JP4534307B2 - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter Download PDF

Info

Publication number
JP4534307B2
JP4534307B2 JP2000152389A JP2000152389A JP4534307B2 JP 4534307 B2 JP4534307 B2 JP 4534307B2 JP 2000152389 A JP2000152389 A JP 2000152389A JP 2000152389 A JP2000152389 A JP 2000152389A JP 4534307 B2 JP4534307 B2 JP 4534307B2
Authority
JP
Japan
Prior art keywords
electrode
reflector
comb
electrodes
reflector electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000152389A
Other languages
Japanese (ja)
Other versions
JP2001332954A (en
Inventor
成大 三田
昭雄 常川
和生 池田
関  俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000152389A priority Critical patent/JP4534307B2/en
Publication of JP2001332954A publication Critical patent/JP2001332954A/en
Application granted granted Critical
Publication of JP4534307B2 publication Critical patent/JP4534307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば、無線通信機器における高周波回路などに使用される弾性表面波フィルタに関するものである。
【0002】
【従来の技術】
従来、RF段に適する弾性表面波フィルタとしては、縦モード結合共振器型弾性表面波フィルタがよく知られており、回路の簡素化、高性能化のため、選択的に高減衰量を確保できるものが要望されている。
【0003】
以下、従来の縦モード結合型設計を用いた弾性表面波フィルタについて説明する。
【0004】
図12は従来の縦モード結合型弾性表面波フィルタの上面図である。
【0005】
圧電基板80上に一点鎖線で囲んだ三電極型櫛電極81,82を縦続接続する。三電極型櫛電極81,82はそれぞれ点線で囲んだ第1の櫛型電極81a,82a、第2の櫛型電極81b,82b、第3の櫛型電極81c,82cと、それらの両側の反射器電極81d,82dが表面波伝搬方向に配置されている。
【0006】
三電極型櫛電極81の第1の櫛型電極81aは、対向する両電極指の一方が出力端子83に他方がアース端子85に接続されている。三電極型櫛電極82の第1の櫛型電極82aも、対向する両電極指の一方が出力端子84に他方がアース端子86に接続されている。
【0007】
三電極型櫛電極81,82の第1の櫛型電極81a,82aに電圧を印加することにより表面波が励起され、反射器電極81d,82dでエネルギーが閉じ込められることによりフィルタ特性が形成される。
【0008】
また反射器電極81d,82dは電極指幅及び電極指間隔を一定にして形成したものであった。
【0009】
【発明が解決しようとする課題】
反射器電極特性は反射効率の良い通過周波数範囲とその両側の周期的なスロープ特性で形成される。そのため上記構成においては通過帯域近傍で反射器電極の周期的な特性が波形として現われ、スプリアスが発生することになる。その結果通過周波数帯域近傍での減衰量確保が困難であるという問題点を有していた。
【0010】
そこで本発明は、通過周波数帯域近傍の減衰量を十分に確保することのできる弾性表面波フィルタを提供することを目的とするものである。
【0011】
【課題を解決するための手段】
この目的を達成するために本発明の弾性表面波フィルタは、圧電基板と、この圧電基板上に設けた第1の櫛型電極と、この第1の櫛型電極のその表面波伝搬方向の両側に設けた第2、第3の櫛型電極と、この第2及び第3の櫛型電極を挟むように設けた第1及び第2の反射器電極とを備え、前記反射器電極は複数本の電極指の反射器電極ピッチ(電極指幅+電極指間隔幅)が一定となる、複数の反射器電極群に分けられ、それぞれの前記反射器電極群の間で前記反射器電極ピッチが異なり、隣り合う前記反射器電極群の反射器電極ピッチ同士は、0.05%以上の差を有しているものであり、反射器電極の通過周波数帯域近傍の周期的なスロープ特性を乱すことにより、スプリアスを抑制し、上記目的を達成することができる。
【0012】
【発明の実施の形態】
本発明の請求項1に記載の発明は、圧電基板と、この圧電基板上に設けた第1の櫛型電極と、この第1の櫛型電極のその表面波伝搬方向の両側に設けた第2、第3の櫛型電極と、この第2及び第3の櫛型電極を挟むように設けた第1及び第2の反射器電極とを備え、前記反射器電極は複数本の電極指の反射器電極ピッチ(電極指幅+電極指間隔幅)が一定となる、複数の反射器電極群に分けられ、それぞれの前記反射器電極群の間で前記反射器電極ピッチが異なり、隣り合う前記反射器電極群の反射器電極ピッチ同士は、0.05%以上の差を有している弾性表面波フィルタであり、通過周波数帯域近傍の減衰量を十分に確保することができるものである。
【0013】
以下図面を参照しながら本発明の実施の形態について説明する。
【0014】
参考例1
図1は本発明の参考例1における弾性表面波フィルタの上面図である。
【0015】
圧電基板10上に、第1の櫛型電極11とその表面波伝搬方向の両側に第2、第3の櫛型電極12,13を配置し、それらの両側に第1の反射器電極14と第2の反射器電極15を備えている。第1及び第2の反射器電極14,15の反射器電極ピッチは、隣り合う第2及び第3の櫛型電極12,13から離れるにつれて徐々に小さく変化させてある。
【0016】
この構成により、第1及び第2の反射器電極14,15の特性は図2のようになり、従来よりも通過帯域内近傍の低周波数側の反射効率を下げることができる。
【0017】
また、第1及び第2の反射器電極14,15の反射器電極ピッチを、隣り合う第2、第3の櫛型電極12,13側から離れるにつれて大きく変化させると、図3に示すように通過帯域内近傍の高周波数側の反射効率を下げることができる。
【0018】
すなわち第1、第2の反射器電極14,15の反射器電極ピッチを一定でなく、変えることにより反射特性を乱し、スプリアスの発生を抑制することにより、通過帯域近傍の低周波数側あるいは高周波数側の帯域外減衰量を十分に確保することができる。
【0019】
参考例2
図4は本発明の参考例2における弾性表面波フィルタの上面図である。
【0020】
圧電基板30上に、第1の櫛型電極31とその表面波伝搬方向の両側に第2、第3の櫛型電極32,33を配置し、それらの両側に第1の反射器電極34と第2の反射器電極35を備えている。また、第1、第2の反射器電極34,35は、それぞれ反射器電極ピッチが異なる。二つの反射器電極群(図4中点線で囲んでいる)34a,34b,35a,35bで構成されている。また反射器電極群34a,35aの反射器電極ピッチは、反射器電極群34b,35bの反射器電極ピッチよりも大きくしてある。
【0021】
図5は図4に示す第1及び第2の反射器電極34,35の特性図であり、第1の反射器電極34,35を二つの反射器電極群34a,34b,35a,35bに分割することにより、通過帯域内近傍の低周波数側の反射効率を下げることが可能である。
【0022】
また、反射器電極群34a,35aの反射器電極ピッチを反射器電極群34b,35bの反射器電極ピッチより小さくすると、図6に示すように通過帯域内近傍の高周波数側の反射効率を下げることが可能である。
【0023】
すなわち第1及び第2の反射器電極34,35を二つ以上の反射器電極群に分割し、それぞれの反射器電極ピッチを変えてそれぞれの周期が異なるようにすることにより、反射特性の山と谷が重なり合い、この部分の反射器特性が平坦になり、スプリアスを抑制し、通過帯域近傍の低周波数側あるいは高周波数側の帯域外減衰量を十分に確保することができるのである。
【0024】
実施の形態1
図7は本発明の実施の形態1における弾性表面波フィルタの上面図である。
【0025】
圧電基板50上に、第1の櫛型電極51とその表面波伝搬方向の両側に第2、第3の櫛型電極52,53を配置し、それらの両側に第1の反射器電極54と第2の反射器電極55を備えた三電極縦モード結合型櫛電極56が形成されている。また、第1の反射器電極54及び第2の反射器電極55は、反射器電極ピッチが異なる三つの反射器電極群54a,54b,54c,55a,55b,55cで構成されている。反射器電極ピッチは反射器電極群54a,55aが一番大きく、次いで反射器電極群54b,55bが大きく、反射器電極群54c,55cを最も小さくしている。
【0026】
さらに、三電極縦モード結合型櫛電極56にこれと同じ構成の三電極縦モード結合型櫛電極57が縦続接続されている。
【0027】
このような構成の弾性表面波フィルタにおいて、反射器電極群54a,54b,54c,55a,55b,55cの構成を(表1)に示すような構成とした時の、第1及び第2の反射器電極54,55の特性を図8に示す。また図9は図8の要部拡大図である。
【0028】
【表1】

Figure 0004534307
【0029】
図9を見るとわかるように反射器電極群54a,55aの反射効率が第1及び第2の反射器電極54,55の反射効率に対して支配的にならない範囲で、反射器電極特性を変化させることにより、通過帯域近傍の低周波数側のスプリアスを抑制し、減衰量を確保することができる。
【0030】
つまり反射器電極群54a,55aの電極指本数を10本から30本とすることが望ましいのである。第1及び第2の反射器電極54,55の反射効率に大きく寄与するのは第2、第3の櫛型電極52,53に最も近い反射器電極群54a,55aであることを考慮すると第1及び第2の反射器電極54,55を構成する電極指の本数が変化したとしても、反射器電極群54a,55aの電極指本数は10本から30本とすることが望ましい。
【0031】
また、反射器電極群54a,55aの電極指本数が30本よりも多くなると(図9の(d))、反射器電極群54a,55aの反射効率が支配的となり、第1及び第2の反射器電極54,55の特性を変化させて通過帯域近傍のスプリアスを抑制することが困難となる。反対に反射器電極群54a,55aの電極指本数が9本以下となると反射効率が不十分となり所望の特性を確保することが難しい。
【0032】
次に反射器電極群54a,55aの反射器電極ピッチをλa、反射器電極群54b,55bの反射器電極ピッチをλb、反射器電極群54c,55cの反射器ピッチをλcとし、(表2)に示すような構成とした場合の第1及び第2の反射器電極54,55の特性を図10に、その要部拡大図を図11に示す。
【0033】
【表2】
Figure 0004534307
【0034】
図10を見るとわかるように、通過帯域近傍の低周波数側に減衰量を確保するには、反射器電極ピッチは第2、第3の櫛型電極52,53に近いほど大きく、反隣り合う反射器電極群との反射器ピッチは0.05%以上、好ましくは0.1%以上の差を有するようにし、第2及び第3の櫛型電極52,53との距離が長い反射器電極群ほど反射器電極ピッチを小さくすれば良い。
【0035】
なお、実施の形態1においては、第1及び第2の反射器電極54,55をそれぞれ複数の反射器電極群に分割し、第2及び第3の櫛型電極52,53からの距離が長い反射器電極群ほど反射器電極ピッチを小さくして通過帯域近傍の低周波数側のスプリアスを抑制し、減衰量を確保した。高周波数側の減衰量を確保したい場合は、第2及び第3の櫛型電極52,53からの距離が長い反射器電極群ほど反射器電極ピッチを大きくすれば良い。
【0036】
また、三電極縦モード結合型櫛電極56についてのみ説明したが同じ構成の三電極縦モード結合型櫛電極57についても同様のことがいえる。
【0037】
さらに実施の形態3においては二つの三電極縦モード結合型櫛電極56,57を複数縦続接続した弾性表面波フィルタについて説明したが、図1、図2に示すように一つあるいは三つ以上の三電極縦モード結合型櫛電極で構成されている弾性表面波フィルタについても、それぞれの三電極縦モード結合型櫛電極の第1及び第2の反射器電極を実施の形態1のように構成することにより同様の効果が得られるものである。
【0038】
【発明の効果】
以上本発明によると、通過周波数帯域近傍のスプリアスを抑制し、帯域外減衰量を十分に有する弾性表面波フィルタを提供することができる。従ってこの弾性表面波フィルタを用いる携帯電話などの無線機器の高性能化及び回路の簡素化を図ることができる。
【図面の簡単な説明】
【図1】 本発明の参考例1における弾性表面波フィルタの上面図
【図2】 図1に示す弾性表面波フィルタの周波数特性曲線図
【図3】 本発明の参考例1における弾性表面波フィルタの周波数特性曲線図
【図4】 本発明の参考例2における弾性表面波フィルタの上面図
【図5】 図4に示す弾性表面波フィルタの周波数特性曲線図
【図6】 本発明の参考例2における弾性表面波フィルタの周波数特性曲線図
【図7】 本発明の実施の形態1における弾性表面波フィルタの上面図
【図8】 本発明の実施の形態1における弾性表面波フィルタの周波数特性曲線図
【図9】 図8の要部拡大図
【図10】 本発明の実施の形態1における弾性表面波フィルタの周波数特性曲線図
【図11】 図10の要部拡大図
【図12】 従来の弾性表面波フィルタの上面図
【符号の説明】
10 圧電基板
11 第1の櫛型電極
12 第2の櫛型電極
13 第3の櫛型電極
14 第1の反射器電極
15 第2の反射器電極
30 圧電基板
31 第1の櫛型電極
32 第2の櫛型電極
33 第3の櫛型電極
34 第1の反射器電極
34a 反射器電極群
34b 反射器電極群
35 第2の反射器電極
35a 反射器電極群
35b 反射器電極群
50 圧電基板
51 第1の櫛型電極
52 第2の櫛型電極
53 第3の櫛型電極
54 第1の反射器電極
54a 反射器電極群
54b 反射器電極群
54c 反射器電極群
55 第2の反射器電極
55a 反射器電極群
55b 反射器電極群
55c 反射器電極群
56 三電極縦モード結合型櫛電極
57 三電極縦モード結合型櫛電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave filter used for, for example, a high-frequency circuit in a wireless communication device.
[0002]
[Prior art]
Conventionally, as a surface acoustic wave filter suitable for the RF stage, a longitudinal mode coupled resonator type surface acoustic wave filter is well known, and a high attenuation can be selectively ensured in order to simplify the circuit and improve the performance. Things are desired.
[0003]
Hereinafter, a surface acoustic wave filter using a conventional longitudinal mode coupled design will be described.
[0004]
FIG. 12 is a top view of a conventional longitudinal mode coupled surface acoustic wave filter.
[0005]
Three-electrode comb electrodes 81 and 82 surrounded by an alternate long and short dash line are connected in cascade on the piezoelectric substrate 80. The three-electrode comb electrodes 81 and 82 are first comb-shaped electrodes 81a and 82a, second comb-shaped electrodes 81b and 82b, third comb-shaped electrodes 81c and 82c surrounded by dotted lines, and reflections on both sides thereof. Electrode electrodes 81d and 82d are arranged in the surface wave propagation direction.
[0006]
In the first comb electrode 81 a of the three-electrode comb electrode 81, one of the opposing electrode fingers is connected to the output terminal 83 and the other is connected to the ground terminal 85. The first comb electrode 82 a of the three-electrode comb electrode 82 also has one of the opposing electrode fingers connected to the output terminal 84 and the other connected to the ground terminal 86.
[0007]
A surface wave is excited by applying a voltage to the first comb electrodes 81a and 82a of the three-electrode comb electrodes 81 and 82, and energy is confined by the reflector electrodes 81d and 82d, thereby forming a filter characteristic. .
[0008]
The reflector electrodes 81d and 82d were formed with a constant electrode finger width and electrode finger interval.
[0009]
[Problems to be solved by the invention]
The reflector electrode characteristic is formed by a pass frequency range with good reflection efficiency and a periodic slope characteristic on both sides thereof. Therefore, in the above configuration, the periodic characteristic of the reflector electrode appears as a waveform near the pass band, and spurious is generated. As a result, there is a problem that it is difficult to secure an attenuation near the pass frequency band.
[0010]
Therefore, an object of the present invention is to provide a surface acoustic wave filter that can sufficiently secure an attenuation near the pass frequency band.
[0011]
[Means for Solving the Problems]
To achieve this object, a surface acoustic wave filter according to the present invention includes a piezoelectric substrate, a first comb electrode provided on the piezoelectric substrate, and both sides of the first comb electrode in the surface wave propagation direction. And the first and second reflector electrodes provided so as to sandwich the second and third comb electrodes, and a plurality of the reflector electrodes are provided. The reflector electrode pitch of the electrode fingers (electrode finger width + electrode finger interval width) is divided into a plurality of reflector electrode groups, and the reflector electrode pitch differs between the reflector electrode groups. The reflector electrode pitches of the adjacent reflector electrode groups have a difference of 0.05% or more, and disturb the periodic slope characteristics near the pass frequency band of the reflector electrodes. Therefore, the above object can be achieved by suppressing spurious.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, there is provided a piezoelectric substrate, a first comb electrode provided on the piezoelectric substrate, and first electrodes provided on both sides of the first comb electrode in the surface wave propagation direction. 2 and a third comb-shaped electrode, and first and second reflector electrodes provided so as to sandwich the second and third comb-shaped electrodes, and the reflector electrode includes a plurality of electrode fingers. The reflector electrode pitch (electrode finger width + electrode finger interval width) is constant, and is divided into a plurality of reflector electrode groups, and the reflector electrode pitch is different between each of the reflector electrode groups, and adjacent to each other. The reflector electrode pitch of the reflector electrode group is a surface acoustic wave filter having a difference of 0.05% or more , and can sufficiently secure an attenuation near the pass frequency band.
[0013]
Embodiments of the present invention will be described below with reference to the drawings.
[0014]
( Reference Example 1 )
FIG. 1 is a top view of a surface acoustic wave filter according to Reference Example 1 of the present invention.
[0015]
On the piezoelectric substrate 10, the 1st comb-shaped electrode 11 and the 2nd, 3rd comb-shaped electrodes 12 and 13 are arrange | positioned at the both sides of the surface wave propagation | transmission direction, The 1st reflector electrode 14 and those on both sides A second reflector electrode 15 is provided. The reflector electrode pitch of the first and second reflector electrodes 14 and 15 is gradually decreased as the distance from the adjacent second and third comb electrodes 12 and 13 increases.
[0016]
With this configuration, the characteristics of the first and second reflector electrodes 14 and 15 are as shown in FIG. 2, and the reflection efficiency on the low frequency side in the vicinity of the passband can be lowered as compared with the prior art.
[0017]
Further, when the reflector electrode pitch of the first and second reflector electrodes 14 and 15 is greatly changed as the distance from the adjacent second and third comb electrodes 12 and 13 increases, as shown in FIG. The reflection efficiency on the high frequency side in the vicinity of the pass band can be lowered.
[0018]
That is, the reflector electrode pitch of the first and second reflector electrodes 14 and 15 is not constant, but changes the reflection characteristics and suppresses the occurrence of spurious, thereby reducing the low frequency side or high frequency near the passband. Sufficient out-of-band attenuation on the frequency side can be ensured.
[0019]
( Reference Example 2 )
FIG. 4 is a top view of a surface acoustic wave filter according to Reference Example 2 of the present invention.
[0020]
On the piezoelectric substrate 30, the 1st comb-shaped electrode 31 and the 2nd, 3rd comb-shaped electrodes 32 and 33 are arrange | positioned on the both sides of the surface wave propagation direction, and the 1st reflector electrode 34 and the both sides are arrange | positioned. A second reflector electrode 35 is provided. The first and second reflector electrodes 34 and 35 have different reflector electrode pitches. It is composed of two reflector electrode groups (enclosed by dotted lines in FIG. 4) 34a, 34b, 35a, 35b. The reflector electrode pitch of the reflector electrode groups 34a and 35a is larger than the reflector electrode pitch of the reflector electrode groups 34b and 35b.
[0021]
FIG. 5 is a characteristic diagram of the first and second reflector electrodes 34 and 35 shown in FIG. 4, and the first reflector electrode 34 and 35 are divided into two reflector electrode groups 34a, 34b, 35a and 35b. By doing so, it is possible to reduce the reflection efficiency on the low frequency side in the vicinity of the pass band.
[0022]
Further, if the reflector electrode pitch of the reflector electrode groups 34a and 35a is made smaller than the reflector electrode pitch of the reflector electrode groups 34b and 35b, the reflection efficiency on the high frequency side in the vicinity of the pass band is lowered as shown in FIG. It is possible.
[0023]
That is, the first and second reflector electrodes 34 and 35 are divided into two or more reflector electrode groups, and the pitches of the reflection characteristics are changed by changing the pitch of each reflector electrode so that the respective periods are different. As a result, the reflector characteristics of this portion are flattened, the spurious is suppressed, and the low-frequency side or high-frequency side out-of-band attenuation near the pass band can be sufficiently secured.
[0024]
( Embodiment 1 )
FIG. 7 is a top view of the surface acoustic wave filter according to Embodiment 1 of the present invention.
[0025]
A first comb electrode 51 and second and third comb electrodes 52 and 53 are arranged on both sides of the surface wave propagation direction on the piezoelectric substrate 50, and a first reflector electrode 54 is disposed on both sides thereof. A three-electrode longitudinal mode coupled comb electrode 56 having a second reflector electrode 55 is formed. Moreover, the 1st reflector electrode 54 and the 2nd reflector electrode 55 are comprised by three reflector electrode groups 54a, 54b, 54c, 55a, 55b, 55c from which a reflector electrode pitch differs. The reflector electrode pitch of the reflector electrode groups 54a and 55a is the largest, the reflector electrode groups 54b and 55b are the largest, and the reflector electrode groups 54c and 55c are the smallest.
[0026]
Further, a three-electrode longitudinal mode coupled comb electrode 57 having the same configuration is cascade-connected to the three-electrode longitudinal mode coupled comb electrode 56.
[0027]
In the surface acoustic wave filter having such a configuration, the first and second reflections when the configurations of the reflector electrode groups 54a, 54b, 54c, 55a, 55b, and 55c are as shown in (Table 1). The characteristics of the instrument electrodes 54 and 55 are shown in FIG. FIG. 9 is an enlarged view of a main part of FIG.
[0028]
[Table 1]
Figure 0004534307
[0029]
As can be seen from FIG. 9, the reflector electrode characteristics are changed within a range in which the reflection efficiency of the reflector electrode groups 54a and 55a does not dominate the reflection efficiency of the first and second reflector electrodes 54 and 55. By doing so, it is possible to suppress the spurious on the low frequency side in the vicinity of the pass band and secure the attenuation.
[0030]
That is, it is desirable that the number of electrode fingers of the reflector electrode groups 54a and 55a be 10 to 30. Considering that the reflector electrodes 54a and 55a closest to the second and third comb electrodes 52 and 53 contribute greatly to the reflection efficiency of the first and second reflector electrodes 54 and 55, Even if the number of electrode fingers constituting the first and second reflector electrodes 54 and 55 is changed, the number of electrode fingers in the reflector electrode groups 54a and 55a is preferably 10 to 30.
[0031]
Further, when the number of electrode fingers of the reflector electrode groups 54a and 55a exceeds 30 ((d) in FIG. 9), the reflection efficiency of the reflector electrode groups 54a and 55a becomes dominant, and the first and second It becomes difficult to suppress the spurious near the passband by changing the characteristics of the reflector electrodes 54 and 55. On the other hand, when the number of electrode fingers of the reflector electrode groups 54a and 55a is 9 or less, the reflection efficiency is insufficient and it is difficult to secure desired characteristics.
[0032]
Next, the reflector electrode pitch of the reflector electrode groups 54a and 55a is λa, the reflector electrode pitch of the reflector electrode groups 54b and 55b is λb, and the reflector pitch of the reflector electrode groups 54c and 55c is λc (Table 2). FIG. 10 shows the characteristics of the first and second reflector electrodes 54 and 55 in the configuration as shown in FIG.
[0033]
[Table 2]
Figure 0004534307
[0034]
As can be seen from FIG. 10, in order to secure attenuation on the low frequency side in the vicinity of the pass band, the reflector electrode pitch is larger as it is closer to the second and third comb-shaped electrodes 52 and 53, and is adjacent to each other. The reflector pitch with respect to the reflector electrode group is 0.05% or more, preferably 0.1% or more, and the reflector electrodes have a long distance from the second and third comb electrodes 52 and 53. The reflector electrode pitch should be made smaller for groups.
[0035]
In the first embodiment , the first and second reflector electrodes 54 and 55 are each divided into a plurality of reflector electrode groups, and the distance from the second and third comb electrodes 52 and 53 is long. The reflector electrode pitch was made smaller in the reflector electrode group to suppress the low frequency side spurious near the pass band, and the attenuation was ensured. In order to secure the attenuation amount on the high frequency side, the reflector electrode pitch may be increased as the reflector electrode group has a longer distance from the second and third comb electrodes 52 and 53.
[0036]
Although only the three-electrode longitudinal mode coupled comb electrode 56 has been described, the same applies to the three-electrode longitudinal mode coupled comb electrode 57 having the same configuration.
[0037]
Furthermore, in the third embodiment, the surface acoustic wave filter in which a plurality of two three-electrode longitudinal mode coupled comb electrodes 56 and 57 are connected in cascade has been described. However, as shown in FIGS. Also for the surface acoustic wave filter composed of three-electrode longitudinal mode coupled comb electrodes, the first and second reflector electrodes of the respective three-electrode longitudinal mode coupled comb electrodes are constructed as in the first embodiment. Thus, the same effect can be obtained.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a surface acoustic wave filter that suppresses spurious in the vicinity of the pass frequency band and has a sufficient out-of-band attenuation. Therefore, it is possible to improve the performance and simplify the circuit of a wireless device such as a mobile phone using the surface acoustic wave filter.
[Brief description of the drawings]
1 is a top view of a surface acoustic wave filter in Reference Example 1 of the present invention. FIG. 2 is a frequency characteristic curve diagram of the surface acoustic wave filter shown in FIG. 1. FIG. 3 is a surface acoustic wave filter in Reference Example 1 of the present invention. FIG. 4 is a top view of the surface acoustic wave filter in Reference Example 2 of the present invention. FIG. 5 is a frequency characteristic curve diagram of the surface acoustic wave filter shown in FIG. 4. FIG. 6 is a reference example 2 of the present invention. frequency characteristic curve of the surface acoustic wave filter in definitive first embodiment of a top view of a SAW filter in the first embodiment of the frequency characteristic diagram [7] the present invention of the surface acoustic wave filter 8 the invention FIG. 9 is an enlarged view of the main part of FIG. 8. FIG. 10 is a frequency characteristic curve diagram of the surface acoustic wave filter according to the first embodiment of the present invention. Above the surface acoustic wave filter Figure [Description of the code]
DESCRIPTION OF SYMBOLS 10 Piezoelectric substrate 11 1st comb electrode 12 2nd comb electrode 13 3rd comb electrode 14 1st reflector electrode 15 2nd reflector electrode 30 Piezoelectric substrate 31 1st comb electrode 32 1st Two comb-shaped electrodes 33 Third comb-shaped electrode 34 First reflector electrode 34a Reflector electrode group 34b Reflector electrode group 35 Second reflector electrode 35a Reflector electrode group 35b Reflector electrode group 50 Piezoelectric substrate 51 First comb electrode 52 Second comb electrode 53 Third comb electrode 54 First reflector electrode 54a Reflector electrode group 54b Reflector electrode group 54c Reflector electrode group 55 Second reflector electrode 55a Reflector electrode group 55b Reflector electrode group 55c Reflector electrode group 56 Three-electrode longitudinal mode coupled comb electrode 57 Three-electrode longitudinal mode coupled comb electrode

Claims (2)

圧電基板と、この圧電基板上に設けた第1の櫛型電極と、この第1の櫛型電極のその表面波伝搬方向の両側に設けた第2、第3の櫛型電極と、この第2及び第3の櫛型電極を挟むように設けた第1及び第2の反射器電極とを備え、前記反射器電極は複数本の電極指の反射器電極ピッチ(電極指幅+電極指間隔幅)が一定となる、複数の反射器電極群に分けられ、それぞれの前記反射器電極群の間で前記反射器電極ピッチが異なり、隣り合う前記反射器電極群の反射器電極ピッチ同士は、0.05%以上の差を有している弾性表面波フィルタ。A piezoelectric substrate; a first comb electrode provided on the piezoelectric substrate; second and third comb electrodes provided on both sides of the first comb electrode in the surface wave propagation direction; First and second reflector electrodes provided so as to sandwich the second and third comb electrodes, and the reflector electrode has a reflector electrode pitch of a plurality of electrode fingers (electrode finger width + electrode finger interval). Width) is constant, and is divided into a plurality of reflector electrode groups, the reflector electrode pitch is different between each of the reflector electrode groups, the reflector electrode pitch of the adjacent reflector electrode groups, A surface acoustic wave filter having a difference of 0.05% or more . 前記櫛型電極に隣接する前記反射器電極群の電極指の本数を10本から30本で構成した請求項1記載の弾性表面波フィルタ。The surface acoustic wave filter according to claim 1, wherein the number of electrode fingers of the reflector electrode group adjacent to the comb-shaped electrode is 10 to 30.
JP2000152389A 2000-05-24 2000-05-24 Surface acoustic wave filter Expired - Lifetime JP4534307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152389A JP4534307B2 (en) 2000-05-24 2000-05-24 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000152389A JP4534307B2 (en) 2000-05-24 2000-05-24 Surface acoustic wave filter

Publications (2)

Publication Number Publication Date
JP2001332954A JP2001332954A (en) 2001-11-30
JP4534307B2 true JP4534307B2 (en) 2010-09-01

Family

ID=18657818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152389A Expired - Lifetime JP4534307B2 (en) 2000-05-24 2000-05-24 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP4534307B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10206376B4 (en) * 2002-02-15 2012-10-25 Epcos Ag Resonator filter with improved close selection
JP2003258595A (en) * 2002-02-27 2003-09-12 Fujitsu Media Device Kk Surface acoustic wave device
JP2005244669A (en) 2004-02-26 2005-09-08 Fujitsu Media Device Kk Surface acoustic wave device
JP4766121B2 (en) 2009-02-10 2011-09-07 株式会社デンソー Surface acoustic wave device, manufacturing method thereof, and resonance frequency adjusting method thereof
WO2013121734A1 (en) 2012-02-15 2013-08-22 パナソニック株式会社 Multimode elastic wave element
JP5931507B2 (en) * 2012-02-29 2016-06-08 京セラクリスタルデバイス株式会社 Surface acoustic wave device
WO2013136757A1 (en) * 2012-03-14 2013-09-19 パナソニック株式会社 Elastic wave device
WO2020080463A1 (en) 2018-10-18 2020-04-23 株式会社村田製作所 Elastic wave device, band pass-type filter, duplexer, and multiplexer
CN118041274A (en) * 2024-04-15 2024-05-14 成都频岢微电子有限公司 Reflector structure for improving out-of-band selectivity of surface acoustic wave filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223912A (en) * 1982-06-23 1983-12-26 Nec Corp Surface acoustic wave filter
JPS61208306A (en) * 1985-03-12 1986-09-16 Nec Kansai Ltd Surface acoustic wave resonator
JPH03278606A (en) * 1990-03-28 1991-12-10 Hitachi Ltd Surface acoustic wave resonator and communication equipment using the same
JPH11317643A (en) * 1998-05-06 1999-11-16 Toyo Commun Equip Co Ltd Surface acoustic wave filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165184A (en) * 1998-11-20 2000-06-16 Fujitsu Ltd Surface acoustic wave element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223912A (en) * 1982-06-23 1983-12-26 Nec Corp Surface acoustic wave filter
JPS61208306A (en) * 1985-03-12 1986-09-16 Nec Kansai Ltd Surface acoustic wave resonator
JPH03278606A (en) * 1990-03-28 1991-12-10 Hitachi Ltd Surface acoustic wave resonator and communication equipment using the same
JPH11317643A (en) * 1998-05-06 1999-11-16 Toyo Commun Equip Co Ltd Surface acoustic wave filter

Also Published As

Publication number Publication date
JP2001332954A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
JP3243976B2 (en) Surface acoustic wave filter
JP5942740B2 (en) Ladder type filter and duplexer
JP5299540B2 (en) Surface acoustic wave resonator and surface acoustic wave filter using the same
JP5088412B2 (en) Ladder type elastic wave filter
JP4798319B1 (en) Elastic wave device
JP3228223B2 (en) Surface acoustic wave filter
JP4534307B2 (en) Surface acoustic wave filter
JPH10190394A (en) Surface acoustic wave resonance filter
JP5273247B2 (en) Ladder type filter
JP3896907B2 (en) Surface acoustic wave filter, duplexer, communication device
JP3512777B2 (en) Vertically coupled surface acoustic wave filter
JP3077052B2 (en) Surface acoustic wave resonator filter device
US8222973B2 (en) Elastic wave resonator, ladder filter and duplexer
JPH1188112A (en) Surface acoustic wave element
JP4011035B2 (en) Surface acoustic wave filter and duplexer
JP2011086997A (en) Elastic wave device
US6597261B2 (en) Surface acoustic wave ladder filter using interdigital transducers not involving resonance
EP1420514B1 (en) Surface acoustic wave device
JP4599758B2 (en) Surface acoustic wave resonator and ladder type surface acoustic wave filter
JP2002111444A (en) Coupled surface acoustic wave filter
JP4768113B2 (en) Surface acoustic wave filter
JPH10145183A (en) Surface acoustic wave filter
KR100762053B1 (en) Surface acoustic wave apparatus
JP2000312133A (en) Surface acoustic wave device
JP2007043252A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4534307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term