JP4534421B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP4534421B2
JP4534421B2 JP2003031194A JP2003031194A JP4534421B2 JP 4534421 B2 JP4534421 B2 JP 4534421B2 JP 2003031194 A JP2003031194 A JP 2003031194A JP 2003031194 A JP2003031194 A JP 2003031194A JP 4534421 B2 JP4534421 B2 JP 4534421B2
Authority
JP
Japan
Prior art keywords
time difference
reference voltage
flow rate
voltage
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003031194A
Other languages
Japanese (ja)
Other versions
JP2004125769A (en
Inventor
修 江口
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003031194A priority Critical patent/JP4534421B2/en
Publication of JP2004125769A publication Critical patent/JP2004125769A/en
Application granted granted Critical
Publication of JP4534421B2 publication Critical patent/JP4534421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は超音波を利用してガスなどの流量を計測する流量計測装置に関するものである。
【0002】
【従来の技術】
従来のこの種の流量計測装置は、図15に示すようなものが一般的であった。この装置は流体の流れる流路31に設置した第1超音波振動子32および第2超音波振動子33と、第1超音波振動子32、第2超音波振動子33の送受信を切り換える切換手段34と、第1超音波振動子32及び第2超音波振動子33を駆動する送信手段35と、受信側の超音波振動子で受信し切り替え手段34を通過した信号を所定の振幅まで増幅する増幅手段36と、増幅手段36で増幅された受信信号の電圧と基準電圧とを比較する基準比較手段37と、図16に示すように基準比較手段37で基準電圧と比較し大小関係が反転した後の増幅信号の最初のゼロクロス点aで繰り返し手段39へ出力信号Dを出力する判定手段38と、この判定手段38からの信号をカウントし予め設定された回数だけカウントすると共に判定手段38からの信号を制御手段42へ出力する繰り返し手段39と、繰り返し手段39で予め設定された回数をカウントした時間を計時する計時手段40と、計時手段40の計時した時間に応じて流量を算出する流量算出手段41と、流量算出手段41から算出された流量出力、繰り返し手段39からの信号を受け送信手段35の動作を制御する制御手段42と、判定手段38、繰り返し手段39、計時手段40、流量算出手段41、制御手段42から構成されている。
【0003】
この装置は制御手段42により送信手段35を動作させ超音波振動子32で発信された超音波信号が、流れの中を伝搬し第2超音波振動子33で受信され、増幅手段36で増幅後、基準比較手段37と判定手段38で信号処理され、繰り返し手段39を通り制御手段42に入力される。この動作を予め設定されたn回数繰り返し行い、この間の時間を計時手段40により測定する。そして、第1超音波振動子32と第2超音波振動子33とを切換手段34により切り替えて、同様な動作を行い、被測定流体の上流から下流(この方向を正流とする)と下流から上流(この方向を逆流とする)のそれぞれの伝搬時間を測定し、(式1)より流量Qを求めていた(超音波振動子間の流れ方向の有効距離をL、上流から下流へのn回分の測定時間をt1、下流から上流へのn回分の測定時間をt2、被測定流体の流速をv、流路の断面積をS、センサ角度をφ、流量をQとする)。
【0004】
Q=S・v=S・L/2・cosφ((n/t1)−(n/t2))…(式1)
(実際には、式1に流量に応じた係数を乗じて流量を算出する)
また、増幅手段36のゲインは受信側の超音波振動子で受信した信号を一定振幅となるようゲインを調整しており、受信信号のピーク電圧値が所定の電圧範囲に入るように調整される。これは繰り返し手段39に設定された回数の計測を繰り返し中に、図17の点線で示す受信信号bに示すように受信信号のピーク電圧値が所定の電圧範囲の下限より下回った回数と、同じく図17の点線で示す受信信号cに示すように所定の電圧範囲の上限より上回った回数をカウントしておきその大小関係で次回の流量計測時のゲインを調整する(例えば下限より下回った回数が多ければゲインをアップして図17の実線で示す受信信号aのように電圧範囲の上限、下限の内に入るようにする)。
【0005】
また、増幅手段36により増幅された受信信号の電圧と比較する基準比較手段37の基準電圧は判定手段38により検知するゼロクロス点の位置を決めるもので図16を例にすると受信信号の3波目のゼロクロス点aを判定手段38により検知するよう、受信信号の2波と3波のピーク電圧の中点の電圧に設定される。そうすることにより流量の変化及び流体の温度変化等で受信波形が変化し、受信信号の2波のピーク電圧が上昇、または3波のピーク電圧が減少しても双方に対してマージンをとれ、安定に判定手段38により3波目のゼロクロス点aが検知できるものである。
【0006】
【発明が解決しようとする課題】
しかしながら上記従来の流量計測装置は、流量計測中において基準比較手段の基準電圧は固定電圧であり、また受信信号を増幅する増幅手段のゲインも固定であるので、流量計測中の繰り返し動作の中で超音波の受信信号の振幅レベルが変動した場合、基準電圧と受信信号との電圧レベルの相対関係が変化し、例えば受信信号の振幅レベルの変動が大きい場合には、基準電圧を超えていた受信波の3波のピーク電圧が基準電圧を超えなくなる。その結果、基準比較手段の出力が受信波の4波で出力され、判定手段は受信信号の4波目の負のゼロクロス点を検知するようになり、計時手段ではこの誤った時間を計時して、流量算出手段により誤った流量を算出するという課題を有していた。本発明は、前記従来の課題を解決するもので、判定手段により受信波の任意のポイント(受信波の3波目の負のゼロクロス点)を確実に検知出来るように、受信信号の振幅レベルの変動に対して大きなマージンを確保出来る位置に基準電圧を設定し、かつ流量計測中に受信信号の振幅レベルの変動に応じて基準電圧を調整することで、受信信号の振幅レベルの変動に強く、計測精度の高い流量計測装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の流量計測装置は、流体管路に設けられ超音波信号を送受信する第1振動子及び第2振動子と、前記振動子を駆動する送信手段と、前記振動子の受信信号を増幅する増幅手段と、前記超音波信号の送受信の累積時間を計時する計時手段と、前記計時手段の計時した時間に基づいて流量を算出する流量算出手段と、前記第1振動子及び前記第2振動子のうち受信側の振動子の受信信号の電圧と基準電圧とを比較する基準比較手段と、前記基準比較手段と前記増幅手段の出力とから超音波信号の到達時期を判定する判定手段と、前記基準比較手段と前記判定手段の出力の時間差を計時する時間差計時手段と、前記基準比較手段の基準電圧を設定する基準設定手段を備えた流量計測装置において、基準電圧を設定可能範囲の最小から最大に変化させたときの前記時間差計時手段の計時する時間差(基準電圧と増幅手段の出力とを比較し、その大小関係が反転した時点を開始点とし、開始点以降で増幅手段の出力の符号が正から負に変わる最初の負のゼロクロス点を終了点とした場合の開始点から終了点に至る時間)が大きく変化する変曲点の測定結果に応じて基準電圧を設定する基準設定手段としたものである。
【0008】
これによって基準設定手段が設定する基準電圧は判定手段により受信波の到達時期として検知させたい任意のポイント(例えばゼロクロス点)を含む波(例えば3波目)のピーク電圧と、1波前(2波目)のピーク電圧間で、1波前(2波目)のピーク電圧が流量計測中に変動する最大値を考慮した電圧より若干高い電圧に設定され、受信波の到達時期として検知させたい任意のポイントを含む波(3波目)のピーク電圧に対してマージンを大きく取れ、検知させたい任意のポイントを含む波(3波目)のピーク電圧が基準電圧を超えなくなるのを防ぐことが出来、受信信号の振幅レベルの変動に強く、超音波の受信信号の変動に対し一番安定な基準電圧に設定出来る流量計測装置とすることが出来る。
【0009】
【発明の実施の形態】
本発明は、流体管路に設けられ超音波信号を送受信する第1振動子及び第2振動子と、前記振動子を駆動する送信手段と、前記振動子の受信信号を増幅する増幅手段と、前記超音波信号の送受信の累積時間を計時する計時手段と、前記計時手段の計時した時間に基づいて流量を算出する流量算出手段と、前記第1振動子及び前記第2振動子のうち受信側の振動子の受信信号の電圧と基準電圧とを比較する基準比較手段と、前記基準比較手段と前記増幅手段の出力とから超音波信号の到達時期を判定する判定手段と、前記基準比較手段と前記判定手段の出力の時間差を計時する時間差計時手段と、前記基準比較手段の基準電圧を設定する基準設定手段を備えた流量計測装置において、基準電圧を設定可能範囲の最小から最大に変化させたときの前記時間差計時手段の計時する時間差(基準電圧と増幅手段の出力とを比較し、その大小関係が反転した時点を開始点とし、開始点以降で増幅手段の出力の符号が正から負に変わる最初の負のゼロクロス点を終了点とした場合の開始点から終了点に至る時間)が大きく変化する変曲点の測定結果に応じて基準電圧を設定する基準設定手段とした流量計測装置とすることにより、超音波の受信信号の変動に対し一番安定な基準電圧に設定出来る流量計測装置とすることが出来る。
【0010】
また、基準設定手段は基準電圧を設定可能範囲の最小から最大に変化させたときの前記時間差計時手段の計時する時間差が大きく変化する複数の変曲点の内、最大間隔の変曲点間の中点または任意の点に基準電圧を設定する基準設定手段とした流量計測装置とすることにより、基準電圧の設定を迅速かつ、精度良く行い、超音波の受信信号の変動に対し一番安定な基準電圧に設定出来る流量計測装置とすることが出来る。
【0011】
また、基準設定手段は基準電圧を設定可能範囲の最小から最大まで変化させたときの前記時間差計時手段の計時した時間差の最大値、最小値より規定される所定の時間差の幅から、流量計測中に時間差計時手段が計時した時間差が外れた場合に基準電圧を変更する流量計測装置とすることにより、自動的に基準電圧の補正を行い、常に最適な基準電圧に保つことの出来る流量計測装置とすることが出来る。
【0012】
また、流量計測中の時間差計時手段の計時した時間差が、基準電圧を設定可能範囲の最小から最大まで変化させたときの時間差の最大値、最小値の値両方を含んでいる場合に、基準電圧を再設定後に再度流量計測を行う流量計測装置とすることにより、流量計測中の超音波の受信信号の変動により基準電圧との大小関係が崩れたことを検知して基準電圧を再設定することで、最適な基準電圧に保つことの出来る流量計測装置とすることが出来る。
【0013】
また、基準設定手段は基準電圧を設定可能範囲の最小から最大まで変化させたときの前記時間差計時手段の計時した時間差の最大値、最小値より規定される所定の時間差の幅から、流量計測中に時間差計時手段が計時した時間差が外れた回数に応じて基準電圧を変更する流量計測装置とすることにより、流路を流れる流体の流量の影響により超音波信号の送受信の方向別に超音波の受信信号と基準電圧との大小関係が崩れたことを検知して超音波信号の送受信の方向別に増幅手段の増幅度を変更することで基準電圧を再設定することで、基準比較手段の基準電圧を最適に保つことの出来る流量計測装置とすることが出来る。
【0014】
また、超音波信号の送受信の方向別の時間差計時手段が計時した時間差の超音波信号の送受信の方向別の差が、所定より大きくなった場合に超音波信号の送受信の方向別に基準電圧を設定する流量計測装置とすることにより、流路を流れる流体の流量の影響により超音波信号の送受信の方向で超音波の受信信号と基準電圧との大小関係が崩れた場合に超音波信号の送受信の方向毎に基準比較手段の基準電圧を設定することで、基準比較手段の基準電圧を最適に保つことの出来る流量計測装置とすることが出来る。
【0015】
【実施例】
以下本発明の実施例について図面を参照しながら説明する。
【0016】
(実施例1)
図1は本発明の請求項1の第1の実施例における流量計測装置のブロック図を示すものである。図2は同第1の実施例の流量計測装置の動作説明図であり、図3は同フローチャートである。図1において、流路1の途中に超音波を送信する第1超音波振動子2と受信する第2超音波振動子3が流れ方向に角度φで配置されている。5は第1超音波振動子2への送信手段であり、4は第1超音波振動子2、第2超音波振動子3の送受信を切り換える切換手段、6は受信側の超音波振動子で受信した信号を制御手段12からの指示によるゲインで増幅する増幅手段、7は前記増幅手段6で増幅された信号と基準電圧とを比較する基準比較手段、8は基準比較手段7の出力と前記増幅手段6で増幅された信号とから超音波の到達時期を判定する判定手段、9は判定手段8の信号をカウントし予め設定された回数だけ制御手段12へ繰り返し信号を出力する繰り返し手段である。
【0017】
10は繰り返し手段9で予め設定された回数をカウントした時間を計時する計時手段であり、11は計時手段10の計時した時間に応じて管路の大きさや流れの状態を考慮して流量を算出する流量算出手段である。また、12は流量算出手段11、繰り返し手段9からの信号を受け送信手段5、増幅手段6の動作を制御する制御手段である。13はD/Aコンバータや電子ボリューム等で構成される前記基準比較手段7の基準電圧を設定する基準設定手段である。
【0018】
以上のように構成された流量計測装置について、以下その動作、作用を説明する。制御手段12は電源投入後、まず初期設定動作としてゲイン調整と基準電圧設定を行う。尚、ゲイン調整動作は従来例と何ら変わりないので本実施例ではその詳細な説明は省略するが、ゲイン調整後は図2に示すように受信信号のピーク電圧(例えば受信信号の中で5波がピークとする。)が所定の電圧範囲内に入る様に増幅されるので、図2に示すように受信信号が電圧範囲下限を越えている期間にピーク検知信号PDが増幅手段6より制御手段12、基準設定手段13に出力される。最初に受信側の超音波振動子で受信した信号を一定振幅となるようゲインを調整した後(図3のステップ1)、受信信号の到達時期を認識するために検知しようとする波(例えば3波目)の1波前(2波目)のピーク電圧が流量計測中に変動する幅を考慮し、増幅手段は更に所定の増幅度で増幅する(ステップ2)。同じく増幅後の受信信号の様子を図2に示す。
【0019】
図2において点線がゲイン調整後の受信信号、実線がゲイン調整後に更に所定の増幅度で増幅した受信信号を示す。図2に示すようにゲイン調整後に更に所定の増幅度で増幅後の受信信号Aに対して、基準設定手段は図2に示す基準電圧Refを最低の基準電圧から1制御単位(例えば5mV)分、増加させる(ステップ3)。(本実施例では最低の基準電圧Refは図2に示す受信信号Aの1波のピーク電圧p1よりも高く2波のピーク電圧p2よりも低いとする。)制御手段12は繰り返し手段9の繰り返し回数を1回に設定して、送信手段5を動作させ第1超音波振動子2より超音波信号を送信する(ステップ4)。第1超音波振動子2より送信された超音波信号は流路1の流れの中を伝搬し、第2超音波振動子3で受信され、増幅手段6で増幅されて、基準比較手段7、判定手段8へ出力される。つまり図2に示すように基準比較手段7は増幅手段6の出力(受信信号A)と基準電圧Refとを比較し(ステップ5)、その大小関係が反転した時点で基準設定手段13と判定手段8に出力信号C2、C3、C4、C5を出力する。基準設定手段13は基準比較手段7からの出力数をカウントし(ステップ6)、増幅手段6からのピーク検知信号を入力するまで繰り返す(ステップ7)。増幅手段6からのピーク検知信号を入力すると、基準設定手段13は基準比較手段7からの出力数が3であるかを判断し(ステップ8)、3でなければ1制御単位分、増加させ、(ステップ3)以下、ステップ4から8迄を繰り返す。基準比較手段7からの出力数が3になると、増幅手段6はゲイン調整後の増幅度に戻す(ステップ9)。
【0020】
基準電圧Refが受信波の2波のピークp2以下である場合は、ピーク検知信号が増幅手段6より出力されるまで基準比較手段7の出力数はC2〜C5の4つであり、基準電圧Refが受信波の2波のピークp2を越えると基準比較手段7は信号C2を出力しなくなり、出力数はC3〜C5の3つになる。従って基準比較手段の出力数が4から3になった時点で基準電圧Refの増加を止め、増幅手段6はゲイン調整後の増幅度に戻すと基準設定手段13の基準電圧は受信信号の2波のピーク電圧より僅かに高く、その差は2波のピーク電圧が流量計測中に変動する幅を考慮して設定されているので、流量計測中に振幅レベルの変動が生じても2波のピーク電圧が基準電圧Refを越えることはない。従ってこの基準電圧Refでは3波のピーク電圧とのマージンを大きく取れ、受信信号の振幅レベルの変動に対して最も安定に判定手段8が超音波の受信信号の到達時期を検知出来る。
【0021】
以上のように本実施例においては基準比較手段7の出力に応じて基準電圧を基準設定手段13が設定し、その基準電圧は受信信号の到達時期を認識するために検知しようとする波の1波長前の波が、流量計測中に変動する振幅レベルの最大値を考慮した電圧に設定されるので、受信信号の到達時期を認識するために検知しようとする波の1波長前の波が基準電圧を超えることが無く、受信信号の到達時期を認識するために検知しようとする波と基準電圧とのマージンを大きく取れ、計測中の受信信号の振幅レベルの変動に強く計測精度の高い流量計測装置とすることが出来る。尚、本実施例ではゲイン調整後に、更に所定の増幅度で増幅して基準電圧を設定するとしたが、受信信号の到達時期を認識するために検知しようとする波(例えば3波目)の1波前(2波目)のピーク電圧が流量計測中に変動する電圧幅を考慮し、最大変動時の2波目のピーク電圧より高い電圧に、基準電圧Refを最初に設定したり、さらには基準電圧を変更していった際の基準比較手段の出力数の変化する電圧が受信波の各波のピーク電圧を示すので、この基準比較手段の出力数の変化する電圧より受信信号と基準電圧との相対関係を認識し、受信信号の到達時期を認識するために検知しようとする波(例えば3波目)と1波前(2波目)のピーク電圧(図2におけるp2、p3)の間で流量計測中に変動する振幅レベルを考慮して任意の電圧に設定する様にしても同じ効果を有するものである。
【0022】
(実施例2)
図4は本発明の請求項2、3、4、5、6に係る第2の実施例における流量計測装置のブロック図を示すものである。図5及び図8は同第2の実施例の流量計測装置の動作説明図であり、図6、及び図7は同フローチャートである。
【0023】
図4において、15は前記基準比較手段7と前記判定手段8の出力の時間差を計時する時間差計時手段で、基準設定手段14は前記時間差計時手段15の出力より基準比較手段7の基準電圧を設定することが実施例1と異なるところである。他の構成要素は実施例1と同じであるので説明は省略する。
【0024】
以上のように構成された流量計測装置について、以下その動作、作用を説明する。制御手段12は電源投入後、まず初期設定動作としてゲイン調整と基準電圧設定を行う。尚、本実施例の説明ではゲイン調整の説明は省略する。最初に受信側の超音波振動子で受信した信号を一定振幅となるようゲインを調整した後(図6のステップ101)、基準設定手段14は基準電圧を設定範囲の最低の電圧に設定する(ステップ102)。
【0025】
最低の基準電圧に設定後、制御手段12は繰り返し手段9の繰り返し回数を1回に設定して、送信手段5を動作させ第1超音波振動子2より超音波信号を送信する(ステップ103)。
【0026】
第1超音波振動子2より送信された超音波信号は流路1の流れの中を伝搬し、第2超音波振動子3で受信され、増幅手段6で増幅されて、基準比較手段7、判定手段8へ出力される。ここで図2に増幅後の受信信号の様子を示す。つまり図2に示すように基準比較手段7は増幅手段6の出力(受信信号A)と基準電圧とを比較し(図6のステップ104)、その大小関係が反転した時点(タイミングc)で時間差計時手段15と判定手段8に出力信号Cを出力する。時間差計時手段15は基準比較手段7からの出力信号Cを入力すると計時を開始し(ステップ105)、判定手段8ではタイミングc以降の増幅手段6出力の符号が正から負に変わる最初の負のゼロクロス点aを超音波の到達ポイントと判定し(ステップ106)、出力信号Dを繰り返し手段9、時間差計時手段15に出力する。時間差計時手段15は、この判定手段8の出力信号Dを受けると計時を終了し(ステップ107)、計時した時間差Tdを基準設定手段14へ出力する。基準設定手段14は基準電圧を基準電圧の可変範囲の1制御単位(例えば2mV)分増加させる(ステップ108)。制御手段12は繰り返し手段9に設定された繰り返し回数が1回であるので、繰り返し動作が終了した旨の信号を繰り返し手段9より入力して再度、送信手段5を動作させ第1超音波振動子2より超音波信号を送信する。ここまでの動作を基準設定手段14が基準電圧の設定範囲の最大電圧に設定するまで繰り返す。
【0027】
基準設定手段14が基準電圧の最大電圧まで設定が終わると、基準設定手段14は基準電圧を最小から最大に変化させたときの時間差計時手段15の計時する時間差が大きく変化する(例えば前回の時間差と比較して1.3倍以上変化するか)複数の変曲点の内、最大間隔の変曲点間の中点に基準電圧を設定する(ステップ110)。この設定動作を図8を用いて説明する。図8は基準設定手段14が基準電圧を最小から最大に変化させたときの時間差計時手段15の計時した時間差を示した図である。時間差計時手段15の計時した時間差は図5に示すように基準比較手段7と判定手段8の出力の時間差であるので受信信号の各波(1波、2波、3波...)のピーク電圧付近(図8において、それぞれp1、p2、p3...とする。)に基準電圧がある場合に時間差が最小(p1、p2、p3...に対応してそれぞれTp1、Tp2、Tp3...とする。)になり、その値は超音波の周期の約1/4(駆動周波数が500KHzの場合、500ns)になる。そこから基準電圧を増加させ、ピーク電圧を超えると時間差計時手段15の計時した時間差は急に大きくなり図8に示すように時間差の変曲点(時間差の最小であるTp1、Tp2、Tp3...)として現れる。(例えば基準電圧が2波のピークp2付近(但しp2を越えない)にあった場合から2波のピーク電圧p2を超えた場合、変曲点はTp2となる。)これは時間差の変曲点になる基準電圧が受信信号の各波のピーク電圧付近の電圧となることを意味している。そして変曲点間の幅(基準電圧幅)は受信信号各波のピーク電圧の電圧差である。
【0028】
図8において変曲点Tp1、Tp2間の電圧差は受信信号の1波から2波のピーク電圧差で、変曲点Tp2、Tp3間の電圧差は受信信号の2波から3波のピーク電圧差を示している。このように基準電圧を最小から最大に変化させたときの時間差の変化には複数の変曲点が存在し、その変曲点間の幅が一番広い基準電圧範囲(図8において2波、3波のピーク電圧範囲)に基準電圧を設定すれば、受信信号の各波のピーク電圧差の一番大きい部分に設定することになり、例えば図8において2波、3波のピーク電圧の中点のVreに基準電圧を設定すれば2波、3波のピーク電圧と基準電圧との間にマージンを大きく取ることが出来、受信信号の電圧変動に対して最も安定に判定手段8が超音波の受信信号の到達時期を検知出来る。
【0029】
基準設定手段14が上記の様に基準電圧を設定すると制御手段12は繰り返し手段9に正規の繰り返し回数(例えば256回)を設定して流量計測を開始する。流量計測を開始した後の基準設定手段14の動作を図7を用いて説明する。流量計測を開始すると制御手段12は送信手段5を動作させ第1超音波振動子2より超音波信号を送信し(図7のステップ12)、増幅手段6で増幅された第2超音波振動子3で受信された超音波信号は基準比較手段7、判定手段8へ出力され、基準比較手段7で受信信号と基準電圧とを比較し(ステップ13)、その大小関係が反転した時点から時間差計時手段13で計時を開始し(ステップ14)、判定手段8により増幅手段6出力の符号が正から負に変わる最初の負のゼロクロス点を検知するまで、時間差の計時を行う(ステップ15、16)。
【0030】
判定手段8によりゼロクロス点(超音波の到達ポイント)の検知後、制御手段12は送信手段5を再度動作させ超音波振動子2より超音波信号を送信する。この一連の動作を予め設定されたn回数繰り返し行い(ステップ11)、所定の繰り返し回数終了後、基準設定手段14は繰り返し回数分の時間差計時手段15が計時した時間差の内、初期設定動作時に基準電圧を設定した際の変曲点(図8における変曲点Tp2、Tp3)における時間差の幅に所定の比率の範囲(例えば20%〜80%として変曲点b、cの幅(800ns−500ns)×0.2+500=560nsから(800ns−500ns)×0.8+500=740ns迄の範囲)外の時間差が存在したかどうかを判定して、時間差の分布の形態により基準電圧の再設定を決定する。つまり所定の比率の範囲よりも短い時間差(560ns未満)が存在したかを判定し(ステップ17)、存在した場合は初期設定動作で行った基準電圧の設定動作を再度実行する(ステップ19)。短かい時間差が存在しなかった場合は同様に(740ns超)が存在したかを判定し(ステップ18)、存在した場合は初期設定動作で行った基準電圧の設定動作を再度実行(ステップ19)し、所定の比率の範囲よりも短い時間差と長い時間差の両方が存在した場合は流量計測をやり直す。所定の比率の範囲外の時間差が存在しなかった場合は流量計測を終了し、流量計測開始から所定の繰り返し回数終了までの時間を計時手段10により測定して、第1超音波振動子2と第2超音波振動子3とを切換手段4により切り替えて、同様な動作を行い、被測定流体の上流から下流と下流から上流のそれぞれの伝搬時間を測定し、これらの時間差より流量算出手段11で流路の大きさや流れの状態を考慮して流量値を求める。また、図9を用いて基準設定手段14の他の動作を説明する。
【0031】
図9は基準設定手段14の他の動作を説明するフローチャートである。
【0032】
図9に於いて所定の繰り返し回数の動作を終えるまでのステップ11〜16迄の動作は図7の動作と同じなので、繰り返し動作終了後のステップ21から説明を行う。繰り返し手段9に予め設定された回数の流量計測動作が終了すると基準設定手段14は繰り返し回数分の時間差計時手段15が計時した時間差の内、初期設定動作時に基準電圧を設定した際の変曲点における時間差の幅に所定の比率(上記と同様20%)の範囲の上限下限両方の範囲外の時間差が存在したかどうかを判定して(ステップ21)、存在していた場合は初期設定動作で行った基準電圧の設定動作を再度実行する(ステップ22)。存在していなかった場合は範囲の上限(740ns)より長い時間差だけが存在したかを判断して(ステップ23)、存在した場合はその回数が所定の回数(例えば10回)以上有ったか判断する(ステップ24)。所定の回数以上であれば基準電圧を1制御単位(2mV)分、基準電圧を2回増加させる(ステップ25、26)。所定の回数未満であれば基準電圧を1制御単位(2mV)分、基準電圧を増加させる(ステップ26)。そして同様に、範囲の上限(740ns)より長い時間差ではなく範囲の下限(560ns)より短い時間差だけが存在したかを判定し(ステップ27)、存在した場合はその回数が所定の回数(例えば10回)以上有ったか判断する(ステップ28)。所定の回数以上であれば基準電圧を1制御単位(2mV)分、基準電圧を2回減少させる(ステップ29、30)。所定の回数未満であれば基準電圧を1制御単位(2mV)分、基準電圧を減少させる(ステップ30)。そして範囲の上限との比較(ステップ23)、下限との比較(ステップ27)の結果、全ての時間差が範囲内であったならば基準電圧は変更せずそのまま処理を終了する。このように流量計測時の時間差計時手段15の計時する時間差が基準電圧を設定した際の時間差を基に決定される所定の時間差の幅から逸脱した回数に応じて基準電圧の再設定が行われる。また、本実施例では時間差計時手段15の計時する時間差が大きく変化する複数の変曲点の内、最大間隔の変曲点間の中点に基準電圧を設定するとしたが、受信信号の電圧変動の方向(増加もしくは減少)に特徴があり、例えば受信信号の電圧変動が増加することは無く、減少することのみであれば基準電圧を時間差の変曲点間の中点ではなく、それよりも低い電圧に設定する方が受信信号の電圧変動(減少)に対して基準電圧とのマージンを大きく取れる。このような場合は、例えば時間差の最大間隔の変曲点間の1/3の点というように設定する基準電圧は受信信号の電圧変動に応じて任意の点に設定すればよい。以上のように本実施例においては初期設定時に基準電圧を最小から最大に変化させ、そのときの時間差計時手段13の計時する時間差が大きく変化する複数の変曲点の内、最大間隔の変曲点間の中点または任意の点に基準電圧を設定する基準設定手段14としたことにより基準電圧を超音波の受信波の中で受信信号の電圧変動に対して一番安定して超音波信号の到達時期を検知出来る電圧に設定出来、また、基準電圧の設定後、流量計測時の時間差計時手段15の計時する時間差が基準電圧を設定した際の時間差を基に決定される所定の時間差の幅から逸脱した場合に基準電圧の再設定が行われる。これにより基準電圧の設定が人手を介することなく迅速に行われかつ、設定後、流量計測時に基準電圧を継続して最適な電圧に保つことの出来る流量計測装置とすることが出来る。
【0033】
(実施例3)
図10は本発明の請求項7に係る第3の実施例の流量計測装置のブロック図である。図11は同フローチャートである。
【0034】
図10において基準設定手段14が制御手段12から第1振動子及び第2振動子から超音波を送信する方向の信号を受け設定する基準電圧を変更する様にしたのが実施例2と異なるところであり、他の構成要素は実施例2と同じであるので説明は省略する。
【0035】
以上のように構成された流量計測装置について、以下実施例2と異なる基準設定手段14の動作、作用を説明する。制御手段12は電源投入後、まず初期設定動作としてゲイン調整と基準電圧設定を行う。実施例2と同様に基準電圧設定動作では基準設定手段14が基準電圧を最小から最大に変化させたときの時間差計時手段15の計時する時間差が大きく変化する複数の変曲点の内、最大間隔の変曲点間の中点に基準電圧を設定する。そして制御手段12は実施例2と同様に繰り返し手段9に設定した回数、超音波の送受信を行い流量計測(図11のステップ51)を行う。そして流量計測後、時間差計時手段15が計時した時間差の平均値を算出する(ステップ52)。そして制御手段12は、第1超音波振動子2と第2超音波振動子3とを切換手段4により切り替えて(ステップ53)、同様な流量計測を行い(ステップ54)、その後、時間差計時手段15が計時した時間差の平均値を算出する(ステップ55)。基準設定手段14は第1超音波振動子2及び第2超音波振動子3の送信方向別の平均時間差を比較し(ステップ56)、所定の差より大きい場合(例えば片方の時間差が600ns、もう片方が670nsと10%以上の差がある場合)に送信方向別に基準電圧の設定動作を行い(ステップ57)、以後方向に応じて別々の基準電圧を用いる。
【0036】
以上のように本実施例においては流路を流れる流体の流量によって被測手流体の上流から下流と、下流から上流へと超音波信号を送信する方向で受信信号の感度の差が発生し、受信波の電圧と基準電圧との関係が変化し、その結果、時間差計時手段が計時する時間差が超音波信号を送信する方向で異なった場合にそれぞれの方向で最適な基準電圧の設定ができる。このように超音波信号の送信方向で受信信号の電圧に差が発生しても基準電圧を最適な電圧に保つ流量計測装置とすることが出来る。
【0037】
(実施例4)
図12は本発明の請求項8の実施例4の流量計測装置のブロック図である。図13、図14は本発明の実施例4の流量計測装置の動作説明図であり、基準電圧の決定動作を説明したものである。図12において7aは予め設定されるか、基準電圧の設定を変更する電子ボリューム等の基準設定部で、7bは基準設定部7aの基準電圧と受信側の振動子の受信信号の電圧とを比較する比較部であり、7cは比較部7bの出力と判定手段8からの出力の時間差を計時する時間差計時部である。基準設定部7aと比較部7bと時間差計時部7cとで基準比較手段7を構成していることが第1の実施例と異なっている。16は基準比較手段7の出力後、前記増幅手段6の出力の任意のポイント間の時間を算出する信号幅検出手段である。他の構成要素は実施例1と同じであるので説明は省略する。
【0038】
以上のように構成された流量計測装置について、以下、その動作について説明する。基準比較手段7は自らの基準電圧の設定値を以下のように決定する。制御手段12は電源投入時の初期設定動作や、流量算出手段11が異常値を算出した場合や判定手段8が超音波信号の到達時期を判定出来なかった場合に基準比較手段7に基準電圧の決定動作の実行を指示する。制御手段12からの指示により基準比較手段7は自らの基準電圧の決定動作モードとなると、基準設定部7aは基準電圧を増幅手段6により増幅された超音波の受信信号のピーク電圧付近に設定する。(図13に示すように第4波が受信波のピーク電圧である場合、基準電圧をそのピーク電圧に設定する。この時の電圧をRefs)そして、その電圧Refsから徐々に電圧(設定値)を下げていきながら比較部7bの出力信号と判定手段8の出力信号の時間差を時間差計時部7cで計時する。
【0039】
これは例えば基準電圧が図13の点線で示すRefpであった場合、比較部7bの出力信号Cと判定手段8の出力信号Eとの時間差tdを時間差計時部7cで計時するわけである。そしてこのように基準電圧を下げていった場合の時間差計時部7cで計時する時間差は図14のようになり、超音波の受信信号の各波(第2波、第3波・・・)のピーク電圧で超音波の周波数の1/4波長の時間となり、他の部分では基準電圧を下げるに従って時間差が長くなる。
【0040】
このように基準電圧と時間差とは相関があり、超音波の周波数の1/4波長となる基準電圧値が超音波の受信信号の各波のピーク電圧であるので第3波ピーク電圧値と第2波ピーク電圧の中間電圧を基準電圧r2、第2波ピーク電圧値と第1波ピーク電圧の中間電圧を基準電圧r1として基準設定部7aに記憶して、基準比較手段7は自らの基準電圧の決定動作モードを終了する。
【0041】
そして受信信号の到達時期を認識するために検知しようとする波を例えば3波目とした場合、その1波前の2波目のピーク電圧との中間電圧の基準電圧r2に基準電圧を設定して流量計測を開始する。尚、本実施例ではゲイン調整後に、基準電圧の決定動作モードで、最初に基準電圧を受信信号のピーク電圧から徐々に電圧を下げていくとしたが、反対に受信信号の最も振幅の小さい波(1波目)付近から徐々に上げていき時間差計時部7cの計時する時間差により特定の波間(例えば2波、3波間の中間電圧に基準電圧を設定する様にしても同じ効果を有するものである。さらに本実施例では受信信号のピーク電圧の中間電圧としたが実施例2で述べたように、受信信号の電圧(振幅)変動の方向(増加もしくは減少)に特徴がある場合、受信信号の電圧変動に対して特定のピーク電圧間の中で、基準電圧とのマージンを大きく取れる任意の電圧に設定すればよい(例えば実施例2で述べたように特定ピーク電圧間の1/3の点)。
【0042】
以上のように本実施例においては電源投入時の初期設定動作時や、その後の基準電圧設定動作時に、時間差計時部7cが計時する比較部7bと判定手段8の出力の時間差より基準設定部7aの基準電圧設定値を決定する設定値決定及び記憶動作が行われ、この基準電圧は実際の超音波信号の受信波を基に決定されるので、基準電圧を最適な電圧とする流量計測装置とすることが出来る。
【0043】
【発明の効果】
以上説明したように本発明の流量計測装置は、超音波の受信信号の変動に対し一番安定な基準電圧に設定出来る流量計測装置とすることが出来る効果がある。
【図面の簡単な説明】
【図1】 本発明の実施例1における流量計測装置のブロック図
【図2】 同装置の動作を説明する図
【図3】 同装置のフローチャート
【図4】 第2の実施例における流量計測装置のブロック図動作を説明する図
【図5】 同装置の動作を説明する図
【図6】 同装置のフローチャート
【図7】 同装置のフローチャート
【図8】 同装置の動作を説明する図
【図9】 同装置の基準設定手段の他の動作を説明するフローチャート
【図10】 本発明の実施例3における流量計測装置のブロック図
【図11】 同装置のフローチャート
【図12】 本発明の実施例4における流量計測装置のブロック図
【図13】 同装置の動作を説明する図
【図14】 同装置の動作を説明する図
【図15】 従来の流量計測装置のブロック図
【図16】 従来の流量計測装置の動作説明図
【図17】 従来の流量計測装置の増幅手段の動作説明図
【符号の説明】
1 流路
2 第1超音波振動子(第1振動子)
3 第2超音波振動子(第2振動子)
4 切換手段
5 送信手段
6 増幅手段
7 基準比較手段
8 判定手段
9 繰り返し手段
10 計時手段
11 流量算出手段
12 制御手段
13 基準設定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate measuring device that measures a flow rate of gas or the like using ultrasonic waves.
[0002]
[Prior art]
A conventional flow measuring device of this type is generally as shown in FIG. This apparatus includes a first ultrasonic transducer 32 and a second ultrasonic transducer 33 installed in a flow path 31 through which fluid flows, and switching means for switching between transmission and reception of the first ultrasonic transducer 32 and the second ultrasonic transducer 33. 34, transmission means 35 for driving the first ultrasonic transducer 32 and the second ultrasonic transducer 33, and a signal received by the ultrasonic transducer on the receiving side and passed through the switching means 34 are amplified to a predetermined amplitude. The amplifying means 36, the reference comparing means 37 for comparing the voltage of the received signal amplified by the amplifying means 36 with the reference voltage, and the reference comparing means 37 as shown in FIG. A determination unit 38 that outputs the output signal D to the repetition unit 39 at the first zero cross point a of the subsequent amplified signal, a signal from the determination unit 38 is counted, and the determination unit 38 counts a preset number of times. The flow rate is calculated according to the repeating means 39 for outputting these signals to the control means 42, the time measuring means 40 for measuring the time counted by the number of times preset by the repeating means 39, and the time measured by the time measuring means 40. A flow rate calculation means 41; a flow rate output calculated from the flow rate calculation means 41; a control means 42 for receiving the signal from the repetition means 39 and controlling the operation of the transmission means 35; a determination means 38; a repetition means 39; a time measurement means 40; The flow rate calculation means 41 and the control means 42 are comprised.
[0003]
In this apparatus, the transmission means 35 is operated by the control means 42 and the ultrasonic signal transmitted from the ultrasonic vibrator 32 propagates in the flow and is received by the second ultrasonic vibrator 33, and is amplified by the amplification means 36. The signal is processed by the reference comparison unit 37 and the determination unit 38, and is input to the control unit 42 through the repetition unit 39. This operation is repeated n times set in advance, and the time between them is measured by the time measuring means 40. Then, the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are switched by the switching means 34, and the same operation is performed. From the upstream to the downstream of the fluid to be measured (this direction is a positive flow) and the downstream , The propagation time of each upstream (this direction is the reverse flow) was measured, and the flow rate Q was obtained from (Equation 1) (the effective distance in the flow direction between the ultrasonic transducers was L, the upstream to downstream The measurement time for n times is t1, the measurement time for n times from downstream to upstream is t2, the flow velocity of the fluid to be measured is v, the cross-sectional area of the flow path is S, the sensor angle is φ, and the flow rate is Q).
[0004]
Q = S · v = S · L / 2 · cos φ ((n / t1) − (n / t2)) (Formula 1)
(In practice, the flow rate is calculated by multiplying Equation 1 by a coefficient corresponding to the flow rate.)
The gain of the amplifying means 36 is adjusted so that the signal received by the ultrasonic transducer on the receiving side has a constant amplitude so that the peak voltage value of the received signal falls within a predetermined voltage range. . This is the same as the number of times when the peak voltage value of the received signal falls below the lower limit of the predetermined voltage range as shown by the received signal b shown by the dotted line in FIG. As shown in the received signal c shown by the dotted line in FIG. 17, the number of times that the upper limit of the predetermined voltage range is exceeded is counted, and the gain at the next flow rate measurement is adjusted according to the magnitude (for example, the number of times that the lower limit is exceeded). If there are more, the gain is increased so that it falls within the upper and lower limits of the voltage range as in the received signal a shown by the solid line in FIG.
[0005]
Further, the reference voltage of the reference comparison means 37 for comparing with the voltage of the reception signal amplified by the amplification means 36 determines the position of the zero cross point detected by the determination means 38. Taking FIG. 16 as an example, the third wave of the reception signal is determined. The zero-cross point a of the received signal is set to the midpoint voltage of the peak voltage of the two waves and three waves of the received signal so that the determination means 38 detects the zero cross point a. By doing so, the received waveform changes due to changes in flow rate and fluid temperature, etc., and even if the peak voltage of the two waves of the received signal rises or the peak voltage of the three waves decreases, a margin is taken for both, The zero cross point a of the third wave can be detected stably by the determination means 38.
[0006]
[Problems to be solved by the invention]
However, in the above conventional flow rate measuring device, the reference voltage of the reference comparison unit is a fixed voltage during the flow rate measurement, and the gain of the amplification unit for amplifying the received signal is also fixed. When the amplitude level of the ultrasonic reception signal fluctuates, the relative relationship between the voltage level of the reference voltage and the reception signal changes. For example, when the fluctuation of the amplitude level of the reception signal is large, the reception that has exceeded the reference voltage The peak voltage of the three waves does not exceed the reference voltage. As a result, the output of the reference comparison unit is output as four received waves, and the determination unit detects the negative zero-cross point of the fourth wave of the received signal. The timing unit counts this incorrect time. Therefore, there is a problem of calculating an incorrect flow rate by the flow rate calculation means. The present invention solves the above-described conventional problem, and the amplitude level of the received signal is determined so that an arbitrary point of the received wave (the negative zero-cross point of the third wave of the received wave) can be reliably detected by the judging means. By setting the reference voltage at a position where a large margin can be secured against fluctuations and adjusting the reference voltage according to fluctuations in the amplitude level of the received signal during flow measurement, it is resistant to fluctuations in the amplitude level of the received signal. It aims at providing a flow measuring device with high measurement accuracy.
[0007]
[Means for Solving the Problems]
In order to solve the conventional problem, the flow rate measuring device of the present invention is A first vibrator and a second vibrator that are provided in a fluid conduit and transmit / receive an ultrasonic signal, a transmission unit that drives the transducer, an amplification unit that amplifies a reception signal of the transducer, and the ultrasonic wave Time measuring means for measuring the accumulated time of signal transmission / reception, flow rate calculating means for calculating a flow rate based on the time measured by the time measuring means, and a receiving-side vibrator among the first vibrator and the second vibrator Reference comparison means for comparing the voltage of the received signal with the reference voltage, determination means for determining the arrival time of the ultrasonic signal from the outputs of the reference comparison means and the amplification means, the reference comparison means, and the determination means In the flow rate measuring device provided with the time difference measuring means for measuring the time difference between the outputs of the output and the reference setting means for setting the reference voltage of the reference comparison means, the reference voltage is changed from the minimum of the settable range to the maximum. time The time difference measured by the time measuring means (comparing the reference voltage and the output of the amplifying means, starting from the time when the magnitude relationship has been reversed, and the first negative that changes the sign of the output of the amplifying means from positive to negative after the start point. The reference setting means is used to set the reference voltage according to the measurement result of the inflection point where the time from the start point to the end point (when the zero crossing point is the end point) Is.
[0008]
As a result, the reference voltage set by the reference setting means is a peak voltage of a wave (for example, the third wave) including an arbitrary point (for example, the zero cross point) to be detected as the arrival time of the received wave by the determination means, and one wave before (2 The peak voltage of the first wave (second wave) between the peak voltages of the first wave is set to a voltage that is slightly higher than the voltage that takes into account the maximum value that fluctuates during flow measurement, and you want to detect the arrival time of the received wave The margin for the peak voltage of the wave including the arbitrary point (third wave) can be increased to prevent the peak voltage of the wave including the arbitrary point to be detected (third wave) from exceeding the reference voltage. Can withstand fluctuations in the amplitude level of the received signal Can be set to the most stable reference voltage against fluctuations in ultrasonic reception signals It can be set as a flow measuring device.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention A first vibrator and a second vibrator provided in a fluid conduit for transmitting and receiving an ultrasonic signal; a transmitting means for driving the vibrator; an amplifying means for amplifying a received signal of the vibrator; and the ultrasonic signal. Measuring means for measuring the accumulated transmission / reception time, flow rate calculating means for calculating a flow rate based on the time measured by the time measuring means, and a receiving-side vibrator of the first vibrator and the second vibrator. A reference comparison means for comparing the voltage of the received signal with a reference voltage, a determination means for determining the arrival time of the ultrasonic signal from the outputs of the reference comparison means and the amplification means, and the reference comparison means and the determination means In the flow rate measuring device having a time difference measuring means for measuring a time difference of output and a reference setting means for setting a reference voltage of the reference comparison means, the time difference when the reference voltage is changed from the minimum of the settable range to the maximum. The time difference for measuring of time means (Comparing the reference voltage and the output of the amplification means, the starting point is the time when the magnitude relationship is reversed, and the first negative zero cross point where the sign of the amplification means output changes from positive to negative after the start point is the end point. Time from start point to end point) The flow rate can be set to the most stable reference voltage against fluctuations in the received ultrasonic signal by using the flow rate measurement device as the reference setting means to set the reference voltage according to the measurement result of the inflection point where the value changes greatly It can be set as a measuring device.
[0010]
In addition, the reference setting means has a maximum interval between inflection points among a plurality of inflection points where the time difference measured by the time difference measuring means changes greatly when the reference voltage is changed from the minimum of the settable range to the maximum. Reference setting means for setting the reference voltage at the midpoint or any point Flow measurement device By doing so, it is possible to provide a flow rate measuring apparatus that can set the reference voltage quickly and accurately, and can set the reference voltage that is most stable with respect to fluctuations in the received ultrasonic signal.
[0011]
In addition, the reference setting means is measuring the flow rate from the range of the predetermined time difference defined by the maximum value and the minimum value of the time difference measured by the time difference measuring means when the reference voltage is changed from the minimum to the maximum of the settable range. The reference voltage is changed when the time difference measured by the time difference measuring means is off. Flow measurement device By doing so, it is possible to provide a flow rate measuring apparatus that automatically corrects the reference voltage and can always maintain the optimum reference voltage.
[0012]
In addition, the time difference measured by the time difference measuring means during flow rate measurement is the maximum value of the time difference when the reference voltage is changed from the minimum of the settable range to the maximum. Minimum value If both values are included, measure the flow rate again after resetting the reference voltage. Flow rate measuring device to perform By detecting that the magnitude relationship with the reference voltage has collapsed due to fluctuations in the ultrasonic reception signal during flow measurement, the flow rate can be maintained at the optimum reference voltage by resetting the reference voltage. It can be set as a measuring device.
[0013]
In addition, the reference setting means is measuring the flow rate from the range of the predetermined time difference defined by the maximum value and the minimum value of the time difference measured by the time difference measuring means when the reference voltage is changed from the minimum to the maximum of the settable range. The reference voltage is changed according to the number of times the time difference measured by the time difference measuring means is off. Flow measurement device By detecting that the magnitude relationship between the ultrasonic reception signal and the reference voltage is broken depending on the transmission / reception direction of the ultrasonic signal due to the flow rate of the fluid flowing in the flow path, the transmission / reception direction of the ultrasonic signal is detected. By separately resetting the reference voltage by changing the amplification degree of the amplification means, a flow rate measuring device capable of maintaining the reference voltage of the reference comparison means optimally can be obtained.
[0014]
In addition, when the difference in the time difference of the ultrasonic signal transmission / reception direction of the ultrasonic signal transmission / reception direction becomes larger than a predetermined time difference, the reference voltage is set for each direction of transmission / reception of the ultrasonic signal. Flow measurement device Therefore, when the magnitude relationship between the ultrasonic reception signal and the reference voltage is disrupted in the direction of ultrasonic signal transmission / reception due to the influence of the flow rate of the fluid flowing through the flow path, the reference is made for each direction of ultrasonic signal transmission / reception. By setting the reference voltage of the comparison means, a flow rate measuring device that can keep the reference voltage of the reference comparison means optimal can be obtained.
[0015]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0016]
Example 1
FIG. 1 shows a block diagram of a flow rate measuring apparatus according to a first embodiment of claim 1 of the present invention. FIG. 2 is an operation explanatory view of the flow rate measuring apparatus according to the first embodiment, and FIG. 3 is a flowchart of the same. In FIG. 1, a first ultrasonic transducer 2 that transmits ultrasonic waves and a second ultrasonic transducer 3 that receives ultrasonic waves are disposed in the flow direction 1 at an angle φ in the flow direction. 5 is a transmission means to the first ultrasonic transducer 2, 4 is a switching means for switching between transmission and reception of the first ultrasonic transducer 2 and the second ultrasonic transducer 3, and 6 is an ultrasonic transducer on the receiving side. Amplifying means for amplifying the received signal with a gain according to an instruction from the control means 12, 7 is a reference comparing means for comparing the signal amplified by the amplifying means 6 with a reference voltage, and 8 is an output of the reference comparing means 7 and the above-mentioned Determining means for determining the arrival time of the ultrasonic wave from the signal amplified by the amplifying means 6, and 9 a repeating means for counting the signal of the determining means 8 and outputting a repetitive signal to the control means 12 for a preset number of times. .
[0017]
Reference numeral 10 denotes a time measuring means for counting the time counted in advance by the repetition means 9, and 11 denotes a flow rate in consideration of the size of the pipeline and the flow state according to the time measured by the time measuring means 10. The flow rate calculation means. A control unit 12 receives signals from the flow rate calculation unit 11 and the repetition unit 9 and controls operations of the transmission unit 5 and the amplification unit 6. Reference numeral 13 denotes a reference setting means for setting a reference voltage of the reference comparison means 7 constituted by a D / A converter, an electronic volume, or the like.
[0018]
The operation and action of the flow rate measuring apparatus configured as described above will be described below. After the power is turned on, the control means 12 first performs gain adjustment and reference voltage setting as an initial setting operation. Since the gain adjustment operation is not different from the conventional example, a detailed description thereof will be omitted in this embodiment. However, after gain adjustment, the peak voltage of the received signal (for example, 5 waves in the received signal) as shown in FIG. 2), the peak detection signal PD is controlled by the control means from the amplification means 6 during the period when the received signal exceeds the lower limit of the voltage range as shown in FIG. 12 and output to the reference setting means 13. First, after adjusting the gain so that the signal received by the ultrasonic transducer on the receiving side has a constant amplitude (step 1 in FIG. 3), the wave to be detected in order to recognize the arrival time of the received signal (for example, 3 In consideration of the range in which the peak voltage before the second wave (the second wave) fluctuates during flow rate measurement, the amplifying means further amplifies at a predetermined amplification degree (step 2). Similarly, FIG. 2 shows the state of the received signal after amplification.
[0019]
In FIG. 2, the dotted line indicates a received signal after gain adjustment, and the solid line indicates a received signal further amplified with a predetermined amplification degree after gain adjustment. As shown in FIG. 2, for the received signal A that has been further amplified with a predetermined amplification degree after gain adjustment, the reference setting means converts the reference voltage Ref shown in FIG. 2 by one control unit (for example, 5 mV) from the lowest reference voltage. (Step 3). (In this embodiment, it is assumed that the lowest reference voltage Ref is higher than the peak voltage p1 of one wave of the reception signal A shown in FIG. 2 and lower than the peak voltage p2 of two waves). The number of times is set to 1, and the transmitting means 5 is operated to transmit an ultrasonic signal from the first ultrasonic transducer 2 (step 4). The ultrasonic signal transmitted from the first ultrasonic transducer 2 propagates through the flow path 1, is received by the second ultrasonic transducer 3, is amplified by the amplification means 6, It is output to the determination means 8. That is, as shown in FIG. 2, the reference comparison means 7 compares the output (reception signal A) of the amplification means 6 with the reference voltage Ref (step 5), and the reference setting means 13 and the determination means when the magnitude relationship is reversed. 8 output signals C2, C3, C4 and C5. The reference setting means 13 counts the number of outputs from the reference comparison means 7 (step 6) and repeats until the peak detection signal from the amplification means 6 is input (step 7). When the peak detection signal from the amplifying unit 6 is input, the reference setting unit 13 determines whether the number of outputs from the reference comparison unit 7 is 3 (step 8). (Step 3) Hereinafter, steps 4 to 8 are repeated. When the number of outputs from the reference comparison means 7 becomes 3, the amplification means 6 returns to the amplification degree after gain adjustment (step 9).
[0020]
When the reference voltage Ref is equal to or lower than the peak p2 of the two received waves, the number of outputs of the reference comparison means 7 is four from C2 to C5 until the peak detection signal is outputted from the amplification means 6, and the reference voltage Ref Exceeds the peak p2 of the two received waves, the reference comparison means 7 does not output the signal C2, and the number of outputs becomes three of C3 to C5. Therefore, when the number of outputs of the reference comparison means is changed from 4 to 3, the increase of the reference voltage Ref is stopped, and when the amplification means 6 returns to the amplification degree after gain adjustment, the reference voltage of the reference setting means 13 becomes two waves of the received signal. The peak voltage is slightly higher than the peak voltage, and the difference is set in consideration of the fluctuation width of the peak voltage of the two waves during the flow measurement, so even if the amplitude level fluctuates during the flow measurement, the peak of the two waves The voltage does not exceed the reference voltage Ref. Therefore, the reference voltage Ref can have a large margin with respect to the peak voltage of the three waves, and the determination means 8 can detect the arrival time of the ultrasonic reception signal most stably with respect to fluctuations in the amplitude level of the reception signal.
[0021]
As described above, in this embodiment, the reference setting unit 13 sets the reference voltage in accordance with the output of the reference comparison unit 7, and the reference voltage is 1 of the wave to be detected to recognize the arrival time of the received signal. Since the wave before the wavelength is set to a voltage that takes into account the maximum value of the amplitude level that fluctuates during flow measurement, the wave one wavelength before the wave to be detected to recognize the arrival time of the received signal is the reference. Flow rate measurement with high measurement accuracy that can withstand large fluctuations in the amplitude level of the received signal during measurement without exceeding the voltage, allowing a large margin between the wave to be detected and the reference voltage to recognize the arrival time of the received signal It can be a device. In this embodiment, after the gain adjustment, the reference voltage is set by further amplifying with a predetermined amplification degree. However, in order to recognize the arrival time of the received signal, one of the waves to be detected (for example, the third wave) is set. In consideration of the voltage range in which the peak voltage before the wave (second wave) fluctuates during flow measurement, the reference voltage Ref is first set to a voltage higher than the peak voltage of the second wave at the maximum fluctuation, Since the voltage at which the output number of the reference comparison means changes when the reference voltage is changed indicates the peak voltage of each wave of the received wave, the received signal and the reference voltage are determined from the voltage at which the output number of the reference comparison means changes. And the peak voltage (p2, p3 in FIG. 2) of the wave to be detected (for example, the third wave) and the previous wave (the second wave) to recognize the arrival time of the received signal. Arbitrary considering the amplitude level that fluctuates during flow rate measurement Even in the manner set to a voltage are those having the same effect.
[0022]
(Example 2)
FIG. 4 shows a block diagram of a flow rate measuring apparatus in the second embodiment according to claims 2, 3, 4, 5, and 6 of the present invention. 5 and 8 are explanatory diagrams of the operation of the flow rate measuring apparatus according to the second embodiment, and FIGS. 6 and 7 are flowcharts thereof.
[0023]
In FIG. 4, reference numeral 15 denotes a time difference timing means for measuring the time difference between the outputs of the reference comparison means 7 and the determination means 8, and the reference setting means 14 sets the reference voltage of the reference comparison means 7 from the output of the time difference measurement means 15. This is different from the first embodiment. Since other components are the same as those in the first embodiment, description thereof is omitted.
[0024]
The operation and action of the flow rate measuring apparatus configured as described above will be described below. After the power is turned on, the control means 12 first performs gain adjustment and reference voltage setting as an initial setting operation. In the description of this embodiment, description of gain adjustment is omitted. After adjusting the gain so that the signal first received by the ultrasonic transducer on the receiving side has a constant amplitude (step 101 in FIG. 6), the reference setting means 14 sets the reference voltage to the lowest voltage in the setting range ( Step 102).
[0025]
After setting to the lowest reference voltage, the control means 12 sets the number of repetitions of the repetition means 9 to 1, operates the transmission means 5 and transmits an ultrasonic signal from the first ultrasonic transducer 2 (step 103). .
[0026]
The ultrasonic signal transmitted from the first ultrasonic transducer 2 propagates through the flow path 1, is received by the second ultrasonic transducer 3, is amplified by the amplification means 6, It is output to the determination means 8. FIG. 2 shows the state of the received signal after amplification. That is, as shown in FIG. 2, the reference comparison means 7 compares the output (reception signal A) of the amplification means 6 with the reference voltage (step 104 in FIG. 6), and the time difference is obtained when the magnitude relationship is inverted (timing c). An output signal C is output to the time measuring means 15 and the judging means 8. The time difference timing means 15 starts timing when the output signal C from the reference comparison means 7 is input (step 105), and the determination means 8 first determines the sign of the output of the amplification means 6 after the timing c from the positive to the negative. The zero cross point a is determined as the arrival point of the ultrasonic wave (step 106), and the output signal D is output to the repeater 9 and the time difference timer 15. When receiving the output signal D of the determination means 8, the time difference timing means 15 ends the time measurement (step 107) and outputs the time difference Td measured to the reference setting means 14. The reference setting means 14 increases the reference voltage by one control unit (for example, 2 mV) in the variable range of the reference voltage (step 108). Since the control means 12 has set the number of repetitions of 1 in the repetition means 9, a signal indicating that the repetition operation has been completed is input from the repetition means 9 to operate the transmission means 5 again to operate the first ultrasonic transducer. 2 transmits an ultrasonic signal. The operation so far is repeated until the reference setting means 14 sets the maximum voltage within the reference voltage setting range.
[0027]
When the reference setting unit 14 finishes setting up to the maximum reference voltage, the reference setting unit 14 greatly changes the time difference counted by the time difference counting unit 15 when the reference voltage is changed from the minimum to the maximum (for example, the previous time difference). The reference voltage is set at the midpoint between the inflection points having the maximum interval among the plurality of inflection points (step 110). This setting operation will be described with reference to FIG. FIG. 8 is a diagram showing the time difference measured by the time difference measuring means 15 when the reference setting means 14 changes the reference voltage from the minimum to the maximum. As shown in FIG. 5, the time difference measured by the time difference measuring means 15 is the time difference between the outputs of the reference comparison means 7 and the determination means 8, so that the peak of each wave (1 wave, 2 waves, 3 waves ...) of the received signal is obtained. When there is a reference voltage in the vicinity of the voltage (in FIG. 8, p1, p2, p3,...), The time difference is minimum (p1, p2, p3,... Corresponding to p1, p2, p3,. The value is about 1/4 of the period of the ultrasonic wave (500 ns when the drive frequency is 500 KHz). When the reference voltage is increased from the peak voltage and the peak voltage is exceeded, the time difference measured by the time difference measuring means 15 suddenly increases and the time difference inflection points (Tp1, Tp2, Tp3,. .). (For example, if the reference voltage is in the vicinity of the peak p2 of two waves (but does not exceed p2) but exceeds the peak voltage p2 of two waves, the inflection point is Tp2.) This is the inflection point of the time difference. This means that the reference voltage becomes a voltage near the peak voltage of each wave of the received signal. The width between the inflection points (reference voltage width) is the voltage difference between the peak voltages of the received signal waves.
[0028]
In FIG. 8, the voltage difference between the inflection points Tp1 and Tp2 is a peak voltage difference between one wave and two waves of the received signal, and the voltage difference between the inflection points Tp2 and Tp3 is a peak voltage between two waves and three waves of the received signal. Showing the difference. Thus, there are a plurality of inflection points in the change of the time difference when the reference voltage is changed from the minimum to the maximum, and the reference voltage range having the widest width between the inflection points (two waves in FIG. 8, If the reference voltage is set to (the peak voltage range of 3 waves), it is set to the portion where the peak voltage difference of each wave of the received signal is the largest. For example, in FIG. If the reference voltage is set to the point Vre, a large margin can be secured between the peak voltage of the second wave and the third wave and the reference voltage, and the determination means 8 is most stable against the voltage fluctuation of the received signal. The arrival time of the received signal can be detected.
[0029]
When the reference setting unit 14 sets the reference voltage as described above, the control unit 12 sets a regular number of repetitions (for example, 256 times) in the repetition unit 9 and starts flow measurement. The operation of the reference setting unit 14 after starting the flow measurement will be described with reference to FIG. When the flow rate measurement is started, the control unit 12 operates the transmission unit 5 to transmit an ultrasonic signal from the first ultrasonic transducer 2 (step 12 in FIG. 7), and the second ultrasonic transducer amplified by the amplification unit 6. 3 is output to the reference comparison means 7 and the determination means 8, the reference comparison means 7 compares the received signal with the reference voltage (step 13), and the time difference is measured from the time when the magnitude relationship is inverted. Time measurement is started by means 13 (step 14), and time difference is measured until the first negative zero cross point at which the sign of the output of amplification means 6 changes from positive to negative is detected by determination means 8 (steps 15 and 16). .
[0030]
After the zero crossing point (ultrasonic arrival point) is detected by the determination unit 8, the control unit 12 operates the transmission unit 5 again to transmit an ultrasonic signal from the ultrasonic transducer 2. This series of operations is repeated n times set in advance (step 11), and after the predetermined number of repetitions, the reference setting means 14 uses the time difference counted by the time difference counting means 15 for the number of repetitions as a reference during the initial setting operation. The range of a predetermined ratio to the width of the time difference at the inflection points (inflection points Tp2, Tp3 in FIG. 8) when the voltage is set (for example, 20 to 80%, the width of the inflection points b and c (800 ns to 500 ns). ) × 0.2 + 500 = 560 ns to (800 ns−500 ns) × 0.8 + 500 = 740 ns) It is determined whether there is a time difference outside, and the resetting of the reference voltage is determined according to the form of the time difference distribution. . That is, it is determined whether there is a time difference (less than 560 ns) shorter than the predetermined ratio range (step 17), and if it exists, the reference voltage setting operation performed in the initial setting operation is executed again (step 19). If there is no short time difference, it is similarly determined whether (exceeding 740 ns) is present (step 18), and if it is present, the reference voltage setting operation performed in the initial setting operation is executed again (step 19). If both a time difference shorter than a predetermined ratio range and a time difference longer than the predetermined ratio range are present, the flow rate measurement is repeated. If there is no time difference outside the range of the predetermined ratio, the flow rate measurement is terminated, the time from the start of the flow rate measurement to the end of the predetermined number of repetitions is measured by the time measuring means 10, and the first ultrasonic transducer 2 and The second ultrasonic transducer 3 is switched by the switching means 4 and the same operation is performed to measure the propagation times of the fluid under measurement from upstream to downstream and from downstream to upstream, and the flow rate calculation means 11 is calculated from these time differences. Thus, the flow rate value is obtained in consideration of the size of the flow path and the flow state. Further, another operation of the reference setting unit 14 will be described with reference to FIG.
[0031]
FIG. 9 is a flowchart for explaining another operation of the reference setting means 14.
[0032]
In FIG. 9, the operations from step 11 to step 16 until the operation of the predetermined number of repetitions is completed are the same as the operation of FIG. 7, so the description will be made from step 21 after the end of the repetition operation. When the flow measurement operation of the preset number of times in the repetition means 9 is completed, the reference setting means 14 is the inflection point when the reference voltage is set during the initial setting operation among the time differences counted by the time difference timing means 15 for the number of repetitions. It is determined whether there is a time difference outside the upper and lower limits of the predetermined ratio (20% as above) in the time difference width at step 21 (step 21). The set reference voltage setting operation is executed again (step 22). If it does not exist, it is determined whether there is only a time difference longer than the upper limit (740 ns) of the range (step 23). If it exists, it is determined whether the number of times is a predetermined number (for example, 10 times) or more. (Step 24). If the predetermined number of times is exceeded, the reference voltage is increased twice by one control unit (2 mV) (steps 25 and 26). If it is less than the predetermined number of times, the reference voltage is increased by one control unit (2 mV) (step 26). Similarly, it is determined whether there is only a time difference shorter than the lower limit (560 ns) of the range rather than a time difference longer than the upper limit (740 ns) of the range (step 27). Times) or more (step 28). If the number of times is equal to or greater than the predetermined number, the reference voltage is decreased by one control unit (2 mV) and the reference voltage is decreased twice (steps 29 and 30). If it is less than the predetermined number of times, the reference voltage is decreased by one control unit (2 mV) (step 30). As a result of comparison with the upper limit of the range (step 23) and comparison with the lower limit (step 27), if all the time differences are within the range, the reference voltage is not changed and the process is terminated. Thus, the reference voltage is reset according to the number of times that the time difference measured by the time difference measuring means 15 at the time of flow rate deviates from the predetermined time difference determined based on the time difference when the reference voltage is set. . In this embodiment, the reference voltage is set at the midpoint between the inflection points of the maximum interval among the plurality of inflection points where the time difference measured by the time difference measuring means 15 changes greatly. For example, the voltage fluctuation of the received signal does not increase, and if it only decreases, the reference voltage is not the midpoint between the inflection points of the time difference, but more than that. Setting a lower voltage allows a larger margin with respect to the reference voltage with respect to voltage fluctuation (decrease) in the received signal. In such a case, for example, the reference voltage that is set to be 1/3 between the inflection points of the maximum interval of time difference may be set to an arbitrary point according to the voltage fluctuation of the received signal. As described above, in this embodiment, the reference voltage is changed from the minimum to the maximum at the time of initial setting, and among the inflection points at which the time difference measured by the time difference measuring means 13 changes greatly, the inflection at the maximum interval. By using the reference setting means 14 for setting the reference voltage at a midpoint between points or at an arbitrary point, the reference voltage is the most stable ultrasonic signal with respect to voltage fluctuations of the received signal in the ultrasonic wave. The time difference measured by the time difference measuring means 15 at the time of flow rate measurement is determined based on the time difference when the reference voltage is set after setting the reference voltage. The reference voltage is reset when it deviates from the width. As a result, the reference voltage can be set quickly without human intervention, and after setting, the flow rate measuring device can keep the reference voltage at the optimum voltage during flow rate measurement.
[0033]
(Example 3)
FIG. 10 is a block diagram of a flow rate measuring apparatus according to a third embodiment of the present invention. FIG. 11 is a flowchart of the same.
[0034]
In FIG. 10, the reference setting unit 14 receives a signal in the direction in which ultrasonic waves are transmitted from the first transducer and the second transducer from the control unit 12 and changes the reference voltage to be set. The other components are the same as those in the second embodiment, and the description thereof is omitted.
[0035]
With respect to the flow rate measuring apparatus configured as described above, the operation and action of the reference setting means 14 different from the second embodiment will be described below. After the power is turned on, the control means 12 first performs gain adjustment and reference voltage setting as an initial setting operation. As in the second embodiment, in the reference voltage setting operation, the maximum interval among a plurality of inflection points at which the time difference measured by the time difference measuring means 15 changes greatly when the reference setting means 14 changes the reference voltage from the minimum to the maximum. Set a reference voltage at the midpoint between the inflection points. Then, similarly to the second embodiment, the control unit 12 transmits and receives ultrasonic waves for the number of times set in the repetition unit 9 and performs flow rate measurement (step 51 in FIG. 11). Then, after measuring the flow rate, the average value of the time differences measured by the time difference measuring means 15 is calculated (step 52). Then, the control means 12 switches between the first ultrasonic transducer 2 and the second ultrasonic transducer 3 by the switching means 4 (step 53), performs the same flow rate measurement (step 54), and then the time difference timing means. The average value of the time difference measured by 15 is calculated (step 55). The reference setting means 14 compares the average time difference of the first ultrasonic transducer 2 and the second ultrasonic transducer 3 for each transmission direction (step 56), and if it is larger than the predetermined difference (for example, the time difference of one is 600 ns, the other When one side is 670 ns and there is a difference of 10% or more), a reference voltage setting operation is performed for each transmission direction (step 57), and thereafter different reference voltages are used depending on the direction.
[0036]
As described above, in this embodiment, the difference in sensitivity of the received signal occurs in the direction in which the ultrasonic signal is transmitted from the upstream to the downstream of the fluid to be measured, and from the downstream to the upstream, depending on the flow rate of the fluid flowing through the flow path. When the relationship between the voltage of the received wave and the reference voltage changes and, as a result, the time difference measured by the time difference measuring means differs in the direction in which the ultrasonic signal is transmitted, the optimum reference voltage can be set in each direction. Thus, even if a difference occurs in the voltage of the reception signal in the transmission direction of the ultrasonic signal, a flow rate measuring device that maintains the reference voltage at an optimum voltage can be obtained.
[0037]
Example 4
FIG. 12 is a block diagram of a flow rate measuring apparatus according to the fourth embodiment of the present invention. FIG. 13 and FIG. 14 are diagrams for explaining the operation of the flow rate measuring apparatus according to the fourth embodiment of the present invention and explain the determination operation of the reference voltage. In FIG. 12, 7a is a reference setting unit such as an electronic volume that is set in advance or changes the setting of the reference voltage, and 7b compares the reference voltage of the reference setting unit 7a with the voltage of the reception signal of the transducer on the receiving side. 7c is a time difference timing unit that measures the time difference between the output of the comparison unit 7b and the output from the determination means 8. Unlike the first embodiment, the reference setting unit 7a, the comparison unit 7b, and the time difference measuring unit 7c constitute the reference comparison means 7. Reference numeral 16 denotes signal width detection means for calculating the time between arbitrary points of the output of the amplification means 6 after the output of the reference comparison means 7. Since other components are the same as those in the first embodiment, description thereof is omitted.
[0038]
The operation of the flow rate measuring apparatus configured as described above will be described below. The reference comparison means 7 determines the set value of its own reference voltage as follows. The control unit 12 sets the reference voltage to the reference comparison unit 7 when the power is turned on, when the flow rate calculation unit 11 calculates an abnormal value, or when the determination unit 8 cannot determine the arrival time of the ultrasonic signal. Instructs execution of decision operation. When the reference comparison unit 7 enters the operation mode for determining its own reference voltage according to an instruction from the control unit 12, the reference setting unit 7 a sets the reference voltage near the peak voltage of the ultrasonic reception signal amplified by the amplification unit 6. . (When the fourth wave is the peak voltage of the received wave as shown in FIG. 13, the reference voltage is set to the peak voltage. The voltage at this time is Refs), and the voltage (set value) is gradually increased from the voltage Refs. The time difference between the output signal of the comparison unit 7b and the output signal of the determination means 8 is measured by the time difference counting unit 7c.
[0039]
For example, when the reference voltage is Refp shown by a dotted line in FIG. 13, the time difference td between the output signal C of the comparison unit 7b and the output signal E of the determination means 8 is measured by the time difference timing unit 7c. The time difference measured by the time difference measuring unit 7c when the reference voltage is lowered in this way is as shown in FIG. 14, and each wave (second wave, third wave,...) Of the ultrasonic reception signal is obtained. At the peak voltage, the time is ¼ wavelength of the ultrasonic frequency, and in other parts, the time difference becomes longer as the reference voltage is lowered.
[0040]
Thus, there is a correlation between the reference voltage and the time difference. Since the reference voltage value that is a quarter wavelength of the ultrasonic frequency is the peak voltage of each wave of the ultrasonic reception signal, the third wave peak voltage value and the The reference voltage r2 is stored in the reference setting unit 7a as the reference voltage r2 and the intermediate voltage between the second wave peak voltage value and the first wave peak voltage is stored in the reference setting unit 7a. The determination operation mode is terminated.
[0041]
If the wave to be detected for recognizing the arrival time of the received signal is the third wave, for example, the reference voltage is set to the reference voltage r2 that is an intermediate voltage between the peak voltage of the second wave and the second wave. Start flow measurement. In this embodiment, after the gain adjustment, the reference voltage is first gradually lowered from the peak voltage of the received signal in the reference voltage determining operation mode. On the contrary, the wave having the smallest amplitude of the received signal is used. Even if the reference voltage is set to a specific wave interval (for example, an intermediate voltage between 2 waves and 3 waves) due to the time difference measured by the time difference measuring unit 7c, gradually increasing from the vicinity of the (first wave), the same effect is obtained. Furthermore, in the present embodiment, the intermediate voltage of the peak voltage of the received signal is used, but as described in the second embodiment, when there is a characteristic in the direction (increase or decrease) of the voltage (amplitude) fluctuation of the received signal, the received signal The voltage may be set to an arbitrary voltage with a large margin with respect to the reference voltage among the specific peak voltages with respect to voltage fluctuations (for example, as described in the second embodiment, 1 / of the specific peak voltage point).
[0042]
As described above, in this embodiment, the reference setting unit 7a is determined based on the time difference between the output of the comparison unit 7b and the determination means 8 measured by the time difference measuring unit 7c during the initial setting operation when the power is turned on or during the subsequent reference voltage setting operation. The reference voltage setting value is determined and stored, and the reference voltage is determined based on the received wave of the actual ultrasonic signal. I can do it.
[0043]
【The invention's effect】
As described above, the flow rate measuring device of the present invention is Can be set to the most stable reference voltage against fluctuations in the received ultrasonic signal There exists an effect which can be set as a flow measuring device.
[Brief description of the drawings]
FIG. 1 is a block diagram of a flow rate measuring device according to a first embodiment of the present invention.
FIG. 2 is a diagram for explaining the operation of the apparatus
FIG. 3 is a flowchart of the apparatus.
FIG. 4 is a block diagram for explaining the operation of the flow rate measuring apparatus according to the second embodiment.
FIG. 5 is a diagram for explaining the operation of the apparatus;
FIG. 6 is a flowchart of the apparatus.
FIG. 7 is a flowchart of the apparatus.
FIG. 8 is a diagram for explaining the operation of the apparatus;
FIG. 9 is a flowchart for explaining another operation of the reference setting unit of the apparatus.
FIG. 10 is a block diagram of a flow rate measuring device according to Embodiment 3 of the present invention.
FIG. 11 is a flowchart of the apparatus.
FIG. 12 is a block diagram of a flow rate measuring device according to Embodiment 4 of the present invention.
FIG. 13 is a diagram for explaining the operation of the apparatus;
FIG. 14 is a diagram for explaining the operation of the apparatus;
FIG. 15 is a block diagram of a conventional flow rate measuring device.
FIG. 16 is a diagram illustrating the operation of a conventional flow rate measuring device.
FIG. 17 is an operation explanatory diagram of the amplifying means of the conventional flow rate measuring device.
[Explanation of symbols]
1 channel
2 First ultrasonic transducer (first transducer)
3 Second ultrasonic transducer (second transducer)
4 Switching means
5 Transmission means
6 Amplification means
7 Standard comparison means
8 judgment means
9 Repeat means
10 Timekeeping means
11 Flow rate calculation means
12 Control means
13 Standard setting means

Claims (5)

流体管路に設けられ超音波信号を送受信する第1振動子及び第2振動子と、前記振動子を駆動する送信手段と、前記振動子の受信信号を増幅する増幅手段と、前記超音波信号の送受信の累積時間を計時する計時手段と、前記計時手段の計時した時間に基づいて流量を算出する流量算出手段と、前記第1振動子及び前記第2振動子のうち受信側の振動子の受信信号の電圧と基準電圧とを比較する基準比較手段と、前記基準比較手段と前記増幅手段の出力とから超音波信号の到達時期を判定する判定手段と、前記基準比較手段と前記判定手段の出力の時間差を計時する時間差計時手段と、前記基準比較手段の基準電圧を設定する基準設定手段を備えた流量計測装置において、基準電圧を設定可能範囲の最小から最大に変化させたときの前記時間差計時手段の計時する時間差が大きく変化する変曲点の測定結果に応じて基準電圧を設定する基準設定手段とし、かつ、前記時間差とは、基準電圧と増幅手段の出力とを比較し、その大小関係が反転した時点を開始点とし、開始点以降で増幅手段の出力の符号が正から負に変わる最初の負のゼロクロス点を終了点とした場合の開始点から終了点に至る時間である流量計測装置。  A first vibrator and a second vibrator provided in a fluid conduit for transmitting and receiving an ultrasonic signal; a transmitting means for driving the vibrator; an amplifying means for amplifying a received signal of the vibrator; and the ultrasonic signal. Measuring means for measuring the accumulated transmission / reception time, flow rate calculating means for calculating a flow rate based on the time measured by the time measuring means, and a receiving-side vibrator of the first vibrator and the second vibrator. A reference comparison means for comparing the voltage of the received signal with a reference voltage, a determination means for determining the arrival time of the ultrasonic signal from the outputs of the reference comparison means and the amplification means, and the reference comparison means and the determination means In the flow rate measuring device having a time difference measuring means for measuring a time difference of output and a reference setting means for setting a reference voltage of the reference comparison means, the time difference when the reference voltage is changed from the minimum of the settable range to the maximum. Reference setting means for setting a reference voltage according to the measurement result of the inflection point at which the time difference measured by the time means changes greatly, and the time difference is a comparison between the reference voltage and the output of the amplification means. The flow rate that is the time from the start point to the end point when the first negative zero-cross point where the sign of the output of the amplification means changes from positive to negative after the start point is the end point. Measuring device. 基準設定手段は基準電圧を設定可能範囲の最小から最大に変化させたときの前記時間差計時手段の計時する時間差が大きく変化する複数の変曲点の内、最大間隔の変曲点間の中点または任意の点に基準電圧を設定する請求項1記載の流量計測装置。  The reference setting means is a midpoint between the inflection points of the maximum interval among a plurality of inflection points where the time difference measured by the time difference measuring means changes greatly when the reference voltage is changed from the minimum of the settable range to the maximum. The flow rate measuring device according to claim 1, wherein a reference voltage is set at an arbitrary point. 基準設定手段は基準電圧を設定可能範囲の最小から最大まで変化させたときの前記時間差計時手段の計時した時間差の最大値、最小値より規定される所定の時間差の幅から、流量計測中に時間差計時手段が計時した時間差が外れた場合に基準電圧を変更する請求項1または2記載の流量計測装置。  The reference setting means determines the time difference during flow measurement from the range of the predetermined time difference defined by the maximum and minimum values of the time difference measured by the time difference measuring means when the reference voltage is changed from the minimum to the maximum of the settable range. The flow rate measuring device according to claim 1 or 2, wherein the reference voltage is changed when the time difference measured by the time measuring means deviates. 基準設定手段は基準電圧を設定可能範囲の最小から最大まで変化させたときの前記時間差計時手段の計時した時間差の最大値、最小値より規定される所定の時間差の幅から、流量計測中に時間差計時手段が計時した時間差が外れた回数に応じて基準電圧を変更する請求項1または2項記載の流量計測装置。The reference setting means determines the time difference during flow rate measurement from the predetermined time difference width defined by the maximum and minimum time differences measured by the time difference measuring means when the reference voltage is changed from the minimum to the maximum of the settable range. The flow rate measuring device according to claim 1 or 2, wherein the reference voltage is changed in accordance with the number of times that the time difference counted by the time measuring means deviates. 超音波信号の送受信の方向別の時間差計時手段が計時した時間差の超音波信号の送受信の方向別の差が、所定より大きくなった場合に超音波信号の送受信の方向別に基準電圧を設定する請求項1〜4のいずれか1項記載の流量計測装置。 Request for setting a reference voltage for each direction of transmission / reception of ultrasonic signals when the difference for each direction of transmission / reception of ultrasonic signals of the time difference measured by the time difference measuring means for each direction of transmission / reception of ultrasonic signals is larger than a predetermined value. Item 5. The flow rate measuring device according to any one of Items 1 to 4 .
JP2003031194A 2002-02-07 2003-02-07 Flow measuring device Expired - Fee Related JP4534421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031194A JP4534421B2 (en) 2002-02-07 2003-02-07 Flow measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002030496 2002-02-07
JP2002227101 2002-08-05
JP2002229735 2002-08-07
JP2003031194A JP4534421B2 (en) 2002-02-07 2003-02-07 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2004125769A JP2004125769A (en) 2004-04-22
JP4534421B2 true JP4534421B2 (en) 2010-09-01

Family

ID=32303614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031194A Expired - Fee Related JP4534421B2 (en) 2002-02-07 2003-02-07 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4534421B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904099B2 (en) * 2006-07-05 2012-03-28 Jfeアドバンテック株式会社 Pulse signal propagation time measurement device and ultrasonic flow measurement device
CN102667418B (en) * 2009-12-16 2015-06-10 松下电器产业株式会社 Flow rate measuring device
JP7219582B2 (en) * 2018-10-17 2023-02-08 アズビル株式会社 Ultrasonic flow meter, flow measurement method, and flow calculation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119272A (en) * 1981-01-16 1982-07-24 Yokogawa Hokushin Electric Corp Signal detection circuit
JPH10142019A (en) * 1996-11-13 1998-05-29 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2002013958A (en) * 2000-06-29 2002-01-18 Fuji Electric Co Ltd Ultrasonic flow meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119272A (en) * 1981-01-16 1982-07-24 Yokogawa Hokushin Electric Corp Signal detection circuit
JPH10142019A (en) * 1996-11-13 1998-05-29 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2002013958A (en) * 2000-06-29 2002-01-18 Fuji Electric Co Ltd Ultrasonic flow meter

Also Published As

Publication number Publication date
JP2004125769A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
EP2515089B1 (en) Flow rate measuring device
US6772643B2 (en) Flow meter
JP4534421B2 (en) Flow measuring device
EP2840363B1 (en) Flow rate measuring device
JP3468233B2 (en) Flow measurement device
JP4572546B2 (en) Fluid flow measuring device
EP3438621B1 (en) Flow rate measurement device and method using the device
JP4013697B2 (en) Flow measuring device
JP5884014B2 (en) Flow measuring device
JP2004069524A (en) Flow rate measuring apparatus
JP3443659B2 (en) Flow measurement device
JP2002365109A (en) Ultrasonic flowmeter
JP3624743B2 (en) Ultrasonic flow meter
JP3473606B2 (en) Flow rate measuring device and program for making this device function
JP5135806B2 (en) Fluid flow measuring device
JP5135807B2 (en) Fluid flow measuring device
JP4425415B2 (en) Flow measuring device
JP2000283812A (en) Ultrasonic flowmeter
JP4140095B2 (en) Ultrasonic current meter
JP2019211267A (en) Ultrasonic gas flowmeter
JP2004233248A (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees