JP4526550B2 - Method for producing composite of carbon nanomaterial and metal material - Google Patents

Method for producing composite of carbon nanomaterial and metal material Download PDF

Info

Publication number
JP4526550B2
JP4526550B2 JP2007122563A JP2007122563A JP4526550B2 JP 4526550 B2 JP4526550 B2 JP 4526550B2 JP 2007122563 A JP2007122563 A JP 2007122563A JP 2007122563 A JP2007122563 A JP 2007122563A JP 4526550 B2 JP4526550 B2 JP 4526550B2
Authority
JP
Japan
Prior art keywords
metal material
carbon nanomaterial
semi
composite
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007122563A
Other languages
Japanese (ja)
Other versions
JP2007326149A (en
Inventor
徹一 茂木
郁 田辺
雅資 菅沼
和夫 安在
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Chiba Institute of Technology
Original Assignee
Nissei Plastic Industrial Co Ltd
Chiba Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd, Chiba Institute of Technology filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2007122563A priority Critical patent/JP4526550B2/en
Publication of JP2007326149A publication Critical patent/JP2007326149A/en
Application granted granted Critical
Publication of JP4526550B2 publication Critical patent/JP4526550B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、カーボンナノ材とマグネシウム合金、アルミニウム合金などの非鉄金属合金の金属材料との複合体の製造方法に関するものである。   The present invention relates to a method for producing a composite of a carbon nanomaterial and a metal material of a non-ferrous metal alloy such as a magnesium alloy or an aluminum alloy.

結晶性カーボン材の一種であるカーボンナノ材は、熱伝導率がアルミニウム(Al)、マグネシウム(Mg)などの非鉄金属の約5倍と高く、導電性も良好で、摩擦係数も低いことから摺動性にも優れるなどの特性を有する。しかし、カーボンナノ材はnm単位の極めて微細なものであることから、その利用は他物質に混ぜて複合化するのがよいとされている。   Carbon nanomaterials, which are a type of crystalline carbon material, have a thermal conductivity of about five times that of non-ferrous metals such as aluminum (Al) and magnesium (Mg), have good conductivity, and have a low coefficient of friction. It has characteristics such as excellent mobility. However, since carbon nanomaterials are extremely fine in the order of nm, it is said that their use should be mixed with other substances and compounded.

これまでに知られている金属材料とカーボンナノ材の複合化は、カーボンナノ材を金属粉末と混練して加圧微細化し、金属粉末の粒子径が5μm〜1nmの複合材粒子となすというものであり、その複合材粒子をホットプレス成形により加熱圧縮して複合金属材料による製品に加工している。このホットプレス成形による製品加工では製品の形態に制約を受けることから、これまでプレス成形では困難な電子機器の放熱部品やシールド部品、軸受などの金属製品までをも製造するには至らない、という課題があった。   The compounding of the metal material and the carbon nanomaterial known so far is that the carbon nanomaterial is kneaded with the metal powder to make the pressure fine, and the metal powder has a particle diameter of 5 μm to 1 nm. The composite material particles are heated and compressed by hot press molding to be processed into a product made of a composite metal material. Product processing by hot press molding is limited by the form of the product, so it can not produce even metal products such as heat dissipation parts, shield parts, bearings etc. There was a problem.

そこで、金属材料を液相線温度以上の温度に完全溶融して、液相状態の金属材料にカーボンナノ材を添加し、撹拌機により金属材料とカーボンナノ材とを撹拌混練して、金属成形機に採用可能な複合金属材料とすることが試みられた。しかし、カーボンナノ材は液相状態での金属材料との濡れ性が悪く、撹拌によりカーボンナノ材が浮き上がって液相に均一に分散させることが難しく、今のところ実用化には至っていない。   Therefore, the metal material is completely melted to a temperature above the liquidus temperature, the carbon nanomaterial is added to the liquid phase metal material, and the metal material and the carbon nanomaterial are stirred and kneaded by a stirrer to form a metal. Attempts were made to make composite metal materials that can be used in the machine. However, the carbon nanomaterial has poor wettability with the metal material in the liquid phase state, and it is difficult to disperse the carbon nanomaterial in the liquid phase evenly by stirring, so far it has not been put into practical use.

またカーボンナノ材の分散を均一に行う新たな手段として、液相状態に溶融した金属材料を半溶融状態に冷却するとともに、その冷却過程で生じた液相中の粒状の固相を球状化してチクソトロピー性状を呈する半溶融金属材料となし、そこにカーボンナノ材を添加して撹拌混練することが行われた。この際の固相の球状化は溶融状態で傾斜冷却板の板面上を流下させて行っているが、球状化は結晶粒微細化剤を添加するか或いは電磁振動力又は超音波振動力を付与することによっても行い得るとされている。
特開2004−136363号公報 特開平6−73485号公報 特開2004−98111号公報
In addition, as a new means of uniformly dispersing the carbon nanomaterial, the metal material melted in the liquid phase is cooled to a semi-molten state, and the granular solid phase in the liquid phase generated in the cooling process is spheroidized. A semi-molten metal material exhibiting thixotropic properties was formed, and carbon nanomaterials were added thereto and stirred and kneaded. The spheroidization of the solid phase at this time is performed by flowing down on the surface of the inclined cooling plate in the molten state, but the spheronization is performed by adding a crystal grain refining agent or by applying electromagnetic vibration force or ultrasonic vibration force. It is said that it can also be performed by giving.
JP 2004-136363 A JP-A-6-73485 JP 2004-98111 A

上記半溶融状態での金属材料とカーボンナノ材の複合化では、金属材料を液相状態に溶融して複合化したときに比べて分散がよくなるが、カーボンナノ材の一部が凝集したまま固相間の液相に塊となって残る。これはカーボンナノ材そのものが凝集しやすいことと、分散が固相間の液相に限られることによるもので、撹拌翼の回転による撹拌では凝集の全てをほぐして分散させることができず、複合金属組織の均質化には限界があった。また振動による撹拌手段として超音波振動を採用した場合には、振動によりカーボンナノ材が半溶融金属材料の表層に浮上した状態となって上層に多く残り、上層と下層でのカーボンナノ材の密度に差が生じて複合金属組織が均質な状態とはなり難いという課題が生じた。   In the compounding of the metal material and the carbon nanomaterial in the semi-molten state, the dispersion is better than when the metal material is melted into the liquid phase and compounded, but the carbon nanomaterial is partially agglomerated and solidified. It remains as a lump in the liquid phase between the phases. This is due to the fact that the carbon nanomaterial itself tends to agglomerate and that the dispersion is limited to the liquid phase between the solid phases. There was a limit to homogenization of the metal structure. In addition, when ultrasonic vibration is used as a stirring means by vibration, the carbon nanomaterial floats on the surface of the semi-molten metal material due to vibration and remains in the upper layer, and the density of the carbon nanomaterial in the upper and lower layers As a result, a problem arises that the composite metal structure is unlikely to be in a homogeneous state.

この発明は、上記従来の課題を解決するために考えられたものであって、その目的は、金属材料とカーボンナノ材との複合化を撹拌と振動の両方を採用して、複合金属組織が均質で半溶融時にチクソトロピー性状を呈する、射出成形又はダイキャスト成形等の成形材料として好適なカーボンナノ材と金属材料との複合体の製造方法を提供することにある。   The present invention was conceived in order to solve the above-described conventional problems. The purpose of the present invention is to employ a combination of a metal material and a carbon nanomaterial in both agitation and vibration so that a composite metal structure is formed. An object of the present invention is to provide a method for producing a composite of a carbon nanomaterial and a metal material, which is suitable as a molding material such as injection molding or die casting, which is homogeneous and exhibits thixotropic properties when semi-molten.

上記目的によるこの発明は、非鉄金属合金の金属材料とカーボンナノ材とを、金属材料が固相と液相とが共存する半溶融状態で、固相の球状化によりチクソトロピー性状を呈する状態のときにカーボンナノ材を添加して複合化するにあたり、上記複合化を、半溶融金属材料の温度を固液共存温度に維持した状態で撹拌混練してカーボンナノ材を固相間に分散する工程と、超音波振動により固相を細粒化して液相の領域を増すとともに固相間に凝集したカーボンナノ材がほぐれて液相に分散するまで振動を付与する工程とにより行う、というものである。 This invention according to the above object is a case where a metal material of a non-ferrous metal alloy and a carbon nanomaterial are in a semi-molten state in which the metal material coexists with a solid phase and a liquid phase and exhibits a thixotropic property due to spheroidization of the solid phase Adding carbon nanomaterial to the composite, the above-mentioned composite is stirred and kneaded in a state where the temperature of the semi-molten metal material is maintained at the solid-liquid coexistence temperature, and the carbon nanomaterial is dispersed between the solid phases. In addition, the solid phase is refined by ultrasonic vibration to increase the region of the liquid phase and the step of applying vibration until the carbon nanomaterial aggregated between the solid phases is loosened and dispersed in the liquid phase. .

上記金属材料の半溶融状態での固相の球状化は、金属材料を液相線温度以上の温度に加熱して溶融したのち、傾斜冷却板の板面上を流下させて半溶融状態に冷却する過程で行うというものであり、また金属材料を液相線温度以下で固相線温度以上の固液共存温度に加熱して半溶融状態に溶融し、その半溶融金属材料を攪拌により固相を剪断して行う、というものである。   In the semi-molten state of the above metal material, the solid phase is spheroidized by heating the metal material to a temperature equal to or higher than the liquidus temperature and then cooling it down to the semi-molten state by flowing down the surface of the inclined cooling plate. In addition, the metal material is heated to a solid-liquid coexistence temperature below the liquidus temperature and above the solidus temperature to melt into a semi-molten state, and the semi-molten metal material is solidified by stirring. Is performed by shearing.

上記攪拌混練工程は、半溶融金属材料を攪拌により固相を剪断して球状化する工程時に上記カーボンナノ材を添加して行う、というものである。   The stirring and kneading step is performed by adding the carbon nanomaterial during a step of spheroidizing the semi-molten metal material by stirring the solid phase.

上記超音波振動による分散工程は、上記撹拌混練工程に引き続いて超音波振動を連続又は断続的に60〜900秒付与して行うというものであり、また上記超音波振動は、周波数5〜30kHz、超音波出力500〜3000kW、振動幅5〜30μm、振動付与時間60〜900秒である、というものである。 The dispersion step by the ultrasonic vibration is performed by continuously or intermittently applying ultrasonic vibration for 60 to 900 seconds following the stirring and kneading step, and the ultrasonic vibration has a frequency of 5 to 30 kHz, The ultrasonic output is 500 to 3000 kW, the vibration width is 5 to 30 μm, and the vibration applying time is 60 to 900 seconds.

上記非鉄金属合金は、マグネシウム合金で半溶融金属材料の固相の粒子は50〜300μmからなり、上記超音波振動の付与により粒子は5〜50μmに細粒化してなる、というものである。   The non-ferrous metal alloy is a magnesium alloy, and the solid-phase particles of the semi-molten metal material are 50 to 300 μm, and the particles are refined to 5 to 50 μm by the application of the ultrasonic vibration.

上記カーボンナノ材は、直径10〜150nm、長さ1〜100μmのカーボンナノファイバーからなり、添加量は、0.1〜20質量%からなる。またカーボンナノ材は、半溶融金属材料に添加する前に予備加熱してなる、というものである。   The carbon nanomaterial is composed of carbon nanofibers having a diameter of 10 to 150 nm and a length of 1 to 100 μm, and the addition amount is 0.1 to 20% by mass. The carbon nanomaterial is preheated before being added to the semi-molten metal material.

上記構成では、カーボンナノ材と金属材料との撹拌混練を、液相と固相とが共存する半溶融状態にて行うことから、液相状態では金属材料との濡れ性が悪く、撹拌すると溶湯面に浮上して混練し難いカーボンナノ材であっても、球状に生じた固相があることによって分散範囲が固相間の液相に制限されることと、液相に分散したカーボンナノ材による粘度の上昇などにより、カーボンナノ材の浮上りが抑制されて金属材料と混じり易くなる。   In the above configuration, since the stirring and kneading of the carbon nanomaterial and the metal material is performed in a semi-molten state where the liquid phase and the solid phase coexist, the wettability with the metal material is poor in the liquid phase state. Even if it is a carbon nanomaterial that floats on the surface and is difficult to knead, the dispersion range is limited to the liquid phase between the solid phases due to the spherical solid phase, and the carbon nanomaterial dispersed in the liquid phase Due to the increase in viscosity due to the above, the floating of the carbon nanomaterial is suppressed and it becomes easy to mix with the metal material.

また撹拌と超音波振動の付与により、カーボンナノ材の凝集による塊がほぐれて液相に分散するとともに、超音波振動による固相の微細化による分散範囲の広がりにより、カーボンナノ材が全体に行きわたるようになることから、撹拌又は超音波振動のみによる複合化では困難であった均質でチクソトロピ性状を呈する成形加工用のカーボンナノ複合金属材料を容易に製造することができる。   In addition, agglomeration of carbon nanomaterials is loosened and dispersed in the liquid phase by applying agitation and ultrasonic vibration, and the carbon nanomaterial is spread throughout the entire dispersion range due to the refinement of the solid phase by ultrasonic vibration. Therefore, it is possible to easily produce a carbon nanocomposite metal material for molding that exhibits a homogeneous and thixotropic property, which has been difficult to combine only by stirring or ultrasonic vibration.

図1は、この発明の製造工程を略示するものである。図中1は金属材料の溶解炉で、電気炉11の内部の坩堝12と坩堝底部の給出管13及び坩堝内の液面制御棒14からなる。2は下側面に冷却管路21を備えた傾斜冷却板で、溶解炉1の給出管13の下端に傾斜設置してある。3は傾斜冷却板2の下端に位置した移動可能な貯溜容器で、電気炉31の内部に設置してあり、その電気炉31により固液共存温度に加熱してある。4は撹拌装置、5は超音波振動発生装置で、それら装置の撹拌棒41と振動ホーン51を貯溜容器3に上方から挿入して撹拌と振動の付与とが順に行えるようにしてある。6は鋳型である。   FIG. 1 schematically shows the manufacturing process of the present invention. In the figure, reference numeral 1 denotes a melting furnace for a metal material, which comprises a crucible 12 inside an electric furnace 11, a feed pipe 13 at the bottom of the crucible, and a liquid level control rod 14 inside the crucible. Reference numeral 2 denotes an inclined cooling plate having a cooling pipe line 21 on the lower side, and is inclined at the lower end of the feed pipe 13 of the melting furnace 1. Reference numeral 3 denotes a movable storage container located at the lower end of the inclined cooling plate 2, which is installed inside the electric furnace 31 and heated to the solid-liquid coexistence temperature by the electric furnace 31. 4 is an agitation device, and 5 is an ultrasonic vibration generator. The agitation rod 41 and the vibration horn 51 of these devices are inserted into the storage container 3 from above so that agitation and application of vibration can be performed in order. 6 is a mold.

なお、この発明における非鉄金属合金とは、マグネシウム(Mg)、錫(Sn)、アルミニウム(Al)、銅(Cu)、鉛(Pb)、亜鉛(Zn)のいずれかを基材とした合金をいう。   The non-ferrous metal alloy in the present invention is an alloy based on any of magnesium (Mg), tin (Sn), aluminum (Al), copper (Cu), lead (Pb), and zinc (Zn). Say.

以下、上記工程図に従ってマグネシウムを基材とする合金(AZ91D:液相線温度595℃)とカーボンナノ材の複合金属材料の製造工程を説明する。カーボンナノ材は、直径10〜150nm、長さ1〜100μmのカーボンナノチューブやカーボンナノファイバーである。   Hereinafter, a process for producing a composite metal material of an alloy based on magnesium (AZ91D: liquidus temperature 595 ° C.) and a carbon nanomaterial will be described in accordance with the above process diagram. The carbon nanomaterial is a carbon nanotube or carbon nanofiber having a diameter of 10 to 150 nm and a length of 1 to 100 μm.

先ず上記溶解炉1を595°〜750℃に加熱して溶解炉内に投入した上記金属材料を液相線温度以上の温度に完全溶融する。その溶融金属材料M1 の一定量を溶解炉1の給出管13から傾斜冷却板2の上端に流出して、板面上を下端の半溶融温度に保持された貯溜容器3まで流下させる。 First, the melting furnace 1 is heated to 595 ° to 750 ° C., and the metal material charged into the melting furnace is completely melted to a temperature equal to or higher than the liquidus temperature. A certain amount of the molten metal material M 1 flows out from the feed pipe 13 of the melting furnace 1 to the upper end of the inclined cooling plate 2 and flows down to the storage container 3 held at the lower half-melting temperature on the plate surface.

溶融金属材料M1 は傾斜冷却板2を流下する過程で、液相線温度以下の温度に冷却される。それにより合金成分中の融点の高いものが固化して球状化した初晶の核が形成され、固相と液相とが共存するチクソトロピー性状を有する半溶融金属材料M2 となって、固液共存温度に維持された貯溜容器3に貯溜される。この貯溜容器3での固相の粒子の大きさは50〜200μm(貯留5分)である。 The molten metal material M 1 is cooled to a temperature below the liquidus temperature in the process of flowing down the inclined cooling plate 2. As a result, a high melting point of the alloy component is solidified to form a spheroidized primary crystal nucleus, which is a semi-molten metal material M 2 having a thixotropic property in which a solid phase and a liquid phase coexist. It is stored in the storage container 3 maintained at the coexistence temperature. The size of the solid phase particles in the storage container 3 is 50 to 200 μm (storage 5 minutes).

次に、貯溜容器3を撹拌装置4の位置に移動し、羽根付きの撹拌棒41を貯溜容器内に上方から挿入して、電気炉31により固液共存温度に維持された半溶融金属材料M2 を、撹拌棒41により撹拌しながら所定量(例えば1質量%)のカーボンナノ材Cを添加してゆく。撹拌は添加時を含めて少なくとも10分以上(回転数500〜3000rpm)行う。この攪拌混練時の固体の固相率が10%以下であると、カーボンナノ材が分散する液相領域が広く、またカーボンナノ材の浮上りを抑制する固相が少なすぎることから、カーボンナノ材の分散に偏りが生じ易くなる。また固相率が90%を超えると液相領域が狭くなって分散が困難となる。 Next, the storage container 3 is moved to the position of the stirrer 4, the stirring rod 41 with blades is inserted into the storage container from above, and the semi-molten metal material M maintained at the solid-liquid coexistence temperature by the electric furnace 31. 2 is added with a predetermined amount (for example, 1% by mass) of the carbon nanomaterial C while being stirred by the stirring rod 41. Stirring is performed for at least 10 minutes including the addition (rotation speed: 500 to 3000 rpm). If the solid phase ratio of the solid at the time of stirring and kneading is 10% or less, the liquid phase region in which the carbon nanomaterial is dispersed is wide, and there are too few solid phases to suppress the carbon nanomaterial from rising. Bias tends to occur in the dispersion of the material. On the other hand, if the solid phase ratio exceeds 90%, the liquid phase region becomes narrow and dispersion becomes difficult.

カーボンナノ材Cは添加前に予備加熱(例えば500℃)しておくことが好ましい。この予備加熱により添加後の半溶融金属材料M2 の温度低下を阻止することができる。添加時のカーボンナノ材Cは凝集状態にあってそのままではほぐしにくいが、半溶融金属材料中では撹拌による混練により固相間の液相に分散するようになる。しかし、凝集したまま小さな塊となって分散するものもある。この塊は撹拌棒41の回転数を上げても、また撹拌時間を長くしてもほぐれることなく固相間に挟まれたように残る。 The carbon nanomaterial C is preferably preheated (for example, 500 ° C.) before addition. This preheating can prevent the temperature drop of the semi-molten metal material M 2 after the addition. The carbon nanomaterial C at the time of addition is in an agglomerated state and is difficult to loosen as it is, but in a semi-molten metal material, it is dispersed in a liquid phase between solid phases by kneading by stirring. However, there are some that disperse as agglomerated with aggregation. Even if the number of revolutions of the stirring rod 41 is increased or the stirring time is increased, this lump remains as if sandwiched between the solid phases without being loosened.

カーボンナノ材Cの撹拌が終了したら撹拌装置4を超音波振動発生装置5に交換して、振動ホーン51を撹拌により一次的にカーボンナノ材Cと複合化した半溶融金属材料M3 に挿入し、振動ホーン51により超音波振動(振幅方向:上下方向)を半溶融金属材料M3 に付与する。この振動付与により固相が細粒化されて固相間の液相の領域が増し、同時に固相間に凝集していた塊も超音波振動によりほぐれて分散する。これによりカーボンナノ材Cの分散が均一に行われるようになる。 A stirring device 4 After agitation of the carbon nano material C is completed by replacing the ultrasonic vibration generator 5, is inserted into a semi-molten metallic material M 3 complexed with temporarily carbon nano material C by stirring vibrating horn 51 Then, ultrasonic vibration (amplitude direction: vertical direction) is applied to the semi-molten metal material M 3 by the vibration horn 51. By applying this vibration, the solid phase becomes finer and the region of the liquid phase between the solid phases increases, and at the same time, the lump aggregated between the solid phases is loosened and dispersed by ultrasonic vibration. As a result, the carbon nanomaterial C is uniformly dispersed.

半溶融金属材料M3 に付与する超音波振動は、周波数5〜30kHZ 、超音波出力500〜3000kW、振動幅5〜30μm、付与時間60〜900秒の範囲でよく、超音波振動の付与も連続又は断続のいずれでもよい。凝集のほぐれ状態によっては超音波振動を断続的に繰り返し付与した方がよい場合がある。また超音波振動を付与された半溶融金属材料M3 では振動力により、固相の粒子が5〜50μmに細粒化される。 Ultrasonic vibration applied to the semi-molten metal material M 3 are, frequency 5~30KH Z, ultrasonic output 500~3000KW, the oscillation width 5 to 30 [mu] m, may range from attachment time 60-900 seconds, even application of the ultrasonic vibration Either continuous or intermittent may be used. Depending on the loosening state of agglomeration, it may be better to intermittently repeatedly apply ultrasonic vibration. Further, in the semi-molten metal material M 3 to which ultrasonic vibration is applied, the solid phase particles are refined to 5 to 50 μm by the vibration force.

設定時間の経過後、カーボンナノ材Cと複合化した半溶融金属材料M3 を鋳型6に注入して、短柱状(棒状)やインゴット等の成形加工用の金属材料M4 に鋳造する。 After the set time has elapsed, a semi-molten metal material M 3 combined with the carbon nanomaterial C is injected into the mold 6 and cast into a metal material M 4 for forming such as a short columnar shape (bar shape) or an ingot.

図2は、円筒形の容器(直径60mm、高さ200mm)内でカーボンナノ材を撹拌混練(撹拌時間60分間:回転数500rpm)したのち、短柱状に冷却固化して製造した撹拌混練工程のみによる中間体の複合金属組織の写真である。   FIG. 2 shows only the stirring and kneading step produced by stirring and kneading the carbon nanomaterial in a cylindrical container (diameter 60 mm, height 200 mm) (stirring time 60 minutes: rotation speed 500 rpm) and then cooling and solidifying into a short column shape. It is the photograph of the composite metal structure of the intermediate by.

図2(A)は上部から1/4の部位を切断してみた複合金属組織、図2(B)は上部から1/2の部位を切断してみた複合金属組織、図2(C)は上部から3/4の部位を切断してみた複合金属組織をそれぞれ示すものである。この複合金属組織から分かるように、撹拌混練では60分間にわたり撹拌を行っても、初晶(固相)の間の共晶(液相)にカーボンナノ材Cが凝集による塊(黒色部分)となって残っている。   2A is a composite metal structure obtained by cutting a quarter part from the top, FIG. 2B is a composite metal structure obtained by cutting a half part from the top, and FIG. Each of the composite metal structures obtained by cutting a 3/4 portion from the top is shown. As can be seen from this composite metal structure, even if stirring is performed for 60 minutes, the carbon nanomaterial C is agglomerated by aggregation (black portion) in the eutectic (liquid phase) between the primary crystals (solid phase). It remains.

図3は、上記中間体の場合と同様に、カーボンナノ材の分散工程として撹拌混練を60分間した後の半溶融金属材料M3 に、直径20mmの振動ホーンを挿入して周波数20kHz、超音波出力1500kW、振動幅20μmの超音波振動を断続的に付与したのち、冷却固化して製造した成形加工用の金属材料の複合金属組織の写真である。超音波振動の付与時間は、「振動付与50秒−付与停止10秒−振動付与150秒−振動停止10秒−振動付与150秒」トータル時間350秒で、複合金属組織中の白色部分が初晶、黒色部分が共晶構造中に分散したカーボンナノ材Cである。 FIG. 3 shows a case where a vibration horn having a diameter of 20 mm is inserted into the semi-molten metal material M 3 after stirring and kneading for 60 minutes as a dispersion process of the carbon nanomaterial, as in the case of the above intermediate, and a frequency of 20 kHz and ultrasonic waves. It is a photograph of a composite metal structure of a metal material for forming produced by intermittently applying ultrasonic vibration having an output of 1500 kW and a vibration width of 20 μm and then cooling and solidifying. The application time of ultrasonic vibration is “vibration application 50 seconds−application stop 10 seconds−vibration application 150 seconds−vibration stop 10 seconds−vibration application 150 seconds”. The total time is 350 seconds, and the white portion in the composite metal structure is the primary crystal. The carbon nanomaterial C in which the black portion is dispersed in the eutectic structure.

図3(A)は上部から1/4の部位を切断してみた複合金属組織、図3(B)は上部から1/2の部位を切断してみた複合金属組織、図3(C)は上部から3/4の部位を切断してみた複合金属組織をそれぞれ示すものである。この複合金属組織では半溶融金属材料の固相(初晶)が超音波振動により細粒化し、また撹拌混練のみによる複合化で生じていたカーボンナノ材の凝集による塊(図2参照)がほぐれてなくなって、全体的に均質なものとなっている。これは凝集し易いnm単位のカーボンナノ材であっても、撹拌混練と超音波振動の付与との両方によって均一に分散するということであり、これまで困難とされていた非鉄金属合金とカーボンナノ材の複合化が容易に行えることを証するものである。   FIG. 3A is a composite metal structure obtained by cutting a quarter part from the upper part, FIG. 3B is a composite metal structure obtained by cutting a half part from the upper part, and FIG. Each of the composite metal structures obtained by cutting a 3/4 portion from the top is shown. In this composite metal structure, the solid phase (primary crystal) of the semi-molten metal material is refined by ultrasonic vibration, and the lump (see Fig. 2) due to the aggregation of carbon nanomaterials that has been generated by the composite only by stirring and kneading is loosened. It ’s gone and it ’s homogeneous throughout. This means that even nanometer-scale carbon nanomaterials that easily aggregate are uniformly dispersed by both stirring and kneading and application of ultrasonic vibration, which has been considered difficult until now. This proves that the material can be easily combined.

上記実施形態では、金属材料を液相線温度以上に加熱して溶融したのち、傾斜冷却板を流下させて半溶融金属材料の固相の生成と球状化を行っているが、それ以外にも、金属材料を液相線温度以下で固相線温度以上の固液共存温度に加熱して半溶融状態に保持し、そこに生じた固相を攪拌により粒状に剪断して球状化することもできる。この場合には、図1に示す貯留容器3を電気炉31により固液共存温度に加熱して金属材料を半溶融金属材料に溶融し、その半溶融金属材料を攪拌棒41により攪拌して固相の粒状化と球状化とを行ったのち、カーボンナノ材の添加及び攪拌混練工程に移行することになる。   In the above embodiment, after the metal material is heated to the liquidus temperature or higher and melted, the inclined cooling plate is caused to flow down to generate and spheroidize the solid phase of the semi-molten metal material. The metal material may be heated to a solid-liquid coexistence temperature below the liquidus temperature and above the solidus temperature to maintain a semi-molten state, and the solid phase generated therein may be sheared into particles by stirring to be spheroidized. it can. In this case, the storage container 3 shown in FIG. 1 is heated to the solid-liquid coexisting temperature by the electric furnace 31 to melt the metal material into the semi-molten metal material, and the semi-molten metal material is stirred by the stirring rod 41 to be solidified. After performing the granulation and spheroidization of the phase, the process proceeds to the addition of carbon nanomaterial and the stirring and kneading step.

この攪拌剪断による粒状の固相の球状化では、傾斜冷却板の流下による球状化と比べて固相の粒子が100〜300μm(溶融温度585℃、攪拌時間30分、回転数500rpm)と大きいが、平均的には100μm程度であるので、その後の攪拌混練が困難となるようなことはない。   In the spheroidization of the granular solid phase by this stirring shear, the solid phase particles are as large as 100 to 300 μm (melting temperature 585 ° C., stirring time 30 minutes, rotation speed 500 rpm) as compared to the spheronization by flowing down the inclined cooling plate. The average is about 100 μm, so that subsequent stirring and kneading does not become difficult.

また上記実施形態では、カーボンナノ材の撹拌混練工程後に超音波振動を付与しているが、撹拌と超音波振動の付与とを同時に行ってもよく、この場合には撹拌時間内にて超音波振動による複合化処理も済むので製造時間の短縮となる。   In the above embodiment, the ultrasonic vibration is applied after the carbon nanomaterial stirring and kneading step. However, the stirring and the ultrasonic vibration may be applied at the same time. In this case, the ultrasonic wave is applied within the stirring time. Since complex processing by vibration is also completed, manufacturing time is shortened.

この発明に係わるカーボンナノ材と金属材料との複合体の製造工程を示す説明である。It is description which shows the manufacturing process of the composite_body | complex of the carbon nanomaterial and metal material concerning this invention. 撹拌混練工程のみによる中間体の複合金属組織の写真である。It is a photograph of the composite metal structure of the intermediate body only by the stirring kneading process. この発明の撹拌混練工程と超音波振動による分散工程とにより製造したカーボンナノ材と金属材料との複合体の複合金属組織図である。1 is a composite metal structure diagram of a composite of a carbon nanomaterial and a metal material produced by a stirring and kneading step and a dispersion step by ultrasonic vibration of the present invention.

符号の説明Explanation of symbols

1 溶解炉
2 傾斜冷却板
3 貯溜容器
4 撹拌装置
5 超音波振動発生装置
6 鋳型
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 Inclined cooling plate 3 Storage container 4 Stirrer 5 Ultrasonic vibration generator 6 Mold

Claims (10)

非鉄金属合金の金属材料とカーボンナノ材とを、金属材料が固相と液相とが共存する半溶融状態で、固相の球状化によりチクソトロピー性状を呈する状態のときにカーボンナノ材を添加して複合化するにあたり、
上記複合化を、半溶融金属材料の温度を固液共存温度に維持した状態で撹拌混練してカーボンナノ材を固相間に分散する工程と、超音波振動により固相を細粒化して液相の領域を増すとともに固相間に凝集したカーボンナノ材がほぐれて液相に分散するまで振動を付与する工程とにより行うことを特徴とするカーボンナノ材と金属材料との複合体の製造方法。
Add the carbon nanomaterial to the metal material of the non-ferrous metal alloy and the carbon nanomaterial when the metal material is in a semi-molten state where the solid phase and the liquid phase coexist, and the thixotropic properties are exhibited by spheroidization of the solid phase. When combining,
The above-mentioned compounding is performed by stirring and kneading while maintaining the temperature of the semi-molten metal material at the solid-liquid coexistence temperature, and dispersing the carbon nanomaterial between the solid phases. A method for producing a composite of a carbon nanomaterial and a metal material, comprising: adding a vibration until the carbon nanomaterial aggregated between solid phases is loosened and dispersed in a liquid phase while increasing a phase region .
上記金属材料の半溶融状態での固相の球状化は、金属材料を液相線温度以上の温度に加熱して溶融したのち、傾斜冷却板の板面上を流下させて半溶融状態に冷却する過程で行うことを特徴とする請求項1記載のカーボンナノ材と金属材料との複合体の製造方法。   In the semi-molten state of the above metal material, the solid phase is spheroidized by heating the metal material to a temperature equal to or higher than the liquidus temperature and then cooling it down to the semi-molten state by flowing down the surface of the inclined cooling plate. The method for producing a composite of a carbon nanomaterial and a metal material according to claim 1, wherein the method is carried out in the process of. 上記金属材料の半溶融状態での固相の球状化は、金属材料を液相線温度以下で固相線温度以上の固液共存温度に加熱して半溶融状態に溶融し、その半溶融金属材料を攪拌により固相を剪断して行うことを特徴とする請求項1記載のカーボンナノ材と金属材料との複合体の製造方法。   The spheroidization of the solid phase in the semi-molten state of the metal material is performed by heating the metal material to a solid-liquid coexistence temperature below the liquidus temperature and above the solidus temperature to melt into the semi-molten state. 2. The method for producing a composite of carbon nanomaterial and metal material according to claim 1, wherein the solid phase is sheared by stirring the material. 上記攪拌混練工程は、半溶融金属材料を攪拌により固相を剪断して球状化する工程時に上記カーボンナノ材を添加して行うことを特徴とする請求項1記載のカーボンナノ材と金属材料との複合体の製造方法。   The carbon nanomaterial and the metal material according to claim 1, wherein the stirring and kneading step is performed by adding the carbon nanomaterial during the step of spheroidizing the semi-molten metal material by stirring to solidify the solid phase. A method for producing the composite. 上記超音波振動による分散工程は、上記攪拌混練工程に引き続いて超音波振動を連続又は断続的に60〜900秒付与して行うことを特徴とする請求項1記載のカーボンナノ材と金属材料との複合体の製造方法。   The carbon nanomaterial and the metal material according to claim 1, wherein the dispersion step by ultrasonic vibration is performed by applying ultrasonic vibration continuously or intermittently for 60 to 900 seconds following the stirring and kneading step. A method for producing the composite. 上記超音波振動は、周波数5〜30kHz、超音波出力500〜3000kW、振動幅5〜30μm、振動付与時間60〜900秒であることを特徴とする請求項1、2、5の何れかに記載のカーボンナノ材と金属材料との複合体の製造方法。 6. The ultrasonic vibration according to claim 1, wherein the ultrasonic vibration has a frequency of 5 to 30 kHz, an ultrasonic output of 500 to 3000 kW, a vibration width of 5 to 30 [mu] m, and a vibration applying time of 60 to 900 seconds. Of producing a composite of carbon nanomaterial and metal material. 上記非鉄金属合金は、マグネシウム合金で半溶融金属材料の固相の粒子は50〜300μmからなり、上記超音波振動の付与により粒子は5〜50μmに細粒化してなることを特徴とする請求項1、5、6の何れかに記載のカーボンナノ材と金属材料との複合体の製造方法。   The non-ferrous metal alloy is a magnesium alloy, and the solid-phase particles of the semi-molten metal material are 50 to 300 μm, and the particles are refined to 5 to 50 μm by the application of the ultrasonic vibration. A method for producing a composite of the carbon nanomaterial according to any one of 1, 5, and 6 and a metal material. 上記カーボンナノ材は、直径10〜150nm、長さ1〜100μmのカーボンナノチューブからなることを特徴とする請求項1、4の何れかに記載のカーボンナノ材と金属材料との複合体の製造方法。   The method for producing a composite of a carbon nanomaterial and a metal material according to any one of claims 1 and 4, wherein the carbon nanomaterial comprises carbon nanotubes having a diameter of 10 to 150 nm and a length of 1 to 100 µm. . 上記カーボンナノ材の添加量は、0.1〜20質量%からなることを特徴とする請求項1、4、8の何れかに記載のカーボンナノ材と金属材料との複合体の製造方法。   The method for producing a composite of a carbon nanomaterial and a metal material according to any one of claims 1, 4, and 8, wherein the amount of the carbon nanomaterial added is 0.1 to 20% by mass. 上記カーボンナノ材は、半溶融金属材料に添加する前に予備加熱してなることを特徴とする請求項1、4、8、9の何れから記載のカーボンナノ材と金属材料との複合体の製造方法。   The carbon nanomaterial is preheated before being added to the semi-molten metal material, wherein the composite of carbon nanomaterial and metal material according to any one of claims 1, 4, 8, and 9 is used. Production method.
JP2007122563A 2006-05-12 2007-05-07 Method for producing composite of carbon nanomaterial and metal material Expired - Fee Related JP4526550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122563A JP4526550B2 (en) 2006-05-12 2007-05-07 Method for producing composite of carbon nanomaterial and metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006134175 2006-05-12
JP2007122563A JP4526550B2 (en) 2006-05-12 2007-05-07 Method for producing composite of carbon nanomaterial and metal material

Publications (2)

Publication Number Publication Date
JP2007326149A JP2007326149A (en) 2007-12-20
JP4526550B2 true JP4526550B2 (en) 2010-08-18

Family

ID=38926997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122563A Expired - Fee Related JP4526550B2 (en) 2006-05-12 2007-05-07 Method for producing composite of carbon nanomaterial and metal material

Country Status (1)

Country Link
JP (1) JP4526550B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108455B (en) * 2009-12-25 2013-11-06 清华大学 Preparation method of aluminum-base composite material
CN102108450B (en) * 2009-12-25 2012-08-29 清华大学 Method for preparing magnesium-based composite material
CN101851716B (en) * 2010-06-14 2014-07-09 清华大学 Magnesium base composite material and preparation method thereof, and application thereof in sounding device
EP3586999B1 (en) * 2018-06-28 2022-11-02 GF Casting Solutions AG Metal with solids

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741876A (en) * 1993-07-28 1995-02-10 Japan Energy Corp Production of metal or metal alloy ingot by electron beam melting
JPH0751827A (en) * 1993-08-10 1995-02-28 Japan Steel Works Ltd:The Method and apparatus for producing low melting point metal product
JPH07278692A (en) * 1994-04-12 1995-10-24 Mitsubishi Materials Corp Production of high-si-content al alloy die casting member having high strength
JP2002178626A (en) * 2000-12-12 2002-06-26 Mitsubishi Paper Mills Ltd Ink jet recording material
JP2002535226A (en) * 1999-01-22 2002-10-22 ウエストバージニア ユニバーシティ Method for producing reinforced carbon foam material and related products
JP2004082130A (en) * 2002-08-22 2004-03-18 Nissei Plastics Ind Co Compound forming method and compound metal product of carbon nano material and metallic material
JP2004082129A (en) * 2002-08-22 2004-03-18 Nissei Plastics Ind Co Compound metal product made of carbon nano material and metal with low melting point and its forming method
JP2004098111A (en) * 2002-09-06 2004-04-02 National Institute Of Advanced Industrial & Technology Manufacturing method for semi-molten metal and metal workpiece with fine spheroidized grain structure
JP2004136363A (en) * 2002-08-22 2004-05-13 Nissei Plastics Ind Co Composite forming method for carbon nano material and low melting metallic material, and composite metallic product
JP2005028401A (en) * 2003-07-11 2005-02-03 Nissei Plastics Ind Co Pressurized injection molding method for magnesium alloy and metal product
JP2005231022A (en) * 2004-01-22 2005-09-02 Tokyo Metropolis Method and device for polishing diamond

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043431A1 (en) * 2004-10-21 2006-04-27 Shinano Kenshi Kabushiki Kaisha Composite metal article and method for preparation thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741876A (en) * 1993-07-28 1995-02-10 Japan Energy Corp Production of metal or metal alloy ingot by electron beam melting
JPH0751827A (en) * 1993-08-10 1995-02-28 Japan Steel Works Ltd:The Method and apparatus for producing low melting point metal product
JPH07278692A (en) * 1994-04-12 1995-10-24 Mitsubishi Materials Corp Production of high-si-content al alloy die casting member having high strength
JP2002535226A (en) * 1999-01-22 2002-10-22 ウエストバージニア ユニバーシティ Method for producing reinforced carbon foam material and related products
JP2002178626A (en) * 2000-12-12 2002-06-26 Mitsubishi Paper Mills Ltd Ink jet recording material
JP2004082130A (en) * 2002-08-22 2004-03-18 Nissei Plastics Ind Co Compound forming method and compound metal product of carbon nano material and metallic material
JP2004082129A (en) * 2002-08-22 2004-03-18 Nissei Plastics Ind Co Compound metal product made of carbon nano material and metal with low melting point and its forming method
JP2004136363A (en) * 2002-08-22 2004-05-13 Nissei Plastics Ind Co Composite forming method for carbon nano material and low melting metallic material, and composite metallic product
JP2004098111A (en) * 2002-09-06 2004-04-02 National Institute Of Advanced Industrial & Technology Manufacturing method for semi-molten metal and metal workpiece with fine spheroidized grain structure
JP2005028401A (en) * 2003-07-11 2005-02-03 Nissei Plastics Ind Co Pressurized injection molding method for magnesium alloy and metal product
JP2005231022A (en) * 2004-01-22 2005-09-02 Tokyo Metropolis Method and device for polishing diamond

Also Published As

Publication number Publication date
JP2007326149A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
US7837811B2 (en) Method for manufacturing a composite of carbon nanomaterial and metallic material
CN110129640B (en) 7000 series aluminum alloy wire for additive manufacturing and preparation method thereof
CN110205527B (en) Al-Mg-Si alloy wire for additive manufacturing and preparation method thereof
Eskin et al. Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt
TW493010B (en) Beryllium-containing alloys of aluminum and semi-solid processing of such alloys
JP5180275B2 (en) Method for producing aluminum matrix composite material
KR20020029946A (en) Powder composition comprising aggregates of iron powder and additives and a flow agent and a process for its preparation
JP4526550B2 (en) Method for producing composite of carbon nanomaterial and metal material
JP2004114153A (en) Method and apparatus for producing metallic material in solid-liquid coexisting state and method and apparatus for producing semi-solidified metallic slurry
JP2004136363A (en) Composite forming method for carbon nano material and low melting metallic material, and composite metallic product
JP2007239102A (en) Aluminum-based casting alloy and manufacturing method therefor
JP3496833B1 (en) Method for producing metallic material in solid-liquid coexistence state
CN1194831C (en) Method and equipment for preparing semisolid fused mass of ferrous material
CN109013728B (en) Method and device for preparing high-alloy material by solid-liquid mixing continuous extrusion
Jia et al. High-efficiency inhibition of gravity segregation in Al–Bi immiscible alloys by adding lanthanum
Jia et al. Formulation of Al–Bi–Sn immiscible alloys versus the solidification behaviors and structures
Wang et al. Effects of TiB2 nanoparticles and ultrasonic vibration on the mechanical properties of an Mg-4Al-1.5 Si alloy
WO2012054507A1 (en) Free-machining aluminum alloy
JP4444963B2 (en) Method for producing a metal-substrate composite
JPH10158756A (en) Method for molding semi-molten metal
JP3487315B2 (en) Die casting method
JP2001303150A (en) Metallic grain for casting, its producing method and injection-forming method for metal
JP3497167B2 (en) Granular feedstock for metal injection molding
JP2004114156A (en) Method for producing metallic material in solid-liquid coexisting state
JP4243983B2 (en) Magnesium alloy pressure injection molding method and metal products

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees