JP4533190B2 - Injection material - Google Patents

Injection material Download PDF

Info

Publication number
JP4533190B2
JP4533190B2 JP2005059224A JP2005059224A JP4533190B2 JP 4533190 B2 JP4533190 B2 JP 4533190B2 JP 2005059224 A JP2005059224 A JP 2005059224A JP 2005059224 A JP2005059224 A JP 2005059224A JP 4533190 B2 JP4533190 B2 JP 4533190B2
Authority
JP
Japan
Prior art keywords
mass
parts
injection material
powder
silica sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005059224A
Other languages
Japanese (ja)
Other versions
JP2006241316A (en
Inventor
了三 吉田
雅朗 野口
則雄 高橋
誠 福山
康之 大西
秀紀 白旗
崇 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Taiheiyo Materials Corp
Original Assignee
Obayashi Corp
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Taiheiyo Materials Corp filed Critical Obayashi Corp
Priority to JP2005059224A priority Critical patent/JP4533190B2/en
Publication of JP2006241316A publication Critical patent/JP2006241316A/en
Application granted granted Critical
Publication of JP4533190B2 publication Critical patent/JP4533190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、脆弱地盤を強固な地盤に改質するための水硬性の注入材に関する。   The present invention relates to a hydraulic injection material for modifying a fragile ground into a strong ground.

水硬性の地盤改良用注入材としては、主にLW工法に使用される水ガラスとセメントを有効成分としたスラリー状の注入材が実用化されている。従来のLW工法用注入材では粒径の大きい市販のポルトランドセメントをそのまま使用することが多く、またゲル化時間が数分以内と短いため注入スラリーが深部に到達する前に固結することがあり、地盤への浸透性が概して低いものであった。浸透性を向上するために、より細かい粒径のセメントを使用したり、ゲルタイム調整剤を用いてゲル化時間を伸延することで、浸透性の改善が行われてきた。一方、改質地盤が高アルカリになるのを避ける上で水ガラスの代わりに水性コロイダルシリカ(シリカゾル)を用いることも行われており、ゲル化剤に超微粒セメントを使用することにより、ゲル化時間のコントロールを容易にし、広範囲なゲルタイムの選定と浸透性向上が図れることが知られている(例えば、特許文献1参照)。   As a hydraulic ground improvement injection material, a slurry-like injection material mainly composed of water glass and cement used in the LW method has been put into practical use. In the conventional LW method injection material, commercially available Portland cement with a large particle size is often used as it is, and since the gel time is as short as several minutes, the injection slurry may solidify before reaching the depth. The permeability to the ground was generally low. In order to improve the permeability, the permeability has been improved by using a finer particle size cement or by extending the gelation time using a gel time regulator. On the other hand, aqueous colloidal silica (silica sol) is also used instead of water glass to prevent the modified ground from becoming highly alkaline, and gelation is achieved by using ultrafine cement as the gelling agent. It is known that the time can be easily controlled and a wide range of gel times can be selected and the permeability can be improved (for example, see Patent Document 1).

このような注入材でも、対象地盤によっては浸透性が向上せず、結果として地盤改質効果が十分得られない場合がある。特に、砂地等の空隙径のかなり小さい地盤では、注入材中の粒子、特にセメント粒子の粒径によって浸透性が大きく左右される。超微粒子セメントを始めとする微細粒子で材料を構成しても、この種の地盤に対しては浸透性が満足できる状況に至っていないのが実情である。この理由の1つとして、シリカゾルの使用は注入材の粘性を高めるため浸透速度の低下を起こし易いことによる。分散剤を併用すれば有効成分の濃度を低減させることなくこの弊害を解消できるが、併用効果を高めるため分散剤量を増すと凝結が遅延し、固結強度の発現性が低下することから強固な地盤に改質できなくなる。   Even with such an injection material, the permeability may not be improved depending on the target ground, and as a result, the ground improvement effect may not be sufficiently obtained. In particular, in the ground having a considerably small gap diameter such as sand, the permeability is greatly influenced by the particle size of particles in the injection material, particularly cement particles. Even if the material is composed of fine particles such as ultrafine cement, the actual situation is that the state of satisfactory permeability to this type of ground has not been reached. One reason for this is that the use of silica sol increases the viscosity of the injection material and thus tends to reduce the penetration rate. If a dispersant is used in combination, this problem can be resolved without reducing the concentration of the active ingredient, but if the amount of the dispersant is increased to increase the effect of the combination, the setting is delayed and the solidification strength is reduced. It will not be possible to improve the ground.

また、シリカゾル−セメント系の注入材で、ゲル化剤としてのセメントの一部を潜在水硬性物質である高炉スラグ粉末に置換すると、ゲル化剤の反応活性が適度に抑制されるためシリカゾルの早期ゲル化を遅らせることもでき、目立った凝結遅延を生じることなく、長いゲルタイムを確保することも可能になる。更に、セメントやスラグの微粒分を除去すれば、より効果的にゲル化剤としての反応活性を抑制でき、長いゲルタイムを確実に確保することができる上に、一般にスラリー化した際に凝集化し易い微粒分が含まれないことは、注入浸透の支障要因の除去に繋がる(例えば、特許文献2参照)。しかし、この方法では凝集化を抑制できれば浸透し易い微粒子が省かれることになり、砂地のような、例えば2mm以下の小粒子が密になって形成される空隙経路のかなり狭い地盤では浸透性の向上が極めて困難になることに加え、水硬性成分の反応活性も低下するので特に初期強度の発現性低下は避けられない。
特開平10−231481号公報 特開平6−219796号公報
In addition, when a part of the cement as a gelling agent is replaced with a blast furnace slag powder, which is a latent hydraulic substance, in the silica sol-cement-based injection material, the reaction activity of the gelling agent is moderately suppressed, so that the silica sol can be used at an early stage. Gelation can be delayed, and a long gel time can be secured without causing a noticeable setting delay. Furthermore, if the fine particles of cement and slag are removed, the reaction activity as a gelling agent can be suppressed more effectively, a long gel time can be ensured reliably, and in general, it tends to aggregate when slurried. The fact that the fine particles are not contained leads to the removal of the impediment factors for the infusion and penetration (see, for example, Patent Document 2). However, if this method can suppress agglomeration, fine particles that can easily penetrate can be omitted. For example, sandy soil, for example, 2 mm or less of small particles that are densely formed can be permeable. In addition to being extremely difficult to improve, the reaction activity of the hydraulic component is also reduced, so a reduction in the initial strength is inevitable.
Japanese Patent Laid-Open No. 10-231481 JP-A-6-219796

本発明は、所望のゲルタイムを確保でき、従来の注入材では浸透性の向上が図り難かった砂地等の地盤に対しても高い浸透性を示し、初期〜中長期に渡って高い強度発現性を有する強固な地盤に改質できる注入材を提供することを課題とする。   The present invention can secure a desired gel time, shows a high permeability even to the ground such as sand where it was difficult to improve the permeability with conventional injection materials, and exhibits a high strength expression from the initial to the medium to long term. It is an object of the present invention to provide an injection material that can be modified into a strong ground.

本発明者らは、前記課題解決のための検討を重ねた結果、シリカゾルとそのゲル化剤としてセメントとスラグを用いる注入材系で、ゲル化剤粒子の水中での凝集化や擬凝結を防ぐために特定の減水剤とアルカリ金属の硫酸塩を用い、強度発現を伸延させる上で石膏を用い、且つシリカゾルを除く粒子を特定の粒度構成に調整し、これを水で水性スラリー化したものを用いることにより、比較的長いゲルタイムを容易に確保でき、また従来、注入浸透が困難であった砂質地盤のような空隙路の狭い地盤でも十分浸透し、高い固結強度の強固な地盤に改質できることを見出し本発明を完成させた。   As a result of repeated studies for solving the above problems, the present inventors have prevented the aggregation and pseudo-aggregation of gelling agent particles in water in an injection material system using cement and slag as silica sol and its gelling agent. In order to increase the strength development, a specific water reducing agent and an alkali metal sulfate are used, gypsum is used, and the particles excluding silica sol are adjusted to a specific particle size composition, which is made into an aqueous slurry with water. As a result, relatively long gel times can be easily secured, and even the ground with narrow gaps such as sandy ground, which has been difficult to infiltrate in the past, can be sufficiently permeated to improve the solid ground with high consolidation strength. The present invention has been completed.

即ち、本発明は、シリカゾル、セメントクリンカ粉末、スラグ粉末、石膏類、アルカリ金属硫酸塩及びナフタレンスルホン酸系減水剤を含有してなる水性スラリーからなり、シリカゾルを除く全粒子の90体積%以上が10.5μm以下の粒子であり、且つ45体積%までが2.2μm以下の粒子である注入材を提供するものである。   That is, the present invention comprises an aqueous slurry containing silica sol, cement clinker powder, slag powder, gypsum, alkali metal sulfate and naphthalene sulfonic acid-based water reducing agent, and 90% by volume or more of all particles excluding silica sol The present invention provides an injection material having particles of 10.5 μm or less and particles up to 45% by volume of 2.2 μm or less.

本発明の注入材を用いることにより、従来の注入材では注入浸透困難であった礫を殆ど含まない砂質地盤のような空隙路の狭い地盤でも高い浸透性が得られ、注入後の固結強度の発現性も高く、強固な地盤構造を初期から長期に渡って維持できる。また本注入材は、比較的長いゲルタイムも確保でき、その施工使用態様も所謂1、1.5、2ショットでの何れにも適用できることから作業性に富む。   By using the injection material of the present invention, high permeability can be obtained even in a ground having a narrow void path such as a sandy ground that hardly contains injection gravel, which has been difficult to inject with conventional injection materials. It has high strength and can maintain a strong ground structure from the beginning for a long time. Moreover, since this injection material can ensure comparatively long gel time, and its construction use aspect is applicable also to what is called 1, 1.5, and 2 shots, it is rich in workability | operativity.

本発明の注入材に用いるシリカゾルは、水性コロイダルシリカであり、コロイド状態安定のため微量のアルカリイオン又は水素イオンを含むものでも使用できる。アルカリイオン又は水素イオンの含有量は、SiO2/R2O(但し、Rはアルカリ金属又は水素)のモル比でおよそ500以下が好ましい。また、使用するシリカゾルの粒径は特に制限されないが、好ましくは3〜100nm、より好ましくは3〜50nmである。粒径3nm未満のシリカゾルは一般にコロイド状態安定のため比較的大量のアルカリイオン含有を必要とし、SiO2/R2Oのモル比が5を大きく下回って水ガラスに近い値となり、高アルカリ質の改質地盤が形成される虞がある。また100nmを超えるシリカゾルではゲル強度が低い。本注入材中のシリカゾル含有量は以下に記すセメントクリンカ粉末とスラグ粉末の合計含有量100質量部に対し、固形分として5〜100質量部、特に10〜70質量部が好ましい。シリカゾル含有量が5質量部未満では注入後の注入材が固結せずに流冒する虞があり、また100質量部を超えると粘性が上昇し、作業性が悪くなる他、浸透性も低下し易くなる。   The silica sol used for the injecting material of the present invention is aqueous colloidal silica, and it can be used even if it contains a trace amount of alkali ions or hydrogen ions in order to stabilize the colloidal state. The content of alkali ions or hydrogen ions is preferably about 500 or less in terms of a molar ratio of SiO 2 / R 2 O (where R is an alkali metal or hydrogen). The particle size of the silica sol to be used is not particularly limited, but is preferably 3 to 100 nm, more preferably 3 to 50 nm. Silica sol with a particle size of less than 3 nm generally requires a relatively large amount of alkali ions to be stable in the colloidal state, and the SiO2 / R2O molar ratio is much less than 5 and is close to that of water glass. May be formed. Moreover, in the silica sol exceeding 100 nm, the gel strength is low. The silica sol content in the injection material is preferably 5 to 100 parts by mass, particularly 10 to 70 parts by mass as a solid content with respect to 100 parts by mass of the total content of cement clinker powder and slag powder described below. If the silica sol content is less than 5 parts by mass, the injected material after injection may flow without consolidating, and if it exceeds 100 parts by mass, the viscosity will increase, workability will deteriorate, and permeability will also decrease. It becomes easy to do.

本発明の注入材に用いるセメントクリンカ粉末は、石灰石等のセメント原料を約1300〜1450℃で焼成したものを粉砕して得られるもので、主要生成相が水硬性物質であれば限定されない。またセメントクリンカ粉末が含まれた無機粉末を使用しても良い。このような無機粉末として好適なものはセメントであり、例えば、普通ポルトランドセメント、中庸熱ポルトランドセメント等の各種ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメント等の各種混合セメント、エコセメント等の特殊セメントを挙げることができ、2種以上を併用しても良い。本注入材100質量部中のセメントクリンカ粉末の含有量は、5〜50質量部、特に10〜40質量部が好ましい。含有量が5質量部未満ではシリカゾルのゲル化が殆ど進行せず、50質量部を超えると所望のゲルタイムが著しく得難くなる。   The cement clinker powder used for the injection material of the present invention is obtained by pulverizing a cement raw material such as limestone fired at about 1300 to 1450 ° C., and is not limited as long as the main product phase is a hydraulic substance. An inorganic powder containing cement clinker powder may be used. Suitable as such inorganic powder is cement, for example, various portland cements such as ordinary portland cement and moderately heated portland cement, various mixed cements such as blast furnace cement, fly ash cement and silica cement, and special cements such as ecocement. Cement can be mentioned, and two or more kinds may be used in combination. The content of the cement clinker powder in 100 parts by mass of the injection material is preferably 5 to 50 parts by mass, particularly preferably 10 to 40 parts by mass. When the content is less than 5 parts by mass, the gelation of the silica sol hardly proceeds, and when it exceeds 50 parts by mass, it is difficult to obtain a desired gel time.

本発明の注入材に用いるスラグ粉末は、何れのスラグ粉末でも良く、例えば製鋼スラグ、精銅スラグ、脱珪スラグ、脱燐スラグ、下水汚泥溶融スラグ、都市ゴミ溶融スラグ等の粉末が使用できる。スラグ粉末はセメントクリンカ粉末よりもゲル化剤としての反応活性が低いため、瞬結化を防ぎゲルタイムを長く設定することができることから注入地盤深部まで注入材が浸透するのに寄与する。本注入材100質量部中のスラグ粉末の含有量は50〜95質量部、特に60〜90質量部が好ましい。スラグ粉末含有量が50質量部未満では含有効果が得難くなり、また95質量部を超えると初期の固結強度の低下を引き起こすことがある。   The slag powder used for the injecting material of the present invention may be any slag powder, and for example, steelmaking slag, fine copper slag, desiliconized slag, dephosphorized slag, sewage sludge molten slag, municipal waste molten slag and the like can be used. Since slag powder has a lower reaction activity as a gelling agent than cement clinker powder, it can prevent instant setting and set a longer gel time, which contributes to penetration of the injection material deep into the injection ground. The content of the slag powder in 100 parts by mass of the injection material is preferably 50 to 95 parts by mass, particularly preferably 60 to 90 parts by mass. When the slag powder content is less than 50 parts by mass, it is difficult to obtain the inclusion effect. When the slag powder content exceeds 95 parts by mass, the initial consolidation strength may be reduced.

本発明の注入材に用いる石膏類は、無水石膏、半水石膏、二水石膏等の天然石膏の他、化学石膏と称されているものの何れでも良く、2種以上を併用しても良い。好ましくは無水石膏を使用する。石膏類は、専らエトリンガイト生成による初期強度発現性増進作用を付与するため使用される。本注入材100質量部中の石膏類の総含有量は、SO3換算で0.1〜3質量部、特0.15〜2質量部が好ましい。注入材に例えばポルトランドセメントなどの硫酸カルシウム含有物を配合使用する場合は、このような配合物に由来した硫酸カルシウム量を加味した含有量とする。石膏類の総含有量が、SO3換算で0.1質量部未満では含有効果が殆ど得られず、また3質量部を超えると凝結遅延を起し、初期強度の低下や注入成分が流冒する虞がある。   The gypsum used for the injection material of the present invention may be any of natural gypsum such as anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum, or what is called chemical gypsum, or two or more types may be used in combination. Preferably anhydrous gypsum is used. Gypsum is used exclusively for imparting an initial strength development effect by ettringite formation. The total content of gypsum in 100 parts by mass of the injection material is preferably 0.1 to 3 parts by mass, and particularly 0.15 to 2 parts by mass in terms of SO 3. When a calcium sulfate-containing material such as Portland cement is blended and used for the injection material, the content is determined by taking into account the calcium sulfate amount derived from such a compound. If the total content of gypsum is less than 0.1 parts by mass in terms of SO3, the inclusion effect is hardly obtained, and if it exceeds 3 parts by mass, a setting delay occurs, and the initial strength is reduced and the injected components are swept away. There is a fear.

本発明の注入材に用いるアルカリ金属硫酸塩は、リチウム、ナトリウム、カリウムの何れか1種又は2種以上の硫酸化合物である。アルカリ金属硫酸塩は常温では水に溶解し、水性スラリー中でのセメントクリンカ粉末粒子やスラグ粉末粒子の擬凝結を抑制して良好な注入浸透性を確保し、また凝結遅延を起こさないことから初期強度の発現性を低下させることもない。本注入材100質量部中のアルカリ金属硫酸塩の含有量は、0.1〜10質量部、特に0.2〜5質量部が好ましい。0.1質量部未満では含有効果が殆ど得られず、また10質量部を超えると硬化促進作用が強く働き浸透性が低下する。また本発明においては、シリカゾルとアルカリ金属硫酸塩とを組み合せることが重要であり、この2成分の組み合せにより良好な浸透性と十分な固結強度、すなわち、所望の深さまで浸透し、かつ所望の固結強度を達成できる。   The alkali metal sulfate used in the injecting material of the present invention is one or two or more sulfate compounds of lithium, sodium and potassium. Alkali metal sulfate dissolves in water at room temperature, suppresses pseudo-condensation of cement clinker powder particles and slag powder particles in aqueous slurry to ensure good injection permeability and does not cause setting delay There is no reduction in strength. The content of the alkali metal sulfate in 100 parts by mass of the injection material is preferably 0.1 to 10 parts by mass, particularly preferably 0.2 to 5 parts by mass. If the amount is less than 0.1 parts by mass, almost no inclusion effect can be obtained, and if it exceeds 10 parts by mass, the curing accelerating action is strong and the permeability is lowered. Further, in the present invention, it is important to combine silica sol and alkali metal sulfate. The combination of these two components allows good penetration and sufficient consolidation strength, that is, penetration to a desired depth, and desired. The consolidation strength of can be achieved.

本発明の注入材に用いるナフタレンスルホン酸系減水剤は、ナフタレンスルホン酸系の高性能減水剤や高性能AE減水剤であっても良い。より具体的には、ナフタレンスルホン酸塩ホルマリン縮合物、ポリアルキルアリルスルホン酸塩、ナフタレンスルホン酸変性リグニン縮合物、変性リグニンと高縮合芳香族スルホン酸複合体が挙げられる。また、液体でも可溶性粉体の何れでも良い。ナフタレンスルホン酸系減水剤を使用することでシリカゾルのゲル化に支障を及ぼすことなく水性スラリー中でのセメントクリンカ粉末粒子やスラグ粉末粒子の凝集を防ぎ、分散状態を維持できることから、浸透性の向上を図ることができる。本注入材中のナフタレンスルホン酸系減水剤の含有量は、固形分換算で0.05〜3質量部、特に0.1〜2質量部が好ましい。0.05質量部未満では含有効果が殆ど得られず、また3質量部を超えると凝結遅延を起こすことがあり、強固な地盤に改質できないことがある。   The naphthalene sulfonic acid-based water reducing agent used in the injection material of the present invention may be a naphthalene sulfonic acid-based high-performance water reducing agent or a high-performance AE water reducing agent. More specifically, naphthalene sulfonate formalin condensate, polyalkylallyl sulfonate, naphthalene sulfonic acid modified lignin condensate, modified lignin and highly condensed aromatic sulfonic acid complex may be mentioned. Further, either liquid or soluble powder may be used. By using a naphthalene sulfonic acid-based water reducing agent, the cement clinker powder particles and slag powder particles can be prevented from agglomerating in the aqueous slurry without affecting the gelation of the silica sol, and the dispersion state can be maintained, improving the permeability. Can be achieved. The content of the naphthalene sulfonic acid water reducing agent in the injection material is preferably 0.05 to 3 parts by mass, particularly 0.1 to 2 parts by mass in terms of solid content. If the amount is less than 0.05 parts by mass, the content effect is hardly obtained. If the amount exceeds 3 parts by mass, the setting delay may occur, and the ground may not be improved.

また、本発明の注入材は、前記以外の成分も本発明の効果を実質喪失させない範囲で使用することができる。このような成分として、例えば、所望のゲルタイムを設定し易くなり、また長いゲルタイムの確保も容易に行えることからゲルタイム調整剤の使用が推奨される。ゲルタイム調整剤としては特に限定されるものではないが、例えば公知のアルカリ金属炭酸塩、アルカリ金属重炭酸塩、アルカリ金属燐酸塩などの無機塩を挙げることができる。ゲルタイム調整剤を使用する場合の配合量は、水硬性物質及び潜在水硬性物質の合計含有量100質量部に対し、0.1〜15質量部、特に0.2〜10質量部が好ましい。0.1質量部未満では配合効果が得られず、また15質量部を超えると強度発現性が低下することがある。   Moreover, the injection material of this invention can be used for the component other than the above in the range which does not lose the effect of this invention substantially. As such a component, for example, it is recommended to use a gel time adjusting agent because a desired gel time can be easily set and a long gel time can be easily secured. Although it does not specifically limit as a gel time regulator, For example, inorganic salts, such as well-known alkali metal carbonate, alkali metal bicarbonate, alkali metal phosphate, can be mentioned. The blending amount when the gel time adjusting agent is used is preferably 0.1 to 15 parts by mass, particularly preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the total content of the hydraulic substance and the latent hydraulic substance. If it is less than 0.1 part by mass, the blending effect cannot be obtained, and if it exceeds 15 parts by mass, strength development may be reduced.

本発明の注入材は、シリカゾルを除く固形の粒子の粒度構成が、シリカゾル以外の全粒子の90体積%以上、好ましくは95体積%以上が粒径10.5μm以下で、且つシリカゾル以外の全粒子の45体積%以下、好ましくは35体積%以下が粒径2.2μm以下である。粒径10.5μm以下の粒子が90体積%未満では粗粒分が多く含まれることから浸透性が低下することがあり好ましくない。特に、砂質地盤中等の空隙路の狭い、具体的には粒径74μm以下の細粒含有率が20%以下である砂質地盤に対しては殆ど浸透できなくなるので好ましくない。また、粒径2.2μm以下の粒子が45体積%を超えると、特にゲル化剤該当成分の反応活性が高くなり過ぎて注入スラリーが地盤深部にまで達する前に固結したり、凝集化し易くなるため、強固な地盤が得られないことがあるので好ましくない。   The injection material of the present invention has a particle size constitution of solid particles excluding silica sol of 90% by volume or more, preferably 95% by volume or more of all particles other than silica sol, and all particles other than silica sol. 45 volume% or less, preferably 35 volume% or less of the particle size is 2.2 μm or less. Less than 90% by volume of particles having a particle size of 10.5 μm or less is not preferable because a large amount of coarse particles is contained and the permeability may be lowered. In particular, it is not preferable because it hardly penetrates into a sandy ground having a narrow void path such as in a sandy ground, specifically a fine particle content of 74 μm or less and having a fine particle content of 20% or less. In addition, when the particle size of 2.2 μm or less exceeds 45% by volume, the reaction activity of the corresponding component of the gelling agent becomes excessively high, and it is easy to consolidate or agglomerate before the injected slurry reaches the deep part of the ground. Therefore, a strong ground may not be obtained, which is not preferable.

本発明の注入材は、以上のような成分を含有するスラリー状の注入材であり、スラリー化には水が使用される。スラリー濃度としては、5〜75質量%、特に10〜70質量%であることが望ましい。スラリー濃度が5質量%未満では固結化のための有効成分濃度が低くなり過ぎて強固な地盤に改質し難くなる。また、スラリー濃度が75質量%を超えると固型粒子の分散性の低下や粘性が高くなり過ぎ、均質な固結強度の地盤への改質が困難になったり浸透性の低下を起こす虞がある。   The injection material of the present invention is a slurry-like injection material containing the above components, and water is used for slurrying. The slurry concentration is preferably 5 to 75% by mass, particularly 10 to 70% by mass. If the slurry concentration is less than 5% by mass, the active ingredient concentration for consolidation becomes too low, and it becomes difficult to reform into a solid ground. Further, if the slurry concentration exceeds 75% by mass, the dispersibility of the solid particles is lowered and the viscosity becomes too high, and it may be difficult to modify the ground to have a uniform consolidated strength, or the permeability may be lowered. is there.

また、本発明の注入材は、単独の水性スラリーとして施工使用する場合、製造からある程度時間を経た後での使用となるときは、流動状態を保つためモルタルやコンクリートに使用されるような、例えばクエン酸、酒石酸、グルコン酸などのカルボン酸塩やそのアルカリ金属塩などの凝結遅延剤が配合されるのが好ましい。凝結遅延剤の配合量は、水硬性物質及び潜在水硬性物質の合計含有量100質量部に対し、約0.05〜3質量部、特に0.1〜2質量部が好ましい。また、本発明の注入材は施工状況に応じて、シリカゾル及び必要に応じてこれにゲルタイム調整剤を加えたスラリーと、それ以外の成分を配合してなるスラリーを分けて作製し、これを注入時に合流混合又は同時に注入して地盤中で混ざるように施工使用することもできる。この場合、シリカゾル及びゲルタイム調整剤が含まれない水性スラリーのスラリー濃度は、5〜70質量%が望ましく、またシリカゾル及び必要に応じてこれにゲルタイム調整剤を加えてなる水性スラリーのスラリー濃度は、10〜60質量%が望ましい。   In addition, when the injection material of the present invention is used as a single aqueous slurry, when it is used after a certain amount of time from production, it is used for mortar and concrete to maintain a fluid state, for example, It is preferable to incorporate a setting retarder such as a carboxylic acid salt such as citric acid, tartaric acid or gluconic acid or an alkali metal salt thereof. The compounding amount of the setting retarder is preferably about 0.05 to 3 parts by mass, particularly preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the total content of the hydraulic substance and the latent hydraulic substance. Moreover, according to the construction situation, the injection material of the present invention is prepared by separately dividing a slurry obtained by adding a silica sol and, if necessary, a gel time adjusting agent, and a slurry containing other components, and injecting this. Sometimes it can be combined and mixed or injected at the same time and used in the construction to mix in the ground. In this case, the slurry concentration of the aqueous slurry not containing the silica sol and the gel time adjusting agent is desirably 5 to 70% by mass, and the slurry concentration of the aqueous slurry obtained by adding the gel time adjusting agent to the silica sol and if necessary, is 10-60 mass% is desirable.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの結果より何ら制限されるものではない。なお、実施例において使用した原料は以下の通りである。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited at all from these results. In addition, the raw material used in the Example is as follows.

[使用材料]
水硬性混合微粉末
高炉水砕スラグ(新日本製鉄株式会社製)、普通ポルトランドセメント用クリンカ(太平洋セメント株式会社製)、無水石膏(セントラル硝子株式会社製)、ナフタレンスルホン酸系減水剤(マイティ150:花王株式会社製)、中性無水ボウ硝(東ソー株式会社製)、硫酸第一鉄7水和物(試薬特級:和光純薬工業株式会社製)、亜硫酸ナトリウム(試薬特級:関東化学株式会社製)、チオ硫酸ナトリウム(試薬特級:関東化学株式会社製)を使用し、表1に表す含有量および粒度分布となるように水硬性混合微粉末を作製した。ここで、高炉水砕スラグ、普通ポルトランドセメント用クリンカ、無水石膏、中性無水ボウ硝、硫酸第一鉄7水和物、亜硫酸ナトリウム、チオ硫酸ナトリウムについては、チューブミルに一括投入して混合粉砕し、遠心分級機で所望の粒度に調整した。尚、粒度測定はレーザー回折式粒度分布測定装置(HELOS&RODOS)を用いて行なった。
[Materials used]
Hydraulic mixed fine powder Blast furnace granulated slag (manufactured by Nippon Steel Corporation), clinker for ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd.), anhydrous gypsum (manufactured by Central Glass Co., Ltd.), naphthalenesulfonic acid water reducing agent (Mighty 150) : Kao Co., Ltd.), Neutral Anhydrous Bow Glass (manufactured by Tosoh Corporation), Ferrous Sulfate Heptahydrate (Reagent Special Grade: Wako Pure Chemical Industries, Ltd.), Sodium Sulfite (Reagent Special Grade: Kanto Chemical Co., Ltd.) Product) and sodium thiosulfate (special grade reagent: manufactured by Kanto Chemical Co., Inc.), and a hydraulic mixed fine powder was prepared so that the content and particle size distribution shown in Table 1 were obtained. Here, ground granulated blast furnace slag, clinker for ordinary Portland cement, anhydrous gypsum, neutral anhydrous boron nitrate, ferrous sulfate heptahydrate, sodium sulfite and sodium thiosulfate are all put into a tube mill and mixed and ground. And adjusted to the desired particle size with a centrifugal classifier. The particle size was measured using a laser diffraction particle size distribution measuring device (HELOS & RODOS).

シリカゾル
表2に示す物性のシリカゾルを使用した。
ゲルタイム調整剤
炭酸水素ナトリウム(試薬特級:関東化学株式会社製)
Silica Sol A silica sol having the physical properties shown in Table 2 was used.
Gel time adjuster Sodium bicarbonate (special reagent grade: manufactured by Kanto Chemical Co., Inc.)

Figure 0004533190
Figure 0004533190

Figure 0004533190
Figure 0004533190

[注入材の特性評価]
上記材料を用いて下記配合を注入材として砂質地盤への浸透試験、サンドゲルの強度試験およびゲルタイム測定試験を行なった。注入材は、前記作製した各水硬性混合微粉末を水/水硬性混合微粉末重量比190%に調整して約1分間混練した水性スラリーをA液、水/シリカゾルおよびゲルタイム調整剤体積比100%の混合水溶液をB液として用いた。ゲルタイム調整剤はA・B両液混合液のゲルタイムが約10分程度となるよう添加した。ゲルタイムとはA・B両液混合後から流動性を失う時間とした。このA・B両液を1:1の体積比で混合後、直ちに、撹拌装置を取り付けた圧力容器内に投入し、1.0Kgf/cm2の一定圧力で、垂直に立てたφ5×100cmアクリル管に間隙率39%となるよう豊浦砂(平均粒径約200μm、粒径74μm以下の細粒分含有率1%以下、粒径2mm以上の礫分含有率0%の砂質地盤)を充填した供試体の下部より注入した。供試体砂層上部から流出した水あるいはスラリー量をグラウト注入量として測定し、この値をもって浸透性を評価した。尚、供試体は注入前に水で飽和しておき、注入完了は注入開始から15分以内とした。測定したグラウト注入量の結果を表3に表す。多く注入できたもの(グラウト注入量が多いもの)ほど注入浸透性が高い注入材である。また、スラリー硬化後、アクリル管から脱型した硬化供試体をφ5×10cmの円柱状に加工し、材齢6時間で、地盤工学会基準「土の一軸圧縮試験方法」(T511)に準じて一軸圧縮強度の測定を行い、この測定値をもって初期の強度発現性を評価した。一軸圧縮強度の測定結果も表3に表す。
[Characteristic evaluation of injection material]
Using the above materials, a penetration test into sandy ground, a sand gel strength test, and a gel time measurement test were conducted using the following composition as an injection material. As the injection material, an aqueous slurry obtained by adjusting each of the prepared hydraulic mixed fine powders to a water / hydraulic mixed fine powder weight ratio of 190% and kneading for about 1 minute was a liquid A, water / silica sol and gel time adjusting agent volume ratio 100. % Aqueous solution was used as solution B. The gel time adjusting agent was added so that the gel time of the mixed liquid of both A and B was about 10 minutes. The gel time was defined as the time for losing fluidity after mixing both the A and B liquids. After mixing the A and B liquids at a volume ratio of 1: 1, the mixture was immediately put into a pressure vessel equipped with a stirrer, and a φ5 × 100 cm acrylic standing vertically at a constant pressure of 1.0 kgf / cm 2. Filled with Toyoura sand (sandy ground with an average particle size of about 200 μm, a fine particle content of 1 μm or less and a particle size of 2 mm or more and a gravel content of 0% of 0%) to a porosity of 39% The sample was injected from the bottom of the specimen. The amount of water or slurry flowing out from the upper part of the specimen sand layer was measured as the amount of grout injection, and the permeability was evaluated with this value. The specimen was saturated with water before injection, and the injection was completed within 15 minutes from the start of injection. The results of the measured grout injection amount are shown in Table 3. The more injected (the larger the grout injection amount), the higher the injection permeability. In addition, after the slurry is cured, the cured specimen removed from the acrylic tube is processed into a cylindrical shape of φ5 × 10 cm, and the material is 6 hours old according to the Geotechnical Society Standard “Soil Uniaxial Compression Test Method” (T511). Uniaxial compressive strength was measured, and the initial strength development was evaluated using this measured value. The measurement results of uniaxial compressive strength are also shown in Table 3.

また、実施例2の水硬性混合微粉末に対してクエン酸ナトリウム(扶桑工業化学株式会社製)を1重量%添加したものを実施例5として水/水硬性混合微粉末重量比190%に調整して約1分間混練した水性スラリーをA液、水/シリカゾル体積比100%の混合水溶液をB液として用いた。この注入材の試験結果についても表3に表す。   Moreover, what added 1 weight% of sodium citrate (made by Fuso Industrial Chemical Co., Ltd.) with respect to the hydraulic mixed fine powder of Example 2 was adjusted as Example 5 to 190% of water / hydraulic mixed fine powder weight ratio. Then, the aqueous slurry kneaded for about 1 minute was used as liquid A, and a mixed aqueous solution having a water / silica sol volume ratio of 100% was used as liquid B. The test results of this injection material are also shown in Table 3.

Figure 0004533190
Figure 0004533190

表3から明らかなように、シリカゾル、セメントクリンカ粉末、スラグ粉末、石膏類、アルカリ金属硫酸塩及びナフタレンスルホン酸系減水剤を配合しても、粒度分布が本発明の範囲外では十分な浸透性(注入量)及び強度発現性が得られなかった(比較例1〜4)。
また、シリカゾルを配合してもアルカリ金属硫酸塩を配合しない場合は、十分な浸透性及び強度発現性が得られなかった(比較例5〜8)。さらに、ナフタレンスルホン酸系減水剤を配合しない場合も十分な浸透性及び強度発現性が得られなかった。
As is apparent from Table 3, even if silica sol, cement clinker powder, slag powder, gypsum, alkali metal sulfate and naphthalene sulfonic acid water reducing agent are blended, the particle size distribution is sufficiently permeable outside the scope of the present invention. (Injection amount) and strength development were not obtained (Comparative Examples 1 to 4).
Moreover, even if it mix | blended silica sol, when not mix | blending alkali metal sulfate, sufficient permeability and intensity | strength expression were not obtained (Comparative Examples 5-8). Furthermore, sufficient penetrability and strength development were not obtained even when no naphthalenesulfonic acid-based water reducing agent was added.

実施例2の水硬性混合微粉末を用いて上記配合の注入材を作液し、豊浦砂に添加する細粒分を変化させた供試体について浸透試験およびサンドゲルの強度試験を行なった。結果を表4に示す。   Using the hydraulic mixed fine powder of Example 2, an injection material having the above composition was prepared, and a penetration test and a sand gel strength test were performed on the specimens in which the fine particles added to Toyoura sand were changed. The results are shown in Table 4.

Figure 0004533190
Figure 0004533190

Claims (3)

(A)シリカゾル:セメントクリンカ粉末とスラグ粉末の合計含有量100質量部に対し、固形分として5〜100質量部、並びに
下記成分(B)〜(F)
(B)セメントクリンカ粉末:注入材水硬性混合微粉末100質量部中5〜40質量部
(C)スラグ粉末:注入材水硬性混合微粉末100質量部中50〜90質量部
(D)石膏類:注入材水硬性混合微粉末100質量部中SO 3 換算で、0.1〜3質量部
(E)アルカリ金属硫酸塩:注入材水硬性混合微粉末100質量部中0.1〜10質量部、及び
(F)ナフタレンスルホン酸系減水剤:注入材水硬性混合微粉末100質量部中、固形分換算で0.05〜3質量部
を含む水硬性混合微粉末
を含有してなる水性スラリーからなり、シリカゾルを除く全粒子の90体積%以上が粒径10.5μm以下の粒子であり、且つ45体積%以下粒径2.2μm以下の粒子である地盤用注入材。
(A) Silica sol : 5 to 100 parts by mass as a solid content with respect to 100 parts by mass of the total content of cement clinker powder and slag powder, and
The following components (B) to (F)
(B) Cement clinker powder : 5 to 40 parts by mass of 100 parts by mass of the injection material hydraulic mixed fine powder ,
(C) Slag powder : 50 to 90 parts by mass in 100 parts by mass of the injection material hydraulic mixed fine powder ,
(D) Gypsum : 0.1-3 parts by mass in terms of SO 3 in 100 parts by mass of the injection material hydraulic mixed fine powder ,
(E) Alkali metal sulfate : 0.1 to 10 parts by mass in 100 parts by mass of the injection material hydraulic mixed fine powder, and
(F) Naphthalenesulfonic acid-based water reducing agent : 0.05 to 3 parts by mass in terms of solid content in 100 parts by mass of the injection material hydraulic mixed fine powder
90% by volume or more of all particles excluding silica sol are particles having a particle size of 10.5 μm or less, and 45% by volume or less are particles comprising an aqueous slurry containing a hydraulic mixed fine powder containing An injecting material for ground, which is a particle having a diameter of 2.2 μm or less.
水性スラリーがゲルタイム調整剤を含有する請求項1記載の注入材。   The injection material according to claim 1, wherein the aqueous slurry contains a gel time adjusting agent. 砂質地盤用注入材である請求項1又は2記載の注入材。   The injection material according to claim 1 or 2, which is an injection material for sandy ground.
JP2005059224A 2005-03-03 2005-03-03 Injection material Active JP4533190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059224A JP4533190B2 (en) 2005-03-03 2005-03-03 Injection material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059224A JP4533190B2 (en) 2005-03-03 2005-03-03 Injection material

Publications (2)

Publication Number Publication Date
JP2006241316A JP2006241316A (en) 2006-09-14
JP4533190B2 true JP4533190B2 (en) 2010-09-01

Family

ID=37048038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059224A Active JP4533190B2 (en) 2005-03-03 2005-03-03 Injection material

Country Status (1)

Country Link
JP (1) JP4533190B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793878A (en) * 2018-07-09 2018-11-13 中国石油天然气集团公司 A kind of cement base is high-strength not to disperse grouting material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051825B2 (en) * 2006-11-30 2012-10-17 太平洋マテリアル株式会社 Water stop material
JP5294371B2 (en) * 2007-01-19 2013-09-18 太平洋マテリアル株式会社 Injection material
WO2011115245A1 (en) * 2010-03-19 2011-09-22 電気化学工業株式会社 Injection material for repairing cracks in concrete, method for manufacturing same, and injection method using same
JP5717441B2 (en) * 2010-12-28 2015-05-13 太平洋マテリアル株式会社 Injection material
JP7323464B2 (en) 2020-01-10 2023-08-08 太平洋セメント株式会社 SOIL IMPROVEMENT MATERIAL AND SOIL IMPROVEMENT METHOD USING THE SAME
WO2021161637A1 (en) * 2020-02-14 2021-08-19 花王株式会社 Ground improvement method
CN111875269A (en) * 2020-08-11 2020-11-03 汪文杰 Calcium sulfate gypsum and preparation method thereof
JP7326384B2 (en) * 2021-06-23 2023-08-15 花王株式会社 Ground improvement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109245A (en) * 1989-09-21 1991-05-09 Nippon Cement Co Ltd Injection material for repairing concrete structure
JPH08253765A (en) * 1995-03-17 1996-10-01 Kyokado Eng Co Ltd Ground cementing material
JPH09255378A (en) * 1996-03-21 1997-09-30 Chichibu Onoda Cement Corp Super fine particle injecting material and its production
JPH10168451A (en) * 1996-12-13 1998-06-23 Mitsui Chem Inc Suspension grout and method for grouting and solidifying ground by using it
JPH1161125A (en) * 1997-08-22 1999-03-05 Chichibu Onoda Cement Corp Grouting material
JP2004231884A (en) * 2003-01-31 2004-08-19 Taiheiyo Material Kk Injection material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109245A (en) * 1989-09-21 1991-05-09 Nippon Cement Co Ltd Injection material for repairing concrete structure
JPH08253765A (en) * 1995-03-17 1996-10-01 Kyokado Eng Co Ltd Ground cementing material
JPH09255378A (en) * 1996-03-21 1997-09-30 Chichibu Onoda Cement Corp Super fine particle injecting material and its production
JPH10168451A (en) * 1996-12-13 1998-06-23 Mitsui Chem Inc Suspension grout and method for grouting and solidifying ground by using it
JPH1161125A (en) * 1997-08-22 1999-03-05 Chichibu Onoda Cement Corp Grouting material
JP2004231884A (en) * 2003-01-31 2004-08-19 Taiheiyo Material Kk Injection material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793878A (en) * 2018-07-09 2018-11-13 中国石油天然气集团公司 A kind of cement base is high-strength not to disperse grouting material
CN108793878B (en) * 2018-07-09 2021-02-19 中国石油天然气集团公司 Cement-based high-strength non-dispersive grouting material

Also Published As

Publication number Publication date
JP2006241316A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4533190B2 (en) Injection material
KR101343803B1 (en) Concrete composition using the blast-furnace slag and method for the preparation thereof
JP5047745B2 (en) Ground improvement material
KR101610146B1 (en) Admixtures composition and mortar and concrete composition for revealing high early strength including the same
JP2010159347A (en) Soil-solidifying material
JP6032830B2 (en) Cement-based injection material
JP2004231884A (en) Injection material
JP2020090622A (en) Hardening material, hardening material liquid, soil stabilization agent, manufacturing method of the agent, and foundation stabilization method
JPWO2019142775A1 (en) High-strength grout material composition and high-strength grout mortar using it
JP2001234167A (en) Ultra fast-curing injection material and injection process using the same
JP2003049164A (en) Grouting material
KR100587178B1 (en) Multipurpose Cement Admixture, And Method For Forming Cement Matrix Using The Same
JP2008031305A (en) Grouting material for stabilizing soil
JP7299869B2 (en) Ground improvement method
JP4535793B2 (en) Ground injection material
JP2011079990A (en) Grouting material
JPH1161125A (en) Grouting material
JP5294371B2 (en) Injection material
JP5717441B2 (en) Injection material
JP5051825B2 (en) Water stop material
JP4234924B2 (en) Ground improvement method
JP2021195385A (en) Liquid chemical for stabilizing soil, production method of liquid chemical, and ground stabilization method
JP4162397B2 (en) Ground improvement method
KR101904925B1 (en) Cement-based gelling material composition and ground reinforcement method using the same
CN106032314B (en) A kind of concrete and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Ref document number: 4533190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250