JP4536470B2 - Other element doped rutile type titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst - Google Patents

Other element doped rutile type titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst Download PDF

Info

Publication number
JP4536470B2
JP4536470B2 JP2004278244A JP2004278244A JP4536470B2 JP 4536470 B2 JP4536470 B2 JP 4536470B2 JP 2004278244 A JP2004278244 A JP 2004278244A JP 2004278244 A JP2004278244 A JP 2004278244A JP 4536470 B2 JP4536470 B2 JP 4536470B2
Authority
JP
Japan
Prior art keywords
titanium oxide
doped
rutile
type titanium
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004278244A
Other languages
Japanese (ja)
Other versions
JP2006089343A (en
Inventor
照尚 横野
徹 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2004278244A priority Critical patent/JP4536470B2/en
Publication of JP2006089343A publication Critical patent/JP2006089343A/en
Application granted granted Critical
Publication of JP4536470B2 publication Critical patent/JP4536470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、新規な他元素ドープルチル型酸化チタンとその製造法、該他元素ドープルチル型酸化チタンからなる光触媒、及び該触媒を用いた有機化合物の酸化方法に関する。   The present invention relates to a novel other element-doped rutile titanium oxide and a method for producing the same, a photocatalyst comprising the other element-doped rutile titanium oxide, and an organic compound oxidation method using the catalyst.

従来、光触媒を発現する材料として種々の酸化物半導体が知られており、これらの半導体は、そのバンドギャップ以上のエネルギーを持つ波長の光を吸収して電子と正孔を生成し、種々の化学反応や殺菌作用を呈する。なかでも安定性や取扱性の観点から酸化チタン触媒が広く利用されている。しかし、酸化チタン(アナターゼ型結晶)のバンドギャップは約3.2eVであり、酸化チタンが光触媒として作用するためには380nm未満の紫外光を照射する必要がある。紫外光の照射には特殊な光源が必要となるため、波長が380nm以上の可視光照射によっても触媒活性を発現する材料の開発が強く望まれている。   Conventionally, various oxide semiconductors are known as materials that develop photocatalysts, and these semiconductors absorb light having a wavelength that has energy higher than the band gap to generate electrons and holes, and thus various chemicals. Exhibits reaction and bactericidal action. Of these, titanium oxide catalysts are widely used from the viewpoints of stability and handleability. However, the band gap of titanium oxide (anatase type crystal) is about 3.2 eV, and it is necessary to irradiate ultraviolet light of less than 380 nm in order for titanium oxide to act as a photocatalyst. Since a special light source is required for irradiation with ultraviolet light, development of a material that exhibits catalytic activity even when irradiated with visible light having a wavelength of 380 nm or more is strongly desired.

これに対し、金属酸化物に窒素原子をドーピングした光触媒物質(例えば、特許文献1参照)や、酸化チタンに窒素原子又は硫黄原子がドーピングされ、その表面に電荷分離物質が担持されている光触媒体(例えば、特許文献2参照)などの光触媒が報告されている。しかし、これら従来の光触媒は、可視光の吸収は得られるものの、触媒活性がさほど高くなかったり、触媒活性が消失するという問題がある。   On the other hand, a photocatalytic substance obtained by doping a metal oxide with a nitrogen atom (see, for example, Patent Document 1), or a photocatalyst body in which titanium oxide is doped with a nitrogen atom or a sulfur atom and a charge separation substance is supported on the surface thereof. (For example, refer patent document 2) etc. have been reported. However, these conventional photocatalysts can absorb visible light, but have problems that the catalytic activity is not so high or the catalytic activity is lost.

特開2001−205094号公報JP 2001-205094 A 特開2001−205103号公報JP 2001-205103 A

本発明の目的は、長波長側の可視光でも高い触媒活性を発現しうる他元素ドープ酸化チタンとその製造法及び活性の高い光触媒を提供することにある。
本発明の他の目的は、有機化合物を光照射下で効率よく酸化する方法を提供することにある。
The objective of this invention is providing the other element dope titanium oxide which can express a high catalytic activity also by the visible light of a long wavelength side, its manufacturing method, and a highly active photocatalyst.
Another object of the present invention is to provide a method for efficiently oxidizing an organic compound under light irradiation.

本発明者らは、上記目的を達成するため鋭意検討した結果、ルチル型酸化チタンに炭素原子及び硫黄原子からなる群より選択された少なくとも1種の原子をドーピングした他元素ドープルチル型酸化チタンによれば可視光を吸収でき高い触媒活性が得られること、該他元素ドープルチル型酸化チタンはルチル型酸化チタンと炭素源及び硫黄源との混合物を焼成することにより得られること、こうして得られた他元素ドープルチル型酸化チタンからなる光触媒は可視光の照射により有機化合物を効率よく酸化できることを見いだした。本発明はこれらの知見に基づいて完成されたものである。   As a result of diligent investigations to achieve the above object, the present inventors have found that rutile titanium oxide is doped with at least one atom selected from the group consisting of carbon atoms and sulfur atoms. The other element doped rutile titanium oxide can be obtained by firing a mixture of rutile titanium oxide, a carbon source and a sulfur source, and other elements thus obtained. It has been found that a photocatalyst composed of doped rutile type titanium oxide can oxidize organic compounds efficiently by irradiation with visible light. The present invention has been completed based on these findings.

すなわち、本発明は、ルチル型酸化チタンとチオウレアとの混合物を素焼きの蓋付き容器に入れ、蓋を閉じた状態で焼成処理することにより、ルチル型酸化チタンに炭素原子がC4+としてドープされているとともに、硫黄原子がS4+としてドープされている他元素ドープルチル型酸化チタンを得ることを特徴とする他元素ドープルチル型酸化チタンの製造法を提供する。
That is, the present invention puts a mixture of rutile titanium oxide and thiourea into an unglazed lidded container and calcinates with the lid closed, whereby the rutile titanium oxide is doped with carbon atoms as C 4+. In addition, the present invention provides a method for producing another element-doped rutile titanium oxide, which is characterized in that another element-doped rutile titanium oxide doped with sulfur atoms as S 4+ is obtained.

本発明は、さらに、前記の他元素ドープルチル型酸化チタンの製造法により得られた他元素ドープルチル型酸化チタンからなる光触媒を提供する。 The present invention further provides a photocatalyst comprising the other element doped rutile type titanium oxide obtained by the method for producing the other element doped rutile type titanium oxide.

本発明は、さらにまた、前記の光触媒の存在下、被酸化部位を有する有機化合物を光照射下に分子状酸素又は過酸化物により酸化することを特徴とする有機化合物の酸化方法を提供する。尚、本明細書では、上記の発明の他、ルチル型酸化チタンに炭素原子及び硫黄原子からなる群より選択された少なくとも1種の原子がドープされた他元素ドープルチル型酸化チタン、炭素原子がC 4+ としてドープされている前記他元素ドープルチル型酸化チタン、硫黄原子がS 4+ としてドープされている前記他元素ドープルチル型酸化チタン、ルチル型酸化チタンと炭素源及び硫黄源との混合物を焼成処理することにより前記他元素ドープルチル型酸化チタンを得ることを特徴とする他元素ドープルチル型酸化チタンの製造法、前記他元素ドープルチル型酸化チタンからなる光触媒、及び前記光触媒の存在下、被酸化部位を有する有機化合物を光照射下に分子状酸素又は過酸化物により酸化することを特徴とする有機化合物の酸化方法についても説明する。
The present invention further provides a method for oxidizing an organic compound, characterized by oxidizing an organic compound having an oxidizable site with molecular oxygen or a peroxide under light irradiation in the presence of the photocatalyst. In the present specification, in addition to the above-described invention, rutile-type titanium oxide is doped with at least one atom selected from the group consisting of a carbon atom and a sulfur atom. The other element doped rutile titanium oxide doped as 4+ , the other element doped rutile titanium oxide doped with sulfur atoms as S 4+ , a mixture of rutile titanium oxide, carbon source and sulfur source To obtain the other element-doped rutile titanium oxide, a photocatalyst comprising the other element-doped rutile titanium oxide, and a site to be oxidized in the presence of the photocatalyst An organic compound oxidation method comprising oxidizing an organic compound with molecular oxygen or peroxide under light irradiation. Also described.

なお、本明細書において、「他元素ドープルチル型酸化チタン」の「他元素」とは、酸化チタンを構成するチタン及び酸素以外の元素を意味する。   In the present specification, “other elements” of “other element-doped rutile titanium oxide” means elements other than titanium and oxygen constituting titanium oxide.

本発明の他元素ドープルチル型酸化チタンによれば、可視光の照射により高い触媒活性が発現する。本発明の他元素ドープルチル型酸化チタンの製造法によれば、上記優れた特性を有する他元素ドープルチル型酸化チタンを簡易に製造することができる。このような他元素ドープルチル型酸化チタンからなる触媒は、可視光の照射により有機化合物を効率よく酸化することができる。   According to the other element-doped rutile-type titanium oxide of the present invention, high catalytic activity is exhibited by irradiation with visible light. According to the method for producing another element-doped rutile titanium oxide of the present invention, the other element-doped rutile titanium oxide having the above-described excellent characteristics can be easily produced. Such a catalyst made of other element-doped rutile titanium oxide can efficiently oxidize an organic compound by irradiation with visible light.

本発明の他元素ドープルチル型酸化チタンは、ルチル型酸化チタンに炭素原子及び硫黄原子からなる群より選択された少なくとも1種の原子がドープされている。すなわち、本発明の他元素ドープルチル型酸化チタンには、(i)ルチル型酸化チタンに前記2種の原子のうち炭素原子のみがドープされているもの、(ii)ルチル型酸化チタンに前記2種の原子のうち硫黄原子のみがドープされているもの、(iii)ルチル型酸化チタンに前記2種の原子のうち炭素原子と硫黄原子がともにドープされているものの3つの態様がある。何れの態様も可視光の照射により高い触媒活性を発現する。なかでも特に好ましい態様は、ルチル型酸化チタンに前記2種の原子のうち少なくとも炭素原子がドープされている態様[前記(i)又は(iii)]である。   In the other element-doped rutile type titanium oxide of the present invention, the rutile type titanium oxide is doped with at least one atom selected from the group consisting of a carbon atom and a sulfur atom. That is, in the other element-doped rutile type titanium oxide of the present invention, (i) the rutile type titanium oxide is doped with only carbon atoms out of the two types of atoms, and (ii) the rutile type titanium oxide has the two types. There are three modes: one in which only sulfur atoms are doped, and (iii) rutile-type titanium oxide in which both carbon atoms and sulfur atoms are doped. In any embodiment, high catalytic activity is expressed by irradiation with visible light. Among these, a particularly preferable embodiment is an embodiment [the above (i) or (iii)] in which at least a carbon atom is doped into the rutile type titanium oxide.

炭素原子及び硫黄原子は、それぞれはどのような形態でドープされていてもよく、例えば、炭素原子(又は硫黄原子)自体がドープされた形態、炭素原子(又は硫黄原子)を含む分子がドープされた形態、炭素原子(又は硫黄原子)を含むイオン(原子団)がドープされた形態などが例示される。代表的なドープ形態として、炭素原子(又は硫黄原子)が4価の陽イオン(C4+)(又はS4+)としてドープされた形態が挙げられる。本発明の他元素ドープルチル型酸化チタンは、例えば、ルチル型酸化チタン結晶のチタンサイトの一部が炭素原子(又は硫黄原子)を含むイオン(原子団)で置換された構造、ルチル型酸化チタン結晶の格子間に、炭素原子(又は硫黄原子)自体がドープされた形態、炭素原子(又は硫黄原子)を含む分子がドープされた形態、又は炭素原子(又は硫黄原子)を含むイオン(原子団)がドープされた構造、あるいはルチル型酸化チタン結晶の多結晶集合体の粒界に、炭素原子(又は硫黄原子)自体がドープされた形態、炭素原子(又は硫黄原子)を含む分子がドープされた形態、又は炭素原子を含むイオン(原子団)が配置された構造などのいずれの構造を有していてもよく、これらの構造が混在していてもよい。 The carbon atom and the sulfur atom may be doped in any form, for example, a form in which the carbon atom (or sulfur atom) itself is doped, or a molecule containing the carbon atom (or sulfur atom) is doped. And forms doped with ions (atomic groups) containing carbon atoms (or sulfur atoms). A typical doped form is a form in which carbon atoms (or sulfur atoms) are doped as tetravalent cations (C 4+ ) (or S 4+ ). The other element-doped rutile type titanium oxide of the present invention has, for example, a structure in which a part of the titanium site of the rutile type titanium oxide crystal is substituted with an ion (atomic group) containing a carbon atom (or sulfur atom), a rutile type titanium oxide crystal. A form in which carbon atoms (or sulfur atoms) themselves are doped, a form in which molecules containing carbon atoms (or sulfur atoms) are doped, or ions (atomic groups) containing carbon atoms (or sulfur atoms) Or a grain boundary of a polycrystalline aggregate of rutile-type titanium oxide crystals doped with carbon atoms (or sulfur atoms) itself, molecules containing carbon atoms (or sulfur atoms) It may have any structure such as a structure or a structure in which ions (atomic groups) containing carbon atoms are arranged, and these structures may be mixed.

ルチル型酸化チタンとしては、ルチル型結晶構造を有する二酸化チタンであればよく、慣用の方法で合成したものを用いてもよく、市販品を用いてもよい。ルチル型酸化チタンとしてはアナターゼ型酸化チタン等の他の結晶構造を有する酸化チタンを含んでいてもよいが、それらを実質的に含まないものが好適に用いられる。   The rutile type titanium oxide may be titanium dioxide having a rutile type crystal structure, and may be synthesized by a conventional method, or a commercially available product may be used. The rutile type titanium oxide may contain titanium oxide having another crystal structure such as anatase type titanium oxide, but those substantially not containing them are preferably used.

本発明の他元素ドープルチル型酸化チタンは、例えば、ルチル型酸化チタンと炭素源及び硫黄源との混合物を焼成処理することにより製造することができる。   The other element-doped rutile titanium oxide of the present invention can be produced, for example, by firing a mixture of rutile titanium oxide, a carbon source and a sulfur source.

炭素源としては、分子内に炭素原子を少なくとも1つ有する化合物であれば特に限定されない。また、硫黄源としては、分子内に硫黄原子を少なくとも1つ有する化合物であれば特に限定されない。炭素源、硫黄源として、分子内に炭素原子と硫黄原子とを共に有する化合物を用いてもよい。この場合には、1つの化合物が炭素源及び硫黄源として利用される。このような炭素原子と硫黄原子とを共に有する代表的な化合物として、チオウレアなどが挙げられるがこれに限定されない。   The carbon source is not particularly limited as long as it is a compound having at least one carbon atom in the molecule. The sulfur source is not particularly limited as long as it is a compound having at least one sulfur atom in the molecule. As the carbon source and sulfur source, compounds having both a carbon atom and a sulfur atom in the molecule may be used. In this case, one compound is used as a carbon source and a sulfur source. A typical compound having both a carbon atom and a sulfur atom includes, but is not limited to, thiourea.

ルチル型酸化チタンと炭素源及び硫黄源との混合比は、特に限定されないが、ルチル型酸化チタン/炭素源及び硫黄源の総量(重量比)として、例えば1/99〜99/1、好ましくは5/95〜90/10、より好ましくは10/90〜80/20程度である。   The mixing ratio of the rutile titanium oxide and the carbon source and sulfur source is not particularly limited, but the total amount (weight ratio) of the rutile titanium oxide / carbon source and sulfur source is, for example, 1/99 to 99/1, preferably It is about 5/95 to 90/10, more preferably about 10/90 to 80/20.

ルチル型酸化チタンと炭素源及び硫黄源との混合方法は、特に限定されず、溶媒に溶解又は分散させる方法(ゾルゲル法)、粉砕して混合する方法(物理混合法)などを採用できる。前記の方法は、ルチル型酸化チタンと炭素源及び硫黄源とを溶媒中に溶解又は分散させて得られた混合液を、濃縮、乾燥することにより、粉末状の混合物を得る方法である。溶媒としては、エタノールなどのアルコール等の有機溶媒又は水を使用できる。また、物理混合法は、ルチル型酸化チタンと炭素源及び硫黄源を乳鉢等を用いて粉砕、混合することにより、粉末状の混合物を得る方法である。   The mixing method of the rutile titanium oxide, the carbon source and the sulfur source is not particularly limited, and a method of dissolving or dispersing in a solvent (sol-gel method), a method of pulverizing and mixing (physical mixing method) and the like can be employed. The above-mentioned method is a method for obtaining a powdery mixture by concentrating and drying a mixed solution obtained by dissolving or dispersing rutile-type titanium oxide, a carbon source and a sulfur source in a solvent. As the solvent, an organic solvent such as alcohol such as ethanol or water can be used. The physical mixing method is a method of obtaining a powdery mixture by pulverizing and mixing rutile titanium oxide, a carbon source and a sulfur source using a mortar or the like.

焼成処理は、例えば、上記方法により得られた粉末状の混合物を蓋付きの容器(焼成ルツボ等)に入れ、電気炉等の加熱手段を用いて実施される。焼成は酸素下で行うことが好ましい。無酸素状態で焼成すると、触媒活性のない亜酸化チタンが生成してしまう。焼成温度は、例えば300〜700℃、好ましくは330〜650℃、より好ましくは350〜600℃程度である。焼成温度が300℃よりも低いとドープ速度が遅くなり、焼成温度が700℃を超えると可視領域での光の吸収が見られなくなることがある。   The calcination treatment is performed, for example, by putting the powdery mixture obtained by the above method into a container with a lid (such as a calcination crucible) and using a heating means such as an electric furnace. Firing is preferably performed under oxygen. When calcined in an oxygen-free state, titanium suboxide having no catalytic activity is produced. The firing temperature is, for example, about 300 to 700 ° C, preferably about 330 to 650 ° C, and more preferably about 350 to 600 ° C. When the baking temperature is lower than 300 ° C., the doping rate is slow, and when the baking temperature exceeds 700 ° C., light absorption in the visible region may not be observed.

上記方法により、ルチル型酸化チタンに炭素原子及び/又は硫黄原子がドープされる。ドープされる炭素原子と硫黄ドープの比率は、例えば、炭素源及び硫黄源の種類や使用比、焼成条件(焼成温度、焼成時間、焼成雰囲気等)などを調整することによりコントロールできる。   By the above method, the rutile titanium oxide is doped with carbon atoms and / or sulfur atoms. The ratio of the carbon atom to be doped and the sulfur dope can be controlled, for example, by adjusting the type and use ratio of the carbon source and sulfur source, the firing conditions (firing temperature, firing time, firing atmosphere, etc.) and the like.

本発明の他元素ドープルチル型酸化チタンは、長波長の可視光を効果的に吸収することができる。そして、光吸収により生成した電子と正孔が表面に移動し、酸化チタン結晶表面において優れた触媒作用や殺菌作用を発現する。より具体的には、本発明の他元素ドープルチル型酸化チタンは、波長380nm未満の紫外光領域に加えて、380〜700nm程度の可視光領域においても光触媒作用を発現する。そのため、通常の酸化チタン(非他元素ドープ酸化チタン)と比較して工業的な利用価値は著しく高い。   The other element-doped rutile-type titanium oxide of the present invention can effectively absorb long-wavelength visible light. And the electron and hole which were produced | generated by light absorption move to the surface, and the outstanding catalytic action and bactericidal action are expressed in the titanium oxide crystal surface. More specifically, the other element-doped rutile titanium oxide of the present invention exhibits a photocatalytic action in a visible light region of about 380 to 700 nm in addition to an ultraviolet light region having a wavelength of less than 380 nm. Therefore, industrial utility value is remarkably high compared with normal titanium oxide (non-other element doped titanium oxide).

また、酸化チタンへ各種材料をドーピングした既知の他元素ドープ酸化チタンと比較して、より長波長側の可視光によって活性化でき、しかも酸化チタンをドープした場合に生じやすい活性の低下が抑制されて、より高い触媒活性を発揮する。   In addition, it can be activated by visible light on the longer wavelength side compared to known other element-doped titanium oxides doped with various materials to titanium oxide, and the decrease in activity that is likely to occur when titanium oxide is doped is suppressed. And exhibits higher catalytic activity.

本発明の他元素ドープルチル型酸化チタンは、種々の化学反応(例えば、酸化反応、有害物質の分解反応等)や殺菌などの従来の酸化チタンと同様の分野で利用することができる。   The other element-doped rutile-type titanium oxide of the present invention can be used in the same fields as conventional titanium oxides such as various chemical reactions (for example, oxidation reaction, decomposition reaction of harmful substances) and sterilization.

本発明の光触媒としては、少なくとも前記他元素ドープルチル型酸化チタンを含んでいればよく、他の成分を含んでいてもよい。光触媒の形態としては特に限定されず、例えば、粉末状の他元素ドープルチル型酸化チタン及びその成形体、所望の処理が施された他元素ドープルチル型酸化チタンなどが挙げられる。また、前記他元素ドープルチル型酸化チタンを内部に有し、非他元素ドープ酸化チタンを表面に有する2層構造としてもよい。この場合、内部で生じた電子と正孔が表面に移動した際に、表面に不純物がないため電子と正孔が再結合しにくくなり、触媒寿命を長くすることができ、しかも表面における活性種の濃度が高くなるため高活性が得られ易くなる。   The photocatalyst of the present invention only needs to contain at least the other element-doped rutile titanium oxide, and may contain other components. The form of the photocatalyst is not particularly limited, and examples thereof include powdered other element doped rutile type titanium oxide and a molded body thereof, and other element doped rutile type titanium oxide subjected to a desired treatment. Moreover, it is good also as a 2 layer structure which has the said other element dope rutile type titanium oxide inside, and has non-other element dope titanium oxide on the surface. In this case, when electrons and holes generated inside move to the surface, since there are no impurities on the surface, it becomes difficult for the electrons and holes to recombine, the catalyst life can be extended, and active species on the surface can be increased. High concentration is easily obtained because of the high concentration.

また、前記他元素ドープルチル型酸化チタンの表面に、非他元素ドープ酸化チタンの微粒子を担持した担持型他元素ドープ酸化チタン触媒とすることもできる。担持型他元素ドープ酸化チタン触媒によれば、触媒の表面積が見かけ上増大し、特に、酸素を使用する反応の触媒として用いた際には、酸素の吸収量が増大するため、酸素の還元反応(酸素への励起電子の移動)が大幅に促進され、触媒活性が飛躍的に増大した光触媒を得ることができる。光触媒の形態は特に限定されず、例えば、粉末状(粒子状)、塊状、膜状等の何れの形態で用いてもよい。   In addition, a supported other element-doped titanium oxide catalyst in which fine particles of non-other element-doped titanium oxide are supported on the surface of the other element-doped rutile titanium oxide can also be used. According to the supported other element-doped titanium oxide catalyst, the surface area of the catalyst is apparently increased, and particularly when used as a catalyst for a reaction using oxygen, the amount of oxygen absorbed is increased. (Movement of excited electrons to oxygen) is greatly promoted, and a photocatalyst having greatly increased catalytic activity can be obtained. The form of the photocatalyst is not particularly limited, and for example, it may be used in any form such as powder (particulate), block, or film.

本発明の有機化合物の酸化方法は、上記光触媒の存在下、被酸化部位を有する有機化合物を光照射下に分子状酸素又は過酸化物により酸化することを特徴としている。前記有機化合物としては、少なくとも1つの被酸化部位を有する有機化合物であれば特に限定されない。被酸化部位を有する有機化合物としては、(A1)ヘテロ原子の隣接位に炭素−水素結合を有するヘテロ原子含有化合物、(A2)炭素−ヘテロ原子二重結合を有する化合物、(A3)メチン炭素原子を有する化合物、(A4)不飽和結合の隣接位に炭素−水素結合を有する化合物、(A5)非芳香族性環状炭化水素、(A6)共役化合物、(A7)アミン類、(A8)芳香族化合物、(A9)直鎖状アルカン、及び(A10)オレフィン類等が挙げられる。   The method for oxidizing an organic compound of the present invention is characterized in that an organic compound having an oxidizable site is oxidized with molecular oxygen or peroxide under light irradiation in the presence of the photocatalyst. The organic compound is not particularly limited as long as it is an organic compound having at least one site to be oxidized. Examples of the organic compound having an oxidizable site include (A1) a heteroatom-containing compound having a carbon-hydrogen bond adjacent to a heteroatom, (A2) a compound having a carbon-heteroatom double bond, and (A3) a methine carbon atom. (A4) Compound having a carbon-hydrogen bond adjacent to the unsaturated bond, (A5) Non-aromatic cyclic hydrocarbon, (A6) Conjugated compound, (A7) Amines, (A8) Aromatic Examples thereof include compounds, (A9) linear alkanes, and (A10) olefins.

ヘテロ原子の隣接位に炭素−水素結合を有するヘテロ原子含有化合物(A1)としては、(A1-1)第1級若しくは第2級アルコール又は第1級若しくは第2級チオール、(A1-2)酸素原子の隣接位に炭素−水素結合を有するエーテル又は硫黄原子の隣接位に炭素−水素結合を有するスルフィド、(A1-3)酸素原子の隣接位に炭素−水素結合を有するアセタール(ヘミアセタールも含む)又は硫黄原子の隣接位に炭素−水素結合を有するチオアセタール(チオヘミアセタールも含む)などが例示できる。   As the heteroatom-containing compound (A1) having a carbon-hydrogen bond at the adjacent position of the heteroatom, (A1-1) primary or secondary alcohol or primary or secondary thiol, (A1-2) An ether having a carbon-hydrogen bond adjacent to an oxygen atom or a sulfide having a carbon-hydrogen bond adjacent to a sulfur atom, (A1-3) an acetal having a carbon-hydrogen bond adjacent to an oxygen atom (also a hemiacetal) Thioacetal (including thiohemiacetal) having a carbon-hydrogen bond at a position adjacent to a sulfur atom.

前記炭素−ヘテロ原子二重結合を有する化合物(A2)としては、(A2-1)カルボニル基含有化合物、(A2-2)チオカルボニル基含有化合物、(A2-3)イミン類などが挙げられる。   Examples of the compound (A2) having a carbon-heteroatom double bond include (A2-1) carbonyl group-containing compounds, (A2-2) thiocarbonyl group-containing compounds, (A2-3) imines, and the like.

前記メチン炭素原子を有する化合物(A3)には、(A3-1)環の構成単位としてメチン基(すなわち、メチン炭素−水素結合)を含む環状化合物、(A3-2)メチン炭素原子を有する鎖状化合物が含まれる。   The compound (A3) having a methine carbon atom includes (A3-1) a cyclic compound containing a methine group (that is, a methine carbon-hydrogen bond) as a structural unit of the ring, and (A3-2) a chain having a methine carbon atom. Like compounds.

前記不飽和結合の隣接位に炭素−水素結合を有する化合物(A4)としては、(A4-1)芳香族性環の隣接位(いわゆるベンジル位)にメチル基又はメチレン基を有する芳香族化合物、(A4-2)不飽和結合(例えば、炭素−炭素不飽和結合、炭素−酸素二重結合など)の隣接位にメチル基又はメチレン基を有する非芳香族性化合物などが挙げられる。   As the compound (A4) having a carbon-hydrogen bond at the adjacent position of the unsaturated bond, (A4-1) an aromatic compound having a methyl group or a methylene group at the adjacent position (so-called benzyl position) of the aromatic ring, (A4-2) Non-aromatic compounds having a methyl group or a methylene group at an adjacent position of an unsaturated bond (for example, a carbon-carbon unsaturated bond, a carbon-oxygen double bond, etc.), and the like.

前記非芳香族性環状炭化水素(A5)には、(A5-1)シクロアルカン類及び(A5-2)シクロアルケン類が含まれる。   The non-aromatic cyclic hydrocarbon (A5) includes (A5-1) cycloalkanes and (A5-2) cycloalkenes.

前記共役化合物(A6)には、共役ジエン類(A6-1)、α,β−不飽和ニトリル(A6-2)、α,β−不飽和カルボン酸又はその誘導体(例えば、エステル、アミド、酸無水物等)(A6-3)などが挙げられる。   The conjugated compound (A6) includes conjugated dienes (A6-1), α, β-unsaturated nitriles (A6-2), α, β-unsaturated carboxylic acids or derivatives thereof (for example, esters, amides, acids Anhydride, etc.) (A6-3).

前記アミン類(A7)としては、第1級または第2級アミンなどが挙げられる。   Examples of the amines (A7) include primary or secondary amines.

前記芳香族炭化水素(A8)としては、少なくともベンゼン環を1つ有する芳香族化合物、好ましくは少なくともベンゼン環が複数個(例えば、2〜10個)縮合している縮合多環式芳香族化合物などが挙げられる。   Examples of the aromatic hydrocarbon (A8) include an aromatic compound having at least one benzene ring, preferably a condensed polycyclic aromatic compound in which a plurality of (for example, 2 to 10) benzene rings are condensed. Is mentioned.

前記直鎖状アルカン(A9)としては、炭素数1〜30程度(好ましくは炭素数1〜20程度)の直鎖状アルカンが挙げられる。   Examples of the linear alkane (A9) include linear alkanes having about 1 to 30 carbon atoms (preferably about 1 to 20 carbon atoms).

前記オレフィン類(A10)としては、置換基(例えば、ヒドロキシル基、アシルオキシ基等の前記例示の置換基など)を有していてもよいα−オレフィン及び内部オレフィンの何れであってもよく、ジエンなどの炭素−炭素二重結合を複数個有するオレフィン類も含まれる。   The olefins (A10) may be any of α-olefins and internal olefins which may have a substituent (for example, the above-mentioned exemplified substituents such as a hydroxyl group and an acyloxy group), and diene. Olefins having a plurality of carbon-carbon double bonds such as are also included.

上記の被酸化部位を有する有機化合物は単独で用いてもよく、同種又は異種のものを2種以上組み合わせて用いてもよい。   The organic compound having the site to be oxidized may be used alone, or two or more of the same or different types may be used in combination.

本発明の酸化方法において、前記光触媒の使用量は、反応速度や経済性等を考慮して適宜選択できるが、基質として用いる有機化合物100重量部に対して、例えば1〜100重量部、好ましくは5〜60重量部、さらに好ましくは10〜30重量部程度である。   In the oxidation method of the present invention, the amount of the photocatalyst used can be appropriately selected in consideration of the reaction rate, economy and the like, but for example 1 to 100 parts by weight, preferably 100 parts by weight with respect to 100 parts by weight of the organic compound used as the substrate The amount is about 5 to 60 parts by weight, more preferably about 10 to 30 parts by weight.

本発明の方法では、基質としての有機化合物を光照射下に分子状酸素及び/又は過酸化物で酸化する。照射する光としては、通常、380nm未満の紫外線が使用されるが、例えば380nm以上、650nm程度の長波長の可視光線を使用することもできる。好ましい光の波長域は420nm以下(可視光線の一部及び紫外線)である。   In the method of the present invention, an organic compound as a substrate is oxidized with molecular oxygen and / or peroxide under light irradiation. As the light to be irradiated, ultraviolet rays having a wavelength of less than 380 nm are usually used, but visible light having a long wavelength of, for example, 380 nm or more and about 650 nm can also be used. A preferable wavelength range of light is 420 nm or less (part of visible light and ultraviolet light).

分子状酸素としては、純粋な酸素を用いてもよく、窒素、ヘリウム、アルゴン、二酸化炭素などの不活性ガスで希釈した酸素や空気を用いてもよい。分子状酸素の使用量は、基質として用いる有機化合物1モルに対して、例えば0.5モル以上、好ましくは1モル以上である。有機化合物に対して過剰モルの分子状酸素を用いることが多い。   As molecular oxygen, pure oxygen may be used, or oxygen or air diluted with an inert gas such as nitrogen, helium, argon, or carbon dioxide may be used. The amount of molecular oxygen used is, for example, 0.5 mol or more, preferably 1 mol or more, with respect to 1 mol of the organic compound used as the substrate. Often an excess of molecular oxygen is used relative to the organic compound.

過酸化物としては、特に限定されず、ペルオキシド、ヒドロペルオキシド等の何れも使用できる。代表的な過酸化物として、過酸化水素、クメンヒドロペルオキシド、t−ブチルヒドロペルオキシド、トリフェニルメチルヒドロペルオキシド、t−ブチルペルオキシド、ベンゾイルペルオキシドなどが挙げられる。上記過酸化水素としては、純粋な過酸化水素を用いてもよいが、取扱性の点から、通常、適当な溶媒、例えば水に希釈した形態(例えば、30重量%過酸化水素水)で用いられる。過酸化物の使用量は、基質として用いる有機化合物1モルに対して、例えば0.1〜5モル程度、好ましくは0.3〜1.5モル程度である。   The peroxide is not particularly limited, and any of peroxide, hydroperoxide and the like can be used. Representative peroxides include hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, triphenylmethyl hydroperoxide, t-butyl peroxide, benzoyl peroxide, and the like. As the hydrogen peroxide, pure hydrogen peroxide may be used, but from the viewpoint of handleability, it is usually used in a form diluted with an appropriate solvent such as water (for example, 30% by weight hydrogen peroxide). It is done. The usage-amount of a peroxide is about 0.1-5 mol with respect to 1 mol of organic compounds used as a substrate, Preferably it is about 0.3-1.5 mol.

本発明では、分子状酸素と過酸化物のうち一方のみを用いてもよいが、分子状酸素と過酸化物とを組み合わせることにより、反応速度が大幅に向上する場合がある。   In the present invention, only one of molecular oxygen and peroxide may be used, but the reaction rate may be significantly improved by combining molecular oxygen and peroxide.

反応は、通常、溶媒存在下で行われる。該溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、リグロイン、石油エーテル等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン等の脂環式炭化水素;エチルエーテル、イソプロピルエーテル、テトラヒドロフラン等のエーテル類;酢酸エチル等のエステル類;、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリル等のニトリル類;N,N−ジメチルホルムアミド等の非プロトン性極性溶媒;酢酸等の有機酸;水;これらの混合溶媒などが挙げられる。   The reaction is usually performed in the presence of a solvent. Examples of the solvent include aliphatic hydrocarbons such as hexane, heptane, octane, ligroin and petroleum ether; alicyclic hydrocarbons such as cyclopentane, cyclohexane and cycloheptane; ethers such as ethyl ether, isopropyl ether and tetrahydrofuran. Esters such as ethyl acetate; nitriles such as acetonitrile, propionitrile, butyronitrile, benzonitrile; aprotic polar solvents such as N, N-dimethylformamide; organic acids such as acetic acid; water; mixed solvents thereof Etc.

反応温度は、反応速度及び反応選択性を考慮して適宜選択できるが、一般には−20℃〜100℃程度である。反応は室温付近で行われることが多い。反応はバッチ式、セミバッチ式、連続式などの何れの方法で行ってもよい。   Although reaction temperature can be suitably selected in view of reaction rate and reaction selectivity, it is generally about -20 ° C to 100 ° C. The reaction is often performed near room temperature. The reaction may be carried out by any method such as batch, semi-batch and continuous methods.

上記反応により、有機化合物から対応する酸化開裂生成物(例えば、アルデヒド化合物)、キノン類、ヒドロペルオキシド、ヒドロキシル基含有化合物、カルボニル化合物、カルボン酸などの酸素原子含有化合物などが生成する。例えば、アダマンタンからは1−アダマンタノール、2−アダマンタノール、2−アダマンタノンなどが生成する。また、2−メチルピリジンからは2−ピリジンカルボキシアルデヒド、2−ピリジンカルボン酸などが生成する。さらに、2−プロパノールからはアセトンなどが生成する。なお、2以上の生成物が生成する場合、その生成割合(選択率)は、反応条件等を適宜選択することにより調整できる。   By the above reaction, a corresponding oxidative cleavage product (for example, an aldehyde compound), a quinone, a hydroperoxide, a hydroxyl group-containing compound, a carbonyl compound, a carboxylic acid-containing compound or the like is generated from the organic compound. For example, 1-adamantanol, 2-adamantanol, 2-adamantanone, etc. are produced from adamantane. 2-Methylpyridine produces 2-pyridinecarboxaldehyde, 2-pyridinecarboxylic acid and the like. Furthermore, acetone etc. produce | generate from 2-propanol. When two or more products are produced, the production ratio (selectivity) can be adjusted by appropriately selecting reaction conditions and the like.

反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により分離精製できる。また、他元素ドープルチル型酸化チタンからなる光触媒は濾過により容易に分離でき、分離した触媒は、必要に応じて洗浄等の処理を施した後、リサイクル使用できる。   The reaction product can be separated and purified by a separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination means combining these. In addition, the photocatalyst made of other element-doped rutile type titanium oxide can be easily separated by filtration, and the separated catalyst can be recycled after being subjected to treatment such as washing as necessary.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
ルチル型酸化チタン粉末[商品名「MT−150A」、テイカ(株)製、アナターゼ型含量0重量%、比表面積88m2/g]4.0gとチオウレア15.2gを乳鉢に入れ、十分に混合して得られた混合物を素焼きの蓋付き容器に入れ、蓋を閉じた状態の容器を、電気炉で400℃又は500℃の温度で加熱することにより焼成処理を行った。なお、この条件では、容器内へ進入する空気(酸素)の量が制限されるので、貧酸素存在下で焼成が行われている。得られた焼成物を蒸留水で十分に洗浄することにより暗黄色の他元素ドープルチル型酸化チタンを粉末で得た。得られた粉末の比表面積は、400℃で焼成したものは70.7m2/g、500℃で焼成したものは56.3m2/gであった。
Example 1
Rutile type titanium oxide powder [trade name “MT-150A”, manufactured by Teika Co., Ltd., anatase type content 0 wt%, specific surface area 88 m 2 / g] 4.0 g and thiourea 15.2 g are put in a mortar and mixed thoroughly. The mixture obtained in this manner was put into a container with an unglazed lid, and the container with the lid closed was heated in an electric furnace at a temperature of 400 ° C. or 500 ° C. to perform a baking treatment. Note that, under this condition, the amount of air (oxygen) that enters the container is limited, and thus firing is performed in the presence of poor oxygen. The obtained fired product was sufficiently washed with distilled water to obtain a dark yellow other element doped rutile type titanium oxide as a powder. The specific surface area of the resulting powder is obtained by firing at 400 ° C. those fired at 70.7m 2 / g, 500 ℃ was 56.3m 2 / g.

得られた他元素ドープルチル型酸化チタンのXPS(X-rey Photoemission Spectroscopy)によるC 1s、N 1s、S 2pのスペクトルを測定した。そのうちC 1sのスペクトルを図1に示す。なお、図1において、横軸は結合エネルギー(eV)であり、図中の2つの曲線のうち上はアルゴンによるエッチング処理前、下はアルゴンによるエッチング後のデータを示す。XPS測定の結果、得られた粉末に窒素原子は見られなかった。C 1s結合エネルギーの288eVが観測された。このピークはカーボネートのものと考えられる。また、S4+と帰属される168eV付近のピークが観測された。これらのピークはサンプルをAr+イオンによるエッチング処理後にも残っていた。この結果は、酸化チタンのバルク相中にC4+とS4+が取り込まれていることを示している。得られた他元素ドープルチル型酸化チタン(400℃で焼成)中のS4+の原子含量は約0.1%であり、C4+の含量は約0.2%であった。
得られた他元素ドープルチル型酸化チタンのIRスペクトルを測定したところ、1738,1096,798cm-1に弱い吸収が観測された。これはカーボネートイオンの存在を示している。
X線回折装置を用いて、得られた他元素ドープルチル型酸化チタンのXRD測定[対陰極:Cu、Kα(λ=1.5405オングストローム)]を行ったところ、ルチル型100%の結晶であった。Ti−C、Ti−Sに起因するピークは観測されなかった。
得られた他元素ドープルチル型酸化チタンの拡散反射スペクトル(diffuse reflectance spectra)を、純粋なルチル型酸化チタン(商品名「MT−150A」)及び純粋なアナターゼ型酸化チタン[商品名「ST−01」、石原産業(株)製、比表面積236m2/g]の同スペクトルとともに図2に示す。図2において、横軸は波長(nm)、縦軸は吸光度である。前記他元素ドープルチル型酸化チタンの可視領域における吸光度は、もとのルチル型酸化チタン(商品名「MT−150A」)と比較して著しく増大していることが分かる。
The spectra of C 1s, N 1s, and S 2p by XPS (X-rey Photoemission Spectroscopy) of the other element doped rutile type titanium oxide were measured. The spectrum of C 1s is shown in FIG. In FIG. 1, the horizontal axis represents the binding energy (eV), and among the two curves in the figure, the upper part shows data before etching with argon, and the lower part shows data after etching with argon. As a result of XPS measurement, nitrogen atoms were not found in the obtained powder. A C 1s binding energy of 288 eV was observed. This peak is considered to be of carbonate. In addition, a peak around 168 eV attributed to S 4+ was observed. These peaks remained after the sample was etched with Ar + ions. This result indicates that C 4+ and S 4+ are incorporated in the bulk phase of titanium oxide. In the obtained other element doped rutile type titanium oxide (calcined at 400 ° C.), the atomic content of S 4+ was about 0.1%, and the content of C 4+ was about 0.2%.
When the IR spectrum of the obtained other element-doped rutile-type titanium oxide was measured, weak absorption was observed at 1738, 1096, and 798 cm −1 . This indicates the presence of carbonate ions.
Using an X-ray diffractometer, XRD measurement of the obtained other element-doped rutile type titanium oxide [counter cathode: Cu, K α (λ = 1.5405 angstrom)] was performed. It was. Peaks attributed to Ti—C and Ti—S were not observed.
The diffuse reflectance spectra of the other element-doped rutile-type titanium oxide were measured using pure rutile-type titanium oxide (trade name “MT-150A”) and pure anatase-type titanium oxide [trade name “ST-01”. 2 together with the same spectrum of Ishihara Sangyo Co., Ltd., specific surface area of 236 m 2 / g]. In FIG. 2, the horizontal axis represents wavelength (nm) and the vertical axis represents absorbance. It can be seen that the absorbance in the visible region of the other element-doped rutile-type titanium oxide is remarkably increased as compared with the original rutile-type titanium oxide (trade name “MT-150A”).

実施例2[メチレンブルーの光触媒分解(酸化的分解)]
実施例1で得た他元素ドープルチル型酸化チタン触媒、及びアナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、比表面積236m2/g]について、各酸化チタン触媒100mgを、50mmol・dm-3のメチレンブルー水溶液5mlに加え、超音波照射により分散させ、得られた分散液を遮光して吸着平衡に達するまで半日程度マグネティックスターラーで撹拌した。この母液から3gをサンプリングして試験管に移し、サンプルが空気と接触する状態(試験管を開放した状態)で、Xeランプ(1000W)を光源に用い、UVカットフィルタ[ケンコー社製の色ガラスフィルター(商品名「UV−34」、「L−42」、「Y−44」、「Y−50」、「Y−54」)]により照射波長を制限して[それぞれ、340nm未満、420nm未満、440nm未満、500nm未満、540nm未満の波長をカットして]、各サンプルごとに10分間光照射した[350〜540nm;放射照度:350nmのとき270mW/cm2、420nmのとき240mW/cm2、440nmのとき230mW/cm2、540nmのとき200mW/cm2]。
Example 2 [Photocatalytic decomposition (oxidative decomposition) of methylene blue]
About other element dope rutile type titanium oxide catalyst obtained in Example 1 and anatase type titanium dioxide powder [trade name “ST-01”, anatase type content 100%, manufactured by Ishihara Sangyo Co., Ltd., specific surface area 236 m 2 / g] 100 mg of each titanium oxide catalyst was added to 5 ml of a 50 mmol · dm −3 methylene blue aqueous solution and dispersed by ultrasonic irradiation, and the obtained dispersion was shielded from light and stirred with a magnetic stirrer for about half a day until adsorption equilibrium was reached. 3 g of this mother liquor was sampled and transferred to a test tube, and the sample was in contact with air (the test tube was opened), using an Xe lamp (1000 W) as a light source, a UV cut filter [color glass manufactured by Kenko Corporation] The irradiation wavelength is limited by a filter (trade names “UV-34”, “L-42”, “Y-44”, “Y-50”, “Y-54”)] [less than 340 nm and less than 420 nm, respectively. , less than 440 nm, less than 500 nm, to cut a wavelength less than 540 nm], and the irradiation light for 10 minutes for each sample [350~540nm; irradiance: when 270 mW / cm 2, 420 nm when the 350 nm 240 mW / cm 2, when 230mW / cm 2, 540nm when the 440nm 200mW / cm 2].

得られた懸濁液を遠心分離し、酸化チタン触媒を分離した後の溶液について、メチレンブルーの残量をUV−Visスペクトロフォトメーターで測定した。得られた測定値より単位時間当たりのメチレンブルー分解速度(mmol・L-1・min-1)を算出し、メチレンブルーの分解性能を評価した。その結果を図3に示す。図3において、横軸は波長(nm)、縦軸はメチレンブルー分解速度(mmol・L-1・min-1)である。 The resulting suspension was centrifuged, and the remaining amount of methylene blue was measured with a UV-Vis spectrophotometer for the solution after separating the titanium oxide catalyst. The methylene blue decomposition rate (mmol·L −1 · min −1 ) per unit time was calculated from the obtained measured values, and the decomposition performance of methylene blue was evaluated. The result is shown in FIG. In FIG. 3, the horizontal axis represents wavelength (nm), and the vertical axis represents methylene blue decomposition rate (mmol·L −1 · min −1 ).

なお、炭素及び硫黄をドープする前のもとのルチル型酸化チタン(商品名「MT−150A」)についても上記と同様の反応を行ったところ、440nm未満の波長の光をカットして光照射した場合には、メチレンブルーは全く分解されなかった。   In addition, when the reaction similar to the above was performed also about the original rutile type titanium oxide (brand name "MT-150A") before doping carbon and sulfur, light with a wavelength of less than 440 nm was cut and irradiated. In this case, methylene blue was not decomposed at all.

以上の結果より、実施例1で得られた他元素ドープルチル型酸化チタン触媒は、紫外光条件下だけでなく可視光照射条件下においても、メチレンブルーの酸化的分解反応に対し高い触媒活性を発現することが分かる。   From the above results, the other element-doped rutile-type titanium oxide catalyst obtained in Example 1 exhibits high catalytic activity for the oxidative decomposition reaction of methylene blue not only under ultraviolet light conditions but also under visible light irradiation conditions. I understand that.

実施例3(2−メチルピリジンの光触媒酸化)
実施例1で得た他元素ドープルチル型酸化チタン触媒、及びアナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、比表面積236m2/g]について、各酸化チタン触媒100mgを、1.0mol・dm-3の2−メチルピリジン水溶液5mlに加え、超音波照射により分散させ、得られた分散液を遮光して吸着平衡に達するまで半日程度マグネティックスターラーで撹拌した。この母液から3gをサンプリングして試験管に移し、サンプルが空気と接触する状態(試験管を開放した状態)で、Xeランプ(1000W)を光源に用い、UVカットフィルタ[350nm未満、390nm未満、420nm未満、440nm未満の波長をカットするものを用いた]により照射波長を制限して、各サンプルごとに10分間光照射した[350〜440nm;放射照度:350nmのとき270mW/cm2、420nmのとき240mW/cm2、440nmのとき230mW/cm2]。
Example 3 (Photocatalytic oxidation of 2-methylpyridine)
About other element dope rutile type titanium oxide catalyst obtained in Example 1 and anatase type titanium dioxide powder [trade name “ST-01”, anatase type content 100%, manufactured by Ishihara Sangyo Co., Ltd., specific surface area 236 m 2 / g] In addition, 100 mg of each titanium oxide catalyst is added to 5 ml of 1.0 mol · dm −3 2-methylpyridine aqueous solution and dispersed by ultrasonic irradiation, and the obtained dispersion is shielded from light to reach adsorption equilibrium for about half a day. Stir with. 3 g was sampled from this mother liquor and transferred to a test tube. In a state where the sample was in contact with air (in a state where the test tube was opened), a Xe lamp (1000 W) was used as a light source, and a UV cut filter [less than 350 nm, less than 390 nm, The sample was irradiated with light for 10 minutes for each sample [350 to 440 nm; irradiance: 270 mW / cm 2 at 350 nm, 420 nm] when 240mW / cm 2, when the 440nm 230mW / cm 2].

得られた懸濁液を遠心分離し、酸化チタン触媒を分離した後の溶液について、生成物(2−ピリジンカルボキシアルデヒド、2−ピリジンカルボン酸)の量を高速液体クロマトグラフィー[カラム:TSK−GEL ODS−80Ts、溶離液:塩水溶液(K2HPO4 2.5mmol・dm-3、KH2PO4 2.5mmol・dm-3、NaClO4 0.1mmol・dm-3)とメタノールの混合液(前者/後者=9/1)]で測定した。その結果を図3に示す。図3において、横軸は波長(nm)、縦軸は生成物の濃度(μmol・L-1)である。 Centrifugation of the obtained suspension and the amount of the product (2-pyridinecarboxyaldehyde, 2-pyridinecarboxylic acid) in the solution after separation of the titanium oxide catalyst were measured by high performance liquid chromatography [column: TSK-GEL. ODS-80Ts, eluent: salt solution (K 2 HPO 4 2.5 mmol · dm −3 , KH 2 PO 4 2.5 mmol · dm −3 , NaClO 4 0.1 mmol · dm −3 ) and methanol ( The former / the latter = 9/1)]. The result is shown in FIG. In FIG. 3, the horizontal axis represents the wavelength (nm), and the vertical axis represents the product concentration (μmol·L −1 ).

なお、炭素及び硫黄をドープする前のもとのルチル型酸化チタン(商品名「MT−150A」)についても上記と同様の反応を行ったところ、440nm未満の波長の光をカットして光照射した場合には、2−ピリジンカルボキシアルデヒド、2−ピリジンカルボン酸は全く生成しなかった。   In addition, when the reaction similar to the above was performed also about the original rutile type titanium oxide (brand name "MT-150A") before doping carbon and sulfur, light with a wavelength of less than 440 nm was cut and irradiated. In this case, 2-pyridinecarboxaldehyde and 2-pyridinecarboxylic acid were not produced at all.

以上の結果より、実施例1で得られた他元素ドープルチル型酸化チタン触媒は、紫外光条件下だけでなく可視光照射条件下においても、2−メチルピリジンの酸化反応に対し高い触媒活性を発現することが分かる。   From the above results, the other element-doped rutile-type titanium oxide catalyst obtained in Example 1 exhibits high catalytic activity for the oxidation reaction of 2-methylpyridine not only under ultraviolet light conditions but also under visible light irradiation conditions. I understand that

実施例1で調製した他元素ドープルチル型酸化チタンのXPSスペクトル図である。2 is an XPS spectrum diagram of another element-doped rutile titanium oxide prepared in Example 1. FIG. 実施例1で調製した他元素ドープルチル型酸化チタン、純粋なルチル型酸化チタン及び純粋なアナターゼ型酸化チタンの拡散反射スペクトル図である。1 is a diffuse reflection spectrum diagram of other element-doped rutile titanium oxide, pure rutile titanium oxide and pure anatase titanium oxide prepared in Example 1. FIG. 実施例2におけるメチレンブルーの光触媒分解の結果を示す図である。It is a figure which shows the result of the photocatalytic decomposition of the methylene blue in Example 2. 実施例3における2−メチルピリジンの光触媒酸化の結果を示す図である。FIG. 6 is a diagram showing the result of photocatalytic oxidation of 2-methylpyridine in Example 3.

Claims (3)

ルチル型酸化チタンとチオウレアとの混合物を素焼きの蓋付き容器に入れ、蓋を閉じた状態で焼成処理することにより、ルチル型酸化チタンに炭素原子がC4+としてドープされているとともに、硫黄原子がS4+としてドープされている他元素ドープルチル型酸化チタンを得ることを特徴とする他元素ドープルチル型酸化チタンの製造法。 A mixture of rutile titanium oxide and thiourea is put into an unglazed lidded container and fired with the lid closed, so that the rutile titanium oxide is doped with carbon atoms as C 4+ and sulfur atoms A process for producing another element-doped rutile titanium oxide, characterized in that the other element-doped rutile titanium oxide doped with S 4+ is obtained. 請求項1記載の他元素ドープルチル型酸化チタンの製造法により得られた他元素ドープルチル型酸化チタンからなる光触媒。   The photocatalyst which consists of another element dope rutile type titanium oxide obtained by the manufacturing method of the other element dope rutile type titanium oxide of Claim 1. 請求項2記載の光触媒の存在下、被酸化部位を有する有機化合物を光照射下に分子状酸素又は過酸化物により酸化することを特徴とする有機化合物の酸化方法。   A method for oxidizing an organic compound, comprising oxidizing an organic compound having an oxidizable site with molecular oxygen or peroxide under light irradiation in the presence of the photocatalyst according to claim 2.
JP2004278244A 2004-09-24 2004-09-24 Other element doped rutile type titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst Expired - Fee Related JP4536470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278244A JP4536470B2 (en) 2004-09-24 2004-09-24 Other element doped rutile type titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278244A JP4536470B2 (en) 2004-09-24 2004-09-24 Other element doped rutile type titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst

Publications (2)

Publication Number Publication Date
JP2006089343A JP2006089343A (en) 2006-04-06
JP4536470B2 true JP4536470B2 (en) 2010-09-01

Family

ID=36230669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278244A Expired - Fee Related JP4536470B2 (en) 2004-09-24 2004-09-24 Other element doped rutile type titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst

Country Status (1)

Country Link
JP (1) JP4536470B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030222B2 (en) * 2006-09-08 2012-09-19 国立大学法人東京工業大学 Photocatalytic microreactor
JP2009067648A (en) * 2007-09-14 2009-04-02 Kyushu Univ Method of forming titanium oxide film and titanium oxide film
JP5584923B2 (en) 2008-06-27 2014-09-10 国立大学法人東北大学 Rutile type titanium dioxide photocatalyst
JP5711582B2 (en) * 2011-03-28 2015-05-07 株式会社ダイセル Photocatalyst and organic compound oxidation method using the same
KR102646960B1 (en) 2019-05-14 2024-03-14 데이까 가부시끼가이샤 Titanium oxide powder and method for producing the same
KR102338162B1 (en) * 2020-09-21 2021-12-10 한국화학연구원 Catalyst for Dehydrogenation Reaction, Hydrogen Storage and Release Method and Hydrogen Release System Using the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167370A (en) * 2002-11-20 2004-06-17 Japan Atom Energy Res Inst Highly active photocatalyst carbon-doped titanium dioxide and its manufacturing method
JP2004237182A (en) * 2003-02-05 2004-08-26 Mitsubishi Heavy Ind Ltd Photocatalyst precursor sol, its production method, photocatalytic element, and its production method
JP2005319423A (en) * 2004-05-11 2005-11-17 Toho Titanium Co Ltd Manufacturing method of titanium oxide photocatalyst
JP2006001774A (en) * 2004-06-16 2006-01-05 Toho Titanium Co Ltd Titanium oxide dispersion and its producing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167370A (en) * 2002-11-20 2004-06-17 Japan Atom Energy Res Inst Highly active photocatalyst carbon-doped titanium dioxide and its manufacturing method
JP2004237182A (en) * 2003-02-05 2004-08-26 Mitsubishi Heavy Ind Ltd Photocatalyst precursor sol, its production method, photocatalytic element, and its production method
JP2005319423A (en) * 2004-05-11 2005-11-17 Toho Titanium Co Ltd Manufacturing method of titanium oxide photocatalyst
JP2006001774A (en) * 2004-06-16 2006-01-05 Toho Titanium Co Ltd Titanium oxide dispersion and its producing method

Also Published As

Publication number Publication date
JP2006089343A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP5711582B2 (en) Photocatalyst and organic compound oxidation method using the same
Jin et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst
Di Paola et al. Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders
Anpo et al. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates
US8758574B2 (en) Rutile titanium dioxide nanoparticles each having novel exposed crystal face and method for producing same
Devaraji et al. Ambient oxidation of benzene to phenol by photocatalysis on Au/Ti0. 98V0. 02O2: role of holes
Hu et al. BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene
Barakat et al. Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles
Ohno et al. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light
Yang et al. Visible-light-driven selective oxidation of alcohols using a dye-sensitized TiO2-polyoxometalate catalyst
Tang et al. Nanoparticulate SnS as an efficient photocatalyst under visible-light irradiation
JP5537858B2 (en) Photocatalyst material and method for producing the same
Papadimitriou et al. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light
Yin et al. Plasmonic Ru/hydrogen molybdenum bronzes with tunable oxygen vacancies for light-driven reduction of p-nitrophenol
Mori et al. Hydrothermal synthesis of TiO2 photocatalysts in the presence of NH4F and their application for degradation of organic compounds
Yu et al. Visible-light-induced aerobic oxidation of alcohols in a green catalytic system of carbonate-like species doped TiO2
Bisht et al. Effect of Ag–Fe–Cu tri-metal loading in bismuth oxybromide to develop a novel nanocomposite for the sunlight driven photocatalytic oxidation of alcohols
Marino et al. Selectivity of gold nanoparticles on the photocatalytic activity of TiO2 for the hydroxylation of benzene by water
WO2002062467A1 (en) Oxysulfide photocatalyst for use in decomposition of water by visible light
Devaraji et al. Noble metal free Fe and Cr dual-doped nanocrystalline titania (Ti1− x− yMx+ yO2) for high selective photocatalytic conversion of benzene to phenol at ambient temperature
Parida et al. Photo-oxidation of 4-nitrophenol in aqueous suspensions, catalysed by titania intercalated zirconium phosphate (ZrP) and titanium phosphate (TiP)
Ciambelli et al. Reaction mechanism of cyclohexane selective photo-oxidation to benzene on molybdena/titania catalysts
JP4536470B2 (en) Other element doped rutile type titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst
JP4421219B2 (en) Sulfur-containing metal oxide
JP5627006B2 (en) Photocatalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees