JP4529434B2 - Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound - Google Patents

Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound Download PDF

Info

Publication number
JP4529434B2
JP4529434B2 JP2003413183A JP2003413183A JP4529434B2 JP 4529434 B2 JP4529434 B2 JP 4529434B2 JP 2003413183 A JP2003413183 A JP 2003413183A JP 2003413183 A JP2003413183 A JP 2003413183A JP 4529434 B2 JP4529434 B2 JP 4529434B2
Authority
JP
Japan
Prior art keywords
copper
copper complex
group
thin film
polysubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003413183A
Other languages
Japanese (ja)
Other versions
JP2005170852A (en
Inventor
大治 原
圭介 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003413183A priority Critical patent/JP4529434B2/en
Publication of JP2005170852A publication Critical patent/JP2005170852A/en
Application granted granted Critical
Publication of JP4529434B2 publication Critical patent/JP4529434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、銅薄膜層の形成に好適な銅錯体及びその製造方法に関するものである。殊に高速高集積回路配線、すなわち、高速演算回路用の銅配線を化学蒸着法により形成させる際に用いるに好適な銅錯体及びその製造方法に関するものである。   The present invention relates to a copper complex suitable for forming a copper thin film layer and a method for producing the same. In particular, the present invention relates to a copper complex suitable for use in forming a high-speed high-integrated circuit wiring, that is, a copper wiring for a high-speed arithmetic circuit, by a chemical vapor deposition method and a method for manufacturing the same.

電子産業の集積回路分野の製造技術において、高集積化かつ高速化の要求が高まっている。現在、集積回路の大部分にアルミニウム配線が使用されているが、高集積化及び高速化の要求にともなって、より電気抵抗が低く、マイグレーション耐性のある銅による配線技術が実用化されつつある。   In the manufacturing technology of the integrated circuit field of the electronics industry, there is an increasing demand for high integration and high speed. Currently, aluminum wiring is used in most integrated circuits, but with the demand for higher integration and higher speed, copper wiring technology with lower electrical resistance and migration resistance is being put into practical use.

銅配線の形成技術については、0価のCuスパッタリング法と二価Cuの溶液メッキ法を組み合わせた方法と、主に一価Cuの有機金属錯体を用いた化学蒸着法(以下MOCVD法と記載)とがある。しかしながら、前者のスパッタ法とメッキ法を組み合わせた方法では、0.07μm以下程度の小さい口径を有する深い溝に対する埋め込みが困難である。これを解決する為にMOCVD法が用いられ、高い深さ/口径比(高アスペクト比)の溝や孔及び段差を凹凸が小さく平滑かつ良好な膜質で被覆することが可能となった。   Regarding the copper wiring formation technology, a combination of a zero-valent Cu sputtering method and a solution plating method of divalent Cu, and a chemical vapor deposition method (hereinafter referred to as MOCVD method) mainly using a monovalent Cu organometallic complex. There is. However, in the former method in which the sputtering method and the plating method are combined, it is difficult to fill a deep groove having a small diameter of about 0.07 μm or less. In order to solve this problem, the MOCVD method has been used, and it has become possible to cover grooves, holes, and steps having a high depth / caliber ratio (high aspect ratio) with a smooth and good film quality with small irregularities.

上記のMOCVD用銅化合物としては既に種々のものが知られている。例えば、特許文献1や特許文献2では、1,1,1,5,5,5−ヘキサフルオロアセチルアセトナト銅(I)ビニルトリメチルシランを用いることを提案している。本銅化合物は、液状である為、供給量を液体流量計で制御でき、蒸気圧も比較的高く、従来の固体の化合物に比し、MOCVD材料としては、使い易くなっている。   Various types of MOCVD copper compounds are already known. For example, Patent Document 1 and Patent Document 2 propose using 1,1,1,5,5,5-hexafluoroacetylacetonato copper (I) vinyltrimethylsilane. Since the present copper compound is in a liquid state, the supply amount can be controlled by a liquid flow meter, the vapor pressure is relatively high, and it is easier to use as an MOCVD material than a conventional solid compound.

しかしながら、ヘキサフルオロアセチルアセトナート銅(I)ビニルトリメチルシラン単独では、MOCVD材料として性能が不十分である。例えば、単独で用いた場合には、Cu(0)金属薄膜の成膜速度が安定せず、均一な薄膜が得られなかったり、基盤以外の装置内面でCu(0)の析出があったりして、安定成膜が困難となる。この問題を解決するためにヘキサフルオロアセチルアセトナート銅(I)ビニルトリメチルシラン錯体に分解促進剤として、ヘキサフルオロアアチルアセトン二水和物を添加する方法が用いられている。しかし当該方法では、錯体の保存安定性が低下する為、更にビニルトリメチルシランを添加し、安定性を維持しなければならなかった。また当該方法ではトリメチルビニルシランが成膜装置内でオリゴマー及びポリマーを形成し、装置内の閉塞原因となるという問題もあった。   However, hexafluoroacetylacetonate copper (I) vinyltrimethylsilane alone has insufficient performance as an MOCVD material. For example, when used alone, the deposition rate of the Cu (0) metal thin film is not stable, a uniform thin film cannot be obtained, or Cu (0) is deposited on the inner surface of the device other than the substrate. Therefore, stable film formation becomes difficult. In order to solve this problem, a method in which hexafluoroacetylacetone dihydrate is added as a decomposition accelerator to a hexafluoroacetylacetonate copper (I) vinyltrimethylsilane complex is used. However, in this method, since the storage stability of the complex is lowered, vinyltrimethylsilane must be further added to maintain the stability. In addition, this method has a problem that trimethylvinylsilane forms oligomers and polymers in the film forming apparatus and causes clogging in the apparatus.

更にヘキサフルオロアセチルアセトナート銅(I)ビニルトリメチルシランは、弗素含有量が高いことから、これを用いMOCVDにより、LSI用銅配線を形成した場合、銅配線組成中に弗素が残存し、TaN,TiN等のバリアメタルに対する密着性が、スパッタリング法によるものに比し、極めて劣ることが問題となっている。そこで、より弗素含有量の低い銅化合物が求められている。   Furthermore, since hexafluoroacetylacetonate copper (I) vinyltrimethylsilane has a high fluorine content, when a copper wiring for LSI is formed by MOCVD using this, fluorine remains in the copper wiring composition, TaN, There is a problem that the adhesion to a barrier metal such as TiN is extremely inferior to that obtained by sputtering. Therefore, a copper compound having a lower fluorine content is desired.

この問題点を解決する為に本発明者らは、既に、特許文献3及び特許文献4に示される銅化合物を提案している。しかしながら、これら特許文献で提案した銅化合物の蒸気圧は、高成膜速度を実現する為にはまだ不十分であり、より高い蒸気圧を有する安定な銅化合物が求めらている。   In order to solve this problem, the present inventors have already proposed copper compounds disclosed in Patent Document 3 and Patent Document 4. However, the vapor pressure of the copper compounds proposed in these patent documents is still insufficient for realizing a high film formation rate, and a stable copper compound having a higher vapor pressure is desired.

すなわち、特に弗素含有量が低く、高蒸気圧特性を有し、気化温度範囲内で安定であり、200℃程度の基板温度で分解して、基板上で選択的に金属薄膜が成膜可能で、かつ長期保存が可能な銅錯体が切望されている。   That is, it has a particularly low fluorine content, high vapor pressure characteristics, is stable within the vaporization temperature range, can be decomposed at a substrate temperature of about 200 ° C., and a metal thin film can be selectively formed on the substrate. In addition, a copper complex that can be stored for a long time is desired.

特許第2132693号Japanese Patent No. 2132693

特許第2622671号Japanese Patent No. 2622671 特開2002−193974号公報JP 2002-193974 A 特開2002−193988号公報JP 2002-193988 A

本発明は上記の課題に鑑みてなされたものであり、蒸気圧が高く、気化が安定的かつ容易で、その銅薄膜の形成速度が制御可能で、保存安定性に優れた低弗素含有量のMOCVD用銅錯体を提供することにある。   The present invention has been made in view of the above problems, and has a high vapor pressure, stable and easy vaporization, control of the formation rate of the copper thin film, and low fluorine content with excellent storage stability. It is to provide a copper complex for MOCVD.

本発明者らは、特定の多置換ビニルシラン化合物を銅錯体に配位もしくは混合した銅錯体及び/又は銅錯体組成物は、熱的に安定であり、蒸気圧が高く、長期安定性に優れたMOCVD材料となることを見出し、本発明を完成させるに至ったものである。   The present inventors have found that a copper complex and / or a copper complex composition obtained by coordinating or mixing a specific polysubstituted vinylsilane compound with a copper complex is thermally stable, has a high vapor pressure, and is excellent in long-term stability. The present inventors have found that it becomes an MOCVD material and have completed the present invention.

すなわち、本発明はCu−MOCVD材料として銅薄膜形成に有用である下記一般式(1)   That is, the present invention is useful for forming a copper thin film as a Cu-MOCVD material.

Figure 0004529434
(式中、Rは、水素原子もしくは、炭素数1乃至20の炭化水素基である。)
で示される多置換ビニルシラン化合物を含んで成る銅錯体及び銅錯体組成物を提供することにある。
Figure 0004529434
(In the formula, R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.)
It is providing the copper complex and copper complex composition which comprise the polysubstituted vinylsilane compound shown by these.

以下、本発明の詳細について説明する。   Details of the present invention will be described below.

上記一般式(1)おいてRは、水素原子もしくは、炭素数1乃至20、好ましくは、銅錯体及び/又は銅錯体組成物の蒸気圧を上昇させるために炭素数1乃至10の炭化水素基である。 In the general formula (1), R 1 is a hydrogen atom or a hydrocarbon having 1 to 20 carbon atoms, preferably a hydrocarbon having 1 to 10 carbon atoms in order to increase the vapor pressure of the copper complex and / or the copper complex composition. It is a group.

炭化水素基Rとしては、特に限定されるものではないが、炭素数1〜20、好ましくは炭素数1〜10のアルキル基、アリール基、アリールアルキル基、アルキルアリール基を挙げることができる。具体的には、例えば、メチル、エチル、ビニル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、tert.−ブチル、n−ペンチル、tert.−アミル、n−ヘキシル、シクロヘキシル、フェニル、トルイル基等をあげることができる。 Examples of the hydrocarbon groups R 1, is not particularly limited, 1 to 20 carbon atoms, and preferable examples thereof include an alkyl group having 1 to 10 carbon atoms, an aryl group, an arylalkyl group, an alkylaryl group. Specifically, for example, methyl, ethyl, vinyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert. -Butyl, n-pentyl, tert. -Amyl, n-hexyl, cyclohexyl, phenyl, toluyl group and the like can be mentioned.

具体的な多置換ビニルシラン化合物としては、テトラビニルシラン、メチルトリビニルシラン、エチルトリビニルシラン、n−プロピルトリビニルシラン、イソプロピルトリビニルシラン、n−ブチルトリビニルシラン、i−ブチルトリビニルシラン、sec−ブチルトリビニルシラン、tert.−ブチルトリビニルシラン、n−ペンチルトリビニルシラン、tert.−アミルトリビニルシラン、n−ヘキシルトリビニルシラン、シクロヘキシルトリビニルシラン、フェニルトリビニルシラン、トルイルトリビニルシランを挙げることができる。   Specific examples of the polysubstituted vinylsilane compound include tetravinylsilane, methyltrivinylsilane, ethyltrivinylsilane, n-propyltrivinylsilane, isopropyltrivinylsilane, n-butyltrivinylsilane, i-butyltrivinylsilane, sec-butyltrivinylsilane, tert. . -Butyltrivinylsilane, n-pentyltrivinylsilane, tert. -Amyltrivinylsilane, n-hexyltrivinylsilane, cyclohexyltrivinylsilane, phenyltrivinylsilane, toluyltrivinylsilane.

多置換ビニルシラン化合物を含んで成る銅錯体としては、下記一般式(2)で示される銅錯体が好ましい。   As a copper complex comprising a polysubstituted vinylsilane compound, a copper complex represented by the following general formula (2) is preferable.

Figure 0004529434
上記一般式(2)おいて、Rは、上記に同じであり、Rは、炭素数1乃至20の炭化水素基である。
Figure 0004529434
In the general formula (2), R 1 is the same as above, and R 2 is a hydrocarbon group having 1 to 20 carbon atoms.

上記一般式(2)おいて、Rは、少なくとも一つの弗素原子を有する炭素数1〜20の弗化炭化水素基である。弗化炭化水素基としては、少なくとも一つの弗素原子を有する炭化水素基であれば特に限定されるものではなく、炭素数1〜20、好ましくは炭素数1〜10の弗化飽和炭化水素基や弗化不飽和炭化水素基等をあげることができる。 In the general formula (2), R f is a fluorinated hydrocarbon group having 1 to 20 carbon atoms having at least one fluorine atom. The fluorinated hydrocarbon group is not particularly limited as long as it is a hydrocarbon group having at least one fluorine atom, and is a fluorinated saturated hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. Examples thereof include a fluorinated unsaturated hydrocarbon group.

弗化飽和炭化水素基としては、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロシクロプロピル基、パーフルオロメチルシクロプロピル基、パーフルオロブチル基、パーフルオロシクロブチル基、パーフルオロペンチル基、パーフルオロシクロペンチル基、パーフルオロメチルシクロペンチル基、パーフルオロヘキシル基、パーフルオロシクロヘキシル基、パーフルオロ−1,2−ジメチルシクロヘキシル基、パーフルオロヘプチル基等のパーフルオロカーボン残基、フルオロメチル基、ジフルオロメチル基、1,1,1−トリフルオロエチル基、2−パーフルオロアルキルエチル基のフルオロハイドロカーボン残基等を挙げることができる。   Examples of the fluorinated saturated hydrocarbon group include trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorocyclopropyl group, perfluoromethylcyclopropyl group, perfluorobutyl group, perfluorocyclobutyl group, Perfluorocarbon residues such as perfluoropentyl group, perfluorocyclopentyl group, perfluoromethylcyclopentyl group, perfluorohexyl group, perfluorocyclohexyl group, perfluoro-1,2-dimethylcyclohexyl group, perfluoroheptyl group, fluoromethyl Group, difluoromethyl group, 1,1,1-trifluoroethyl group, 2-perfluoroalkylethyl group fluorohydrocarbon residue and the like.

更に弗化不飽和炭化水素基としては、例えば、パーフルオロエテニル基、パーフルオロプロペニル基、パーフルオロ−1,3−ブタジエニル基、シクロブテニル基、パーフルオロ−2−ブチニル基、ペンタフルオロフェニル基、パーフルオロトルイル基、ビス(トリフルオロメチル)フェニル基、パーフルオロナフタレニル基、パーフルオロインデニル基、パーフルオロフルオレニル基等を挙げることができる。   Furthermore, examples of the fluorinated unsaturated hydrocarbon group include a perfluoroethenyl group, a perfluoropropenyl group, a perfluoro-1,3-butadienyl group, a cyclobutenyl group, a perfluoro-2-butynyl group, a pentafluorophenyl group, A perfluorotoluyl group, a bis (trifluoromethyl) phenyl group, a perfluoronaphthalenyl group, a perfluoroindenyl group, a perfluorofluorenyl group, and the like can be given.

多置換ビニルシラン化合物を含有してなる銅錯体組成物としては、下記一般式(3)で示される銅錯体と、上記一般式(1)で示される多置換ビニルシラン化合物を含んでなる銅錯体組成物が好ましい。   As a copper complex composition containing a polysubstituted vinylsilane compound, a copper complex composition comprising a copper complex represented by the following general formula (3) and a polysubstituted vinylsilane compound represented by the above general formula (1) Is preferred.

Figure 0004529434
式中、R3は、弗素原子、又は、炭素数1乃至20の炭化水素基である。炭素数1乃至20の炭化水素基としては、上記Rと同様の炭化水素基を挙げることができる。R4は、炭素数1乃至20の炭化水素基であり、上記Rと同様の炭化水素基を挙げることができる。Rどうし、Rどうしは同一でも異なってもよい。nは、0乃至20の整数、好ましくは0乃至10の整数、特に好ましくは0乃至2の整数を表す。Rは、上記に同じである。
Figure 0004529434
In the formula, R 3 is a fluorine atom or a hydrocarbon group having 1 to 20 carbon atoms. Examples of the hydrocarbon group having 1 to 20 carbon atoms include the same hydrocarbon groups as those described above for R 1 . R 4 is a hydrocarbon group having 1 to 20 carbon atoms, and examples thereof include the same hydrocarbon groups as those described above for R 1 . R 3 and R 4 may be the same or different. n represents an integer of 0 to 20, preferably an integer of 0 to 10, particularly preferably an integer of 0 to 2. R f is the same as above.

上記一般式(3)の銅錯体に、上記一般式(1)の多置換ビニルシラン化合物が共存して銅錯体が安定化するメカニズムについては定かではないが、上記一般式(1)の多置換ビニルシラン化合物は、必ずしも最初から銅錯体に配位している必要はない。銅錯体組成物中に多置換ビニルシラン化合物が共存した組成物とすることにより、熱、不純物等の影響で一般式(3)の既配位モノビニルシランが脱離した際に、一部多置換ビニルシラン化合物と置き換わることによって銅錯体の分解が抑制されるからである。   Although the mechanism by which the copper complex of the general formula (1) coexists with the copper complex of the general formula (3) and the copper complex is stabilized is not clear, the polysubstituted vinylsilane of the general formula (1) is not clear. The compound is not necessarily coordinated to the copper complex from the beginning. By making the composition in which the polysubstituted vinylsilane compound coexists in the copper complex composition, when the already coordinated monovinylsilane of the general formula (3) is released due to the influence of heat, impurities, etc., the polysubstituted vinylsilane partially It is because decomposition | disassembly of a copper complex is suppressed by replacing with a compound.

次に上記一般式(2)及び(3)の銅錯体製造の際に用いる原料について説明する。   Next, the raw materials used in the production of the copper complexes of the general formulas (2) and (3) will be described.

銅(I)原料としては、特に限定されるものではないが、塩化銅(I)、臭化銅(I)、沃化銅(I)等のハロゲン化銅(I)化合物や酸化第一銅を用いることができる。   Although it does not specifically limit as a copper (I) raw material, Copper halide (I) compounds, such as copper (I) chloride, copper (I) bromide, copper (I) iodide, and cuprous oxide Can be used.

シリル基置換アルケンとしては、上記一般式(1)の多置換ビニルシラン化合物、及び下記一般式(4)のシリル基置換アルケン   Examples of the silyl group-substituted alkene include a polysubstituted vinylsilane compound represented by the general formula (1) and a silyl group-substituted alkene represented by the following general formula (4).

Figure 0004529434
(式中、Rは、上記に同じ)
を用いることができる。
Figure 0004529434
(Wherein R 4 is the same as above)
Can be used.

βジケトン成分としては、下記一般式(5)及び(6)のβジケトン又は下記一般式(7)及び(8)のβジケトン塩を用いることができる。   As the β diketone component, β diketones of the following general formulas (5) and (6) or β diketone salts of the following general formulas (7) and (8) can be used.

Figure 0004529434
(式中、R2、Rは、上記に同じ。)
Figure 0004529434
(In the formula, R 2 and R f are the same as above.)

Figure 0004529434
(式中、R、Rは、上記に同じ。)
Figure 0004529434
(In the formula, R 3 and R f are the same as above.)

Figure 0004529434
(式中、R、Rは、上記に同じ。Mは、アルカリ金属またはアルカリ土類金属を表す。)
Figure 0004529434
(In the formula, R 2 and R f are the same as above. M represents an alkali metal or an alkaline earth metal.)

Figure 0004529434
(式中、R、Rは、上記に同じ。Mは、アルカリ金属またはアルカリ土類金属を表す。)
上記一般式(2)及び(3)の銅錯体の製造方法については、特に限定されるものではないが、上記一般式(1)の多置換ビニルシラン又は、(4)のシリル基置換アルケンの共存下、上記一般式(5)及び(6)のβジケトンに酸化第一銅を反応させることによって製造することができる。
Figure 0004529434
(In the formula, R 3 and R f are the same as above. M represents an alkali metal or an alkaline earth metal.)
The method for producing the copper complexes of the general formulas (2) and (3) is not particularly limited, but the coexistence of the polysubstituted vinylsilane of the general formula (1) or the silyl group-substituted alkene of (4). Below, it can manufacture by making cuprous oxide react with the beta diketone of the said General formula (5) and (6).

この際の量論比については、特に限定されないが、βジケトン1molに対し、酸化第一銅が0.01mol乃至100mol、好ましくは、0.5mol乃至50mol、特に好ましくは、0.1mol乃至10molの範囲であり、多置換ビニルシラン又は、シリル基置換アルケンが0.01mol乃至500mol、好ましくは、0.5mol乃至250mol、特に好ましくは、0.1mol乃至50molの範囲で添加することができる。この範囲を外れた場合、目的物である銅錯体の収量が低くなったり、精製が困難となる場合がある。   The stoichiometric ratio in this case is not particularly limited, but cuprous oxide is 0.01 mol to 100 mol, preferably 0.5 mol to 50 mol, particularly preferably 0.1 mol to 10 mol, relative to 1 mol of β-diketone. The polysubstituted vinylsilane or the silyl group-substituted alkene can be added in the range of 0.01 mol to 500 mol, preferably 0.5 mol to 250 mol, particularly preferably 0.1 mol to 50 mol. If it is out of this range, the yield of the target copper complex may be low, or purification may be difficult.

上記一般式(1)の多置換ビニルシラン化合物又は、一般式(4)のシリル基置換アルケンの共存下、上記一般式(5)及び(6)のβジケトンに酸化第一銅を反応させる場合、副生する水をモレキュラーシーブ、硫酸マグネシウム、硫酸ナトリウム、炭酸ナトリウム等の脱水剤を共存させて除去することが好ましい。脱水剤を共存させることにより、目的物である銅錯体の収率が向上する場合がある。   When reacting cuprous oxide with the β diketone of the above general formulas (5) and (6) in the presence of the polysubstituted vinylsilane compound of the general formula (1) or the silyl group-substituted alkene of the general formula (4), It is preferable to remove by-product water in the presence of a dehydrating agent such as molecular sieve, magnesium sulfate, sodium sulfate, or sodium carbonate. The coexistence of a dehydrating agent may improve the yield of the target copper complex.

また、上記一般式(2)及び(3)の銅錯体は、上記一般式(1)の多置換ビニルシラン化合物又は、(4)のシリル基置換アルケンの共存下、上記一般式(7)及び(8)のβジケトン塩にハロゲン化銅(I)化合物を反応させることによっても製造することができる。   In addition, the copper complexes of the above general formulas (2) and (3) are prepared by the above general formulas (7) and (7) in the presence of the polysubstituted vinylsilane compound of the above general formula (1) or the silyl group-substituted alkene of (4). It can also be produced by reacting the β diketone salt of 8) with a copper (I) halide compound.

この際の量論比については、特に限定されないが、βジケトン塩1molに対し、ハロゲン化銅(I)化合物が0.01mol乃至100mol、好ましくは、0.5mol乃至50mol、特に好ましくは、0.1mol乃至10molの範囲であり、上記一般式(1)の多置換ビニルシラン又は、(4)シリル基置換アルケンが0.01mol乃至500mol、好ましくは、0.5mol乃至250mol、特に好ましくは、0.1mol乃至50molの範囲で添加することができる。この範囲を外れた場合、目的物である銅錯体の収量が低くなったり、精製が困難となる場合がある。   The stoichiometric ratio at this time is not particularly limited, but the copper (I) halide compound is 0.01 mol to 100 mol, preferably 0.5 mol to 50 mol, particularly preferably 0. The range is from 1 mol to 10 mol, and the polysubstituted vinylsilane of the above general formula (1) or (4) silyl group-substituted alkene is 0.01 mol to 500 mol, preferably 0.5 mol to 250 mol, particularly preferably 0.1 mol. It can be added in a range of up to 50 mol. If it is out of this range, the yield of the target copper complex may be low, or purification may be difficult.

上記一般式(7)及び(8)で示されるβジケトン塩の製造方法としては、上記一般式(5)及び(6)で示されるβジケトンと水素化ナトリウム、水素化カリウム等の水素化アルカリ金属とを反応させるか、又はβジケトンと水素化カルシウム等の水素化アルカリ土類金属とを反応させることにより製造することができる。また、βジケトンと水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属とを反応させるか、又はβジケトンと水酸化マグネシウム、水酸化カルシウム等の水酸化アルカリ土類金属とを反応させることによっても製造できる。この際、副生する水をモレキュラーシーブ、硫酸マグネシウム、硫酸ナトリウム、炭酸ナトリウム等の脱水剤を共存させて除去することが望ましい。脱水剤を共存させることにより、目的物の非対称βジケトン配位銅錯体の収率が向上する場合がある。   The production method of the β-diketone salt represented by the general formulas (7) and (8) includes the β-diketone represented by the general formulas (5) and (6) and an alkali hydride such as sodium hydride and potassium hydride. It can be produced by reacting a metal, or reacting a β-diketone and an alkaline earth metal hydride such as calcium hydride. It is also possible to react a β diketone with an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or react a β diketone with an alkaline earth metal hydroxide such as magnesium hydroxide or calcium hydroxide. Can be manufactured. At this time, it is desirable to remove water produced as a by-product in the presence of a dehydrating agent such as molecular sieve, magnesium sulfate, sodium sulfate, or sodium carbonate. In the presence of a dehydrating agent, the yield of the target asymmetric β-diketone coordination copper complex may be improved.

Mで示されるアルカリ金属及びアルカリ土類金属としては、Li、Na、K、Mg、Ca等が挙げられる。   Examples of the alkali metal and alkaline earth metal represented by M include Li, Na, K, Mg, and Ca.

上記銅錯体を製造する際、溶媒非存在下、又は溶媒存在下で反応を行うことができる。溶媒の種類は、当該技術分野で使用されるものであれば特に限定されるものではない。例えば、n−ペンタン、i−ペンタン、n−ヘキサン、n−ヘプタン、n−デカン等の飽和炭化水素類、トルエン、キシレン、デセン−1等の不飽和炭化水素類、ジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類を挙げることができる。   When producing the copper complex, the reaction can be carried out in the absence of a solvent or in the presence of a solvent. The kind of solvent will not be specifically limited if it is used in the said technical field. For example, saturated hydrocarbons such as n-pentane, i-pentane, n-hexane, n-heptane and n-decane, unsaturated hydrocarbons such as toluene, xylene and decene-1, diethyl ether, tetrahydrofuran and tetrahydropyran And halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, chlorobenzene and the like.

しかしながら、溶媒希釈しない製造法を用いることにより、銅錯体の顕著な収率向上及び反応器当りの収量向上が観られる場合がある。   However, by using a production method that does not dilute the solvent, a significant increase in the yield of the copper complex and an increase in the yield per reactor may be observed.

銅錯体を製造する際の反応温度については、特に限定されないが、生成する銅錯体が分解しない様な温度範囲で行うことが好ましい。通常、工業的に使用されている温度である−78〜200℃の範囲、好ましくは、−50〜150℃の範囲で行うことが好ましい。反応の圧力条件は、加圧下、常圧下、減圧下いずれであっても可能である。   The reaction temperature at the time of producing the copper complex is not particularly limited, but it is preferably performed in a temperature range in which the produced copper complex is not decomposed. Usually, it is carried out in the range of −78 to 200 ° C., preferably in the range of −50 to 150 ° C., which is a temperature used industrially. The pressure conditions for the reaction can be any of under pressure, normal pressure, and reduced pressure.

製造された銅錯体の精製法については特に限定されないが、減圧蒸留及びシリカ、アルミナ、高分子ゲルを用いたカラム分離精製を使用することができる。この際の操作は、当該有機金属化合物合成分野での方法に従えばよい。すなわち、例えば、脱水及び脱酸素された窒素又はアルゴン雰囲気下で行い、使用する溶媒及び精製用のカラム充填剤等は、予め脱水操作を施しておくことが好ましい。この操作により、生成する銅錯体の収量及び純度が向上する場合がある。   Although the purification method of the produced copper complex is not particularly limited, vacuum distillation and column separation purification using silica, alumina, and polymer gel can be used. The operation at this time may follow the method in the organometallic compound synthesis field. That is, for example, the dehydration and deoxygenation is performed in a nitrogen or argon atmosphere, and the solvent to be used and the column filler for purification are preferably subjected to dehydration operations in advance. By this operation, the yield and purity of the produced copper complex may be improved.

本発明の多置換ビニルシラン化合物を含んでなる銅錯体及び/又は銅錯体組成物は、従来の弗素含有βジケトン銅(I)ビニルシラン錯体よりも弗素含有量が低く、安定かつ、蒸気圧が高いため、銅配線用MOCVD材料として好適である。さらに本発明の多置換ビニルシラン化合物を含んでなる銅錯体及び/又は銅錯体組成物は、従来の錯体よりも、成膜温度以下で安定で保存安定性が高く、原料の交換なしに長期にわたりMOCVD成膜が可能である。   The copper complex and / or copper complex composition comprising the polysubstituted vinylsilane compound of the present invention has a lower fluorine content, higher stability, and higher vapor pressure than the conventional fluorine-containing β-diketone copper (I) vinylsilane complex. Suitable as a MOCVD material for copper wiring. Furthermore, the copper complex and / or the copper complex composition comprising the polysubstituted vinylsilane compound of the present invention is more stable and stable at a film forming temperature or lower than conventional complexes, and can be MOCVD for a long time without replacement of raw materials. Film formation is possible.

以下に実施例を示すが、本発明は、これらの実施例によって何ら限定されるものではない。   Examples are shown below, but the present invention is not limited to these Examples.

実施例1
窒素気流下、攪拌装置を有する200mlのシュレンク管に1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン25.0g(127mmol)、酸化第一銅21.9g(153mmol)、テトラビニルシラン52.1g(382mmol)、乾燥n−ペンタン105ml、4A型ゼオライト21.9gを仕込み、室温で24時間攪拌反応させた。4A型ゼオライト及び未反応の酸化第一銅をガラスフィルターで除去し、濾液から、溶媒であるn−ペンタン、未反応の1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン及びテトラビニルシランを減圧条件下留去し、目的物であるビス[1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオナト)銅(I)]テトラビニルシランの濃青色液体28.2g(43.2mmol)を得た。転換率は、68.0%(ヘキサンジオン基準)に相当した。
Example 1
In a 200 ml Schlenk tube equipped with a stirrer under a nitrogen stream, 25.0 g (127 mmol) of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione and 21.9 g (153 mmol) of cuprous oxide ), 52.1 g (382 mmol) of tetravinylsilane, 105 ml of dry n-pentane, and 21.9 g of 4A type zeolite were stirred and reacted at room temperature for 24 hours. 4A-type zeolite and unreacted cuprous oxide were removed with a glass filter, and n-pentane as a solvent, unreacted 1,1,1-trifluoro-5,5-dimethyl-2,4- was removed from the filtrate. Hexanedione and tetravinylsilane were distilled off under reduced pressure, and the target product, bis [1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionat) copper (I)] tetravinylsilane, was obtained. 28.2 g (43.2 mmol) of a dark blue liquid was obtained. The conversion rate corresponded to 68.0% (based on hexanedione).

目的物の元素分析及びH−NMR、13C−NMRの結果は以下の通りであった。
2432SiCu (wt%)
計算値(C:44.1,H:4.9,F:17.4,Cu:19.4,Si:4.3)
測定値(C:43.6,H:4.8,F:17.9,Cu:19.2,Si:4.3)
H−NMR(in C)δ1.04ppm(18H,s,2Bu(C=O))、δ4.6〜5.2ppm(12H,m,4CH=CH−)、δ6.08ppm(2H,s,2(C=O)CH(C=O))
13C−NMR(in C)δ17.1ppm、δ27.6ppm、δ90.4ppm、δ105.6ppm、δ106.9ppm、δ108.6ppmδ182.0ppm、δ206.9ppm
実施例2
窒素気流下、攪拌装置を有する200mlのシュレンク管に1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン12.9g(65.8mmol)、酸化第一銅11.3g(79.0mmol)、イソプロピルトリビニルシラン30.0g(197mmol)、乾燥n−ペンタン100ml、4A型ゼオライト11.3gを仕込み、室温で24時間攪拌反応させた。4A型ゼオライト及び未反応の酸化第一銅をガラスフィルターで除去し、濾液から、溶媒であるn−ペンタン、未反応の1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン及びイソプロピルトリビニルシランを減圧条件下留去し、目的物であるビス[1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオナト)銅(I)]イソプロピルトリビニルシランの濃青色液体19.4g(29.0mmol)を得た。転換率は、88.2%(ヘキサンジオン基準)に相当した。
The results of elemental analysis and 1 H-NMR and 13 C-NMR of the target product were as follows.
C 24 H 32 O 4 F 6 SiCu 2 (wt%)
Calculated value (C: 44.1, H: 4.9, F: 17.4, Cu: 19.4, Si: 4.3)
Measured value (C: 43.6, H: 4.8, F: 17.9, Cu: 19.2, Si: 4.3)
1 H-NMR (in C 6 D 6 ) δ 1.04 ppm (18 H, s, 2 t Bu (C═O)), δ 4.6 to 5.2 ppm (12 H, m, 4 CH 2 ═CH—), δ 6. 08 ppm (2H, s, 2 (C = O) CH (C = O))
13 C-NMR (in C 6 D 6 ) δ 17.1 ppm, δ 27.6 ppm, δ 90.4 ppm, δ 105.6 ppm, δ 106.9 ppm, δ 108.6 ppm δ 182.0 ppm, δ 206.9 ppm
Example 2
1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione 12.9 g (65.8 mmol), cuprous oxide 11.3 g in a 200 ml Schlenk tube having a stirrer under nitrogen flow (79.0 mmol), 30.0 g (197 mmol) of isopropyltrivinylsilane, 100 ml of dry n-pentane, and 11.3 g of 4A zeolite were stirred and reacted at room temperature for 24 hours. 4A-type zeolite and unreacted cuprous oxide were removed with a glass filter, and n-pentane as a solvent, unreacted 1,1,1-trifluoro-5,5-dimethyl-2,4- was removed from the filtrate. Hexanedione and isopropyltrivinylsilane were distilled off under reduced pressure, and the target product bis [1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate) copper (I)] isopropyltriol. 19.4 g (29.0 mmol) of a dark blue liquid of vinylsilane was obtained. The conversion rate corresponded to 88.2% (based on hexanedione).

目的物の元素分析及びH−NMR、13C−NMRの結果は以下の通りであった。
2536SiCu (wt%)
計算値(C:44.8,H:5.4,F:17.0,Cu:19.0,Si:4.2)
測定値(C:45.1,H:5.3,F:16.6,Cu:18.8,Si:4.1)
H−NMR(in C)δ1.063ppm(9.20H,s,Bu(C=O))、δ1.091ppm(3.58H,s,(CHCH−Si)、δ4.75〜4.90ppm(5.26H,m,CH=CH−)、δ6.10ppm(1.00H,s,(C=O)CH(C=O))
13C−NMR(in C)δ12.2ppm、δ17.5ppm,δ27.5ppm、δ42.2ppm、δ90.4ppm、δ103.5ppm、δ104.9ppm、δ206.8ppm
比較例1
窒素気流下、攪拌装置を有する100mlのシュレンク管に1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン5.89g(30.0mmol)、酸化第一銅5.15g(36.0mmol)、ビニルトリメチルシラン15.0g(150mmol)、4A型ゼオライト5.15gを仕込み、室温で24時間攪拌反応させた。4A型ゼオライト及び未反応の酸化第一銅をガラスフィルターで除去し、濾液から、溶媒であるn−ペンタン、未反応の1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン及びビニルトリメチルシランを減圧条件下留去し、更に減圧蒸留により、目的物である(1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオナト)銅(I)ビニルトリメチルシランの濃青色液体9.61g(26.8mmol)を蒸留単離した。収率は、89.2%(ヘキサンジオン基準)に相当した。
The results of elemental analysis and 1 H-NMR and 13 C-NMR of the target product were as follows.
C 25 H 36 O 4 F 6 SiCu 2 (wt%)
Calculated value (C: 44.8, H: 5.4, F: 17.0, Cu: 19.0, Si: 4.2)
Measured value (C: 45.1, H: 5.3, F: 16.6, Cu: 18.8, Si: 4.1)
1 H-NMR (in C 6 D 6 ) δ 1.063 ppm (9.20 H, s, t Bu (C═O)), δ 1.091 ppm (3.58 H, s, (CH 3 ) 2 CH—Si), δ 4.75 to 4.90 ppm (5.26 H, m, CH 2 ═CH—), δ 6.10 ppm (1.00 H, s, (C═O) CH (C═O))
13 C-NMR (in C 6 D 6 ) δ 12.2 ppm, δ 17.5 ppm, δ 27.5 ppm, δ 42.2 ppm, δ 90.4 ppm, δ 103.5 ppm, δ 104.9 ppm, δ 206.8 ppm
Comparative Example 1
Under a nitrogen stream, 5.89 g (30.0 mmol) of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione and 5.15 g of cuprous oxide were added to a 100 ml Schlenk tube having a stirrer. (36.0 mmol), 15.0 g (150 mmol) of vinyltrimethylsilane, and 5.15 g of 4A-type zeolite were charged and stirred at room temperature for 24 hours. 4A-type zeolite and unreacted cuprous oxide were removed with a glass filter, and n-pentane as a solvent, unreacted 1,1,1-trifluoro-5,5-dimethyl-2,4- was removed from the filtrate. Hexanedione and vinyltrimethylsilane were distilled off under reduced pressure, and further, (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate) copper (I ) 9.61 g (26.8 mmol) of a dark blue liquid of vinyltrimethylsilane was isolated by distillation. The yield corresponded to 89.2% (based on hexanedione).

目的物の元素分析及びH−NMRの結果は以下の通りであった。
1322SiCu (wt%)
測定値(C:43.2,H:6.2,F:16.3,Cu:17.4,Si:7.9)
計算値(C:43.5,H:6.1,F:15.9,Cu:17.7,Si:7.8)
H−NMR(in C) δ0.088ppm(9H,s,SiCH)、δ1.08ppm(9H,s,Bu(C=O))、δ4.10ppm(3H,m,CHCH−)、δ6.16ppm(1H,s,(C=O)CH(C=O))
実施例3
比較例1において合成した(1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオナト)銅(I)ビニルトリメチルシランの5.00gにテトラビニルシラン0.25gを添加し、銅錯体組成物とした。
The results of elemental analysis and 1 H-NMR of the target product were as follows.
C 13 H 22 O 2 F 3 SiCu (wt%)
Measured value (C: 43.2, H: 6.2, F: 16.3, Cu: 17.4, Si: 7.9)
Calculated value (C: 43.5, H: 6.1, F: 15.9, Cu: 17.7, Si: 7.8)
1 H-NMR (in C 6 D 6 ) δ 0.088 ppm (9H, s, SiCH 3 ), δ 1.08 ppm (9H, s, t Bu (C═O)), δ 4.10 ppm (3H, m, CH 2 CH−), δ 6.16 ppm (1H, s, (C═O) CH (C═O))
Example 3
To 5.00 g of (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate) copper (I) vinyltrimethylsilane synthesized in Comparative Example 1, 0.25 g of tetravinylsilane was added. A copper complex composition was obtained.

実施例4
比較例1において合成した(1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオナト)銅(I)ビニルトリメチルシランの5.00gにイソプロピルトリビニルシラン0.25gを添加し、銅錯体組成物とした。
Example 4
0.25 g of isopropyltrivinylsilane was added to 5.00 g of (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate) copper (I) vinyltrimethylsilane synthesized in Comparative Example 1. And it was set as the copper complex composition.

実施例5
実施例1〜4、比較例1で合成した銅錯体及び銅錯体組成物を窒素気流下、サンプル瓶に封入し、120℃で72時間の耐熱性試験を実施した。
Example 5
The copper complex and copper complex composition synthesized in Examples 1 to 4 and Comparative Example 1 were sealed in a sample bottle under a nitrogen stream, and a heat resistance test was performed at 120 ° C. for 72 hours.

結果は、比較例1で合成した銅錯体では、黄緑色の沈殿が生じ、不均一となった。それに対して実施例1、2の銅錯体及び実施例3、4の銅錯体組成物は、全て濃青色の均一溶液の状態を維持し、多置換ビニルシラン化合物の含有によって安定性が向上することが確認された。   As a result, in the copper complex synthesized in Comparative Example 1, yellowish green precipitate was generated and became non-uniform. In contrast, the copper complexes of Examples 1 and 2 and the copper complex compositions of Examples 3 and 4 all maintain the state of a dark blue uniform solution, and the stability is improved by the inclusion of the polysubstituted vinylsilane compound. confirmed.

実施例6
50mlのシュレンク管2器を摺り付きパイレックス(登録商標)管で連結し、一方のシュレンク管には、実施例3の銅錯体組成物4.0gを仕込み、もう一方には、1cm角のシリコン基板を仕込み、全系を3.0Paに減圧し、銅錯体組成物を仕込んだシュレンク管を45℃とし、1時間保持した。本操作後、1cm角のシリコン基板には、金属銅光沢にある薄膜が形成されていた。本薄膜をRBS(Rutherford Backscattering Spectrometry)により分析したところ、Cu(0)薄膜がシリコン基板上に形成されていることが確認された。
Example 6
Two 50 ml Schlenk tubes were connected by sliding Pyrex (registered trademark) tubes. One Schlenk tube was charged with 4.0 g of the copper complex composition of Example 3, and the other was a 1 cm square silicon substrate. The whole system was depressurized to 3.0 Pa, and the Schlenk tube charged with the copper complex composition was brought to 45 ° C. and held for 1 hour. After this operation, a thin film having metallic copper luster was formed on a 1 cm square silicon substrate. When this thin film was analyzed by RBS (Rutherford Backscattering Spectrometry), it was confirmed that the Cu (0) thin film was formed on the silicon substrate.

生成銅薄膜表面をSEMにより、観察したところ、50〜100nmの大きさの粒界から成る緻密な連続膜であった。   When the surface of the formed copper thin film was observed by SEM, it was a dense continuous film composed of grain boundaries having a size of 50 to 100 nm.

生成したCu(0)薄膜にスコッチテープを貼り、引き剥がしたところ、全くCu(0)薄膜は剥離しなかった。すなわち本Cu(0)薄膜は、シリコンに対し密着性が良いことが解った。   When a scotch tape was applied to the produced Cu (0) thin film and peeled off, the Cu (0) thin film did not peel at all. That is, it was found that the Cu (0) thin film has good adhesion to silicon.

比較例2
実施例6において実施例3の銅錯体組成物4.0gに変えて、ヘキサフルオロアセチルアセトナト銅(I)ビニルトリメチルシラン4.0gを用いたこと以外は、実施例6と同様にして、シリコン基板上にCu(0)薄膜を形成した。シリコン基板には、赤茶色の金属光沢のない薄膜が形成されていた。
Comparative Example 2
In Example 6, except that 4.0 g of hexafluoroacetylacetonato copper (I) vinyltrimethylsilane was used instead of 4.0 g of the copper complex composition of Example 3, silicon was obtained in the same manner as in Example 6. A Cu (0) thin film was formed on the substrate. On the silicon substrate, a reddish brown thin film without metallic luster was formed.

生成銅薄膜表面をSEMにより、観察したところ、200〜500nmの大きさの粒界から成り、粗雑な不連続膜であった。また、Cu(0)薄膜が形成されず、シリコン基板が露出した部分が多く見られた。   When the surface of the formed copper thin film was observed by SEM, it was a rough discontinuous film consisting of grain boundaries having a size of 200 to 500 nm. In addition, a Cu (0) thin film was not formed, and many portions where the silicon substrate was exposed were observed.

生成したCu(0)薄膜にスコッチテープを貼り、引き剥がしたところ、Cu(0)薄膜が剥離し、シリコン基板が完全に露出した。すなわち、本Cu(0)薄膜は、シリコンに対し、密着性が極めて悪いことが解った。   When the scotch tape was applied to the produced Cu (0) thin film and peeled off, the Cu (0) thin film was peeled off and the silicon substrate was completely exposed. That is, the present Cu (0) thin film was found to have extremely poor adhesion to silicon.

実施例7
実施例6においてシリコン基板に代えて、表面に窒化チタン薄膜が形成されたシリコン基板を用いたこと以外は、実施例6と同様にして、窒化チタン薄膜上にCu(0)薄膜を形成した。成膜後、窒化チタン上には、金属銅光沢にある薄膜が形成されていた。本薄膜をRBSにより分析したところ、Cu(0)薄膜が窒化チタン薄膜上に形成されていることが確認された。
Example 7
A Cu (0) thin film was formed on the titanium nitride thin film in the same manner as in Example 6 except that instead of the silicon substrate in Example 6, a silicon substrate having a titanium nitride thin film formed on the surface thereof was used. After film formation, a thin film with metallic copper luster was formed on titanium nitride. When this thin film was analyzed by RBS, it was confirmed that a Cu (0) thin film was formed on the titanium nitride thin film.

生成銅薄膜表面をSEMにより、観察したところ、30〜70nmの大きさの粒界から成る緻密な連続膜であった。   When the surface of the formed copper thin film was observed by SEM, it was a dense continuous film composed of grain boundaries with a size of 30 to 70 nm.

生成したCu(0)薄膜にスコッチテープを貼り、引き剥がしたところ、全くCu(0)薄膜は、剥離しなかった。すなわち、本Cu(0)薄膜は、窒化チタンに対し、密着性が良いことが解った。   When the scotch tape was applied to the produced Cu (0) thin film and peeled off, the Cu (0) thin film was not peeled off at all. That is, the present Cu (0) thin film was found to have good adhesion to titanium nitride.

比較例3
比較例2においてシリコン基板に代えて、表面に窒化チタン薄膜が形成されたシリコン基板を用いたこと以外は、比較例2と同様にして、窒化チタン薄膜上にCu(0)薄膜を形成した。窒化チタン薄膜上には、赤茶色の金属光沢のない薄膜が形成されていた。
Comparative Example 3
In Comparative Example 2, a Cu (0) thin film was formed on the titanium nitride thin film in the same manner as in Comparative Example 2 except that a silicon substrate having a titanium nitride thin film formed on the surface thereof was used instead of the silicon substrate. On the titanium nitride thin film, a reddish brown thin film without metallic luster was formed.

生成Cu(0)薄膜表面をSEMにより、観察したところ、180〜400nmの大きさの粒界から成り、粗雑な不連続膜であった。また、Cu(0)薄膜が形成されず、シリコン基板が露出した部分が多く見られた。   When the surface of the formed Cu (0) thin film was observed by SEM, it was a rough discontinuous film composed of grain boundaries of 180 to 400 nm in size. In addition, a Cu (0) thin film was not formed, and many portions where the silicon substrate was exposed were observed.

生成したCu(0)薄膜にスコッチテープを貼り、引き剥がしたところ、Cu(0)薄膜が剥離し、窒化チタン薄膜表面が完全に露出した。すなわち、本Cu(0)薄膜は、窒化チタンに対し、密着性が極めて悪いことが解った。
When the scotch tape was applied to the produced Cu (0) thin film and peeled off, the Cu (0) thin film was peeled off and the surface of the titanium nitride thin film was completely exposed. That is, it was found that the present Cu (0) thin film has extremely poor adhesion to titanium nitride.

Claims (2)

下記一般式(2)
Figure 0004529434
(式中、Rメチル基、Rトリフルオロメチル基、Rビニル基またはイソプロピル基を示す。)
で示される銅錯体
The following general formula (2)
Figure 0004529434
(In the formula, R 2 represents a methyl group , R f represents a trifluoromethyl group , and R 1 represents a vinyl group or an isopropyl group .)
Copper complex represented by
下記一般式(3)
Figure 0004529434
(式中、R3 はメチル基、R4メチル基、ビニル基、イソプロピル基、ターシャリーブチル基のいずれかであり、nは、Rトリフルオロメチル基を示す。)
で示される銅錯体と、イソプロピルトリビニルシランまたはテトラビニルシランとを含んでなる銅錯体組成物。
The following general formula (3)
Figure 0004529434
(In the formula, R 3 is a methyl group , R 4 is any one of a methyl group, a vinyl group, an isopropyl group, and a tertiary butyl group , n is 0 , and R f is a trifluoromethyl group .)
A copper complex composition comprising the copper complex represented by formula (I) and isopropyltrivinylsilane or tetravinylsilane .
JP2003413183A 2003-12-11 2003-12-11 Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound Expired - Fee Related JP4529434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413183A JP4529434B2 (en) 2003-12-11 2003-12-11 Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413183A JP4529434B2 (en) 2003-12-11 2003-12-11 Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound

Publications (2)

Publication Number Publication Date
JP2005170852A JP2005170852A (en) 2005-06-30
JP4529434B2 true JP4529434B2 (en) 2010-08-25

Family

ID=34733386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413183A Expired - Fee Related JP4529434B2 (en) 2003-12-11 2003-12-11 Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound

Country Status (1)

Country Link
JP (1) JP4529434B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559551A (en) * 1991-02-04 1993-03-09 Air Prod And Chem Inc Complex capable of vapor deposition on copper plating layer, vapor deposition thereof, and etching of the plating layer
JPH08245639A (en) * 1995-03-07 1996-09-24 Tori Chem Kenkyusho:Kk Production of beta-diketonate complex of copper
JPH09151189A (en) * 1995-11-29 1997-06-10 Mitsubishi Materials Corp Organocopper compound for forming copper thin film by organometallic chemical deposition
JPH11256330A (en) * 1998-03-06 1999-09-21 Tori Chemical Kenkyusho:Kk Film forming method and film forming material
JP2000144014A (en) * 1998-11-06 2000-05-26 Asahi Chem Ind Co Ltd Formation of compound semiconductor film
WO2000071550A1 (en) * 1999-05-25 2000-11-30 Advanced Technology Materials, Inc. Copper source reagent compositions, and method of making and using same for microelectronic device structures
JP2001048827A (en) * 1999-06-10 2001-02-20 Air Prod And Chem Inc Production of metal-ligand complex
WO2001066347A1 (en) * 2000-03-09 2001-09-13 Advanced Technology Materials, Inc. Composition and process for production of copper circuitry in microelectronic device structures
JP2001274153A (en) * 2000-03-24 2001-10-05 Hitachi Kokusai Electric Inc Method of manufacturing insulating film
JP2002193988A (en) * 2000-12-25 2002-07-10 Tosoh Corp Stabilized copper complex and method of producing the same
JP2002193974A (en) * 2000-12-25 2002-07-10 Tosoh Corp Stabilized alkaene copper complex containing silicon and manufacturing method thereof
JP2002526651A (en) * 1998-09-18 2002-08-20 ゲレスト インコーポレイテッド Method for chemical vapor deposition of copper-based film and its copper source precursor
JP2004175755A (en) * 2002-11-28 2004-06-24 Tosoh Corp COPPER COMPLEX HAVING ASYMMETRIC beta-DIKETONE LIGAND AND METHOD FOR PRODUCING THE SAME
JP2005071741A (en) * 2003-08-22 2005-03-17 Tosoh Corp Insulating film material containing alkenyl group-containing organic silane compound, insulating film using it, and semiconductor device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559551A (en) * 1991-02-04 1993-03-09 Air Prod And Chem Inc Complex capable of vapor deposition on copper plating layer, vapor deposition thereof, and etching of the plating layer
JPH08245639A (en) * 1995-03-07 1996-09-24 Tori Chem Kenkyusho:Kk Production of beta-diketonate complex of copper
JPH09151189A (en) * 1995-11-29 1997-06-10 Mitsubishi Materials Corp Organocopper compound for forming copper thin film by organometallic chemical deposition
JPH11256330A (en) * 1998-03-06 1999-09-21 Tori Chemical Kenkyusho:Kk Film forming method and film forming material
JP2002526651A (en) * 1998-09-18 2002-08-20 ゲレスト インコーポレイテッド Method for chemical vapor deposition of copper-based film and its copper source precursor
JP2000144014A (en) * 1998-11-06 2000-05-26 Asahi Chem Ind Co Ltd Formation of compound semiconductor film
WO2000071550A1 (en) * 1999-05-25 2000-11-30 Advanced Technology Materials, Inc. Copper source reagent compositions, and method of making and using same for microelectronic device structures
JP2001048827A (en) * 1999-06-10 2001-02-20 Air Prod And Chem Inc Production of metal-ligand complex
WO2001066347A1 (en) * 2000-03-09 2001-09-13 Advanced Technology Materials, Inc. Composition and process for production of copper circuitry in microelectronic device structures
JP2001274153A (en) * 2000-03-24 2001-10-05 Hitachi Kokusai Electric Inc Method of manufacturing insulating film
JP2002193988A (en) * 2000-12-25 2002-07-10 Tosoh Corp Stabilized copper complex and method of producing the same
JP2002193974A (en) * 2000-12-25 2002-07-10 Tosoh Corp Stabilized alkaene copper complex containing silicon and manufacturing method thereof
JP2004175755A (en) * 2002-11-28 2004-06-24 Tosoh Corp COPPER COMPLEX HAVING ASYMMETRIC beta-DIKETONE LIGAND AND METHOD FOR PRODUCING THE SAME
JP2005071741A (en) * 2003-08-22 2005-03-17 Tosoh Corp Insulating film material containing alkenyl group-containing organic silane compound, insulating film using it, and semiconductor device

Also Published As

Publication number Publication date
JP2005170852A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
KR100759779B1 (en) VOLATILE METAL β-KETOIMINATE COMPLEXES
US8263795B2 (en) Copper precursors for thin film deposition
JP2013239745A (en) Cobalt nitride layers for copper interconnects and methods for forming them
JP5148186B2 (en) Imido complex, method for producing the same, metal-containing thin film, and method for producing the same
WO2006082739A1 (en) Tantalum compound, method for producing same, tantalum-containing thin film and method for forming same
JP4660924B2 (en) Stabilized copper complex and method for producing the same
JP4649402B2 (en) Volatile copper (I) complexes for the deposition of copper films by atomic layer deposition
JP4254218B2 (en) Copper complex having asymmetric β-diketone ligand and method for producing the same
JP4529434B2 (en) Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound
RU2181725C2 (en) Copper (i)-organic compounds and method of copper film precipitation by their using
US6090964A (en) Organocuprous precursors for chemical vapor deposition of a copper film
JP4125728B2 (en) Monovalent copper complex
JP5732772B2 (en) Ruthenium complex mixture, production method thereof, film-forming composition, ruthenium-containing film and production method thereof
KR101074310B1 (en) Copper complexes and process for formation of copper-containing thin films by using the same
JP4363052B2 (en) Copper complex having asymmetric β-diketone ligand and method for producing the same
JP4622098B2 (en) Stabilized silicon-containing alkene copper complex and method for producing the same
JP3282392B2 (en) Organocopper compounds for copper thin film formation by metalorganic chemical vapor deposition with high vapor pressure
JP2730496B2 (en) Organoplatinum compounds for forming platinum thin films by metalorganic chemical vapor deposition with high vapor pressure
JP2017034103A (en) Manufacturing method of aluminum oxide film and production raw material of aluminum oxide film
JP2768250B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP4102954B2 (en) Organocopper compound for metalorganic chemical vapor deposition, solution raw material for forming copper thin film containing the same, and copper thin film made therefrom
JP2009023966A (en) Method for producing alkoxy-substituted cyclotrisiloxane compound
JPWO2010032679A1 (en) Nickel-containing film forming material and method for producing nickel-containing film
EP2060577A1 (en) Copper precursors for thin film deposition
JP2017222612A (en) Silyldiamine compound and organic metal compound having the same as ligand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees