration when the amount of oxygen deficiency is large, and can also obtain a high carrier concentration when the doping amount of tin is large. However, if the tin doping amount is too large, the carrier becomes high but the crystallinity is deteriorated, so that it is generally not preferable as a translucent electrode. However, in the embodiment of the present invention, a large amount of tin is doped in the vicinity of the interface with the semiconductor layer, so that a good ohmic contact can be obtained between the conductive oxide film and the semiconductor layer, and in other regions. A small tin doping amount is preferable because a good crystalline film is obtained. When this state is measured by SIMS, the tendency is as shown in FIG. FIG. 3 (a) is a diagram showing a general tendency of tin concentration when there is a concentration gradient in the tin concentration continuously. In addition, the tin doping amount is within the range where the state of high mobility is maintained, that is, the doping amount of tin with the best conductivity is provided in the vicinity of the interface with the semiconductor layer. This is preferable because the obtained current can be diffused throughout the film and further uniformly diffused into the semiconductor layer. These, as a configuration in which trace elements D, for example tin doped In 2 O 3, In 2 O 3 , etc. doped zinc and gallium doped ZnO, aluminum doped with ZnO is this Since a conductive oxide film having such a specific concentration distribution is obtained, it is preferable. In the present invention, the conductive oxide containing the trace element D specifically means that about 20 percent or less of the element D is contained with respect to the element C.

本発明の実施の形態に係る半導体発光素子としては、その他の構成として、好ましくは絶縁性酸化物膜の一部に開口部を有し、導電性酸化物膜に電気的に接続されたパッド電極を有することが好ましい。このパッド電極は、種類及び形態は特に限定されるものではなく、通常、電極として用いられるものであればどのようなものでも使用することができる。例えば亜鉛(Zn)、ニッケル(Ni)、白金(Pt)パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、コバルト(Co)、鉄(Fe)、マンガン(Mn)、モリブデン(Mo)、クロム(Cr)、タングステン(W)、ランタン(La)、銅(Cu)、銀(Ag)、イットリウム(Y)等の金属、合金の単層膜又は積層膜等が挙げられる。なかでも、抵抗が低いものが好ましく、具体的には、W、Rh、Ag、Pt、Pd、Al等の単層膜又は積層膜が挙げられる。さらに、導電性酸化物膜、特にITO膜との密着性が良好なもの、具体的にはW、Rh、Ptの単層膜又は積層膜が好ましい。このような構成とすることで、半田により接着され又はワイヤボンディングされたパッド電極等として好適に機能し得る。   The semiconductor light emitting device according to the embodiment of the present invention has, as another configuration, a pad electrode that preferably has an opening in a part of the insulating oxide film and is electrically connected to the conductive oxide film. It is preferable to have. The type and form of the pad electrode are not particularly limited, and any pad electrode can be used as long as it is normally used as an electrode. For example, zinc (Zn), nickel (Ni), platinum (Pt) palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os), iridium (Ir) titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), cobalt (Co), iron (Fe), manganese (Mn), molybdenum (Mo), chromium (Cr), tungsten (W), lanthanum (La), copper (Cu), silver (Ag), yttrium (Y), and other metals, alloy single layer films or laminated films. Among them, those having low resistance are preferable, and specific examples include single layer films or laminated films of W, Rh, Ag, Pt, Pd, Al, and the like. Furthermore, a conductive oxide film, particularly a film having good adhesion to an ITO film, specifically, a single layer film or a laminated film of W, Rh, and Pt is preferable. By adopting such a configuration, it can suitably function as a pad electrode or the like bonded by solder or wire bonded.

本発明の実施の形態において、上述した構造を備える半導体発光素子は、LEDやLD等、当該分野で既知の発光素子を全て包含する。これらは、当該分野で既知の方法により作製され、既知の構成を備える。例えば第1導電型半導体層、発光層、第2導電型半導体層がこの順に積層され、第1導電型及び第2導電型半導体層にそれぞれ電極が接続されて構成される半導体発光素子が挙げられる。なお、第1導電型とはn型又はp型、第2導電型とはp型又はn型を意味する。   In the embodiment of the present invention, the semiconductor light-emitting element having the above-described structure includes all light-emitting elements known in the art such as LEDs and LDs. These are made by methods known in the art and have a known configuration. For example, a semiconductor light emitting device in which a first conductive type semiconductor layer, a light emitting layer, and a second conductive type semiconductor layer are stacked in this order, and electrodes are connected to the first conductive type and the second conductive type semiconductor layer, respectively. . The first conductivity type means n-type or p-type, and the second conductivity type means p-type or n-type.

この種の半導体発光素子は、基板上に複数の半導体層を成長させて形成されるが、基板としてサファイア等の絶縁性基板を用いることが好ましい。なお、絶縁性基板を最終的に取り除かない場合、通常、p電極及びn電極はいずれも半導体層上の同一面側に形成されることになり、フェイスアップ実装、すなわち半導体層側を主光取出し面とすることができる。またフリップチップ実装、すなわち絶縁性基板側を主光取出し面としてもよい。この場合、p電極及びn電極の上には、外部電極等と接続させるためのメタライズ層(バンプ:Ag、Au、Sn、In、Bi、Cu、Zn等)がそれぞれ形成され、このメタライズ層がサブマウント上に設けられた正負一対の外部電極と、それぞれ形成され、さらにサブマウントに対してワイヤなどが配線される。また、最終的に基板を除去して、フェイスアップ実装又はフリップチップ実装のいずれに用いてもよい。なお、基板はサファイアに限定されず、例えばスピネル、SiC、GaN、GaAs等、公知の基板を用いることができる。また、基板としてSiC、GaN、GaAs等の導電性基板を用いることにより、p電極及びn電極を対向して配置してもよい。   This type of semiconductor light-emitting element is formed by growing a plurality of semiconductor layers on a substrate, and an insulating substrate such as sapphire is preferably used as the substrate. When the insulating substrate is not finally removed, both the p-electrode and the n-electrode are usually formed on the same surface side of the semiconductor layer. It can be a surface. Further, flip-chip mounting, that is, the insulating substrate side may be used as the main light extraction surface. In this case, metallization layers (bumps: Ag, Au, Sn, In, Bi, Cu, Zn, etc.) for connection with external electrodes or the like are formed on the p electrode and the n electrode, respectively. A pair of positive and negative external electrodes provided on the submount are respectively formed, and further, a wire or the like is wired to the submount. Further, the substrate may be finally removed and used for either face-up mounting or flip chip mounting. In addition, a board | substrate is not limited to sapphire, For example, well-known board | substrates, such as a spinel, SiC, GaN, GaAs, can be used. Further, by using a conductive substrate such as SiC, GaN, or GaAs as the substrate, the p electrode and the n electrode may be arranged to face each other.

本発明の実施の形態に係る半導体発光素子においては、上述した電極を、第1導電型半導体層上か、第2導電型半導体層上かのいずれか一方に備えていればよい。例えばp型半導体層上に備えることが好ましい。また、第1導電型及び第2導電型半導体層の双方の上に備えていてもよい。双方とも同じ電極構造であれば、製造工程が簡略化され、結果的に安価で信頼性の高い半導体発光素子が得られる。ただし、第1導電型及び第2導電型半導体層上に形成される金属膜は、その種類、積層構造、膜厚等が異なっていてもよい。   In the semiconductor light emitting device according to the embodiment of the present invention, the above-described electrode may be provided on either the first conductive type semiconductor layer or the second conductive type semiconductor layer. For example, it is preferable to provide on a p-type semiconductor layer. Moreover, you may provide on both the 1st conductivity type and the 2nd conductivity type semiconductor layer. If both have the same electrode structure, the manufacturing process is simplified, and as a result, an inexpensive and highly reliable semiconductor light emitting device can be obtained. However, the metal film formed on the first conductivity type and the second conductivity type semiconductor layer may be different in type, laminated structure, film thickness, and the like.

このような半導体発光素子におけるパッド電極は、例えば半導体層側から、Rh、Pt、Auのそれぞれをスパッタリングにより順に積層させたRh/Pt/Au電極(各膜厚は、例えば100nm/200nm/500nmとする);Pt、Auのそれぞれをスパッタリングにより順に積層させたPt/Au電極(膜厚は、例えば20nm/700nm)等が挙げられる。パッド電極の最上層をAuとすることによって、Auを主成分とする導電性ワイヤ等と良好な接続を確保することができる。また、RhとAuの間にPtを積層させることによって、Au又はRhの拡散を防止することができ、電極として信頼性の高い電気的な接続を得ることができる。また、Rhは光反射性及びバリア性に優れ、光取り出し効率が向上するため好適に用いることができる。なかでも、Pt/Au(フェイスアップの場合)、Rh/Au(フェイスダウンの場合)の積層膜が好ましい。   The pad electrode in such a semiconductor light emitting element is, for example, an Rh / Pt / Au electrode in which Rh, Pt, and Au are sequentially laminated from the semiconductor layer side (each film thickness is, for example, 100 nm / 200 nm / 500 nm). Pt / Au electrode (film thickness is, for example, 20 nm / 700 nm) or the like in which Pt and Au are sequentially laminated by sputtering. By using Au as the uppermost layer of the pad electrode, it is possible to ensure good connection with a conductive wire or the like mainly composed of Au. Further, by stacking Pt between Rh and Au, diffusion of Au or Rh can be prevented, and highly reliable electrical connection as an electrode can be obtained. Rh is excellent in light reflectivity and barrier properties, and can be suitably used because light extraction efficiency is improved. Of these, a laminated film of Pt / Au (in the case of face-up) and Rh / Au (in the case of face-down) is preferable.

基板上に形成される半導体層は、基板側から順に、第1導電型半導体層、活性層、第2導電型半導体層である。なお基板と第1導電型半導体層との間、これら半導体層の間にアンドープ、ドープの半導体層が積層されていてもよい。また、これら半導体層は窒化物半導体層であることが好ましい。具体的には、次の(1)〜(5)に示すような半導体層の積層構造が挙げられる。   The semiconductor layers formed on the substrate are a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer in order from the substrate side. An undoped or doped semiconductor layer may be stacked between the substrate and the first conductivity type semiconductor layer. In addition, these semiconductor layers are preferably nitride semiconductor layers. Specifically, a stacked structure of semiconductor layers as shown in the following (1) to (5) can be given.

(1)膜厚が200ÅのGaNよりなるバッファ層、膜厚が4μmのSiドープn型GaNよりなるn型コンタクト層、膜厚が30ÅのアンドープIn0.2Ga0.8Nよりなる単一量子井戸構造の活性層、膜厚が0.2μmのMgドープp型Al0.1Ga0.9Nよりなるp型クラッド層、膜厚が0.5μmのMgドープp型GaNよりなるp型コンタクト層。 (1) A buffer layer made of GaN having a thickness of 200 、, an n-type contact layer made of Si-doped n-type GaN having a thickness of 4 µm, and a single quantum well structure made of undoped In 0.2 Ga 0.8 N having a thickness of 30 Å An active layer, a p-type cladding layer made of Mg-doped p-type Al 0.1 Ga 0.9 N having a thickness of 0.2 μm, and a p-type contact layer made of Mg-doped p-type GaN having a thickness of 0.5 μm.

(2)膜厚が約100ÅのAlGaNからなるバッファ層、膜厚1μmのアンドープGaN層、膜厚5μmのSiを4.5×1018/cm3含むGaNからなるn側コンタクト層、3000ÅのアンドープGaNからなる下層と、300ÅのSiを4.5×1018/cm3含むGaNからなる中間層と、50ÅのアンドープGaNからなる上層との3層からなるn側第1多層膜層(総膜厚3350Å)、アンドープGaNからなる窒化物半導体層を40ÅとアンドープIn0.1Ga0.9Nからなる窒化物半導体層を20Åとが繰り返し交互に10層ずつ積層されてさらにアンドープGaNからなる窒化物半導体層を40Åの膜厚で形成された超格子構造のn側第2多層膜層(総膜厚640Å)、膜厚が250ÅのアンドープGaNからなる障壁層と膜厚が30ÅのIn0.3Ga0.7Nからなる井戸層とが繰り返し交互に6層ずつ積層されてさらに膜厚が250ÅのアンドープGaNからなる障壁が形成された多重量子井戸構造の活性層(総膜厚1930Å)、Mgを5×1019/cm3含むAl0.15Ga0.85Nからなる窒化物半導体層を40ÅとMgを5×1019/cm3含むIn0.03Ga0.97Nからなる窒化物半導体層を25Åとが繰り返し5層ずつ交互に積層されてさらにMgを5×1019/cm3含むAl0.15Ga0.85Nからなる窒化物半導体層を40Åの膜厚で形成された超格子構造のp側多層膜層(総膜厚365Å)、膜厚が1200ÅのMgを1×1020/cm3含むGaNからなるp側コンタクト層。 (2) A buffer layer made of AlGaN having a thickness of about 100 mm, an undoped GaN layer having a thickness of 1 μm, an n-side contact layer made of GaN containing 4.5 × 10 18 / cm 3 of Si having a thickness of 5 μm, and 3000 μm undoped. An n-side first multilayer film composed of three layers: a lower layer made of GaN, an intermediate layer made of GaN containing 4.5 × 10 18 / cm 3 of 300 Si Si, and an upper layer made of 50 Å undoped GaN (total film) A thickness of 3350 mm), 40 mm of nitride semiconductor layers made of undoped GaN, and 20 mm of nitride semiconductor layers made of undoped In 0.1 Ga 0.9 N were alternately stacked, and 10 layers of nitride semiconductor layers made of undoped GaN were further stacked. An n-side second multilayer film layer (total film thickness: 640 mm) having a superlattice structure formed with a thickness of 40 mm, a barrier layer made of undoped GaN with a film thickness of 250 mm Thickness active layer of multiple quantum well structure barrier further thickness is laminated by six layers alternately an In 0.3 Ga 0.7 consisting of N well layer and the repetition of 30Å is made of undoped GaN of 250Å was formed (total film A thickness of 1930 mm), a nitride semiconductor layer composed of Al 0.15 Ga 0.85 N containing 5 × 10 19 / cm 3 of Mg and a nitride semiconductor layer composed of In 0.03 Ga 0.97 N containing 5 × 10 19 / cm 3 of Mg A p-side multilayer having a superlattice structure in which a nitride semiconductor layer made of Al 0.15 Ga 0.85 N containing 5 × 10 19 / cm 3 of Mg and 5 × 10 19 / cm 3 is further laminated alternately with 5 layers each having a thickness of 40 mm. A p-side contact layer made of GaN containing 1 × 10 20 / cm 3 of Mg having a film layer (total film thickness 365 mm) and a film thickness of 1200 mm.

(3)膜厚が約100ÅのAlGaNからなるバッファ層、膜厚1μmのアンドープGaN層、膜厚5μmのSiを4.5×1018/cm3含むGaNからなるn側コンタクト層、3000ÅのアンドープGaNからなる下層と、300ÅのSiを4.5×1018/cm3含むGaNからなる中間層と、50ÅのアンドープGaNからなる上層との3層からなるn側第1多層膜層(総膜厚3350Å)、アンドープGaNからなる窒化物半導体層を40ÅとアンドープIn0.1Ga0.9Nからなる窒化物半導体層を20Åとが繰り返し交互に10層ずつ積層されてさらにアンドープGaNからなる窒化物半導体層を40Åの膜厚で形成された超格子構造のn側第2多層膜層(総膜厚640Å)、最初に膜厚が250ÅのアンドープGaNからなる障壁層と続いて膜厚が30ÅのIn0.3Ga0.7Nからなる井戸層と膜厚が100ÅのIn0.02Ga0.98Nからなる第1の障壁層と膜厚が150ÅのアンドープGaNからなる第2の障壁層が繰り返し交互に6層ずつ積層されて形成された多重量子井戸構造の活性層(総膜厚1930Å)(繰り返し交互に積層する層は3層〜6層の範囲が好ましい)、Mgを5×1019/cm3含むAl0.15Ga0.85Nからなる窒化物半導体層を40ÅとMgを5×1019/cm3含むIn0.03Ga0.97Nからなる窒化物半導体層を25Åとが繰り返し5層ずつ交互に積層されてさらにMgを5×1019/cm3含むAl0.15Ga0.85Nからなる窒化物半導体層を40Åの膜厚で形成された超格子構造のp側多層膜層(総膜厚365Å)、膜厚が1200ÅのMgを1×1020/cm3含むGaNからなるp側コンタクト層。 (3) A buffer layer made of AlGaN having a thickness of about 100 mm, an undoped GaN layer having a thickness of 1 μm, an n-side contact layer made of GaN containing 4.5 × 10 18 / cm 3 of Si having a thickness of 5 μm, and 3000 μm undoped. An n-side first multilayer film composed of three layers: a lower layer made of GaN, an intermediate layer made of GaN containing 4.5 × 10 18 / cm 3 of 300 Si Si, and an upper layer made of 50 Å undoped GaN (total film) A thickness of 3350 mm), 40 mm of nitride semiconductor layers made of undoped GaN, and 20 mm of nitride semiconductor layers made of undoped In 0.1 Ga 0.9 N were alternately stacked, and 10 layers of nitride semiconductor layers made of undoped GaN were further stacked. The n-side second multilayer film layer (total film thickness: 640 mm) having a superlattice structure formed with a thickness of 40 mm, and is initially composed of undoped GaN with a film thickness of 250 mm. Wall layer and subsequently thickness first barrier layer and the thickness of the well layer and the film thickness made of In 0.3 Ga 0.7 N of 30Å consists 100Å of In 0.02 Ga 0.98 N second made of undoped GaN of 150Å An active layer having a multiple quantum well structure (total film thickness of 1930 mm) formed by alternately and alternately stacking 6 barrier layers alternately (the number of layers alternately stacked is preferably in the range of 3 to 6 layers), and 5 Mg Nitride semiconductor layer made of Al 0.15 Ga 0.85 N containing × 10 19 / cm 3 and 40 Å and 25 を nitride semiconductor layer made of In 0.03 Ga 0.97 N containing 5 × 10 19 / cm 3 Mg are repeated 5 layers each. A p-side multi-layer film having a superlattice structure in which nitride semiconductor layers made of Al 0.15 Ga 0.85 N containing 5 × 10 19 / cm 3 and further containing Mg 5 × 10 19 / cm 3 are formed in a thickness of 40 mm (total film thickness 365 mm) ) M with a film thickness of 1200 mm The 1 × 10 20 / cm 3 p-side contact layer made of GaN containing.

(4)バッファ層、アンドープGaN層、Siを6.0×1018/cm3含むGaNからなるn側コンタクト層、アンドープGaN層(以上が総膜厚6nmのn型窒化物半導体層)、Siを2.0×1018/cm3含むGaN障壁層とInGaN井戸層とを繰り返し5層ずつ交互に積層された多重量子井戸の活性層、膜厚が1300ÅのMgを5.0×1018/cm3含むGaNからなるp型窒化物半導体層、さらに透光性導電層とp型窒化物半導体層との間にInGaN層を50Åの膜厚で有してもよい。 (4) Buffer layer, undoped GaN layer, n-side contact layer made of GaN containing 6.0 × 10 18 / cm 3 of Si, undoped GaN layer (the above is an n-type nitride semiconductor layer with a total film thickness of 6 nm), Si the 2.0 × 10 18 / cm 3 comprising GaN barrier layer and the active layer of the InGaN well layer and a multiple quantum well which is repeated alternately stacked five layers of, 5.0 × the Mg having a thickness of 1300 Å 10 18 / A p-type nitride semiconductor layer made of GaN containing cm 3 and an InGaN layer having a thickness of 50 mm may be provided between the light-transmitting conductive layer and the p-type nitride semiconductor layer.

(5)バッファ層、アンドープGaN層、Siを1.3×1019/cm3含むGaNからなるn側コンタクト層、アンドープGaN層(以上が総膜厚6nmのn型窒化物半導体層)、Siを3.0×1018/cm3含むGaN障壁層とInGaN井戸層とを繰り返し7層ずつ交互に積層された多重量子井戸の活性層(総膜厚800Å)、膜厚が1300ÅのMgを2.5×1020/cm3含むGaNからなるp型窒化物半導体層、さらに透光性導電層とp型窒化物半導体層との間にInGaN層を50Åの膜厚で有してもよい。 (5) Buffer layer, undoped GaN layer, n-side contact layer made of GaN containing 1.3 × 10 19 / cm 3 of Si, undoped GaN layer (the above is an n-type nitride semiconductor layer having a total film thickness of 6 nm), Si Active layer (total film thickness of 800 mm) in which 7 layers of GaN barrier layers and InGaN well layers containing 3.0 × 10 18 / cm 3 are alternately stacked, and Mg with a film thickness of 1300 mm 2 A p-type nitride semiconductor layer made of GaN containing 0.5 × 10 20 / cm 3 and an InGaN layer having a thickness of 50 mm may be provided between the light-transmitting conductive layer and the p-type nitride semiconductor layer.

また、本発明の実施の形態に係る半導体発光素子においては、発光素子から光の一部を、それとは異なる波長の光に変換する光変換部材を有していてもよい。これにより、発光素子の光を変換した発光装置とすることができ、発光素子の発光と変換光との混色光などにより、白色系、電球色などの発光装置を得ることができる。このような光変換部材としては、Alを含み、かつY、Lu、Sc、La、Gd、Tb、Eu及びSmから選択された少なくとも一つの元素と、Ga及びInから選択された一つの元素とを含むアルミニウム・ガーネット系蛍光体、さらに希土類元素から選択された少なくとも一つの元素を含有するアルミニウム・ガーネット系蛍光体等が挙げられる。これにより、発光素子を高出力、高発熱での使用においても、温度特性に優れ、耐久性にも優れた発光装置を得ることができる。   In addition, the semiconductor light emitting device according to the embodiment of the present invention may include a light conversion member that converts part of light from the light emitting device into light having a different wavelength. Accordingly, a light-emitting device in which light from the light-emitting element is converted can be obtained, and a light-emitting device having a white color or a light bulb color can be obtained by using mixed color light of light emission from the light-emitting element and converted light. Such a light conversion member includes Al and at least one element selected from Y, Lu, Sc, La, Gd, Tb, Eu, and Sm, and one element selected from Ga and In. And an aluminum garnet-based phosphor containing at least one element selected from rare earth elements. Thereby, even when the light emitting element is used with high output and high heat generation, a light emitting device having excellent temperature characteristics and excellent durability can be obtained.

また光変換部材は、(Re1-xx3(Al1-yGay512(0<x<1、0≦y≦1、但し、Reは、Y、Gd、La、Lu、Tb、Smからなる群より選択される少なくとも一種の元素であり、RはCe又はCeとPrである)で表される蛍光体であってもよい。これにより、上記と同様に高出力の発光素子において、温度特性、耐久性に優れた素子とすることができる。特に、活性層がInGaNである場合に、温度特性において、黒体放射に沿った変化となり、白色系発光において有利となる。 The light converting member may, (Re 1-x R x ) 3 (Al 1-y Ga y) 5 O 12 (0 <x <1,0 ≦ y ≦ 1, where, Re is, Y, Gd, La, It may be a phosphor represented by at least one element selected from the group consisting of Lu, Tb, and Sm, wherein R is Ce or Ce and Pr. As a result, in the same manner as described above, in a high-output light emitting element, an element having excellent temperature characteristics and durability can be obtained. In particular, when the active layer is InGaN, the temperature characteristic changes along with black body radiation, which is advantageous for white light emission.

さらに光変換部材は、Nを含み、かつBe、Mg、Ca、Sr、Ba及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr及びHfから選択された少なくとも一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された窒化物系蛍光体であってもよい。窒化物系蛍光体の具体例としては、一般式LXSiYN(2/3X+4/3Y):Eu又はLXSiYZN(2/3X+4/3Y−2/3Z):Eu(Lは、Sr若しくはCa、又はSr及びCa、のいずれか)が挙げられる。これにより、上記蛍光体と同様に高出力の発光素子において、優れた温度特性、耐久性に優れた発光素子とすることができる。特に、窒化物系蛍光体が酸化窒化珪素化合物であると、優れた蛍光体とできる。また、上記アルミニウム・ガーネット系蛍光体と組み合わせることで、両者の温度特性が相互に作用して、混合色の温度変化が小さい発光装置とすることができる。 Furthermore, the light conversion member contains at least one element selected from Be, Mg, Ca, Sr, Ba and Zn, and at least selected from C, Si, Ge, Sn, Ti, Zr and Hf. A nitride-based phosphor containing one element and activated by at least one element selected from rare earth elements may be used. Specific examples of the nitride-based phosphor include a general formula L X Si Y N (2 / 3X + 4 / 3Y): Eu or L X Si Y O Z N (2 / 3X + 4 / 3Y-2 / 3Z): Eu (L Is any one of Sr and Ca, or Sr and Ca. Thereby, it is possible to obtain a light-emitting element having excellent temperature characteristics and durability in a high-output light-emitting element similar to the phosphor. In particular, when the nitride-based phosphor is a silicon oxynitride compound, an excellent phosphor can be obtained. Further, by combining with the above-mentioned aluminum / garnet phosphor, the temperature characteristics of the two interact with each other, and a light emitting device with a small temperature change of the mixed color can be obtained.

また、本発明の実施の形態に係る半導体発光素子においては、金属膜はパッド電極として用いるだけでなく、さらに延長導電部を設けることが好ましい。これにより、活性層全体を効率よく発光させることができ、特に半導体発光素子をフェイスアップ実装で設けるときに効果的である。延長導電部が設けられたパッド電極としては、例えば図4〜図7に示すような構成が挙げられる。   Further, in the semiconductor light emitting device according to the embodiment of the present invention, it is preferable that the metal film is not only used as a pad electrode but also provided with an extended conductive portion. As a result, the entire active layer can emit light efficiently, which is particularly effective when a semiconductor light emitting device is provided by face-up mounting. Examples of the pad electrode provided with the extended conductive portion include configurations as shown in FIGS.

n電極53は、図4及び図5に示すように半導体発光素子の少なくとも1つの辺に近接するように形成される。例えば1つの辺の中央部において、p型半導体層及び活性層の一部をエッチングにより除去してn型コンタクト層51が露出した切り欠き部51aを設け、その切り欠き部51aにn電極53を形成する。52はp型コンタクト層である。   As shown in FIGS. 4 and 5, the n-electrode 53 is formed so as to be close to at least one side of the semiconductor light emitting element. For example, in the central part of one side, a p-type semiconductor layer and a part of the active layer are removed by etching to provide a notch 51a in which the n-type contact layer 51 is exposed, and an n-electrode 53 is provided in the notch 51a. Form. 52 is a p-type contact layer.

p側パッド電極55は、透光性電極54上におけるn電極が近接する辺と対向する辺に隣接する位置に形成される。また、p側パッド電極55には2つの線上の延長導電部56(57)が接続され、その延長導電部56はp側パッド電極55の両側から、p側パッド電極55が隣接する辺(図4において上辺)に沿って延長されている。これにより、p側パッド電極55とn電極53間に位置する活性層を効率よく発光させることができ、さらにp側パッド電極55に接続された延長導電部56を透光性電極54上に電気的に導通するように形成することにより、効果的にp層全体に電流を拡散させ、発光層全体を効率よく発光させることができる。さらに、p側パッド電極55及び延長導電部56の周辺部において輝度の高い発光が得られる。したがって本発明の実施の形態では、延長導電部56の周辺部における輝度の高い発光を効果的に利用する態様とすることがさらに好ましい。   The p-side pad electrode 55 is formed on the translucent electrode 54 at a position adjacent to the side facing the side where the n-electrode is close. Further, the extended conductive portion 56 (57) on two lines is connected to the p-side pad electrode 55, and the extended conductive portion 56 is adjacent to the p-side pad electrode 55 from both sides (see FIG. 4 is extended along the upper side). As a result, the active layer located between the p-side pad electrode 55 and the n-electrode 53 can emit light efficiently, and the extended conductive portion 56 connected to the p-side pad electrode 55 is electrically connected to the translucent electrode 54. By forming so as to be electrically conductive, the current can be effectively diffused throughout the p layer, and the entire light emitting layer can be made to emit light efficiently. Further, light emission with high luminance can be obtained at the periphery of the p-side pad electrode 55 and the extended conductive portion 56. Therefore, in the embodiment of the present invention, it is more preferable that the light emission with high luminance in the peripheral portion of the extended conductive portion 56 is effectively used.

具体的には、延長導電部56と、延長導電部56が沿って形成される発光層及びp層の縁との間に上述の輝度の高い発光が得られる周辺部が確保されるように、その縁と延長導電部56との間に間隔を空けることが好ましい。尚、n型コンタクト層51のシート抵抗RnΩ/□と、透光性電極54のシート抵抗RpΩ/□とが、Rp≧Rnの関係を満たしている場合、延長導電部56と発光層の縁との間隔は、20μm以上50μm以下であることが好ましい。その間隔が20μmより小さいと輝度の高い発光が得られる周辺部領域が十分確保できない(輝度の高い発光が得られるべき領域が外側にはみ出す)からであり、その間隔が50μmを超えると、隣接辺に沿って発光輝度の低い部分が形成され、全体としての輝度の低下をもたらすからである。   Specifically, in order to secure the above-described high-luminance light emission between the extended conductive portion 56 and the edge of the light emitting layer and the p layer formed along the extended conductive portion 56, It is preferable to leave a space between the edge and the extended conductive portion 56. When the sheet resistance RnΩ / □ of the n-type contact layer 51 and the sheet resistance RpΩ / □ of the translucent electrode 54 satisfy the relationship of Rp ≧ Rn, the extended conductive portion 56 and the edge of the light emitting layer Is preferably 20 μm or more and 50 μm or less. This is because if the interval is smaller than 20 μm, a sufficient peripheral region where light emission with high luminance can be obtained cannot be secured (the region where light emission with high luminance should be obtained protrudes outside). This is because a portion having a low emission luminance is formed along the line, resulting in a decrease in luminance as a whole.

また、延長導電部56はそれぞれ、図4に示すように、n電極53から等距離になるように円弧状に形成されていることが好ましく、これにより図5のように直線状に設けた場合に比較して、より均一な発光分布が得られる。   Further, as shown in FIG. 4, each of the extended conductive portions 56 is preferably formed in an arc shape so as to be equidistant from the n-electrode 53, and when this is provided linearly as shown in FIG. Compared to the above, a more uniform emission distribution can be obtained.

さらに、図6及び図7に示すように、n電極63が半導体発光素子の1つの隅部で2つの辺に近接するように設けられ、パッド電極はn電極63が近接する隅部と対角をなす他の隅部に設けられることがさらに好ましい。   Further, as shown in FIGS. 6 and 7, the n electrode 63 is provided so as to be close to the two sides at one corner of the semiconductor light emitting device, and the pad electrode is diagonally opposite the corner where the n electrode 63 is close. More preferably, it is provided at the other corners forming

また、n電極63とp側パッド電極65とを対角配置した場合においても、図6及び図7に示すように、透光性電極64上に設けられた延長導電部66はそれぞれ、n電極63から等距離になるように円弧状に形成されていることが好ましく、これによってより高輝度でかつより均一な発光が得られる。なお、この場合においても、延長導電部66と発光層の縁との間隔は、上述したように輝度の高い発光が得られる領域を十分確保するために、20μm以上50μm以下であることが好ましい。   Even when the n-electrode 63 and the p-side pad electrode 65 are diagonally arranged, as shown in FIGS. 6 and 7, the extended conductive portions 66 provided on the translucent electrode 64 are respectively n-electrodes. It is preferably formed in an arc shape so as to be equidistant from 63, whereby higher luminance and more uniform light emission can be obtained. In this case as well, the distance between the extended conductive portion 66 and the edge of the light emitting layer is preferably 20 μm or more and 50 μm or less in order to secure a sufficient region where light emission with high luminance can be obtained as described above.

以下に、本発明の実施例に係る半導体発光素子及びその電極を図面に基づいて詳細に説明する。   Hereinafter, semiconductor light emitting devices and electrodes thereof according to embodiments of the present invention will be described in detail with reference to the drawings.

実施例1として作成した半導体発光素子を図1に基づき詳細に説明する。半導体発光素子10は、サファイア基板1の上に、Al0.1Ga0.9Nよりなるバッファ層(図示せず)、ノンドープGaN層(図示せず)が積層され、その上に、n型半導体層2として、SiドープGaNよりなるn型コンタクト層、GaN層(40Å)とInGaN層(20Å)とを交互に10回積層させた超格子のn型クラッド層が積層され、さらにその上に、最初に膜厚が250ÅのアンドープGaNからなる障壁層と続いて膜厚が30ÅのIn0.3Ga0.7Nからなる井戸層と膜厚が100ÅのIn0.02Ga0.98Nからなる第1の障壁層と膜厚が150ÅのアンドープGaNからなる第2の障壁層が繰り返し交互に6層ずつ積層されて形成された多重量子井戸構造の活性層3(総膜厚1930Å)、p型半導体層4として、MgドープAl0.1Ga0.9N層(40Å)とMgドープInGaN層(20Å)とが交互に10回積層された超格子のp型クラッド層、MgドープGaNよりなるp型コンタクト層がこの順に積層されて構成される。 The semiconductor light emitting device prepared as Example 1 will be described in detail with reference to FIG. In the semiconductor light emitting device 10, a buffer layer (not shown) made of Al 0.1 Ga 0.9 N and a non-doped GaN layer (not shown) are stacked on a sapphire substrate 1, and an n-type semiconductor layer 2 is formed thereon. , An n-type contact layer made of Si-doped GaN, a superlattice n-type cladding layer in which a GaN layer (40Å) and an InGaN layer (20Å) are alternately laminated 10 times, and a film is first formed thereon. A barrier layer made of undoped GaN having a thickness of 250 と, a well layer made of In 0.3 Ga 0.7 N having a thickness of 30 と, a first barrier layer made of In 0.02 Ga 0.98 N having a thickness of 100 と, and a thickness of 150 Å As the p-type semiconductor layer 4, the active layer 3 (total thickness 1930 mm) having a multiple quantum well structure in which the second barrier layers made of undoped GaN are alternately and repeatedly stacked in six layers are formed. The Al 0.1 Ga 0.9 N layer, (40 Å) and Mg-doped InGaN layer (20 Å) and superlattice p-type cladding layer stacked 10 times alternately, the p-type contact layer made of Mg-doped GaN are laminated in this order configuration Is done.

n型半導体層2の一部の領域においては、その上に積層された活性層3及びp型半導体層4が除去され、さらにn型半導体層2自体の厚さ方向の一部が除去されて露出しており、その露出したn型半導体層2上にn電極7が形成されている。   In a part of the n-type semiconductor layer 2, the active layer 3 and the p-type semiconductor layer 4 stacked thereon are removed, and a part of the n-type semiconductor layer 2 itself in the thickness direction is removed. An n-electrode 7 is formed on the exposed n-type semiconductor layer 2.

p型半導体層3上には、ほぼ全面に、ITOからなる透光性電極5が形成されており、この透光性電極5の上に一部パッド電極6が形成される開口部を有して、導電性の酸化物膜8が形成されている。なお、透光性電極5は、パッド電極6側において膜中酸素濃度が低い領域5aが、p型半導体層3側において膜中酸素濃度が高い領域5bが形成されている。このような半導体発光素子は、以下の製造方法により形成することができる。
<半導体層の形成>
On the p-type semiconductor layer 3, a translucent electrode 5 made of ITO is formed on almost the entire surface, and an opening for forming a part of the pad electrode 6 is formed on the translucent electrode 5. Thus, a conductive oxide film 8 is formed. In the translucent electrode 5, a region 5a having a low in-film oxygen concentration is formed on the pad electrode 6 side, and a region 5b having a high in-film oxygen concentration is formed on the p-type semiconductor layer 3 side. Such a semiconductor light emitting device can be formed by the following manufacturing method.
<Formation of semiconductor layer>

2インチφのサファイア基板1の上に、MOVPE反応装置を用い、Al0.1Ga0.9Nよりなるバッファ層を100Å、ノンドープGaN層を1.5μm、n型半導体層2として、SiドープGaNよりなるn型コンタクト層を2.165μm、GaN層(40Å)とInGaN層(20Å)とを交互に10回積層させた超格子のn型クラッド層5を640Å、最初に膜厚が250ÅのアンドープGaNからなる障壁層と続いて膜厚が30ÅのIn0.3Ga0.7Nからなる井戸層と膜厚が100ÅのIn0.02Ga0.98Nからなる第1の障壁層と膜厚が150ÅのアンドープGaNからなる第2の障壁層が繰り返し交互に6層ずつ積層されて形成された多重量子井戸構造の活性層3(総膜厚1930Å)、p型半導体層4として、MgドープAl0.1Ga0.9N層(40Å)とMgドープInGaN層(20Å)とを交互に10回積層させた超格子のp型クラッド層を0.2μm、MgドープGaNよりなるp型コンタクト層を0.5μmの膜厚でこの順に成長させ、ウェハを作製した。
<エッチング>
On a 2 inch φ sapphire substrate 1, using a MOVPE reactor, a buffer layer made of Al 0.1 Ga 0.9 N is made 100 μm, a non-doped GaN layer is 1.5 μm, and an n-type semiconductor layer 2 is made of n doped Si-doped GaN. The n-type cladding layer 5 of the superlattice in which the n-type contact layer is 2.165 μm, the GaN layer (40 cm) and the InGaN layer (20 cm) are alternately laminated 10 times, is made of 640 cm, and is initially made of undoped GaN having a film thickness of 250 mm. A barrier layer, followed by a well layer made of In 0.3 Ga 0.7 N with a thickness of 30 と, a first barrier layer made of In 0.02 Ga 0.98 N with a thickness of 100 と, and a second layer made of undoped GaN with a thickness of 150 とThe Mg-doped Al 0 is used as the active layer 3 (total film thickness 1930 mm) having a multi-quantum well structure in which six barrier layers are alternately and repeatedly stacked and the p-type semiconductor layer 4 is formed. .1 0.2 μm of the superlattice p-type cladding layer in which the Ga 0.9 N layer (40 Å) and the Mg-doped InGaN layer (20 Å) are alternately stacked 10 times, and the p-type contact layer made of Mg-doped GaN is 0.1 μm. The wafer was grown by growing in this order with a film thickness of 5 μm.
<Etching>

得られたウェハを反応容器内で、窒素雰囲気中、600℃にてアニールし、p型クラッド層及びp型コンタクト層をさらに低抵抗化した。アニール後、ウェハを反応容器から取り出し、最上層のp型コンタクト層の表面に所定の形状のマスクを形成し、エッチング装置でマスクの上からエッチングし、n型コンタクト層の一部を露出させた。
<ITO膜の形成>
The obtained wafer was annealed in a reaction vessel at 600 ° C. in a nitrogen atmosphere to further reduce the resistance of the p-type cladding layer and the p-type contact layer. After annealing, the wafer was taken out of the reaction vessel, a mask having a predetermined shape was formed on the surface of the uppermost p-type contact layer, and etching was performed from above the mask with an etching apparatus to expose a part of the n-type contact layer. .
<Formation of ITO film>

マスクを除去した後、スパッタ装置にウェハを設置し、In23とSnO2とを95:5の重量比で混合した焼結体からなる第1の酸化物ターゲットと、このIn23とSnO2との焼結体に90:10の重量比となるようにさらにInを添加した第2のターゲットとをITOターゲットとして設置した。スパッタ装置によって、酸素ガス雰囲気中、スパッタガスとしてアルゴンガスで、まず、第1の酸化物ターゲットを用いて、例えばRFパワー10W/cm3で5分間スパッタリングし、引き続き、第2のターゲットに変更して15分間スパッタリングすることにより、ウェハのp型コンタクト層8のほぼ全面に、ITOよりなる透光性電極5を4000Åの膜厚で形成した。得られた透光性電極5は良好な透光性を有し、サファイア基板1まで透けて観測できた。
<パッド電極の形成>
After removing the mask, a wafer is placed in the sputtering apparatus, and a first oxide target made of a sintered body in which In 2 O 3 and SnO 2 are mixed at a weight ratio of 95: 5, and this In 2 O 3. A second target obtained by further adding In to the sintered body of SnO 2 with a weight ratio of 90:10 was placed as an ITO target. First, sputtering is performed with an argon gas as a sputtering gas in an oxygen gas atmosphere using a sputtering apparatus, using a first oxide target, for example, at an RF power of 10 W / cm 3 for 5 minutes, and subsequently changed to a second target. By sputtering for 15 minutes, the translucent electrode 5 made of ITO was formed to a thickness of 4000 mm on almost the entire surface of the p-type contact layer 8 of the wafer. The obtained translucent electrode 5 had good translucency and could be observed through the sapphire substrate 1.
<Formation of pad electrode>

透光性電極5上に、レジストにより所定のパターンを有するマスクを形成し、その上にPt層及びAu層をこの順に積層し、リフトオフ法により、ボンディング用のパッド電極6を総膜厚1μmで形成した。その後、n型コンタクト層の上に、Rh/Pt/Auからなるn電極7を7000Åの膜厚で形成し、アニール装置にて400℃以上で熱処理を施し、電極を合金化した。さらに、ZrO2よりなる絶縁性酸化物膜8をパッド電極6とn電極7の表面の一部が露出するようにして半導体積層構造及び導電性酸化物膜の表面及び側面に2000Åの膜厚で形成した。得られたウェハを所定の箇所で分割することにより、半導体発光素子10を得た。 A mask having a predetermined pattern is formed on the translucent electrode 5 by using a resist, and a Pt layer and an Au layer are stacked in this order on the translucent electrode 5, and a bonding pad electrode 6 is formed with a total film thickness of 1 μm by a lift-off method. Formed. Thereafter, an n-electrode 7 made of Rh / Pt / Au was formed on the n-type contact layer with a film thickness of 7000 mm, and heat treatment was performed at 400 ° C. or higher with an annealing apparatus to alloy the electrode. Further, the insulating oxide film 8 made of ZrO 2 is formed with a thickness of 2000 mm on the surface and side surfaces of the semiconductor laminated structure and the conductive oxide film so that part of the surface of the pad electrode 6 and the n electrode 7 is exposed. Formed. The obtained wafer was divided at a predetermined location to obtain a semiconductor light emitting device 10.

以上のようにして形成した半導体発光素子を、酸化物膜8表面側から、ITO膜5及び半導体層4にかけてSIMSにより分析し、パッド電極、透光性電極、p型半導体層のデプスプロファイルを測定した。その結果は図2に示す傾向になり、図2から、ITO膜は、パッド電極側の界面近傍において、p型半導体層4側の酸素濃度よりも酸素濃度の高い領域5aを有していることが確認された。   The semiconductor light emitting device formed as described above is analyzed by SIMS from the surface of the oxide film 8 to the ITO film 5 and the semiconductor layer 4 to measure the depth profile of the pad electrode, the translucent electrode, and the p-type semiconductor layer. did. The result is the tendency shown in FIG. 2. From FIG. 2, the ITO film has a region 5a having an oxygen concentration higher than the oxygen concentration on the p-type semiconductor layer 4 side in the vicinity of the interface on the pad electrode side. Was confirmed.

このような構成により、ITO膜の表面において、酸素濃度の高い、つまりキャリアが少ない領域が形成され、酸化物膜との界面近傍において、結晶性に優れ、発光層からの光を十分に外部に取り出すことができる。さらにITO膜の半導体層側に酸素濃度の低い、つまりキャリアが多い領域が形成されるために、半導体層とのショットキー障壁を小さくすることができる。また、ITO膜は、半導体層が表面にある半導体積層構造側のシート抵抗を低くでき、半導体積層構造に最も効率よく電流注入が行えるので、発光効率の高い半導体発光素子を得ることができる。   With such a configuration, a region having a high oxygen concentration, that is, a low carrier concentration is formed on the surface of the ITO film, and the crystallinity is excellent in the vicinity of the interface with the oxide film. It can be taken out. Further, since a region having a low oxygen concentration, that is, a large amount of carriers is formed on the semiconductor layer side of the ITO film, the Schottky barrier with the semiconductor layer can be reduced. In addition, the ITO film can lower the sheet resistance on the side of the semiconductor multilayer structure with the semiconductor layer on the surface and can perform current injection most efficiently into the semiconductor multilayer structure, so that a semiconductor light emitting device with high luminous efficiency can be obtained.

次に実施例2の半導体発光素子は、実施例1における製造工程において、ITO膜を成膜する際に、第1の酸化物ターゲットを用い、成膜初期は、スパッタガスとして、アルゴンガスのみを用い、その後、スパッタガスをアルゴンガスと酸素ガスとの混合ガスに変更する以外は、実質的に実施例1と同様の方法により、同様の構成の半導体発光素子を得た。   Next, the semiconductor light emitting device of Example 2 uses the first oxide target when forming the ITO film in the manufacturing process of Example 1, and initially uses only argon gas as the sputtering gas. A semiconductor light emitting device having the same configuration was obtained by substantially the same method as in Example 1 except that the sputtering gas was changed to a mixed gas of argon gas and oxygen gas.

なお、成膜時のスパッタガスの圧力を0.01〜0.5Pa程度とした場合に、初期の酸素ガスの分圧は、1×10-4〜1×10-2Pa程度とした。また、アルゴンガスのみを用いた成膜時間は5分間程度、その後、アルゴンガスと酸素ガスとの混合ガスで15分間程度成膜した。 Note that when the pressure of the sputtering gas at the time of film formation was about 0.01 to 0.5 Pa, the initial partial pressure of the oxygen gas was about 1 × 10 −4 to 1 × 10 −2 Pa. The film formation time using only argon gas was about 5 minutes, and then the film was formed with a mixed gas of argon gas and oxygen gas for about 15 minutes.

得られた半導体発光素子においても、実施例1と同様に、ITO膜の表面において、酸素濃度の高い、つまりキャリアが少ない領域が形成され、酸化物膜との界面近傍において、結晶性に優れ、発光層からの光を十分に外部に取り出すことができる。さらにITO膜の半導体層側に酸素濃度の低い、つまりキャリアが多い領域が形成されるために、半導体層とのショットキー障壁を小さくすることができる。また、ITO膜は、半導体層が表面にある半導体積層構造側のシート抵抗を低くでき、半導体積層構造に最も効率よく電流注入が行えるので、発光効率の高い半導体発光素子を得ることができる。   Also in the obtained semiconductor light emitting device, similarly to Example 1, a region having a high oxygen concentration, that is, a region with few carriers was formed on the surface of the ITO film, and excellent crystallinity in the vicinity of the interface with the oxide film, Light from the light emitting layer can be sufficiently extracted to the outside. Further, since a region having a low oxygen concentration, that is, a large amount of carriers is formed on the semiconductor layer side of the ITO film, the Schottky barrier with the semiconductor layer can be reduced. In addition, the ITO film can lower the sheet resistance on the side of the semiconductor multilayer structure with the semiconductor layer on the surface and can perform current injection most efficiently into the semiconductor multilayer structure, so that a semiconductor light emitting device with high luminous efficiency can be obtained.

実施例3の半導体発光素子は、実施例1における製造工程において、ITO膜を成膜する際に、第2の酸化物ターゲットを用い、成膜初期は、スパッタ装置のRFパワーを2W/cm2とし、その後、10W/cm2に徐々に加速させる以外は、実質的に実施例1と同様の方法により、同様の構成の半導体発光素子を得た。 The semiconductor light emitting device of Example 3 uses the second oxide target when forming the ITO film in the manufacturing process of Example 1, and the RF power of the sputtering apparatus is 2 W / cm 2 at the initial stage of film formation. Then, a semiconductor light emitting device having the same configuration was obtained by substantially the same method as in Example 1 except that the acceleration was gradually accelerated to 10 W / cm 2 .

実施例4の半導体発光素子は、実施例1における製造工程においてITO膜を成膜した後、あるいは、実施例1における製造工程において第1の酸化物ターゲットを用いて4000ÅのITO膜を形成した後、酸化性ガス雰囲気下(例えば酸素ガス雰囲気下)にて、例えば300℃でランプアニールによって処理することにより、実施例1と実質的に同様の構成の半導体発光素子を得た。酸化ガス雰囲気下でのアニール処理により、表面側のITO膜内の酸素が酸化ガスと反応することによって、ITO膜表面の酸素濃度を高くさせることができる。   In the semiconductor light emitting device of Example 4, after forming the ITO film in the manufacturing process in Example 1, or after forming the 4000 ITO ITO film using the first oxide target in the manufacturing process in Example 1 A semiconductor light emitting device having a configuration substantially similar to that of Example 1 was obtained by performing lamp annealing at 300 ° C. in an oxidizing gas atmosphere (for example, in an oxygen gas atmosphere). The oxygen concentration on the surface of the ITO film can be increased by causing the oxygen in the ITO film on the surface side to react with the oxidizing gas by the annealing treatment in the oxidizing gas atmosphere.

実施例5の半導体発光素子は、実施例1における製造工程においてITO膜を成膜した後、あるいは、実施例1における製造工程において第2の酸化物ターゲットを用いて4000ÅのITO膜を形成した後、酸化物膜として、Si、Sn等の酸化されやすい金属の単層膜又は積層膜を、例えば2μm程度の膜厚で形成し、300℃でアニールすることによって、実施例1と実質的に同様の構成の半導体発光素子を得た。このように、酸化物膜8を形成して熱処理することにより、酸化物膜中の酸素がITO膜に移行し、ITO膜表面の酸素濃度を高くすることができる。   In the semiconductor light emitting device of Example 5, after forming the ITO film in the manufacturing process of Example 1, or after forming the 4000 ITO ITO film using the second oxide target in the manufacturing process of Example 1 As an oxide film, a single-layer film or a laminated film of a metal that is easily oxidized, such as Si or Sn, is formed with a film thickness of, for example, about 2 μm, and annealed at 300 ° C., thereby substantially the same as in Example 1. A semiconductor light emitting device having the structure was obtained. Thus, by forming the oxide film 8 and performing the heat treatment, oxygen in the oxide film moves to the ITO film, and the oxygen concentration on the surface of the ITO film can be increased.

実施例6の半導体素子は、実施例1においてITO膜の形成を以下のようにする他は同様にして作成した。
<ITO膜の形成>
The semiconductor element of Example 6 was produced in the same manner as in Example 1 except that the ITO film was formed as follows.
<Formation of ITO film>

マスクを除去した後、スパッタ装置にウェハを設置し、In23とSnO2とを90:10の重量比で混合した焼結体からなる第1の酸化物ターゲットと、このIn23とSnO2との焼結体に95:5の重量比となるようにさらにInを添加した第2のターゲットとをITOターゲットとして設置した。スパッタ装置によって、酸素ガス雰囲気中、スパッタガスとしてアルゴンガスで、まず、第1の酸化物ターゲットを用いて、例えばRFパワー2W/cm3で5分間スパッタリングし、引き続き、第2のターゲットに変更して、例えばRFパワー10W/cm3で15分間スパッタリングすることにより、ウェハのp型コンタクト層8のほぼ全面に、ITOよりなる透光性電極5を4000Åの膜厚で形成した。得られたITO膜は、酸化物膜側の酸素濃度を膜中より高くさせることができ、さらに半導体層側のSnのドープ量を膜中より高くさせることができる。 After removing the mask, a wafer is placed in the sputtering apparatus, and a first oxide target made of a sintered body in which In 2 O 3 and SnO 2 are mixed at a weight ratio of 90:10, and this In 2 O 3. A second target obtained by further adding In to the sintered body of SnO 2 and SnO 2 at a weight ratio of 95: 5 was placed as an ITO target. First, using a sputtering apparatus, sputtering is performed using argon gas as a sputtering gas in an oxygen gas atmosphere, using a first oxide target, for example, at an RF power of 2 W / cm 3 for 5 minutes, and subsequently changed to a second target. Then, for example, by sputtering for 15 minutes at an RF power of 10 W / cm 3 , the translucent electrode 5 made of ITO was formed on the entire surface of the p-type contact layer 8 of the wafer with a thickness of 4000 mm. In the obtained ITO film, the oxygen concentration on the oxide film side can be made higher than in the film, and the Sn doping amount on the semiconductor layer side can be made higher than in the film.

実施例7の半導体発光素子は、実施例6における製造工程においてITO膜を成膜した後、酸化物膜として、Si、Sn等の酸化されやすい金属の単層膜又は積層膜を、例えば2μm程度の膜厚で形成し、300℃でアニールすることによって、実施例1と実質的に同様の構成の半導体発光素子を得た。このように、酸化物膜8を形成して熱処理することにより、酸化物膜中の酸素がITO膜に移行し、酸化物側の酸素濃度を高くし、また半導体層側のSnのドープ量を膜中より高くすることができる。つまりショットキー障壁をさらに小さく、また半導体積層構造側のシート抵抗をさらに低くすることができる。   In the semiconductor light emitting device of Example 7, after forming an ITO film in the manufacturing process of Example 6, a single layer film or a laminated film of a metal that is easily oxidized, such as Si and Sn, is formed as an oxide film, for example, about 2 μm. A semiconductor light emitting device having a configuration substantially similar to that of Example 1 was obtained by annealing at 300 ° C. In this way, by forming the oxide film 8 and performing the heat treatment, oxygen in the oxide film is transferred to the ITO film, the oxygen concentration on the oxide side is increased, and the doping amount of Sn on the semiconductor layer side is increased. It can be higher than in the membrane. That is, the Schottky barrier can be further reduced, and the sheet resistance on the semiconductor multilayer structure side can be further reduced.

実施例8の半導体発光素子は、実施例1における製造工程において、ITO膜を成膜する際に、スパッタ法に代えて、真空蒸着法を利用する以外は、実質的に実施例1と同様の方法により、同様の構成の半導体発光素子を得た。n型コンタクト層の一部を露出させたウェハを、真空蒸着装置に入れ、ウェハ温度を100℃に維持しながら、SnO2が10%のITOを電子銃で加熱、蒸発させて、ITO膜を成膜した。成膜中、ウェハ温度を300℃まで、10秒間で加熱手段を用いて急激に温度を上げて、膜厚が4000ÅのITO膜を形成した。このように、成膜中にウェハ温度を急激に昇温させ、最初にITOの結晶化温度より低い温度で成膜し、続けて結晶化温度で成膜することにより、結果的に、表面側において、酸素濃度の高いITO膜を形成することができる。 The semiconductor light emitting device of Example 8 is substantially the same as Example 1 except that in the manufacturing process of Example 1, an ITO film is formed, a vacuum deposition method is used instead of the sputtering method. By the method, a semiconductor light emitting device having the same configuration was obtained. The wafer with a part of the n-type contact layer exposed is placed in a vacuum evaporation system, and while maintaining the wafer temperature at 100 ° C., ITO with 10% SnO 2 is heated and evaporated with an electron gun to form an ITO film. A film was formed. During the film formation, the wafer temperature was rapidly raised to 300 ° C. for 10 seconds using a heating means to form an ITO film having a film thickness of 4000 mm. In this way, the wafer temperature is rapidly raised during film formation, and the film is first formed at a temperature lower than the crystallization temperature of ITO, and subsequently formed at the crystallization temperature. In this case, an ITO film having a high oxygen concentration can be formed.

実施例9の半導体発光素子は、実施例8における製造工程において、真空蒸着法によりITO膜を形成する際に、ウェハ温度を300℃に維持しながら、イオン銃を利用して、成膜時後半にのみ、ウェハ表面(p型半導体層)に酸素イオンを1012個/cm2程度で照射する以外は、実質的に実施例4と同様の方法により、同様の構成の半導体発光素子を得た。 In the manufacturing process of Example 8, the semiconductor light emitting device of Example 9 was formed in the latter half of the film formation by using an ion gun while maintaining the wafer temperature at 300 ° C. when forming the ITO film by vacuum deposition. In addition, a semiconductor light emitting device having the same configuration was obtained in substantially the same manner as in Example 4 except that the wafer surface (p-type semiconductor layer) was irradiated with oxygen ions at about 1012 ions / cm 2 .

実施例10の半導体発光素子は、実施例8における製造工程において、真空蒸着法によりITO膜を形成する際に、ウェハ温度を300℃に維持しながら、成膜初期の成膜レートを5Å/秒とし、その後、50Å/秒に加速させる以外は、実質的に実施例4と同様の方法により、同様の構成の半導体発光素子を得た。このように、成膜レートを加速させることにより、ITO膜を構成する蒸着粒子の温度が上昇し、酸素との反応性が向上し、表面側のITO膜の酸素濃度を高くさせることができる。   In the semiconductor light emitting device of Example 10, in the manufacturing process of Example 8, when the ITO film was formed by vacuum deposition, the film formation rate at the initial stage of film formation was maintained at 5 ° C./second while maintaining the wafer temperature at 300 ° C. Then, a semiconductor light emitting device having the same configuration was obtained by a method substantially similar to that in Example 4 except that the acceleration was accelerated to 50 K / sec. Thus, by accelerating the film formation rate, the temperature of the vapor deposition particles constituting the ITO film is increased, the reactivity with oxygen is improved, and the oxygen concentration of the ITO film on the surface side can be increased.

実施例11の半導体発光素子は、実施例1における製造工程において、ITO膜を成膜する際に、スパッタ法に代えて、イオンプレーティング法を利用する以外は、実質的に実施例1と同様の方法により、同様の構成の半導体発光素子を得た。つまり、n型コンタクト層の一部を露出させたウェハを、プラズマガンを備えたイオンプレーティング装置に導入し、反応室に反応ガスであるO2ガスを導入する。さらに、反応室よりもプラズマガン内部の圧力が高くなるようにArガスをプラズマガン内に導入する。プラズマガンに内蔵したカソードから放出される電子を磁場によりガイドして、ルツボに仕込まれたITOペレットに集中して照射する。この際、電子ビーム加熱することにより、ITOペレットから蒸発した蒸発物と、酸素ガスとがプラズマ内で活性化され、ウェハ上に堆積し、ITO膜を形成することができる。なお、成膜初期においては、プラズマガンの投入電力を1kW、その後、3kWとすることにより、表面側のITO膜の酸素濃度を高くすることができる。   The semiconductor light emitting device of Example 11 is substantially the same as Example 1 except that, in the manufacturing process of Example 1, an ITO film is formed, an ion plating method is used instead of the sputtering method. By this method, a semiconductor light emitting device having the same configuration was obtained. That is, a wafer from which a part of the n-type contact layer is exposed is introduced into an ion plating apparatus equipped with a plasma gun, and O 2 gas as a reaction gas is introduced into the reaction chamber. Further, Ar gas is introduced into the plasma gun so that the pressure inside the plasma gun is higher than that in the reaction chamber. Electrons emitted from the cathode built in the plasma gun are guided by a magnetic field and concentratedly irradiated to the ITO pellets charged in the crucible. At this time, the evaporant evaporated from the ITO pellets and oxygen gas are activated in the plasma by electron beam heating, and are deposited on the wafer to form an ITO film. In the initial stage of film formation, the oxygen concentration of the ITO film on the surface side can be increased by setting the power applied to the plasma gun to 1 kW and then 3 kW.

本発明の半導体発光素子は、例えばフルカラーLEDディスプレイ、LED信号機、道路情報表示板等のLEDデバイス、あるいは太陽電池、光センサー等の受光素子としてイメージスキャナ等に適用したり、あるいはまた電子デバイス(FET等のトランジスタやパワーデバイス)や、これらを用いた光ディスク用光源等大容量の情報を記憶するDVD等のメディアや通信用の光源、印刷機器、照明用光源等に好適に利用できる。照明用途としては、バックライト光源、車両用ランプ等に利用可能である。   The semiconductor light emitting device of the present invention can be applied to, for example, an LED device such as a full color LED display, an LED traffic light, a road information display board, or a light receiving device such as a solar cell or an optical sensor, or an electronic device (FET). And a light source for optical disks using these, and media such as a DVD for storing a large amount of information, a light source for communication, a printing device, an illumination light source, and the like. As an illumination application, it can be used for a backlight light source, a vehicle lamp, and the like.

本発明の一実施の形態に係る半導体発光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor light-emitting device which concerns on one embodiment of this invention. 図1における導電性酸化物膜(ITO膜)中の酸素のデプスプロファイルを示すグラフである。It is a graph which shows the depth profile of oxygen in the electroconductive oxide film (ITO film | membrane) in FIG. 図1におけるITO膜中のスズのデプスプロファイルを示すグラフである。It is a graph which shows the depth profile of the tin in the ITO film | membrane in FIG. 本発明の一実施例に係る半導体発光素子の電極形状を説明するための平面図である。It is a top view for demonstrating the electrode shape of the semiconductor light-emitting device based on one Example of this invention. 本発明の他の実施例に係る半導体発光素子の電極形状を説明するための平面図である。It is a top view for demonstrating the electrode shape of the semiconductor light-emitting device based on the other Example of this invention. 本発明のさらに別の実施例に係る半導体発光素子の電極形状を説明するための平面図である。It is a top view for demonstrating the electrode shape of the semiconductor light-emitting device which concerns on another Example of this invention. 本発明のさらに別の実施例に係る半導体発光素子の電極形状を説明するための平面図である。It is a top view for demonstrating the electrode shape of the semiconductor light-emitting device which concerns on another Example of this invention.

1 基板
2 n型半導体層
3 活性層
4 p型半導体層
5 透光性電極
5a 領域
5b 領域
6 パッド電極
7 n電極
8 絶縁性酸化物膜
10 半導体発光素子
Reference Signs List 1 substrate 2 n-type semiconductor layer 3 active layer 4 p-type semiconductor layer 5 translucent electrode 5a region 5b region 6 pad electrode 7 n electrode 8 insulating oxide film 10 semiconductor light emitting device

Claims (8)

第1の元素Aとしてガリウムを含む半導体層が表面に位置する半導体積層構造を備える半導体発光素子であって、
前記半導体層の表面に、酸化インジウムスズよりなる導電性酸化物膜と、第2の元素Bを含む酸化物膜とを有し、
前記導電性酸化物膜は、前記第2の元素Bを含む酸化物膜との界面近傍における膜中酸素濃度が、前記半導体層との界面近傍における膜中酸素濃度よりも高く、かつ前記半導体層との界面近傍における膜中スズ濃度が、前記第2の元素Bを含む酸化物膜との界面近傍における膜中スズ濃度よりも高いことを特徴とする半導体発光素子。
A semiconductor light emitting device comprising a semiconductor stacked structure in which a semiconductor layer containing gallium as the first element A is located on the surface,
On the surface of the semiconductor layer, a conductive oxide film made of indium tin oxide, and an oxide film containing the second element B,
Said conductive oxide film, the film oxygen concentration in the vicinity of the interface between oxide film containing the second element B is the rather high than the membrane oxygen concentration in the vicinity of the interface between the semiconductor layer and the semiconductor A semiconductor light emitting element , wherein a tin concentration in a film near an interface with a layer is higher than a tin concentration in a film near an interface with the oxide film containing the second element B.
請求項1に記載の半導体発光素子であって、前記第2の元素Bは、電気陰性度を示すPauling値がガリウムよりも大きいことを特徴とする半導体発光素子。   2. The semiconductor light emitting device according to claim 1, wherein the second element B has a Pauling value indicating an electronegativity higher than that of gallium. 請求項1又は2に記載の半導体発光素子であって、前記第2の元素Bは、電気陰性度を示すPauling値がインジウム及びスズよりも大きいことを特徴とする半導体発光素子。 3. The semiconductor light emitting device according to claim 1, wherein the second element B has a Pauling value indicating an electronegativity higher than that of indium and tin . 請求項1から3のいずれかに記載の半導体発光素子であって、前記第2の元素Bを含む酸化物膜は、絶縁性酸化物膜の保護膜であることを特徴とする半導体発光素子。   4. The semiconductor light emitting device according to claim 1, wherein the oxide film containing the second element B is a protective film for an insulating oxide film. 5. 請求項1から4のいずれかに記載の半導体発光素子であって、前記半導体層は、窒化物半導体層であることを特徴とする半導体発光素子。   5. The semiconductor light emitting device according to claim 1, wherein the semiconductor layer is a nitride semiconductor layer. 6. 請求項1から5のいずれかに記載の半導体発光素子であって、前記導電性酸化物膜は透光性電極であることを特徴とする半導体発光素子。   6. The semiconductor light emitting device according to claim 1, wherein the conductive oxide film is a translucent electrode. 請求項1から6のいずれかに記載の半導体発光素子であって、前記第2の元素Bを含む酸化物膜は、前記第2の元素Bがケイ素であり、前記導電性酸化物膜の表面に設けられた保護膜であることを特徴とする半導体発光素子。   7. The semiconductor light-emitting device according to claim 1, wherein the oxide film containing the second element B is a surface of the conductive oxide film, wherein the second element B is silicon. A semiconductor light-emitting element, which is a protective film provided on the substrate. 請求項1から7のいずれかに記載の半導体発光素子であって、前記導電性酸化物膜の膜中酸素濃度が、第2の元素Bを含む酸化物膜との界面から前記半導体層との界面に向かって徐々に低下することを特徴とする半導体発光素子。   8. The semiconductor light emitting device according to claim 1, wherein an oxygen concentration in the conductive oxide film is between the interface with the oxide film containing the second element B and the semiconductor layer. A semiconductor light emitting element characterized by gradually decreasing toward an interface.
JP2004055421A 2004-02-27 2004-02-27 Semiconductor light emitting device Expired - Fee Related JP4543700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055421A JP4543700B2 (en) 2004-02-27 2004-02-27 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055421A JP4543700B2 (en) 2004-02-27 2004-02-27 Semiconductor light emitting device

Publications (3)

Publication Number Publication Date
JP2005244128A JP2005244128A (en) 2005-09-08
JP2005244128A5 JP2005244128A5 (en) 2007-04-12
JP4543700B2 true JP4543700B2 (en) 2010-09-15

Family

ID=35025506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055421A Expired - Fee Related JP4543700B2 (en) 2004-02-27 2004-02-27 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4543700B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046190A1 (en) * 2005-09-27 2007-04-05 Osram Opto Semiconductors Gmbh Opto-electronic semi-conductor part has base on which is laid current expansion layer consisting of metal and metal oxide decreasing in concentration as it moves from side facing base to side turned away from it
JP2007165611A (en) * 2005-12-14 2007-06-28 Showa Denko Kk Gallium-nitride compound semiconductor light-emitting element and manufacturing method therefor
JP2007165612A (en) * 2005-12-14 2007-06-28 Showa Denko Kk Gallium-nitride compound semiconductor light-emitting element and manufacturing method thereof
KR20080070750A (en) * 2005-12-14 2008-07-30 쇼와 덴코 가부시키가이샤 Gallium nitride compound semiconductor light-emitting device and method for manufacturing same
JP5047516B2 (en) * 2006-03-23 2012-10-10 昭和電工株式会社 Method for manufacturing gallium nitride compound semiconductor light emitting device, gallium nitride compound semiconductor light emitting device, and lamp using the same
JP5068475B2 (en) * 2006-04-24 2012-11-07 昭和電工株式会社 Method for manufacturing gallium nitride compound semiconductor light emitting device, gallium nitride compound semiconductor light emitting device, and lamp
US20100200881A1 (en) * 2007-06-28 2010-08-12 Kyocera Corporation Light Emitting Element and Illumination Device
JP2009283551A (en) * 2008-05-20 2009-12-03 Showa Denko Kk Semiconductor light emitting element, method for manufacturing thereof, and lamp
JP4886766B2 (en) * 2008-12-25 2012-02-29 株式会社東芝 Semiconductor light emitting device
KR101801538B1 (en) * 2009-10-16 2017-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Logic circuit and semiconductor device
JP7049186B2 (en) * 2018-05-29 2022-04-06 日機装株式会社 Manufacturing method of semiconductor light emitting device and semiconductor light emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173222A (en) * 1996-12-06 1998-06-26 Rohm Co Ltd Manufacture of semiconductor light emitting element
JPH10341039A (en) * 1997-04-10 1998-12-22 Toshiba Corp Semiconductor light emitting element and fabrication thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173222A (en) * 1996-12-06 1998-06-26 Rohm Co Ltd Manufacture of semiconductor light emitting element
JPH10341039A (en) * 1997-04-10 1998-12-22 Toshiba Corp Semiconductor light emitting element and fabrication thereof

Also Published As

Publication number Publication date
JP2005244128A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4438422B2 (en) Semiconductor light emitting device
US8487344B2 (en) Optical device and method of fabricating the same
KR100706796B1 (en) Nitride-based top emitting light emitting device and Method of fabricating the same
JP4977957B2 (en) Semiconductor light emitting device
KR100750933B1 (en) Top-emitting White Light Emitting Devices Using Nano-structures of Rare-earth Doped Transparent Conducting ZnO And Method Of Manufacturing Thereof
KR100601945B1 (en) Top emitting light emitting device and method of manufacturing thereof
KR100720101B1 (en) Top-emitting Light Emitting Devices Using Nano-structured Multifunctional Ohmic Contact Layer And Method Of Manufacturing Thereof
US9219198B2 (en) Method for forming metal electrode, method for manufacturing semiconductor light emitting elements and nitride based compound semiconductor light emitting elements
US8981420B2 (en) Nitride semiconductor device
EP2262009A1 (en) Light-emitting device and manufacturing method thereof
WO2005050748A1 (en) Semiconductor device and method for manufacturing same
WO2005069388A1 (en) Semiconductor light-emitting device
JP2008041866A (en) Nitride semiconductor element
WO2007074969A1 (en) Group-iii nitride-based light emitting device
JP2005259970A (en) Semiconductor light emitting element
JP5011628B2 (en) Semiconductor light emitting device
JP4543700B2 (en) Semiconductor light emitting device
JP2005217331A (en) Semiconductor light emitting device
JP2005244129A (en) Semiconductor light emitting element
KR100755649B1 (en) Gan-based semiconductor light emitting device and method of manufacturing the same
KR20070068537A (en) Development of highly transparent thermally decomposed nitride-based multi n-type ohmic contact layer and group iii nitride light emitting devices with the same n-type electrodes
KR20070068534A (en) Group 3 nitride light emitting device using multilayered p-type ohmic contact layer composed of thermally decomposed nitride and method of manufacturing thereof
JP4635458B2 (en) Semiconductor light emitting device
KR20060007948A (en) Top emitting light emitting device and method of manufacturing thereof
KR100737821B1 (en) Light emitting device and the fabrication method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100501

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees