JP4532971B2 - Magnesia sintered body with excellent durability - Google Patents

Magnesia sintered body with excellent durability Download PDF

Info

Publication number
JP4532971B2
JP4532971B2 JP2004124787A JP2004124787A JP4532971B2 JP 4532971 B2 JP4532971 B2 JP 4532971B2 JP 2004124787 A JP2004124787 A JP 2004124787A JP 2004124787 A JP2004124787 A JP 2004124787A JP 4532971 B2 JP4532971 B2 JP 4532971B2
Authority
JP
Japan
Prior art keywords
magnesia
weight
sintered body
splash
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004124787A
Other languages
Japanese (ja)
Other versions
JP2005306652A (en
Inventor
宏司 大西
浩二 平下
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2004124787A priority Critical patent/JP4532971B2/en
Publication of JP2005306652A publication Critical patent/JP2005306652A/en
Application granted granted Critical
Publication of JP4532971B2 publication Critical patent/JP4532971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、耐久性にすぐれたマグネシア焼結体に関する。なお、本発明でいう耐久性とは、耐熱衝撃抵抗性や耐食性だけでなく、加熱・冷却の繰り返しによる変形や粒子離脱に対する安定性を意味する。   The present invention relates to a magnesia sintered body excellent in durability. The durability as used in the present invention means not only thermal shock resistance and corrosion resistance, but also stability against deformation and particle detachment due to repeated heating and cooling.

マグネシア焼結体は耐熱温度が高く、代表的な塩基性材料で、古くから金属溶解用るつぼなどに使用されている。
最近、磁気記録媒体のニーズが高まり、磁気テープはオーディオ分野などに広く使用されているが、従来の磁気テープは、強磁性粉末をバインダーに分散させて塗布する方法が用いられていたが、最近の高密度記録のニーズに対応して、Co−Ni合金などの金属磁性材料をポリエステルフィルム、ポリイミドフィルムなどの非磁性支持体上に蒸着、スパッタリング、イオンプレーティング等の方法により金属薄膜を形成した金属薄膜型磁気記録媒体が使われるようになってきた。これらの方法の中で磁性薄膜製造に適した方法として、マグネシア製蒸発源用るつぼに磁性金属を入れて、この磁性金属に電子ビームを照射して磁性金属を溶解させて蒸着する方法が広く採用されている。しかしながら、蒸着時にはスプラッシュと呼ばれる現象が見られるが、このスプラッシュとは、るつぼから脱粒した粒子が溶解した磁性金属に混入し、その粒子に電子ビームがあたって粒子が飛び出し、支持体にピンホールを開けてしまい、このピンホールが磁性記録媒体の特性劣化を引き起こす問題がある。
The magnesia sintered body has a high heat-resistant temperature and is a typical basic material, and has been used for crucibles for melting metals for a long time.
Recently, there has been a growing need for magnetic recording media, and magnetic tapes are widely used in the audio field and the like, but conventional magnetic tapes have been used by dispersing ferromagnetic powder in a binder and applying it recently. In response to the needs of high-density recording, metal magnetic materials such as Co-Ni alloys were deposited on non-magnetic supports such as polyester films and polyimide films by sputtering, ion plating, and other methods. Metal thin film type magnetic recording media have come to be used. Among these methods, as a method suitable for the production of magnetic thin films, a method of depositing a magnetic metal in a magnesia crucible for evaporation source and irradiating the magnetic metal with an electron beam to dissolve the magnetic metal and depositing is widely adopted. Has been. However, a phenomenon called splash is observed at the time of vapor deposition, but this splash is a mixture of particles that have been shed from the crucible and dissolved in the magnetic metal. There is a problem that this pinhole causes deterioration of characteristics of the magnetic recording medium.

この問題を解決する方法として、特許文献1にマグネシア純度を向上させる方法が開示されているが、ただ単にマグネシア純度の向上だけではスプラッシュを低減することはできない。また、特許文献2には不純物酸化物の含有率を0.5重量%以下にすることが開示されているものの十分に満足できるものではない。   As a method for solving this problem, Patent Document 1 discloses a method for improving magnesia purity, but it is not possible to reduce splash by simply improving magnesia purity. Further, although Patent Document 2 discloses that the content of impurity oxide is 0.5% by weight or less, it is not fully satisfactory.

さらに、磁性記録媒体の生産性向上を目的として、連続長時間の成膜や大きい成膜速度を確保するために電子ビーム強度を高めることがなされているが、電子ビーム強度を高めるほどスプラッシュが起こりやすくなることから、スプラッシュの発生が起こらない蒸着源用るつぼが求められている。また、加熱・冷却により、るつぼの体積変化によりクラックが発生し、耐久性に劣る問題もある。
特公平5−19766号公報 特開平11−80938号公報
Furthermore, for the purpose of improving the productivity of magnetic recording media, the electron beam intensity has been increased in order to ensure continuous long-time film formation and a high film formation speed. However, as the electron beam intensity increases, splash occurs. Since it becomes easy, the crucible for vapor deposition sources which does not generate | occur | produce a splash is calculated | required. Further, there is a problem that cracks are generated due to the volume change of the crucible due to heating and cooling, and the durability is inferior.
Japanese Patent Publication No. 5-19766 JP 11-80938 A

本発明の目的は、耐久性が高く、スプラッシュを発生しないマグネシア焼結体を提供する点にある。   An object of the present invention is to provide a magnesia sintered body that has high durability and does not generate splash.

本発明は、前記のような現状を鑑みて鋭意研究を重ねてきた結果、マグネシア含有量だけでなく、CaO及びSiO含有量、不純物量、かさ密度、結晶粒径をある特定の範囲内に制御することにより、スプラッシュの発生がなく、耐久性にすぐれたマグネシア焼結体を見出した。また同時に、スプラッシュの発生は結晶粒界強度が非常に大きな影響を及ぼしており、スプラッシュに対する抵抗性とサンドブラストテストによる摩耗体積とに非常に密接な関係があることも見出した。 In the present invention, as a result of intensive research in view of the current situation as described above, not only the magnesia content but also the CaO and SiO 2 content, the impurity content, the bulk density, and the crystal grain size are within a specific range. By controlling, the inventors have found a magnesia sintered body that is free from splash and has excellent durability. At the same time, it was also found that the occurrence of splash has a great influence on the grain boundary strength, and there is a very close relationship between the resistance to splash and the wear volume by the sandblast test.

即ち、本発明は、(a)マグネシアを95重量%以上含有し、(b)CaO及びSiOを各々0.5〜2重量%含有し、(c)不純物が1重量%以下であり、(d)かさ密度が2.6g/cm以上であり、(e)結晶粒径の累積分布曲線の50%径が70〜150μm、80%径が200〜300μmであることを特徴とするマグネシア焼結体に関する。 That is, the present invention comprises (a) 95% by weight or more of magnesia, (b) 0.5 to 2% by weight of CaO and SiO 2 , (c) 1% by weight or less of impurities, d) Magnesia firing characterized in that the bulk density is 2.6 g / cm 3 or more, and (e) the 50% diameter of the cumulative distribution curve of the crystal grain size is 70 to 150 μm, and the 80% diameter is 200 to 300 μm. Concerning union.

以下に本発明の耐久性にすぐれたマグネシア焼結体が充足すべき各要件について詳細に記載する。   Each requirement to be satisfied by the magnesia sintered body excellent in durability of the present invention will be described in detail below.

(a)マグネシアを95重量%以上含有する点。
本発明においては、マグネシアを95重量%以上、好ましくは97重量%以上含有することが必要である。マグネシア含有量が95重量%未満の場合は、不純物量が増加し、溶融した磁性金属中に溶けだし、表面に浮遊し、スプラッシュの原因となる。また、ガラス相や第2相が多く含有するので、耐熱性や耐食性の低下の原因となるので好ましくない。
(A) The point which contains magnesia 95weight% or more.
In the present invention, it is necessary to contain magnesia at 95% by weight or more, preferably 97% by weight or more. When the content of magnesia is less than 95% by weight, the amount of impurities increases, starts to dissolve in the molten magnetic metal, floats on the surface, and causes splash. Moreover, since it contains many glass phases and 2nd phases, it becomes a cause of the fall of heat resistance and corrosion resistance, and is unpreferable.

(b)CaO及びSiOを各々0.5〜2重量%含有する点。
本発明においてはCaO及びSiOを各々0.5〜2重量%含有することが必要で、とくにCaOを0.7〜1.5重量%、SiOを0.5〜1.2重量%含有することが好ましい。
CaO及びSiOが共存し、各々の含有量が本願発明の範囲内とすることで焼結性の向上だけでなく、結晶粒界強度を大きくすることができ、その結果、耐熱性や耐食性の向上に寄与するだけでなく、粒子離脱が発生しにくくなり、スプラッシュの発生を抑制することができる。CaO及びSiOが各々0.5重量%未満の場合は、焼結性の低下や結晶粒界強度の低下をきたすので好ましくなく、2重量%を超える場合にはその他の不純物と結晶粒界にガラス相や第2相を形成して、耐熱性や耐食性の低下だけでなく、溶融した磁性金属中に溶けて浮遊し、スプラッシュが発生しやすくなるので好ましくない。
(B) CaO and that it contains a SiO 2 respectively 0.5-2 wt%.
In the present invention, it is necessary to contain 0.5 to 2% by weight of CaO and SiO 2 respectively, especially 0.7 to 1.5% by weight of CaO and 0.5 to 1.2% by weight of SiO 2. It is preferable to do.
CaO and SiO 2 coexist, and by making each content within the scope of the present invention, not only the sinterability can be improved, but also the grain boundary strength can be increased. As a result, the heat resistance and corrosion resistance can be increased. In addition to contributing to the improvement, particle separation is less likely to occur and the occurrence of splash can be suppressed. When CaO and SiO 2 are each less than 0.5% by weight, it is not preferable because they cause a decrease in sinterability and a decrease in grain boundary strength. A glass phase or a second phase is formed, which not only lowers heat resistance and corrosion resistance, but also dissolves and floats in the molten magnetic metal, and splash is likely to occur.

(c)不純物が1重量%以下である点。
不純物が1重量%以下、好ましくは0.8重量%以下であることが必要である。本発明での不純物とはマグネシア、CaO及びSiO以外の成分を言うが、不純物が1重量%を超える場合には結晶粒界にガラス相や第2相を多く形成し、耐熱性や耐食性の低下だけでなく、溶融した磁性金属中に溶けて浮遊し、スプラッシュが発生しやすくなるので好ましくない。
(C) The impurity is 1% by weight or less.
It is necessary that the impurities be 1% by weight or less, preferably 0.8% by weight or less. The impurities in the present invention refer to components other than magnesia, CaO and SiO 2 , but when the impurities exceed 1% by weight, many glass phases and second phases are formed at the grain boundaries, and heat resistance and corrosion resistance are improved. This is not preferable because it is not only lowered, but also melts and floats in the molten magnetic metal and splash is likely to occur.

(d)かさ密度が2.6g/cm以上である点。
本発明においては、かさ密度は2.6g/cm以上、好ましくは2.65g/cm以上が必要である。かさ密度が2.6g/cm未満の場合は、焼結体に気孔が多く形成され、強度低下をきたすので好ましくない。なお、本発明では緻密には焼結させていないので、上限は2.8g/cm程度である。
(D) The bulk density is 2.6 g / cm 3 or more.
In the present invention, the bulk density is 2.6 g / cm 3 or more, preferably 2.65 g / cm 3 or more. When the bulk density is less than 2.6 g / cm 3 , many pores are formed in the sintered body and the strength is lowered, which is not preferable. In the present invention, since the sintering is not performed densely, the upper limit is about 2.8 g / cm 3 .

(e)結晶粒径の累積分布曲線の50%径が70〜150μm、80%径が200〜300μmである点。
本発明においては結晶粒径の累積分布曲線(結晶粒径の累積分布曲線とは、測定した結晶粒径をある幅の粒径に区分し、その区分した粒径以上または粒径以下の結晶粒子量の総和の全粒子量に対する割合で示すことを言う。)の50%径が70〜150μm、80%径が200〜300μm、好ましくは50%径が80〜120μm、80%径が210〜250μmであることが必要である。50%径が70μm未満の場合は、粒子離脱が起こりやすくなって、スプラッシュが発生しやすくなる。一方、150μmを越える場合には焼結体強度が低くなるので好ましくない。80%径が200μm未満の場合は結晶粒径分布がシャープになり、結晶粒子の詰まりが悪くなり、結晶粒子の結合力が低下するので好ましくなく、300μmを越える場合には、逆に結晶粒径分布が広くなりすぎて焼結体組織の不均一性が低下して、スプラッシュの発生が起こりやすくなるので好ましくない。
(E) The 50% diameter of the cumulative distribution curve of crystal grain size is 70 to 150 μm, and the 80% diameter is 200 to 300 μm.
In the present invention, the cumulative distribution curve of crystal grain size (the cumulative distribution curve of crystal grain size is a crystal grain having a measured crystal grain size divided into a certain width and having a grain size greater than or less than the grain size. 50% diameter is 70 to 150 μm, 80% diameter is 200 to 300 μm, preferably 50% diameter is 80 to 120 μm, and 80% diameter is 210 to 250 μm. It is necessary to be. When the 50% diameter is less than 70 μm, particle detachment is likely to occur, and splash is likely to occur. On the other hand, when the thickness exceeds 150 μm, the strength of the sintered body is lowered, which is not preferable. If the 80% diameter is less than 200 μm, the crystal grain size distribution becomes sharp and the clogging of the crystal grains worsens, and the bonding force of the crystal grains decreases, which is not preferred. Since the distribution becomes too wide, the non-uniformity of the sintered body structure is lowered, and the occurrence of splash is likely to occur.

本発明においては結晶粒径及び累積分布曲線は下記の方法により測定する。
焼結体を真空中で十分に脱気し、その状態で樹脂を流し込んで、焼結体を樹脂中に埋め、固める。樹脂に埋め込んで固めた焼結体をラップ研磨し、鏡面にまで仕上げる。仕上げた焼結体を顕微鏡で1視野に結晶粒子が100個以上観察できる倍率で観察し、写真撮影する。写真から画像解析により1個1個の結晶の面積を測定し、その値から等価円直径に換算し、換算した等価円直径に形状係数として1.7を乗じた値を結晶粒径とする。500個、好ましくは1000個の結晶粒径を上記方法により測定し、累積分布を取って、50%粒径及び80%粒径を求める。
In the present invention, the crystal grain size and the cumulative distribution curve are measured by the following methods.
The sintered body is sufficiently deaerated in a vacuum, and a resin is poured in that state, and the sintered body is embedded in the resin and hardened. The sintered body embedded in resin and hardened is lapped and finished to a mirror surface. The finished sintered body is observed with a microscope at a magnification at which 100 or more crystal particles can be observed in one field of view, and photographed. The area of each crystal is measured from the photograph by image analysis, converted to an equivalent circle diameter from the value, and a value obtained by multiplying the converted equivalent circle diameter by 1.7 as a shape factor is defined as a crystal grain size. The crystal grain size of 500, preferably 1000, is measured by the above method, and the cumulative distribution is taken to determine the 50% grain size and 80% grain size.

本発明の耐久性にすぐれたマグネシア焼結体は種々の方法で作製できるが、その一例を以下に示す。
マグネシア原料粉体は電融粉体を各粒度に粉砕された粉体を用い、純度は99重量%以上、好ましくは99.5重量%以上の粉体を用いる。CaO及びSiOとしては平均粒子径が50μm以下で、CaO及びSiOの純度が99%重量以上の粉体を用いるが、酸化物だけでなく、炭酸塩、水酸化物の形態あるいはCaOとSiO化合物の形態で用いることができる。目的とする結晶粒径となるように各粒度の粉体を混合し、さらに、所定の組成となるようにCaO及びSiOを添加混合し、水もしくは有機溶剤等の溶媒とバインダー(セルロース、PVA等)の成形助剤を添加して成形用粉体とする。成形はプレス成形、スタンピング成形等の成形法により所望の形状に成形する。また、鋳込成形法を用いる場合は目的となる結晶粒径となるように各粒度のマグネシア粉体と所定の組成となるようにCaO及びSiOを配合し、溶媒、界面活性剤及びバインダーを添加してボールミルでスラリーを作製し、石膏型等の型を用いて上方鋳込成形、充填鋳込成形、振動鋳込成形等の方法により成形する。
得られた成形体を1450〜1700℃、好ましくは1500〜1650℃焼成により焼結体を得る。
Although the magnesia sintered compact excellent in durability of the present invention can be produced by various methods, an example thereof is shown below.
As the magnesia raw material powder, a powder obtained by pulverizing electrofused powder to each particle size is used, and a powder having a purity of 99% by weight or more, preferably 99.5% by weight or more is used. As CaO and SiO 2 , a powder having an average particle diameter of 50 μm or less and a purity of 99% by weight or more of CaO and SiO 2 is used. However, not only oxides but also carbonates, hydroxides, or CaO and SiO 2 are used. It can be used in the form of two compounds. Powders of various particle sizes are mixed so as to have a target crystal grain size, and CaO and SiO 2 are added and mixed so as to have a predetermined composition, and a solvent such as water or an organic solvent and a binder (cellulose, PVA). Etc.) is added to form a molding powder. The molding is performed in a desired shape by a molding method such as press molding or stamping molding. In addition, when using the casting method, magnesia powder of each particle size and CaO and SiO 2 are blended so as to have a predetermined composition so as to obtain a target crystal particle size, and a solvent, a surfactant and a binder are added. It is added and a slurry is produced by a ball mill, and then molded by a method such as upward casting, filling casting, vibration casting, etc. using a mold such as a plaster mold.
The obtained molded body is sintered at 1450 to 1700 ° C., preferably 1500 to 1650 ° C., to obtain a sintered body.

本発明の耐久性マグネシア焼結体は前述の実施例、比較例にかかる表1からも明らかなように、耐久性が高く、スプラッシュを発生しない。その性質を利用して金属溶解用、ノズル等の金属鋳造用やセッター、台板などの焼成用道具類としてすぐれた特性を発揮するだけでなく、金属蒸着用るつぼとしても有用である。   The durable magnesia sintered body of the present invention has high durability and does not generate splash, as is apparent from Table 1 according to the above-described Examples and Comparative Examples. Utilizing these properties, it not only exhibits excellent properties for metal melting, metal casting such as nozzles, and firing tools such as setters and base plates, but it is also useful as a crucible for metal deposition.

以下に実施例および比較例を挙げて、本発明を説明するが、本発明はこれにより何ら限定されるものでない。   Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited thereto.

表1に示す配合重量比で、純度99.5%の電融マグネシア原料の各粒度の粉体を混合したものをマグネシア原料粉体として用いた。この粉体に平均粒子径10μmでCaO純度が99.5重量%の炭酸カルシウム粉体及び平均粒子径が10μmでSiO純度が99.5重量%のケイ石を混合し、水及びバインダーを添加してプレス成形し、燃焼し、100×100×15mmの試料を得た。得られた焼結体特性を表2に示す。
得られた試料のスプラッシュに対する抵抗性を評価するため、サンドブラストによる摩耗特性を評価した。評価方法はブラストノズルと試料が80゜となるように試料をブラストノズルから50mmの位置に置き、ブラスト粉体として36メッシュの電融アルミナ粉体を1kg/分供給し、ブラストノズルへのエアー供給圧力を1.5kgf/cmとし、30秒間ブラストテストし、下式よりブラスト摩耗体積を算出した。
A mixture of powders of various particle sizes of an electrofused magnesia material having a purity of 99.5% at a blending weight ratio shown in Table 1 was used as the magnesia material powder. This powder is mixed with calcium carbonate powder with an average particle diameter of 10 μm and CaO purity of 99.5% by weight, and silica with an average particle diameter of 10 μm and SiO 2 purity of 99.5% by weight, and water and a binder are added. Then, it was press-molded and burned to obtain a sample of 100 × 100 × 15 mm. The obtained sintered body characteristics are shown in Table 2.
In order to evaluate the resistance of the obtained sample to splash, the wear characteristics by sandblasting were evaluated. In the evaluation method, the sample is placed at a position 50 mm from the blast nozzle so that the sample is 80 ° and the blast nozzle is supplied with 1 kg / min of 36 mesh fused alumina powder as blast powder, and air is supplied to the blast nozzle. The pressure was set to 1.5 kgf / cm 2 , a blast test was performed for 30 seconds, and the blast wear volume was calculated from the following formula.

本発明(実施例1)の微構造観察写真Microstructure observation photograph of the present invention (Example 1) 本発明範囲外(比較例1)の微構造観察写真Microstructure observation photograph outside the scope of the present invention (Comparative Example 1)

Claims (1)

(a)マグネシアを95重量%以上含有し、(b)CaO及びSiOを各々0.5〜2重量%含有し、(c)不純物が1重量%以下であり、(d)かさ密度が2.6g/cm以上であり、(e)結晶粒径の累積分布曲線の50%径が70〜150μm、80%径が200〜300μmである、ことを特徴とするマグネシア焼結体。
(A) containing 95% by weight or more of magnesia, (b) containing 0.5 to 2% by weight of CaO and SiO 2 , (c) 1% by weight or less of impurities, and (d) a bulk density of 2 0.6 g / cm 3 or more, and (e) a magnesia sintered body characterized in that the 50% diameter of the cumulative distribution curve of crystal grain size is 70 to 150 μm and the 80% diameter is 200 to 300 μm.
JP2004124787A 2004-04-20 2004-04-20 Magnesia sintered body with excellent durability Expired - Fee Related JP4532971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124787A JP4532971B2 (en) 2004-04-20 2004-04-20 Magnesia sintered body with excellent durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124787A JP4532971B2 (en) 2004-04-20 2004-04-20 Magnesia sintered body with excellent durability

Publications (2)

Publication Number Publication Date
JP2005306652A JP2005306652A (en) 2005-11-04
JP4532971B2 true JP4532971B2 (en) 2010-08-25

Family

ID=35435830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124787A Expired - Fee Related JP4532971B2 (en) 2004-04-20 2004-04-20 Magnesia sintered body with excellent durability

Country Status (1)

Country Link
JP (1) JP4532971B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721947B2 (en) * 2006-04-19 2011-07-13 株式会社ニッカトー Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP2008133146A (en) * 2006-11-27 2008-06-12 Noritake Co Ltd Support for firing solid electrolyte body, method for producing solid electrolyte body, and method for production of the support
KR100814855B1 (en) 2007-02-21 2008-03-20 삼성에스디아이 주식회사 Sintered magnesium oxide, and plasma display panel prepared therefrom
KR100839423B1 (en) 2007-02-21 2008-06-19 삼성에스디아이 주식회사 Sintered magnesium oxide, and plasma display panel prepared therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190218A (en) * 1983-04-12 1984-10-29 Ube Kagaku Kogyo Kk High-density magnesia clinker and its preparation
JPS6183654A (en) * 1984-09-27 1986-04-28 新日本化学工業株式会社 Magnesia clinker and manufacture
JPS61132557A (en) * 1984-11-29 1986-06-20 新日本化学工業株式会社 Magnesia sintered body
JPH01270564A (en) * 1988-04-18 1989-10-27 Kurosaki Refract Co Ltd Dense magnesia carbon brick
JPH03250504A (en) * 1990-02-28 1991-11-08 Shin Nippon Kagaku Kogyo Co Ltd High temperature electric insulating filler and sheath heater filled therewith
JPH0867552A (en) * 1994-06-22 1996-03-12 Mitsubishi Materials Corp Magnesia-titania refractory and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190218A (en) * 1983-04-12 1984-10-29 Ube Kagaku Kogyo Kk High-density magnesia clinker and its preparation
JPS6183654A (en) * 1984-09-27 1986-04-28 新日本化学工業株式会社 Magnesia clinker and manufacture
JPS61132557A (en) * 1984-11-29 1986-06-20 新日本化学工業株式会社 Magnesia sintered body
JPH01270564A (en) * 1988-04-18 1989-10-27 Kurosaki Refract Co Ltd Dense magnesia carbon brick
JPH03250504A (en) * 1990-02-28 1991-11-08 Shin Nippon Kagaku Kogyo Co Ltd High temperature electric insulating filler and sheath heater filled therewith
JPH0867552A (en) * 1994-06-22 1996-03-12 Mitsubishi Materials Corp Magnesia-titania refractory and its production

Also Published As

Publication number Publication date
JP2005306652A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
KR101213241B1 (en) Raw material for zirconia/mullite refractory and plate brick
US8430978B2 (en) Sputtering target and method for production thereof
JP5342810B2 (en) Method for producing Al-based alloy sputtering target material
JP6483803B2 (en) Magnetic material sputtering target and manufacturing method thereof
JP3816595B2 (en) Manufacturing method of sputtering target
JP5305137B2 (en) Ni-W sintered target material for forming Ni alloy intermediate layer of perpendicular magnetic recording medium
CN108137412B (en) Fused zirconia-spinel particles and refractory products obtained from said particles
JP4532971B2 (en) Magnesia sintered body with excellent durability
JP4970003B2 (en) Co-B target material and method for producing the same
JP3984849B2 (en) Ge-Bi alloy target for sputtering and method for producing the same
JPS598666A (en) Chromia magnesia refractories
KR20230020509A (en) Aluminum-scandium composite, aluminum-scandium composite sputtering target and manufacturing method
JP4043425B2 (en) Zirconia heat treatment material
CN109844167A (en) Magnetic material sputtering target and its manufacturing method
JP6227419B2 (en) Method for manufacturing magnetic material sputtering target
JPH01108165A (en) Antiabrasive ceramic material for casting rare earth metal
JP2006307345A (en) Sputtering target
JP7130903B2 (en) Refractory materials for low-melting non-ferrous metals
TW202130842A (en) Sputtering target material
Abolfazli et al. Effect of MgO on the Properties of Alumina-Graphite Based Refractory Including 20 wt% Non-Stabilized ZrO2
JP3830069B2 (en) Method for producing filter material for molten metal
TW202015039A (en) Co-BASED ALLOY FOR USE IN SOFT MAGNETIC LAYER OF MAGNETIC RECORDING MEDIUM
JP2008127587A (en) Method for producing wv-based target material
JP3709451B2 (en) Filter material for molten aluminum
JPH05214524A (en) Magnetic sputtering target and thin magnetic film formed by using the target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees