JP4538424B2 - Cu-Zn-Sn alloy tin-plated strip - Google Patents

Cu-Zn-Sn alloy tin-plated strip Download PDF

Info

Publication number
JP4538424B2
JP4538424B2 JP2006091086A JP2006091086A JP4538424B2 JP 4538424 B2 JP4538424 B2 JP 4538424B2 JP 2006091086 A JP2006091086 A JP 2006091086A JP 2006091086 A JP2006091086 A JP 2006091086A JP 4538424 B2 JP4538424 B2 JP 4538424B2
Authority
JP
Japan
Prior art keywords
plating
thickness
phase
alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006091086A
Other languages
Japanese (ja)
Other versions
JP2007262523A (en
Inventor
隆紹 波多野
壽宏 新見
泰靖 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2006091086A priority Critical patent/JP4538424B2/en
Publication of JP2007262523A publication Critical patent/JP2007262523A/en
Application granted granted Critical
Publication of JP4538424B2 publication Critical patent/JP4538424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コネクタ、端子、リレー、スイッチ等の導電性材料として好適で、良好な耐熱剥離性を有するCu−Zn−Sn系合金Snめっき条に関する。   The present invention relates to a Cu—Zn—Sn alloy Sn plating strip that is suitable as a conductive material for connectors, terminals, relays, switches, and the like and has good heat-resistant peelability.

電気電子機器の各種端子、コネクタ、リレーまたはスイッチ等では、製造コストを重視する場合には低廉な黄銅が使用されている。また、ばね性が重視される用途ではりん青銅が使用され、ばね性及び耐食性が重視される用途では洋白が使用されている。これら銅合金は固溶強化型合金であり、合金元素の作用により強度やばね性が向上する反面、導電率や熱伝導率が低下する。
近年、固溶強化型合金に替わり、析出強化型銅合金の使用量が増加している。析出強化型合金は、合金元素をCu母地中に微細化合物粒子として析出させることを特徴とする。合金元素が析出する際に、強度が上昇し、同時に導電率も上昇する。したがって、析出強化型合金では、固溶強化型合金に対し、同じ強度でより高い導電率が得られる。析出強化型銅合金としては、Cu−Ni−Si系合金、Cu−Be系合金、Cu−Ti系合金、Cu−Zr系合金等がある。
しかし、析出強化型合金では、合金元素をCu中に一旦固溶させるための高温・短時間の熱処理(溶体化処理)及び合金元素を析出させるための低温・長時間の熱処理(時効処理)が必要であり、その製造プロセスは複雑である。また、合金元素として、Si、Ti、Zr、Be等の活性元素を含有しているため、インゴット品質の作りこみが難しい。したがって、析出強化型合金の製造コストは、固溶強化型合金の製造コストと比べ非常に高い。
In various terminals, connectors, relays, switches, etc. of electrical and electronic equipment, inexpensive brass is used when manufacturing cost is important. Further, phosphor bronze is used in applications where springiness is important, and white is used in applications where spring properties and corrosion resistance are important. These copper alloys are solid solution strengthened alloys, and the strength and spring property are improved by the action of the alloy elements, but the conductivity and thermal conductivity are lowered.
In recent years, the amount of precipitation-strengthened copper alloys used has increased in place of solid solution strengthened alloys. The precipitation-strengthened alloy is characterized in that an alloy element is precipitated as fine compound particles in a Cu matrix. As the alloying elements precipitate, the strength increases and at the same time the conductivity increases. Therefore, in the precipitation strengthening type alloy, higher conductivity can be obtained with the same strength than the solid solution strengthening type alloy. Examples of the precipitation strengthening type copper alloy include a Cu—Ni—Si alloy, a Cu—Be alloy, a Cu—Ti alloy, a Cu—Zr alloy, and the like.
However, in precipitation-strengthened alloys, there are high-temperature and short-time heat treatment (solution treatment) for once dissolving the alloy elements in Cu and low-temperature and long-time heat treatment (aging treatment) for precipitating the alloy elements. It is necessary and its manufacturing process is complicated. Moreover, since an active element such as Si, Ti, Zr, or Be is contained as an alloy element, it is difficult to build ingot quality. Therefore, the manufacturing cost of the precipitation strengthening type alloy is very high compared with the manufacturing cost of the solid solution strengthening type alloy.

そのため、固溶強化型合金を改良することにより、必要充分な導電率と強度を有する、低廉な銅合金の開発が進められている。黄銅に代表されるCu−Zn系合金は、製造が容易であり、Znが安価なことも相まって、特に低コストで製造できる合金である。本発明者らは、Cu−Zn系合金のZn量を調整した上で少量のSnを添加し、さらに金属組織を調整することにより、必要充分な導電率、強度及び曲げ加工性を有する合金を開発した(特許文献1)。必要充分な導電率、強度及び曲げ加工性とは、以下のとおりである。   Therefore, development of inexpensive copper alloys having necessary and sufficient electrical conductivity and strength has been promoted by improving solid solution strengthened alloys. A Cu—Zn alloy typified by brass is an alloy that is easy to manufacture and can be manufactured at a particularly low cost due to the fact that Zn is inexpensive. The inventors adjusted the Zn content of the Cu-Zn alloy, added a small amount of Sn, and further adjusted the metal structure to obtain an alloy having necessary and sufficient conductivity, strength and bending workability. Developed (Patent Document 1). Necessary and sufficient electrical conductivity, strength and bending workability are as follows.

(A)導電率:35%IACS以上。
この導電率は析出強化型合金であるCu−Ni−Si系合金(コルソン合金)の導電率に匹敵する値である。なお、黄銅(C2600)の導電率は28%IACS、りん青銅(C5210)の導電率は13%IACSである。
(B)引張強さ:410MPa以上。
この引張強さは、JIS規格(JISH3100)により規定された黄銅(C2600)の質別Hの引張強さの値に相当する。
(C)曲げ加工性:Good Way及びBad Wayの180度密着曲げが可能なこと。
この曲げ試験において割れや大きな肌荒れが発生しなければ、コネクタに施される最も厳しいレベルの曲げ加工が可能となる。
本発明者らが開発した特許文献1のCu−Zn−Sn系合金は、黄銅の強度、コルソン合金の導電率、黄銅やコルソン合金と同等以上の曲げ加工性を併せ持つものであり、小型化が進行する電子機器部品の素材として好適な銅合金である。
(A) Conductivity: 35% IACS or higher.
This conductivity is a value comparable to the conductivity of a Cu—Ni—Si based alloy (Corson alloy) which is a precipitation strengthening type alloy. The conductivity of brass (C2600) is 28% IACS, and the conductivity of phosphor bronze (C5210) is 13% IACS.
(B) Tensile strength: 410 MPa or more.
This tensile strength corresponds to the value of the tensile strength of grade H of brass (C2600) defined by the JIS standard (JIS 3100).
(C) Bending workability: Good contact bending of Good Way and Bad Way is possible.
If no cracks or rough skin occur in this bending test, the most severe level of bending applied to the connector is possible.
The Cu—Zn—Sn alloy of Patent Document 1 developed by the present inventors has both the strength of brass, the conductivity of the Corson alloy, and the bending workability equal to or higher than that of brass and the Corson alloy. It is a copper alloy suitable as a material for advancing electronic device parts.

上記Cu−Zn−Sn系合金条には、用途に応じてSnめっきを施すことが多い。合金のSnめっき条は、Snの優れた半田濡れ性、耐食性、電気接続性を生かし、自動車用及び民生用の端子、コネクタ等として使われる。例えば、特許文献2には、Cu−4.97質量%Zn−0.39質量%Sn合金のSnめっき条が開示されている。
Cu−Zn−Sn系合金のSnめっき条は、脱脂及び酸洗の後、電気めっき法により下地めっき層を形成し、次に電気めっき法によりSnめっき層を形成し、最後にリフロー処理を施しSnめっき層を溶融させる工程で製造される。
The Cu—Zn—Sn alloy strip is often subjected to Sn plating depending on the application. The alloy Sn plating strips are used as terminals and connectors for automobiles and consumer use, taking advantage of Sn's excellent solder wettability, corrosion resistance, and electrical connectivity. For example, Patent Document 2 discloses a Sn plating strip of a Cu-4.97 mass% Zn-0.39 mass% Sn alloy.
For the Sn-plated strip of Cu-Zn-Sn alloy, after degreasing and pickling, an underplating layer is formed by electroplating, then an Sn plating layer is formed by electroplating, and finally reflow treatment is performed. It is manufactured in the process of melting the Sn plating layer.

Cu−Zn−Sn系合金Snめっき条の下地めっきとしては、Cu下地めっきが一般的であり、耐熱性が求められる用途に対してはCu/Ni二層下地めっきが施されることもある。ここで、Cu/Ni二層下地めっきとは、Ni下地めっき、Cu下地めっき、Snめっきの順に電気めっきを行った後にリフロー処理を施しためっきであり、リフロー後のめっき皮膜層の構成は表面からSn相、Cu−Sn相、Ni相、母材となる。この技術の詳細は特許文献3〜5等に開示されている。
銅合金のリフローSnめっき条を高温で長時間保持すると、一般的にめっき層が母材より剥離する現象(以下、熱剥離)が生じる。通常、銅合金にZnを添加すると熱剥離特性は向上するため、Cu−Zn−Sn系合金の耐熱剥離性は比較的良好である。
As the base plating of the Cu—Zn—Sn-based alloy Sn plating strip, Cu base plating is generally used, and Cu / Ni two-layer base plating may be applied for applications requiring heat resistance. Here, the Cu / Ni two-layer base plating is a plating obtained by performing reflow treatment after performing electroplating in the order of Ni base plating, Cu base plating, and Sn plating. To Sn phase, Cu—Sn phase, Ni phase, and base material. Details of this technique are disclosed in Patent Documents 3 to 5 and the like.
When the reflow Sn plating strip of a copper alloy is held at a high temperature for a long time, a phenomenon that the plating layer generally peels from the base material (hereinafter referred to as thermal peeling) occurs. Usually, when Zn is added to a copper alloy, the thermal peeling property is improved, so that the heat-resistant peeling property of the Cu—Zn—Sn alloy is relatively good.

特願2005−207556号Japanese Patent Application No. 2005-207556 特開平7−258777号公報JP 7-258777 A 特開平6−196349号公報JP-A-6-196349 特開2003−293187号公報JP 2003-293187 A 特開2004−68026号公報JP 2004-68026 A

しかしながら、近年、耐熱剥離性に対し、より高温で長期間の信頼性が求められるようになり、比較的良好な耐熱剥離性を有している従来のCu−Zn−Sn系合金に対しても、更に良好な耐熱剥離性が求められるようになった。
本発明の目的は、すずめっきの耐熱剥離性を改善したCu−Zn−Sn系合金すずめっき条を提供することであり、特に、Cu下地めっき、又はCu/Ni二層下地めっきに関して改善された耐熱剥離性を有するCu−Zn−Sn系合金すずめっき条を提供することである。
However, in recent years, long-term reliability at higher temperatures has been required for heat-resistant peelability, and even for conventional Cu-Zn-Sn alloys having relatively good heat-resistant peelability. Further, better heat-resistant peelability has been demanded.
An object of the present invention is to provide a Cu—Zn—Sn alloy tin plating strip having improved heat-resistant peelability of tin plating, and particularly improved with respect to Cu undercoat or Cu / Ni bilayer undercoat. It is to provide a Cu—Zn—Sn alloy tin-plated strip having heat-resistant peelability.

本発明者は、Cu−Zn−Sn系合金のすずめっき条の耐熱剥離性を改善する方策を鋭意研究した結果、めっき層と母材との境界面におけるC濃度を低く抑えると、耐熱剥離性を大幅に改善できることを見出した。
本発明は、この発見に基づき成されたものであり、以下の通りである。
(1)2〜12質量%のZn、0.1〜1.0質量%Snを含有し、Snの質量%濃度([%Sn])とZnの質量%濃度([%Zn])との関係が、
0.6≦[%Sn]+0.16[%Zn]≦2.0
の範囲に調整され、残部がCu及び不可避的不純物より構成される銅基合金を母材とし、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Zn−Sn系合金すずめっき条。
(2)2〜12質量%のZn、0.1〜1.0質量%Snを含有し、Snの質量%濃度([%Sn])とZnの質量%濃度([%Zn])との関係が、
0.6≦[%Sn]+0.16[%Zn]≦2.0
の範囲に調整され、残部がCu及び不可避的不純物より構成される銅基合金を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相、Cu相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μm、Cu相の厚みが0〜0.8μmであり、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Zn−Sn系合金すずめっき条。
(3)2〜12質量%のZn、0.1〜1.0質量%Snを含有し、Snの質量%濃度([%Sn])とZnの質量%濃度([%Zn])との関係が、
0.6≦[%Sn]+0.16[%Zn]≦2.0
の範囲に調整され、残部がCu及び不可避的不純物より構成される銅基合金を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相、Ni相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μm、Ni相の厚みが0.1〜0.8μmであり、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Zn−Sn系合金すずめっき条。
(4)母材が更にNi、Fe、Mn、Co、Ti、Cr、Zr、Al及びAgのなかの一種以上を0.005〜0.5質量%の範囲で含有する(1)〜(3)いずれか記載のCu−Zn−Sn系合金すずめっき条。
なお、Cu−Zn−Sn系合金のすずめっきは、部品へのプレス加工の前に行う場合(前めっき)とプレス加工後に行う場合(後めっき)があるが、両場合とも、本発明の効果は得られる。
As a result of earnestly researching measures for improving the heat-resistant peelability of the tin-plated strip of the Cu—Zn—Sn-based alloy, the present inventor has found that when the C concentration at the interface between the plating layer and the base metal is kept low, It was found that can be improved significantly.
The present invention has been made based on this discovery and is as follows.
(1) 2 to 12% by mass of Zn, 0.1 to 1.0% by mass of Sn, and the mass% concentration of Sn ([% Sn]) and the mass% concentration of Zn ([% Zn]) Relationship
0.6 ≦ [% Sn] +0.16 [% Zn] ≦ 2.0
Characterized in that a copper base alloy composed of Cu and inevitable impurities is used as a base material, and the C concentration at the interface between the plating layer and the base material is 0.10% by mass or less. Cu-Zn-Sn alloy tin-plated strip.
(2) 2 to 12% by mass of Zn and 0.1 to 1.0% by mass of Sn, and the mass% concentration of Sn ([% Sn]) and the mass% concentration of Zn ([% Zn]) Relationship
0.6 ≦ [% Sn] +0.16 [% Zn] ≦ 2.0
The plating film is composed of the Sn phase, Sn-Cu alloy phase, and Cu phase layers from the surface to the base material. The Sn phase has a thickness of 0.1 to 1.5 μm, the Sn—Cu alloy phase has a thickness of 0.1 to 1.5 μm, and the Cu phase has a thickness of 0 to 0.8 μm. A Cu—Zn—Sn alloy tin-plated strip having a C concentration of 0.10% by mass or less at the interface.
(3) 2-12 mass% Zn and 0.1-1.0 mass% Sn are contained, and the mass% concentration of Sn ([% Sn]) and the mass% concentration of Zn ([% Zn]) Relationship
0.6 ≦ [% Sn] +0.16 [% Zn] ≦ 2.0
The plating film is composed of the Sn phase, Sn-Cu alloy phase, and Ni phase layers from the surface to the base material. The thickness of the Sn phase is 0.1 to 1.5 μm, the thickness of the Sn—Cu alloy phase is 0.1 to 1.5 μm, the thickness of the Ni phase is 0.1 to 0.8 μm, the plating layer and the base material Cu-Zn-Sn alloy tin-plated strips, characterized in that the C concentration at the boundary surface between the two is 0.10% by mass or less.
(4) The base material further contains at least one of Ni, Fe, Mn, Co, Ti, Cr, Zr, Al, and Ag in the range of 0.005 to 0.5 mass% (1) to (3 ) Any one of the Cu-Zn-Sn alloy tin-plated strips.
Note that tin plating of a Cu—Zn—Sn alloy may be performed before pressing a part (pre-plating) or after pressing (post-plating). In both cases, the effect of the present invention is achieved. Is obtained.

(1)Zn及びSn濃度
本発明の銅合金母材は、ZnとSnを基本成分とし、両元素の作用により機械的特性と導電性を作りこむ。Zn濃度及びSn濃度の範囲は、それぞれ2〜12質量%及び0.1〜1.0質量%とする。Znが2質量%未満であると、Snめっきの耐熱剥離性改善に対するZnの効果が失われる。Znが12質量%を超えると、Sn濃度を調整しても35%IACS以上の導電率が得られなくなる。Snは圧延の際の加工硬化を促進する作用を持ち、Snが0.1質量%未満であると強度が不足する。一方、Snが1.0質量%を超えると、Snめっきの耐熱剥離性が劣化する。
SnとZnの合計濃度(T)は、次のように調整する。
0.6 ≦T ≦2.0
T=[%Sn]+0.16[%Zn]
ここで、[%Sn]及び[%Zn]はそれぞれSn及びZnの質量%濃度である。Tを2.0以下にすれば35%IACS以上の導電率が得られる。また、Tを0.6以上にすれば、金属組織を適切に調整することにより、410MPa以上の引張強さが得られる。そこで、Tを0.6〜2.0に規定する。
より好ましいTの範囲は1.0〜1.7であり、この範囲に調整することにより、35%IACS以上の導電率と410MPa以上の引張強さがより安定して得られる。
(1) Concentration of Zn and Sn The copper alloy base material of the present invention contains Zn and Sn as basic components, and creates mechanical characteristics and conductivity by the action of both elements. The ranges of Zn concentration and Sn concentration are 2 to 12% by mass and 0.1 to 1.0% by mass, respectively. If the Zn content is less than 2% by mass, the effect of Zn for improving the heat-resistant peelability of Sn plating is lost. When Zn exceeds 12% by mass, a conductivity of 35% IACS or more cannot be obtained even if the Sn concentration is adjusted. Sn has the effect | action which accelerates | stimulates the work hardening in the case of rolling, and intensity | strength will be insufficient when Sn is less than 0.1 mass%. On the other hand, when Sn exceeds 1.0 mass%, the heat-resistant peelability of Sn plating will deteriorate.
The total concentration (T) of Sn and Zn is adjusted as follows.
0.6 ≦ T ≦ 2.0
T = [% Sn] +0.16 [% Zn]
Here, [% Sn] and [% Zn] are the mass% concentrations of Sn and Zn, respectively. If T is 2.0 or less, a conductivity of 35% IACS or more can be obtained. If T is 0.6 or more, a tensile strength of 410 MPa or more can be obtained by appropriately adjusting the metal structure. Therefore, T is defined as 0.6 to 2.0.
A more preferable range of T is 1.0 to 1.7. By adjusting to this range, a conductivity of 35% IACS or more and a tensile strength of 410 MPa or more can be obtained more stably.

(2)Ni、Fe、Mn、Co、Ti、Cr、Zr、Al及びAg
本発明の銅合金母材には、合金の強度、耐熱性、耐応力緩和性等を改善する目的で、更にNi、Fe、Mn、Co、Ti、Cr、Zr、Al及びAgの中の一種以上を合計で0.005〜0.5質量%添加することができる。ただし、合金元素の追加は、導電率の低下、製造性の低下、原料コストの増加等を招くことがあるので、この点への配慮は必要である。
上記元素の合計量が0.005質量%未満であると、特性向上の効果が発現しない。一方、上記元素の合計量が0.5質量%を超えると、導電率低下が著しくなる。そこで、合計量を0.005〜0.5質量%に規定する。
(2) Ni, Fe, Mn, Co, Ti, Cr, Zr, Al and Ag
The copper alloy base material of the present invention is a kind of Ni, Fe, Mn, Co, Ti, Cr, Zr, Al and Ag for the purpose of improving the strength, heat resistance and stress relaxation resistance of the alloy. A total of 0.005 to 0.5 mass% of the above can be added. However, the addition of the alloy element may cause a decrease in conductivity, a decrease in manufacturability, an increase in raw material cost, and the like, and thus this point needs to be considered.
When the total amount of the above elements is less than 0.005% by mass, the effect of improving the characteristics is not exhibited. On the other hand, when the total amount of the above elements exceeds 0.5% by mass, the decrease in conductivity becomes significant. Therefore, the total amount is specified to be 0.005 to 0.5 mass%.

(3)めっき層と母材との境界面におけるC濃度
めっき層と母材との境界面におけるC濃度が0.10質量%を超えると、耐熱剥離性が低下する。そこで、上記C濃度を0.10質量%以下に規定する。ここで、めっき層と母材との境界面におけるC濃度とは、例えばGDS(グロー放電発光分光分析装置)により求められる脱脂後のサンプルのCの深さ方向の濃度プロファイルにおいて、めっき層と母材との境界面に該当する位置に現れるピーク頂点のC濃度をいう。
(3) C concentration at the interface between the plating layer and the base material When the C concentration at the interface between the plating layer and the base material exceeds 0.10% by mass, the heat-resistant peelability decreases. Therefore, the C concentration is specified to be 0.10% by mass or less. Here, the C concentration at the boundary surface between the plating layer and the base material is, for example, a concentration profile in the depth direction of C of the sample after degreasing obtained by GDS (glow discharge emission spectroscopy analyzer). The C concentration at the peak apex that appears at the position corresponding to the boundary surface with the material.

めっき層と母材との境界面におけるC濃度に影響を及ぼす製造条件因子として、最終冷間圧延の条件及びその後の脱脂条件がある。すなわち、冷間圧延では圧延油が用いられるため、ロールと被圧延材との間に圧延油が介在する。この圧延油が被圧延材表面に封入され、次工程の脱脂で除去されずに残留すると、めっき工程(電着とリフロー)を経てめっき/母材界面にC偏析層を形成する。
冷間圧延工程では、材料の圧延機への通板(パス)を繰り返し、材料を所定の厚みに仕上げる。図1は圧延中に圧延油が被圧延材表面に封入される過程を模式的に示したものである。(a)は圧延前の被圧延材断面である。(b)は通常使用される表面粗さが大きいロールを用いて圧延を行った後の被圧延材断面であり、被圧延材表面に凹凸が生じ、その凹部に圧延油が溜まっている。(c)は(b)の後に最終パスとして表面粗さの小さいロールを用いて圧延を行った後の被圧延材断面であり、(b)で凹部に溜まった圧延油が被圧延材表面に封入されている。
Manufacturing condition factors affecting the C concentration at the interface between the plating layer and the base material include final cold rolling conditions and subsequent degreasing conditions. That is, since rolling oil is used in cold rolling, the rolling oil is interposed between the roll and the material to be rolled. When this rolling oil is sealed on the surface of the material to be rolled and remains without being removed by degreasing in the next step, a C segregation layer is formed at the plating / base material interface through a plating step (electrodeposition and reflow).
In the cold rolling process, the material is repeatedly passed through a rolling mill to finish the material to a predetermined thickness. FIG. 1 schematically shows a process in which rolling oil is sealed on the surface of a material to be rolled during rolling. (A) is a to-be-rolled material cross section before rolling. (B) is a cross-section of the material to be rolled after rolling using a roll having a large surface roughness that is usually used, where the surface of the material to be rolled is uneven, and rolling oil is accumulated in the recess. (C) is a cross section of the rolled material after rolling using a roll having a small surface roughness as the final pass after (b), and the rolling oil accumulated in the recesses in (b) is applied to the surface of the rolled material. It is enclosed.

図1は、圧延油の封入を抑えるためには、表面粗さの小さいロールを使用する最終パスより前のパスにおいて、表面粗さが小さいロールを用いることが重要であることを示している。また、ロール表面粗さ以外の重要な因子として圧延油の粘度があり、粘度が低く流動性が良い圧延油ほど、被圧延材表面に封入されにくい。
ロールの表面粗さを小さくする方法として、粒度が細かい砥石を用いてロール表面を研磨する方法、ロール表面にめっきを施す方法等があるが、これらはかなりの手間とコストを要する。また、ロールの表面粗さを小さくすると、ロール表面と被圧延材との間でスリップが発生しやすくなり圧延速度を上げられなくなる(効率が低下する)等の問題も生じる。このため、最終パスでは製品の表面粗さを作り込むために表面粗さが小さいロールが用いられていたものの、最終パス以外のパスにおいて表面粗さが小さいロールを用いることは、当業者に避けられていた。また、動粘度が低い圧延油を用いることについても、圧延ロール表面の磨耗が大きくなる等の理由から、避けられていた。すなわち、特許文献2等に開示されている従来のCu−Zn−Sn系合金すずめっき条の圧延では、圧延油封入防止の対策は採られていなかった。
本発明によりすずめっきの耐熱剥離性の改善のためにめっき層と母材との境界面におけるC濃度を低下させることが重要であることが初めて見いだされた。そして、そのためには最終パスより前のパスにおいて表面粗さが小さいロールを用い、動粘度が低く流動性が良い圧延油を使用することにより、圧延油の封入を抑えることが効果的であることが示された。
FIG. 1 shows that it is important to use a roll having a low surface roughness in the pass before the final pass using a roll having a low surface roughness in order to suppress the inclusion of rolling oil. An important factor other than the surface roughness of the roll is the viscosity of the rolling oil. The rolling oil having a lower viscosity and better fluidity is less likely to be encapsulated on the surface of the material to be rolled.
As a method for reducing the surface roughness of the roll, there are a method of polishing the roll surface using a grindstone having a fine particle size, a method of plating the roll surface, etc., but these require considerable labor and cost. Moreover, if the surface roughness of the roll is made small, slips are likely to occur between the roll surface and the material to be rolled, and problems such as the inability to increase the rolling speed (decrease in efficiency) occur. For this reason, although rolls with a small surface roughness were used in the final pass to create the surface roughness of the product, those skilled in the art should avoid using rolls with a low surface roughness in passes other than the final pass. It was done. Also, the use of rolling oil having a low kinematic viscosity has been avoided for reasons such as increased wear on the surface of the rolling roll. That is, in the conventional rolling of the Cu—Zn—Sn alloy tin-plated strip disclosed in Patent Document 2 and the like, no measures for preventing rolling oil sealing have been taken.
For the first time, it has been found that it is important to reduce the C concentration at the interface between the plating layer and the base material in order to improve the thermal peelability of tin plating according to the present invention. For that purpose, it is effective to suppress the inclusion of the rolling oil by using a roll having a small surface roughness in the pass before the final pass and using a rolling oil having a low kinematic viscosity and good fluidity. It has been shown.

最終パスより前に使用される表面粗さの小さいロールの表面の最大高さ粗さRzは、好ましくは3.0μm以下、更に好ましくは2.0μm以下、最も好ましくは1.0μm以下である。Rzが3.0μmを超えると圧延油が封入されやすくなり、境界面におけるC濃度が低下しにくい。又、使用される圧延油の動粘度(40℃で測定)は、好ましくは15mm2/s以下、更に好ましくは10mm2/s以下、最も好ましくは5mm2/s以下である。粘度が15mm2/sを超えると圧延油が封入されやすくなり、境界面におけるC濃度が低下しにくい。
なお、特許文献5でもC濃度に着目しているが、このC濃度はSnめっき層中の平均C濃度であり、本発明の構成要素であるめっき層と母材との境界面におけるC濃度とは異なる。Snめっき層中の平均C濃度はめっき液中の光沢剤、添加剤の量及びめっき電流密度により変化し、0.001質量%未満ではSnめっきの厚さにムラが生じ、0.1質量%を超えると接触抵抗が増加するとされている。従って、特許文献5の技術が本発明の技術と異なることは明らかである。
The maximum height roughness Rz of the roll having a small surface roughness used before the final pass is preferably 3.0 μm or less, more preferably 2.0 μm or less, and most preferably 1.0 μm or less. When Rz exceeds 3.0 μm, rolling oil is likely to be enclosed, and the C concentration at the boundary surface is unlikely to decrease. The kinematic viscosity (measured at 40 ° C.) of the rolling oil used is preferably 15 mm 2 / s or less, more preferably 10 mm 2 / s or less, and most preferably 5 mm 2 / s or less. When the viscosity exceeds 15 mm 2 / s, the rolling oil is easily enclosed, and the C concentration at the boundary surface is difficult to decrease.
Patent Document 5 also focuses on the C concentration. This C concentration is the average C concentration in the Sn plating layer, and the C concentration at the interface between the plating layer and the base material, which is a component of the present invention. Is different. The average C concentration in the Sn plating layer varies depending on the amount of brightener and additive in the plating solution and the plating current density. If it is less than 0.001% by mass, the Sn plating thickness is uneven, and 0.1% by mass. It is said that the contact resistance increases when the value exceeds. Therefore, it is clear that the technique of Patent Document 5 is different from the technique of the present invention.

(4)めっきの厚み
(4−1)Cu下地めっき
Cu下地めっきの場合、Cu−Zn−Sn系合金母材上に、電気めっきによりCuめっき層及びSnめっき層を順次形成し、その後リフロー処理を行う。このリフロー処理により、Cuめっき層とSnめっき層が反応してSn−Cu合金相が形成され、めっき層構造は、表面側よりSn相、Sn−Cu合金相、Cu相となる。
リフロー後のこれら各相の厚みは、
・Sn相:0.1〜1.5μm、
・Sn−Cu合金相:0.1〜1.5μm、
・Cu相:0〜0.8μm
の範囲に調整する。
Sn相が0.1μm未満になると半田濡れ性が低下し、1.5μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい範囲は0.2〜1.0μmである。
Sn−Cu合金相は硬質なため、0.1μm以上の厚さで存在すると挿入力の低減に寄与する。一方、Sn−Cu合金相の厚さが1.5μmを超えると、加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい厚みは0.5〜1.2μmである。
(4) Thickness of plating (4-1) Cu base plating In the case of Cu base plating, a Cu plating layer and a Sn plating layer are sequentially formed on a Cu-Zn-Sn alloy base material by electroplating, and then reflow treatment is performed. I do. By this reflow treatment, the Cu plating layer and the Sn plating layer react to form an Sn—Cu alloy phase, and the plating layer structure becomes an Sn phase, an Sn—Cu alloy phase, and a Cu phase from the surface side.
The thickness of each phase after reflow is
-Sn phase: 0.1-1.5 μm,
Sn-Cu alloy phase: 0.1 to 1.5 μm
Cu phase: 0 to 0.8 μm
Adjust to the range.
When the Sn phase is less than 0.1 μm, the solder wettability decreases, and when it exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable range is 0.2 to 1.0 μm.
Since the Sn—Cu alloy phase is hard, if it exists in a thickness of 0.1 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Sn—Cu alloy phase exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness is 0.5 to 1.2 μm.

Cu−Zn−Sn系合金ではCu下地めっきを行うことにより、半田濡れ性が向上する。したがって、電着時に0.1μm以上のCu下地めっきを施す必要がある。このCu下地めっきは、リフロー時にSn−Cu合金相形成に消費され消失しても良い。すなわち、リフロー後のCu相厚みの下限値は規制されず、厚みがゼロになってもよい。
Cu相の厚みの上限値は、リフロー後の状態で0.8μm以下とする。0.8μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましいCu相の厚みは0.4μm以下である。
上記めっき構造を得るためには、電気めっき時の各めっきの厚みを、Snめっきは0.5〜1.8μmの範囲、Cuめっきは0.1〜1.2μmの範囲で適宜調整し、230〜600℃、3〜30秒間の範囲の中の適当な条件でリフロー処理を行う。
In the Cu—Zn—Sn alloy, the solder wettability is improved by performing the Cu base plating. Therefore, it is necessary to apply a Cu base plating of 0.1 μm or more during electrodeposition. This Cu base plating may be consumed and lost for Sn—Cu alloy phase formation during reflow. That is, the lower limit value of the Cu phase thickness after reflow is not regulated, and the thickness may be zero.
The upper limit value of the thickness of the Cu phase is 0.8 μm or less in the state after reflow. When the thickness exceeds 0.8 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness of the Cu phase is 0.4 μm or less.
In order to obtain the above plating structure, the thickness of each plating at the time of electroplating is adjusted as appropriate within the range of 0.5 to 1.8 μm for Sn plating and 0.1 to 1.2 μm for Cu plating. The reflow treatment is performed under appropriate conditions in the range of ˜600 ° C. and 3 to 30 seconds.

(4−2)Cu/Ni下地
Cu/Ni下地めっきの場合、Cu−Zn−Sn系合金母材上に、電気めっきによりNiめっき層、Cuめっき層及びSnめっき層を順次形成し、その後リフロー処理を行う。このリフロー処理により、CuめっきはSnと反応してSn−Cu合金相となり、Cu相は消失する。一方Ni層は、ほぼ電気めっき上がりの状態で残留する。その結果、めっき層の構造は、表面側よりSn相、Sn−Cu合金相、Ni相となる。
リフロー後のこれら各相の厚みは、
・Sn相:0.1〜1.5μm、
・Sn−Cu合金相:0.1〜1.5μm、
・Ni相:0.1〜0.8μm
の範囲に調整する。
Sn相が0.1μm未満になると半田濡れ性が低下し、1.5μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい範囲は0.2〜1.0μmである。
Sn−Cu合金相は硬質なため、0.1μm以上の厚さで存在すると挿入力の低減に寄与する。一方、Sn−Cu合金相の厚さが1.5μmを超えると、加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましい厚みは0.5〜1.2μmである。
(4-2) Cu / Ni foundation In the case of Cu / Ni foundation plating, a Ni plating layer, a Cu plating layer and a Sn plating layer are sequentially formed on a Cu-Zn-Sn alloy base material by electroplating, and then reflow is performed. Process. By this reflow treatment, the Cu plating reacts with Sn to become a Sn—Cu alloy phase, and the Cu phase disappears. On the other hand, the Ni layer remains almost in the state after electroplating. As a result, the structure of the plating layer becomes Sn phase, Sn—Cu alloy phase, and Ni phase from the surface side.
The thickness of each phase after reflow is
-Sn phase: 0.1-1.5 μm,
Sn-Cu alloy phase: 0.1 to 1.5 μm
・ Ni phase: 0.1-0.8μm
Adjust to the range.
When the Sn phase is less than 0.1 μm, the solder wettability decreases, and when it exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable range is 0.2 to 1.0 μm.
Since the Sn—Cu alloy phase is hard, if it exists in a thickness of 0.1 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Sn—Cu alloy phase exceeds 1.5 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness is 0.5 to 1.2 μm.

Ni相の厚みは0.1〜0.8μmとする。Niの厚みが0.1μm未満ではめっきの耐食性や耐熱性が低下する。Niの厚みが0.8μmを超えると加熱した際にめっき層内部に発生する熱応力が高くなり、めっき剥離が促進される。より好ましいNi相の厚みは0.1〜0.3μmである。
上記めっき構造を得るためには、電気めっき時の各めっきの厚みを、Snめっきは0.5〜1.8μmの範囲、Cuめっきは0.1〜0.4μm、Niめっきは0.1〜0.8μmの範囲で適宜調整し、230〜600℃、3〜30秒間の範囲の中の適当な条件でリフロー処理を行う。
The thickness of the Ni phase is 0.1 to 0.8 μm. If the thickness of Ni is less than 0.1 μm, the corrosion resistance and heat resistance of the plating deteriorate. When the thickness of Ni exceeds 0.8 μm, the thermal stress generated inside the plating layer when heated is increased, and the plating peeling is promoted. A more preferable thickness of the Ni phase is 0.1 to 0.3 μm.
In order to obtain the plating structure, the thickness of each plating during electroplating is in the range of 0.5 to 1.8 μm for Sn plating, 0.1 to 0.4 μm for Cu plating, and 0.1 to 0.4 μm for Ni plating. It adjusts suitably in the range of 0.8 micrometer, and performs a reflow process on suitable conditions in the range of 230-600 degreeC and 3 to 30 second.

本発明の実施例で採用した製造、めっき、測定方法を以下に示す。
高周波誘導炉を用い、内径60mm、深さ200mmの黒鉛るつぼ中で2kgの電気銅を溶解した。溶湯表面を木炭片で覆った後、所定量のZn、Sn及びその他の合金元素を添加し、溶湯温度を1200℃に調整した。
その後、溶湯を金型に鋳込み、幅60mm、厚み30mmのインゴットを製造し、以下の工程で、Cu下地リフローSnめっき材及びCu/Ni下地リフローSnめっき材に加工した。めっき/母材界面のC濃度が異なるサンプルを得るために、工程9の条件を変化させた。
The manufacturing, plating, and measuring methods employed in the examples of the present invention are shown below.
Using a high frequency induction furnace, 2 kg of electrolytic copper was dissolved in a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm. After covering the molten metal surface with charcoal pieces, a predetermined amount of Zn, Sn and other alloy elements were added, and the molten metal temperature was adjusted to 1200 ° C.
Thereafter, the molten metal was cast into a mold to produce an ingot having a width of 60 mm and a thickness of 30 mm, and processed into a Cu underlayer reflow Sn plating material and a Cu / Ni underlayer reflow Sn plating material in the following steps. In order to obtain samples with different C concentrations at the plating / matrix interface, the conditions of step 9 were varied.

(工程1)900℃で3時間加熱した後、厚さ8mmまで熱間圧延した。
(工程2)熱間圧延板表面の酸化スケールをグラインダーで研削、除去した。
(工程3)板厚1.5mmまで冷間圧延した。
(工程4)再結晶焼鈍として400℃で30分間加熱した。
(工程5)10質量%硫酸−1質量%過酸化水素溶液による酸洗及び#1200エメリー紙による機械研磨を順次行い、表面酸化膜を除去した。
(工程6)板厚0.5mmまで冷間圧延した。
(工程7)再結晶焼鈍として400℃で30分間加熱した。
(工程8)10質量%硫酸−1質量%過酸化水素溶液による酸洗を行い、表面酸化膜を除去した。
(Step 1) After heating at 900 ° C. for 3 hours, it was hot-rolled to a thickness of 8 mm.
(Step 2) The oxidized scale on the surface of the hot rolled plate was ground and removed with a grinder.
(Process 3) Cold rolled to a plate thickness of 1.5 mm.
(Step 4) Heating was performed at 400 ° C. for 30 minutes as recrystallization annealing.
(Step 5) Pickling with a 10 mass% sulfuric acid-1 mass% hydrogen peroxide solution and mechanical polishing with # 1200 emery paper were sequentially performed to remove the surface oxide film.
(Step 6) Cold rolling to a plate thickness of 0.5 mm.
(Step 7) Heating was performed at 400 ° C. for 30 minutes as recrystallization annealing.
(Step 8) Pickling with a 10% by mass sulfuric acid-1% by mass hydrogen peroxide solution was performed to remove the surface oxide film.

(工程9)板厚0.3mmまで冷間圧延した。パス数は2回とし、1パス目で0.38mmまで加工し、2パス目で0.3mmまで加工した。2パス目では表面のRz(最大高さ粗さ)を1.0μmに調整したロールを用いた。1パス目ではロール表面のRzを1、2、3及び4μmの4水準で変化させた。また、圧延油(1パス目、2パス目共通)の動粘度を5、10及び15mm2/sの3水準で変化させた。
(工程10)アルカリ水溶液中で試料をカソードとして次の条件で電解脱脂を行った。
電流密度:3A/dm2。脱脂剤:ユケン工業(株)製商標「パクナP105」。脱脂剤濃度:40g/L。温度:50℃。時間30秒。電流密度:3A/dm2
(工程11)10質量%硫酸水溶液を用いて酸洗した。
(Step 9) Cold rolling to a plate thickness of 0.3 mm. The number of passes was two, and the first pass was processed to 0.38 mm, and the second pass was processed to 0.3 mm. In the second pass, a roll whose surface Rz (maximum height roughness) was adjusted to 1.0 μm was used. In the first pass, Rz on the roll surface was changed at four levels of 1, 2, 3, and 4 μm. Further, the kinematic viscosity of the rolling oil (common to the first pass and the second pass) was changed at three levels of 5, 10 and 15 mm 2 / s.
(Step 10) Electrolytic degreasing was performed under the following conditions in a alkaline aqueous solution using the sample as a cathode.
Current density: 3 A / dm 2 . Degreasing agent: Trademark “Pakuna P105” manufactured by Yuken Industry Co., Ltd. Degreasing agent concentration: 40 g / L. Temperature: 50 ° C. Time 30 seconds. Current density: 3 A / dm 2 .
(Step 11) Pickling was performed using a 10% by mass sulfuric acid aqueous solution.

(工程12)次の条件でNi下地めっきを施した(Cu/Ni下地の場合のみ)。
・めっき浴組成:硫酸ニッケル250g/L、塩化ニッケル45g/L、ホウ酸30g/L。
・めっき浴温度:50℃。
・電流密度:5A/dm2
・Niめっき厚みは、電着時間により調整。
(工程13)次の条件でCu下地めっきを施した。
・めっき浴組成:硫酸銅200g/L、硫酸60g/L。
・めっき浴温度:25℃。
・電流密度:5A/dm2
・Cuめっき厚みは、電着時間により調整。
(工程14)次の条件でSnめっきを施した。
・めっき浴組成:酸化第1錫41g/L、フェノールスルホン酸268g/L、界面活性剤5g/L。
・めっき浴温度:50℃。
・電流密度:9A/dm2
・Snめっき厚みは、電着時間により調整。
(工程15)リフロー処理として、温度を400℃、雰囲気ガスを窒素(酸素1vol%以下)に調整した加熱炉中に、試料を10秒間挿入し水冷した。
(Step 12) Ni base plating was performed under the following conditions (only in the case of Cu / Ni base).
-Plating bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 30 g / L.
-Plating bath temperature: 50 ° C.
Current density: 5A / dm 2.
・ Ni plating thickness is adjusted by electrodeposition time.
(Step 13) Cu base plating was performed under the following conditions.
-Plating bath composition: copper sulfate 200 g / L, sulfuric acid 60 g / L.
-Plating bath temperature: 25 ° C.
Current density: 5A / dm 2.
・ Cu plating thickness is adjusted by electrodeposition time.
(Step 14) Sn plating was performed under the following conditions.
-Plating bath composition: stannous oxide 41 g / L, phenolsulfonic acid 268 g / L, surfactant 5 g / L.
-Plating bath temperature: 50 ° C.
Current density: 9A / dm 2.
・ Sn plating thickness is adjusted by electrodeposition time.
(Step 15) As a reflow treatment, the sample was inserted into a heating furnace adjusted to 400 ° C. and the atmosphere gas to nitrogen (oxygen 1 vol% or less) for 10 seconds and cooled with water.

このように作製した試料について、次の評価を行った。
(a)母材の成分分析
機械研磨と化学エッチングによりめっき層を完全に除去した後、Zn濃度、Sn濃度及びその他合金元素の濃度を、ICP−発光分光法で測定した。
(b)母材の導電率測定
機械研磨と化学エッチングによりめっき層を完全に除去した後、4端子法により導電率を測定した。
(c)強度
引張り方向が圧延方向と平行になる方向に、JIS−Z2201(2003年)に規定された13B号試験片を採取した。この試験片を用いてJIS−Z2241(2003年)に従って引張試験を行い、引張強さを求めた。この測定はめっき付のまま行った。
(d)曲げ加工性
幅10mmの短冊形試料を用い、JIS Z 2248に準拠し、Good Way(曲げ軸が圧延方向と直行する方向)及びBad Way(曲げ軸が圧延方向と平行な方向)に、180度密着曲げ試験を行った。曲げ後の試料につき、曲げ部の表面及び断面から、割れの有無を観察し、割れが認められなかった場合を180度密着曲げ可能と判定した。
(e)電解式膜圧計によるめっき厚測定
リフロー後の試料に対しSn相及びSn−Cu合金相の厚みを測定した。なお、この方法ではCu相及びNi相の厚みを測ることはできない。
The following evaluation was performed about the sample produced in this way.
(A) Analysis of component of base material After the plating layer was completely removed by mechanical polishing and chemical etching, the concentrations of Zn, Sn, and other alloy elements were measured by ICP-emission spectroscopy.
(B) Measurement of conductivity of base material After the plating layer was completely removed by mechanical polishing and chemical etching, the conductivity was measured by a four-terminal method.
(C) Strength A specimen No. 13B defined in JIS-Z2201 (2003) was collected in a direction in which the tensile direction was parallel to the rolling direction. Using this test piece, a tensile test was conducted according to JIS-Z2241 (2003) to determine the tensile strength. This measurement was performed with plating.
(D) Bending workability Using a strip-shaped sample having a width of 10 mm, in accordance with JIS Z 2248, Good Way (direction in which the bending axis is perpendicular to the rolling direction) and Bad Way (direction in which the bending axis is parallel to the rolling direction) The 180 degree adhesion bending test was conducted. About the sample after a bending, the presence or absence of a crack was observed from the surface and cross section of the bending part, and when the crack was not recognized, it determined with 180 degree | times contact | adherence bending.
(E) Plating thickness measurement by electrolytic membrane pressure gauge The thickness of the Sn phase and the Sn—Cu alloy phase was measured on the sample after reflow. Note that the thickness of the Cu phase and Ni phase cannot be measured by this method.

(f)GDSによる表面分析
リフロー後の試料をアセトン中で超音波脱脂した後、GDS(グロー放電発光分光分析装置)により、Sn、Cu、Ni、Cの深さ方向の濃度プロファイルを求めた。測定条件は次の通りである。
・装置:JOBIN YBON社製 JY5000RF−PSS型。
・Current Method Program:CNBinteel−12aa−0。
・Mode:Constant EleCtriC Power=40W。
・Ar−Presser:775Pa。
・Current Value:40mA(700V)。
・Flush Time:20sec。
・Preburne Time:2sec。
・Determination Time:Analysis Time=30sec、Sampling Time=0.020sec/point。
(F) Surface analysis by GDS After the reflowed sample was ultrasonically degreased in acetone, the concentration profile of Sn, Cu, Ni, and C in the depth direction was determined by GDS (glow discharge emission spectroscopic analyzer). The measurement conditions are as follows.
Apparatus: JY5000RF-PSS type manufactured by JOBIN YBON.
-Current Method Program: CNBintel-12aa-0.
Mode: Constant EleCtriC Power = 40W.
Ar-Presser: 775 Pa.
-Current Value: 40 mA (700 V).
-Flush Time: 20 sec.
Preburn Time: 2 sec.
Determination Time: Analysis Time = 30 sec, Sampling Time = 0.020 sec / point.

GDSで得られるC濃度プロファイルデータより、めっき/母材境界面のC濃度を求めた。Cの代表的な濃度プロファイルとして、後述する発明例2(表1、Cu下地めっき材)のデータを図2に示す。深さ1.6μm(めっき層と母材との境界面)のところにCのピークが認められる。このピークの高さを読み取り、めっき/母材境界面のC濃度とした。
また、Cu濃度プロファイルより、リフロー後に残留しているCu下地めっき(Cu相)の厚みを求めた。図3は後述する発明例24(表2、Cu下地めっき)のデータである。深さ1.7μmのところに、母材よりCu濃度が高い層が認められる。この層はリフロー後に残留しているCu下地めっきであり、この母材よりCu濃度が高い部分の厚みを読み取りCu相の厚みとした。なお、母材よりCuが高い層が認められない場合は、Cu下地めっきは消失した(Cu相の厚みはゼロ)と見なした。同様に、Ni濃度プロファイルデータより、Ni下地めっき(Ni相)の厚みを求めた。
From the C concentration profile data obtained by GDS, the C concentration at the plating / base metal interface was determined. As a typical concentration profile of C, FIG. 2 shows data of Invention Example 2 (Table 1, Cu base plating material) described later. A peak of C is observed at a depth of 1.6 μm (a boundary surface between the plating layer and the base material). The peak height was read and used as the C concentration at the plating / base metal interface.
Further, from the Cu concentration profile, the thickness of the Cu base plating (Cu phase) remaining after the reflow was obtained. FIG. 3 shows data of Invention Example 24 (Table 2, Cu base plating) described later. A layer having a Cu concentration higher than that of the base material is observed at a depth of 1.7 μm. This layer is the Cu base plating remaining after the reflow, and the thickness of the portion where the Cu concentration is higher than that of the base material is read as the thickness of the Cu phase. In addition, when the layer whose Cu is higher than a base material was not recognized, it was considered that Cu undercoat disappeared (the thickness of Cu phase was zero). Similarly, the thickness of the Ni base plating (Ni phase) was determined from the Ni concentration profile data.

(g)耐熱剥離性
幅10mmの短冊試験片を採取し、160℃の温度で大気中3000時間まで加熱した。その間、100時間毎に試料を加熱炉から取り出し、曲げ半径0.5mmの90°曲げと曲げ戻し(90°曲げを往復一回)を行った。次に、曲げ内周部表面に粘着テープ(スリーエム製 #851)を貼り付け引き剥がした。その後、試料の曲げ内周部表面を光学顕微鏡(倍率50倍)で観察し、めっき剥離の有無を調べた。
(G) Heat-resistant peelability A strip test piece having a width of 10 mm was collected and heated at a temperature of 160 ° C. in the air for up to 3000 hours. In the meantime, the sample was taken out from the heating furnace every 100 hours, and 90 ° bending and bending back with a bending radius of 0.5 mm were performed (90 ° bending was reciprocated once). Next, an adhesive tape (# 851 manufactured by 3M) was applied to the surface of the inner periphery of the bend and peeled off. Thereafter, the surface of the inner periphery of the sample was observed with an optical microscope (magnification 50 times), and the presence or absence of plating peeling was examined.

めっき層/母材界面のC濃度と耐熱剥離性との関係(発明例1〜21及び比較例1〜9)
めっき層/母材界面のC濃度が耐熱剥離性に及ぼす影響を調査した実施例を表1に示す。工程9においてロール表面のRz及び圧延油動粘度をそれぞれ1〜4μm及び5〜15mm2/sに調整することにより、めっき層/母材界面のC濃度を変化させている。
Cu下地めっき材については、Cuの厚みを0.3μm、Snの厚みを1.0μmとして電気めっきを行い、400℃で10秒間リフローしたところ、全ての発明例、比較例でいずれもSn相の厚みは約0.6μm、Cu−Sn合金相の厚みは約1μmとなり、Cu相は消失していた。
Cu/Ni下地めっき材については、Niの厚みを0.2μm、Cuの厚みを0.3μm、Snの厚みを0.8μmとして電気めっきを行い、400℃で10秒間リフローしたところ、全ての発明例、比較例でいずれもSn相の厚みは約0.4μm、Cu−Sn合金相の厚みは約1μmとなり、Cu相は消失し、Ni相は電着時の厚み(0.2μm)のまま残留していた。
なお、表1のいずれの合金でも、Good Way及びBad Wayの180度密着曲げが可能であった。
本発明合金である発明例1〜21ではめっき層/母材界面のC濃度が0.10質量%以下であり、160℃で3000時間加熱してもめっき剥離が生じていない。一方、比較例1〜7ではC濃度が0.10質量%を超え、剥離時間が3000時間を下回っている。また、圧延ロールの表面粗さを小さくすること、及び圧延油の粘度を低くすることにより、めっき層/母材界面のC濃度を低くできることもわかる。なお、比較例8ではZnが2.0質量%を下回り、比較例9ではSnが1.0質量%を超えているため、C濃度が0.10質量%以下であるにもかかわらず剥離時間が3000時間を下回っている。
Relationship between C concentration of plating layer / base material interface and heat-resistant peelability (Invention Examples 1 to 21 and Comparative Examples 1 to 9)
Table 1 shows an example in which the influence of the C concentration at the plating layer / base metal interface on the heat-resistant peelability was investigated. In Step 9, the C concentration of the plating layer / base material interface is changed by adjusting the Rz and rolling oil dynamic viscosity of the roll surface to 1 to 4 μm and 5 to 15 mm 2 / s, respectively.
For the Cu base plating material, electroplating was performed with a Cu thickness of 0.3 μm and a Sn thickness of 1.0 μm, and after reflowing at 400 ° C. for 10 seconds, all the inventive examples and comparative examples were Sn phase. The thickness was about 0.6 μm, the thickness of the Cu—Sn alloy phase was about 1 μm, and the Cu phase disappeared.
For the Cu / Ni base plating material, electroplating was performed with a Ni thickness of 0.2 μm, a Cu thickness of 0.3 μm, and a Sn thickness of 0.8 μm, and reflowed at 400 ° C. for 10 seconds. In both examples and comparative examples, the thickness of the Sn phase is about 0.4 μm, the thickness of the Cu—Sn alloy phase is about 1 μm, the Cu phase disappears, and the Ni phase remains at the thickness during electrodeposition (0.2 μm). It remained.
In any of the alloys shown in Table 1, 180 degree adhesion bending of Good Way and Bad Way was possible.
In Invention Examples 1 to 21, which are the alloys of the present invention, the C concentration at the plating layer / base metal interface is 0.10% by mass or less, and plating peeling does not occur even when heated at 160 ° C. for 3000 hours. On the other hand, in Comparative Examples 1-7, C density | concentration exceeds 0.10 mass% and peeling time is less than 3000 hours. It can also be seen that the C concentration at the plating layer / base metal interface can be lowered by reducing the surface roughness of the rolling roll and lowering the viscosity of the rolling oil. In Comparative Example 8, Zn was less than 2.0% by mass, and in Comparative Example 9, Sn was more than 1.0% by mass, so that the peeling time was notwithstanding that the C concentration was 0.10% by mass or less. Is less than 3000 hours.

Figure 0004538424
表中の「−」は無添加を表す。
Figure 0004538424
"-" In the table represents no addition.

めっきの厚みと耐熱剥離性との関係(発明例22〜36及び比較例10〜15)
めっきの厚みが耐熱剥離性に及ぼす影響を調査した実施例を表2及び3に示す。母材の組成はCu−8.0質量%Zn−0.3質量%Snであり、導電率は40.7%IACS、引張強さは503MPaであり、Good Way、Bad Wayともに180度密着曲げが可能であった。また工程9では、1パス目でRzが2μmの圧延ロールを用い、1パス目、2パス目とも動粘度が10mm2/sの圧延油を用いた。その結果、各試料におけるめっき層/母材界面のC濃度は、0.07〜0.09質量%の範囲に収まった。
表2(発明例22〜29及び比較例10〜12)はCu下地めっきでのデータである。本発明合金である発明例22〜29については、160℃で3000時間加熱してもめっき剥離が生じていない。
発明例22〜25及び比較例12では、Snの電着厚みを0.9μmとし、Cu下地の厚みを変化させている。リフロー後のCu下地厚みが0.8μmを超えた比較例12では剥離時間が3000時間を下回っている。
発明例24、26〜29及び比較例10〜11ではCu下地の電着厚みを0.8μmとし、Snの厚みを変化させている。Snの電着厚みを2.0μmとし他と同じ条件でリフローを行った比較例10では、リフロー後のSn相の厚みが1.5μmを超えている。またSnの電着厚みを2.0μmとしリフロー時間を延ばした比較例11ではリフロー後のSn−Cu合金相厚みが1.5μmを超えている。Sn相またはSn−Cu合金相の厚みが規定範囲を超えたこれら合金では、剥離時間が3000時間を下回っている。
Relationship between plating thickness and heat-resistant peelability (Invention Examples 22 to 36 and Comparative Examples 10 to 15)
Tables 2 and 3 show examples in which the influence of the plating thickness on the heat-resistant peelability was investigated. The composition of the base material is Cu-8.0 mass% Zn-0.3 mass% Sn, the electrical conductivity is 40.7% IACS, the tensile strength is 503 MPa, both Good Way and Bad Way are 180 degree adhesion bending Was possible. In Step 9, a rolling roll having an Rz of 2 μm in the first pass was used, and a rolling oil having a kinematic viscosity of 10 mm 2 / s was used in the first pass and the second pass. As a result, the C concentration at the plating layer / base material interface in each sample was within the range of 0.07 to 0.09 mass%.
Table 2 (Invention Examples 22 to 29 and Comparative Examples 10 to 12) shows data for Cu base plating. With respect to Invention Examples 22 to 29 which are the alloys of the present invention, plating peeling does not occur even when heated at 160 ° C. for 3000 hours.
In Invention Examples 22 to 25 and Comparative Example 12, the Sn electrodeposition thickness is 0.9 μm and the thickness of the Cu base is changed. In Comparative Example 12 in which the Cu underlayer thickness after reflow exceeds 0.8 μm, the peeling time is less than 3000 hours.
In Invention Examples 24, 26 to 29 and Comparative Examples 10 to 11, the electrodeposition thickness of the Cu base was 0.8 μm, and the Sn thickness was changed. In Comparative Example 10 in which the Sn electrodeposition thickness was 2.0 μm and reflow was performed under the same conditions as the others, the thickness of the Sn phase after reflow exceeded 1.5 μm. In Comparative Example 11 in which the Sn electrodeposition thickness was 2.0 μm and the reflow time was extended, the Sn—Cu alloy phase thickness after reflow exceeded 1.5 μm. In these alloys in which the thickness of the Sn phase or the Sn—Cu alloy phase exceeds the specified range, the peeling time is less than 3000 hours.

表3(発明例30〜36及び比較例13〜15)はCu/Ni下地めっきでのデータである。本発明合金である発明例30〜36については、3000時間加熱してもめっき剥離が生じていない。
発明例30〜32及び比較例15では、Snの電着厚みを0.9μm、Cuの電着厚みを0.2μmとし、Ni下地の厚みを変化させている。リフロー後のNi相の厚みが0.8μmを超えた比較例15では、剥離時間が3000時間を下回っている。
発明例33〜36及び比較例13ではCu下地の電着厚みを0.15μm、Ni下地の電着厚みを0.2μmとし、Snの厚みを変化させている。リフロー後のSn相の厚みが1.5μmを超えた比較例13では剥離時間が3000時間を下回っている。
Snの電着厚みを2.0μm、Cuの電着厚みを0.6μmとし、リフロー時間を他の実施例より延ばした比較例14では、Sn−Cu合金相厚みが1.5μmを超え、剥離時間が3000時間を下回っている。
Table 3 (Invention Examples 30 to 36 and Comparative Examples 13 to 15) shows data in the Cu / Ni base plating. With respect to Invention Examples 30 to 36, which are the alloys of the present invention, plating peeling does not occur even when heated for 3000 hours.
In Invention Examples 30 to 32 and Comparative Example 15, the electrodeposition thickness of Sn is 0.9 μm, the electrodeposition thickness of Cu is 0.2 μm, and the thickness of the Ni base is changed. In Comparative Example 15 in which the thickness of the Ni phase after reflow exceeded 0.8 μm, the peeling time was less than 3000 hours.
In Invention Examples 33 to 36 and Comparative Example 13, the electrodeposition thickness of the Cu base was 0.15 μm, the electrodeposition thickness of the Ni base was 0.2 μm, and the Sn thickness was changed. In Comparative Example 13 in which the thickness of the Sn phase after reflow exceeded 1.5 μm, the peeling time was less than 3000 hours.
In Comparative Example 14 in which the Sn electrodeposition thickness was 2.0 μm, the Cu electrodeposition thickness was 0.6 μm, and the reflow time was extended from the other examples, the Sn—Cu alloy phase thickness exceeded 1.5 μm, and peeling The time is less than 3000 hours.

Figure 0004538424
Figure 0004538424

Figure 0004538424
Figure 0004538424

冷間圧延中に圧延油が被圧延材表面に封入される過程を示す模式図である。It is a schematic diagram which shows the process in which rolling oil is enclosed by the to-be-rolled material surface during cold rolling. 発明例2(表1、Cu下地めっき)の試料のC濃度の深さ方向のプロファイルである。It is the profile of the depth direction of C density | concentration of the sample of invention example 2 (Table 1, Cu base plating). 発明例24(表2、Cu下地めっき)の試料のCu及びSn濃度の深さ方向のプロファイルである。It is the profile of the depth direction of Cu and Sn density | concentration of the sample of invention example 24 (Table 2, Cu base plating).

Claims (3)

2〜12質量%のZn、0.1〜1.0質量%Snを含有し、Snの質量%濃度([%Sn])とZnの質量%濃度([%Zn])との関係が、
0.6≦[%Sn]+0.16[%Zn]≦2.0
の範囲に調整され、残部がCu及び不可避的不純物より構成される銅基合金を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相、Cu相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μm、Cu相の厚みが0〜0.8μmであり、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Zn−Sn系合金すずめっき条。
2 to 12% by mass of Zn and 0.1 to 1.0% by mass of Sn, the relationship between the Sn mass% concentration ([% Sn]) and the Zn mass% concentration ([% Zn])
0.6 ≦ [% Sn] +0.16 [% Zn] ≦ 2.0
The plating film is composed of the Sn phase, Sn-Cu alloy phase, and Cu phase layers from the surface to the base material. The Sn phase has a thickness of 0.1 to 1.5 μm, the Sn—Cu alloy phase has a thickness of 0.1 to 1.5 μm, and the Cu phase has a thickness of 0 to 0.8 μm. A Cu—Zn—Sn alloy tin-plated strip having a C concentration of 0.10% by mass or less at the interface.
2〜12質量%のZn、0.1〜1.0質量%Snを含有し、Snの質量%濃度([%Sn])とZnの質量%濃度([%Zn])との関係が、
0.6≦[%Sn]+0.16[%Zn]≦2.0
の範囲に調整され、残部がCu及び不可避的不純物より構成される銅基合金を母材とし、表面から母材にかけて、Sn相、Sn−Cu合金相、Ni相の各層でめっき皮膜が構成され、Sn相の厚みが0.1〜1.5μm、Sn−Cu合金相の厚みが0.1〜1.5μm、Ni相の厚みが0.1〜0.8μmであり、めっき層と母材との境界面におけるC濃度が0.10質量%以下であることを特徴とするCu−Zn−Sn系合金すずめっき条。
2 to 12% by mass of Zn and 0.1 to 1.0% by mass of Sn, the relationship between the Sn mass% concentration ([% Sn]) and the Zn mass% concentration ([% Zn])
0.6 ≦ [% Sn] +0.16 [% Zn] ≦ 2.0
The plating film is composed of the Sn phase, Sn-Cu alloy phase, and Ni phase layers from the surface to the base material. The thickness of the Sn phase is 0.1 to 1.5 μm, the thickness of the Sn—Cu alloy phase is 0.1 to 1.5 μm, the thickness of the Ni phase is 0.1 to 0.8 μm, the plating layer and the base material Cu-Zn-Sn alloy tin-plated strips, characterized in that the C concentration at the boundary surface between the two is 0.10% by mass or less.
母材が更にNi、Fe、Mn、Co、Ti、Cr、Zr、Al及びAgのなかの一種以上を0.005〜0.5質量%の範囲で含有する請求項1又は2記載のCu−Zn−Sn系合金すずめっき条。 The Cu- of claim 1 or 2 , wherein the base material further contains at least one of Ni, Fe, Mn, Co, Ti, Cr, Zr, Al, and Ag in a range of 0.005 to 0.5 mass%. Zn-Sn alloy tin plating strip.
JP2006091086A 2006-03-29 2006-03-29 Cu-Zn-Sn alloy tin-plated strip Active JP4538424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091086A JP4538424B2 (en) 2006-03-29 2006-03-29 Cu-Zn-Sn alloy tin-plated strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091086A JP4538424B2 (en) 2006-03-29 2006-03-29 Cu-Zn-Sn alloy tin-plated strip

Publications (2)

Publication Number Publication Date
JP2007262523A JP2007262523A (en) 2007-10-11
JP4538424B2 true JP4538424B2 (en) 2010-09-08

Family

ID=38635781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091086A Active JP4538424B2 (en) 2006-03-29 2006-03-29 Cu-Zn-Sn alloy tin-plated strip

Country Status (1)

Country Link
JP (1) JP4538424B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200844267A (en) * 2007-03-22 2008-11-16 Nippon Mining Co Sn-plated copper alloy material for printed board terminal
JP5324173B2 (en) * 2008-09-25 2013-10-23 日本圧着端子製造株式会社 Connector and connector manufacturing method
JP5339995B2 (en) 2009-04-01 2013-11-13 Jx日鉱日石金属株式会社 Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
JP6476227B2 (en) * 2017-03-31 2019-02-27 Jx金属株式会社 Copper or copper alloy strip, traverse coil and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226097A (en) * 2004-02-10 2005-08-25 Kobe Steel Ltd Tinned copper alloy material for electrical/electronic component, and its production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270986A (en) * 1989-04-10 1990-11-06 Kobe Steel Ltd Tin coated metallic sheet having excellent brightness and whisker resistance
JP3105392B2 (en) * 1994-03-18 2000-10-30 同和鉱業株式会社 Manufacturing method of copper base alloy for connector
JP4308931B2 (en) * 1997-11-04 2009-08-05 三菱伸銅株式会社 Sn or Sn alloy-plated copper alloy thin plate and connector manufactured with the thin plate
JPH11200059A (en) * 1998-01-13 1999-07-27 Kobe Steel Ltd Joint base stock for copper or copper alloy coated on inner surface, production thereof and production of joint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226097A (en) * 2004-02-10 2005-08-25 Kobe Steel Ltd Tinned copper alloy material for electrical/electronic component, and its production method

Also Published As

Publication number Publication date
JP2007262523A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
JP6055242B2 (en) Cu-Mg-P-based copper alloy Sn plated plate and method for producing the same
JP2007063624A (en) Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
WO2009123144A1 (en) Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP2007314859A (en) Cu-Zn ALLOY STRIP WITH EXCELLENT RESISTANCE TO THERMAL PEELING OF Sn PLATING, AND Sn-PLATED STRIP THEREOF
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
TW202041687A (en) Copper alloy plate, copper alloy plate with plating film and manufacturing methods therefor
JP2006307336A (en) Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY
JP4756195B2 (en) Cu-Ni-Sn-P copper alloy
KR101356258B1 (en) Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating
JP4538424B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP4699252B2 (en) Titanium copper
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP2007039789A (en) Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
JP4820228B2 (en) Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof
JP2007291459A (en) TINNED STRIP OF Cu-Sn-P-BASED ALLOY
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
KR100774225B1 (en) Cu-Ni-Si-Zn BASED ALLOY TIN PLATING BATH
JP4781145B2 (en) Terminal, connector or relay using Cu-Zn-Sn alloy and Cu-Zn-Sn alloy strip
JP2005154819A (en) Fitting type connection terminal
JP6134557B2 (en) Copper strip or copper alloy strip and heat dissipating part provided with the strip
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4538424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250