JP2006286103A - Vertical magnetic recording medium, manufacturing method of the same, and magnetic storage device - Google Patents

Vertical magnetic recording medium, manufacturing method of the same, and magnetic storage device Download PDF

Info

Publication number
JP2006286103A
JP2006286103A JP2005105231A JP2005105231A JP2006286103A JP 2006286103 A JP2006286103 A JP 2006286103A JP 2005105231 A JP2005105231 A JP 2005105231A JP 2005105231 A JP2005105231 A JP 2005105231A JP 2006286103 A JP2006286103 A JP 2006286103A
Authority
JP
Japan
Prior art keywords
layer
gas
recording medium
orientation control
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005105231A
Other languages
Japanese (ja)
Other versions
JP4624838B2 (en
Inventor
Yoshitake Kaizu
功剛 貝津
Ryosaku Inamura
良作 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005105231A priority Critical patent/JP4624838B2/en
Publication of JP2006286103A publication Critical patent/JP2006286103A/en
Application granted granted Critical
Publication of JP4624838B2 publication Critical patent/JP4624838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical magnetic recording medium having an excellent S/N ratio, a method of manufacturing the medium, and a magnetic storage device thereof. <P>SOLUTION: The vertical magnetic recording medium includes a substrate 11 and has a configuration where a soft magnetic backing layer 12, an orientation control layer 13, a base layer 14 having a fcc structure, an intermediate layer 15 having a hcp structure, a recording layer 16, a protective film 18, and a lubrication layer 19, are sequentially stacked on the substrate 11, wherein the recording layer 16 has a so-called granular structure. The orientation control layer 13 has an oxidized or nitrided, treated surface 13a at an interface to the base layer 14. In the oxidizing or nitriding treatment of the orientation control layer 13, a surface of the orientation control layer 13 is exposed to a treatment gas containing O<SB>2</SB>gas and/or N<SB>2</SB>gas. The orientation control layer 13 is preferably formed of a metal material having a structure of a bcc structure in a crystalline state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、垂直磁気記録媒体、その製造方法、および磁気記憶装置に関する。   The present invention relates to a perpendicular magnetic recording medium, a method for manufacturing the same, and a magnetic storage device.

磁気記憶装置、例えば、ハードディスクドライブ(HDD)装置は、1ビット当りのメモリ単価が安く、大容量化が図れるデジタル信号記録装置である。近年HDD装置は、小型化が進み、携帯端末機器やデジタル画像音響関連機器の記憶装置として広く用いられている。そして、さらなる大容量化のため、HDD装置の記録密度のさらなる向上が望まれている。   A magnetic storage device, for example, a hard disk drive (HDD) device, is a digital signal recording device that has a low unit cost per bit and can be increased in capacity. In recent years, HDD devices have been miniaturized, and are widely used as storage devices for portable terminal devices and digital image sound related devices. In order to further increase the capacity, it is desired to further improve the recording density of the HDD device.

次世代のHDD装置として、記録層の磁化方向が基板面に対して垂直であるところの垂直磁気記録媒体を用いた垂直磁気記録方式が検討されている。垂直磁気記録方式は、1ビットに相当する磁化領域がそれ自体あるいは隣接する磁化領域から受ける反磁界が、面内記録方式よりも小さい。そのため、垂直磁気記録方式は、面内磁気記録方式よりも高記録密度においても高い再生出力を得ることが可能である。また、垂直磁気記録方式では、高記録密度で問題となる記録された磁化の熱緩和耐性を高くすることが期待できる。これらの理由から、垂直磁気記録方式では1Tbit/平方インチの面記録密度を達成可能であると予測されている。   As a next-generation HDD device, a perpendicular magnetic recording system using a perpendicular magnetic recording medium in which the magnetization direction of the recording layer is perpendicular to the substrate surface is being studied. In the perpendicular magnetic recording method, the demagnetizing field received by the magnetization region corresponding to 1 bit from itself or from the adjacent magnetization region is smaller than that in the in-plane recording method. Therefore, the perpendicular magnetic recording system can obtain a higher reproduction output even at a higher recording density than the in-plane magnetic recording system. Further, in the perpendicular magnetic recording system, it can be expected to increase the thermal relaxation resistance of recorded magnetization which is a problem at a high recording density. For these reasons, it is predicted that the perpendicular magnetic recording system can achieve a surface recording density of 1 Tbit / in 2.

垂直磁気記録媒体として記録密度を向上するために様々な構造が提案されている。しかし200Gbit/平方インチを超える記録密度を実現するには、まだ記録再生の信号品質、例えばエラーレートやS/N比が不足しており、さらなる改善が必要である。信号品質向上には記録ビットの均一性が重要であり、そのためには記録層を形成する磁性粒子を形状的、磁気的に均一にする必要がある。これには記録媒体の結晶成長制御が必要で、そのために上記のように下地層、中間層を設けているが、まだ制御が十分でなく、それらの粒径、結晶性にバラツキを持っている。   Various structures have been proposed for improving recording density as a perpendicular magnetic recording medium. However, in order to realize a recording density exceeding 200 Gbit / in 2, signal quality for recording / reproduction, for example, an error rate and an S / N ratio are still insufficient, and further improvement is necessary. In order to improve signal quality, the uniformity of the recording bit is important. For that purpose, the magnetic particles forming the recording layer must be made uniform in shape and magnetically. This requires control of the crystal growth of the recording medium. For this reason, the underlayer and the intermediate layer are provided as described above, but the control is not yet sufficient, and the grain size and crystallinity of the recording medium vary. .

記録層のS/N比の向上のため、記録層の材料や構造が種々提案されているが、記録層は、その下地からエピタキシャル成長している。そのため、記録層の微細構造の良否を左右する下地層等の結晶性や、結晶粒子の大きさやその均一性等が重要になってきている。そこで、記録層の下地として種々の多層膜が提案されている(例えば特許文献1および2参照。)。
特開2003−067910号公報 特開2002−208129号公報
In order to improve the S / N ratio of the recording layer, various materials and structures of the recording layer have been proposed, but the recording layer is epitaxially grown from the base. For this reason, the crystallinity of the underlayer and the like which influence the quality of the fine structure of the recording layer, the size and uniformity of crystal grains, and the like are becoming important. Therefore, various multilayer films have been proposed as the base of the recording layer (see, for example, Patent Documents 1 and 2).
JP 2003-067910 A JP 2002-208129 A

ところで、特許文献1では、軟磁性裏打ち層と記録層との間に、配向制御層、あるいは、配向制御層とhcp構造のCoCr合金等からなる中間層との積層体を設けている。この配向制御層は、スパッタ法により合金材料を酸素ガスや窒素ガスを含む雰囲気で成膜されている。この作用および効果については開示されていないが、以下のような問題が生じるおそれがある。   By the way, in Patent Document 1, an orientation control layer or a laminate of an orientation control layer and an intermediate layer made of a CoCr alloy having an hcp structure or the like is provided between the soft magnetic backing layer and the recording layer. The orientation control layer is formed by sputtering using an alloy material in an atmosphere containing oxygen gas or nitrogen gas. Although this action and effect are not disclosed, the following problems may occur.

すなわち、配向制御層は層の厚さ方向全体に亘って酸素や窒素を含むため結晶構造が乱れ、その結果、結晶性が著しく低下する。このような配向制御層に直接記録層を形成すると、記録層は配向制御層の表面での結晶性が不十分となり、さらに、結晶粒子とその粒界部との分離、いわゆる偏析が促進されない。また、配向制御層上にhcp構造のCoCr合金等からなる中間層を設ける場合も中間層自体が結晶性および偏析が不十分なため、記録層に同様の悪影響を与えてしまう。このような場合、記録層のS/N比は劣化するという問題が生じる。   That is, since the orientation control layer contains oxygen and nitrogen throughout the thickness direction of the layer, the crystal structure is disturbed, and as a result, the crystallinity is remarkably lowered. When the recording layer is directly formed on such an orientation control layer, the recording layer has insufficient crystallinity on the surface of the orientation control layer, and further, the separation between crystal grains and their grain boundary portions, so-called segregation, is not promoted. Further, when an intermediate layer made of an Hcp-structured CoCr alloy or the like is provided on the orientation control layer, the intermediate layer itself has insufficient crystallinity and segregation, and thus has the same adverse effect on the recording layer. In such a case, there arises a problem that the S / N ratio of the recording layer deteriorates.

そこで、本発明は上記問題点に鑑みてなされたもので、本発明の目的は、優れたS/N比を有する垂直磁気記録媒体、その製造方法および磁気記憶装置を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a perpendicular magnetic recording medium having an excellent S / N ratio, a manufacturing method thereof, and a magnetic storage device.

本発明の一観点によれば、基板と、記録層とを備える垂直磁気記録媒体であって、前記基板と記録層との間に、該基板側から、配向制御層、fcc(面心立方)構造を有する下地層、hcp(六方細密充填)構造を有する中間層が順次積層されてなり、前記配向制御層は、下地層との界面に酸化および/または窒化された処理表面を有することを特徴とする垂直磁気記録媒体が提供される。   According to one aspect of the present invention, there is provided a perpendicular magnetic recording medium including a substrate and a recording layer, and an orientation control layer, fcc (face-centered cubic) between the substrate and the recording layer from the substrate side. A base layer having a structure and an intermediate layer having an hcp (hexagonal close packed) structure are sequentially stacked, and the orientation control layer has a treated surface oxidized and / or nitrided at the interface with the base layer. A perpendicular magnetic recording medium is provided.

本発明によれば、配向制御層の表面がO2ガス、N2ガス、あるいは、O2ガスとN2ガスの両方を含む処理ガスに曝露して形成された処理表面を有する。処理表面は、配向制御層を構成する材料が酸化、窒化あるいはこの両方が生じた表面領域からなる。この表面領域が下地層の結晶成長核の起点となる。処理ガスは配向制御層の表面に均一に吸着するので、酸化や窒化された領域が均一に形成され、この上に成長する下地層の結晶粒子の大きさが均一なり、かつ結晶配向性が良好となる。その結果、結晶粒子の大きさの均一性および結晶配向性が中間層および記録層に引き継がれ、記録層の磁性粒子の大きさの均一性および結晶性が良好となる。その結果、磁気記録媒体はS/N比が向上し、高記録密度化が可能となる。 According to the present invention, the surface of the orientation control layer has a processing surface formed by being exposed to O 2 gas, N 2 gas, or a processing gas containing both O 2 gas and N 2 gas. The treatment surface is composed of a surface region in which the material constituting the orientation control layer is oxidized, nitrided, or both. This surface region becomes the starting point of the crystal growth nucleus of the underlayer. Since the processing gas is uniformly adsorbed on the surface of the orientation control layer, the oxidized or nitrided region is uniformly formed, the crystal grain size of the underlying layer growing on this is uniform, and the crystal orientation is good It becomes. As a result, the uniformity of crystal grain size and crystal orientation are inherited by the intermediate layer and the recording layer, and the uniformity of crystal grain size and crystallinity of the recording layer are improved. As a result, the S / N ratio of the magnetic recording medium is improved and a high recording density can be achieved.

本発明の他の観点によれば、基板と、該基板上に、配向制御層と、fcc構造を有する下地層と、hcp構造を有する中間層と、基板面に対して略垂直方向に磁化容易軸を有する記録層とが順次積層されてなる垂直磁気記録媒体の製造方法であって、前記基板上に配向制御層を形成する工程と、前記配向性制御層の表面をO2ガス、N2ガス、あるいは、O2ガスとN2ガスの両方を含む処理ガスに曝す曝露工程と、を含むことを特徴とする垂直磁気記録媒体の製造方法が提供される。 According to another aspect of the present invention, a substrate, an orientation control layer, an underlayer having an fcc structure, an intermediate layer having an hcp structure on the substrate, and an easy magnetization in a direction substantially perpendicular to the substrate surface A method of manufacturing a perpendicular magnetic recording medium in which a recording layer having an axis is sequentially laminated, the step of forming an orientation control layer on the substrate, and the surface of the orientation control layer with O 2 gas, N 2 And a step of exposing to a gas or a processing gas containing both O 2 gas and N 2 gas. A method of manufacturing a perpendicular magnetic recording medium is provided.

本発明によれば、配向制御層の表面をO2ガス、N2ガス、あるいは、O2ガスとN2ガスの両方を含む処理ガスに曝すことで、配向制御層の表面に処理ガスが吸着した吸着点、あるいは、酸化や窒化された領域が島状に形成されると推察される。これらが下地層の結晶成長核の起点となる。処理ガスは配向制御層の表面に均一に吸着するので、吸着点や酸化や窒化された領域が均一に形成され、この上に成長する下地層の結晶粒子の大きさが均一なり、かつ結晶配向性が良好となる。その結果、結晶粒子の大きさの均一性および結晶配向性が中間層および記録層に引き継がれ、記録層の磁性粒子の大きさの均一性および結晶性が良好となる。その結果、磁気記録媒体はS/N比が向上し、高記録密度化が可能となる。 According to the present invention, the processing gas is adsorbed on the surface of the orientation control layer by exposing the surface of the orientation control layer to O 2 gas, N 2 gas, or a processing gas containing both O 2 gas and N 2 gas. It is presumed that the adsorbed spots or oxidized or nitrided regions are formed in an island shape. These are the starting points for the crystal growth nuclei of the underlayer. Since the processing gas is uniformly adsorbed on the surface of the orientation control layer, the adsorption point and the oxidized or nitrided region are uniformly formed, the size of the crystal grains of the underlying layer growing on this is uniform, and the crystal orientation Property is improved. As a result, the uniformity of crystal grain size and crystal orientation are inherited by the intermediate layer and the recording layer, and the uniformity of crystal grain size and crystallinity of the recording layer are improved. As a result, the S / N ratio of the magnetic recording medium is improved and a high recording density can be achieved.

本発明のその他の観点によれば、磁気ヘッドを有する記録再生手段と、上記いずれかの垂直磁気記録媒体とを備える磁気記憶装置が提供される。   According to another aspect of the present invention, there is provided a magnetic storage device comprising recording / reproducing means having a magnetic head and any one of the above perpendicular magnetic recording media.

本発明によれば、優れたS/N比を有し、高記録密度化が可能な磁気記憶装置が実現できる。   According to the present invention, a magnetic storage device having an excellent S / N ratio and capable of increasing the recording density can be realized.

本発明によれば、優れたS/N比を有する垂直磁気記録媒体、その製造方法および磁気記憶装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the perpendicular magnetic recording medium which has the outstanding S / N ratio, its manufacturing method, and a magnetic storage apparatus can be provided.

以下図面を参照しつつ実施の形態を説明する。   Embodiments will be described below with reference to the drawings.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る垂直磁気記録媒体の概略断面図である。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of a perpendicular magnetic recording medium according to the first embodiment of the present invention.

図1を参照するに、第1の実施の形態に係る垂直磁気記録媒体10は、基板11と、基板11上に、軟磁性裏打ち層12、配向制御層13、下地層14、中間層15、記録層16、保護膜18、および潤滑層19が順に積層して構成される。配向制御層13は、下地層14との界面に酸化処理、あるいは窒化処理、あるいはその両方で処理された処理表面13aを有する。   Referring to FIG. 1, a perpendicular magnetic recording medium 10 according to a first embodiment includes a substrate 11 and a soft magnetic backing layer 12, an orientation control layer 13, an underlayer 14, an intermediate layer 15, The recording layer 16, the protective film 18, and the lubricating layer 19 are sequentially stacked. The orientation control layer 13 has a treatment surface 13a treated at the interface with the base layer 14 by oxidation treatment, nitridation treatment, or both.

基板11は、例えば、プラスチック基板、結晶化ガラス基板、強化ガラス基板、Si基板、アルミニウム合金基板などから構成される。垂直磁気記録媒体10がテープ状である場合はポリエステル(PET)、ポリエチレンナフタレート(PEN)、耐熱性に優れたポリイミド(PI)などのフィルムを用いることができる。   The substrate 11 is composed of, for example, a plastic substrate, a crystallized glass substrate, a tempered glass substrate, a Si substrate, an aluminum alloy substrate, or the like. When the perpendicular magnetic recording medium 10 is in the form of a tape, a film such as polyester (PET), polyethylene naphthalate (PEN), polyimide (PI) having excellent heat resistance can be used.

軟磁性裏打ち層12は、例えば、膜厚が10nm〜2μmであり、Fe、Co、Ni、Al、Si、Ta、Ti、Zr、Hf、V、Nb、C、Bから選択された少なくとも1種の元素を含む非晶質もしくは微結晶の軟磁性材料からなる。このような軟磁性材料としては、FeSi、FeAlSi、FeTaC、CoNbZr、CoZrTa、CoCrNb、NiFe、NiFeNb等が挙げられる。軟磁性裏打ち層12は1層に限定されず、複数層を積層してもよい。   The soft magnetic backing layer 12 has, for example, a film thickness of 10 nm to 2 μm, and at least one selected from Fe, Co, Ni, Al, Si, Ta, Ti, Zr, Hf, V, Nb, C, and B It is made of an amorphous or microcrystalline soft magnetic material containing these elements. Examples of such soft magnetic materials include FeSi, FeAlSi, FeTaC, CoNbZr, CoZrTa, CoCrNb, NiFe, and NiFeNb. The soft magnetic backing layer 12 is not limited to one layer, and a plurality of layers may be laminated.

なお、詳細な図示を省略するが、軟磁性裏打ち層12の基板11側または配向制御層13側に2つの軟磁性層と、2つの軟磁性層に挟まれた非磁性結合層からなる積層体を設けてもよい。2つの軟磁性層は、軟磁性裏打ち層12と同様の材料から選択されて構成される。また、非磁性結合層は、例えばRu、Rh、Ir、Ru系合金、Rh系合金、Ir系合金等のいずれから構成される。非磁性結合層の膜厚を0.7nm程度にすることで、この積層体の2つの軟磁性層の磁化が非磁性結合層を介して互いに反強磁性的に交換結合する。このような積層体を軟磁性裏打ち層12に接して設けることで、軟磁性裏打ち層12の磁壁移動に起因するスパイクノイズを抑制できる。   Although not shown in detail, a laminate comprising two soft magnetic layers on the substrate 11 side or the orientation control layer 13 side of the soft magnetic backing layer 12 and a nonmagnetic coupling layer sandwiched between the two soft magnetic layers. May be provided. The two soft magnetic layers are selected from the same material as the soft magnetic backing layer 12. The nonmagnetic coupling layer is made of any of Ru, Rh, Ir, Ru-based alloy, Rh-based alloy, Ir-based alloy, and the like. By setting the film thickness of the nonmagnetic coupling layer to about 0.7 nm, the magnetizations of the two soft magnetic layers of the multilayer body are antiferromagnetically exchange-coupled to each other through the nonmagnetic coupling layer. By providing such a laminate in contact with the soft magnetic backing layer 12, it is possible to suppress spike noise caused by the domain wall movement of the soft magnetic backing layer 12.

配向制御層13は金属材料からなり、その表面(下地層14との界面)に処理表面13aを有する。配向制御層13を構成する金属材料は、非晶質状態、微結晶状態、および結晶質状態のいずれの状態でもよい。   The orientation control layer 13 is made of a metal material and has a treated surface 13a on the surface (interface with the base layer 14). The metal material constituting the orientation control layer 13 may be in any of an amorphous state, a microcrystalline state, and a crystalline state.

配向制御層13を構成する金属材料は、結晶質状態でbcc(体心立方)構造を有する材料であることが好ましい。このような金属材料としては、Ta、W、Nb、Mo、およびこれらの金属元素を主成分とする材料が挙げられる。このような金属材料を用いることで、この上の成長する下地層14の結晶配向性を向上させる。すなわち、下地層14はfcc構造を有するが、その(111)結晶面が基板面に平行に配向しその配向性が向上する。   The metal material constituting the orientation control layer 13 is preferably a material having a bcc (body centered cubic) structure in a crystalline state. Examples of such a metal material include Ta, W, Nb, Mo, and materials mainly composed of these metal elements. By using such a metal material, the crystal orientation of the underlying layer 14 that grows thereon is improved. That is, the underlayer 14 has an fcc structure, but its (111) crystal plane is oriented parallel to the substrate surface, and the orientation is improved.

配向制御層13の表面には、配向制御層13の金属材料が酸化あるいは窒化された処理表面13aからなる。処理表面は酸化および窒化の両方がされていてもよい。処理表面13aは、均一に酸化あるいは窒化されていることが好ましい。ただし、処理表面13aは配向制御層13の金属材料の酸化物や窒化物が緻密に形成されている必要はなく、島状に酸化物や窒化物が互いに離隔されて形成されていてもよい。このような処理表面13aを有することで、下地層14は基板面に平行な断面における結晶粒子の大きさが均一になる。その結果、結晶粒子の大きさの均一性が、中間層15を介して記録層16に引き継がれ、記録層16の磁性粒子の大きさの均一性が向上する。   The surface of the orientation control layer 13 is composed of a treated surface 13a in which the metal material of the orientation control layer 13 is oxidized or nitrided. The treated surface may be both oxidized and nitrided. The treated surface 13a is preferably uniformly oxidized or nitrided. However, the oxide or nitride of the metal material of the orientation control layer 13 does not need to be densely formed on the treatment surface 13a, and the oxide or nitride may be separated from each other in an island shape. By having such a treated surface 13a, the underlayer 14 has a uniform crystal grain size in a cross section parallel to the substrate surface. As a result, the crystal grain size uniformity is inherited by the recording layer 16 via the intermediate layer 15, and the magnetic grain size uniformity of the recording layer 16 is improved.

また、配向制御層13の処理表面13aは、酸化物あるいは窒化物が緻密に形成されていない方が好ましい。処理表面13aが、酸化物あるいは窒化物が緻密に形成されていると、処理表面13aに接する下地層14の初期成長部分が酸素あるいは窒素の影響を受け易いため、結晶構造(fcc構造)を形成し難くなる。そうすると、下地層14の結晶性および結晶配向性が低下し、中間層15を介して記録層16に影響する。   Moreover, it is preferable that the treatment surface 13a of the orientation control layer 13 is not densely formed with oxides or nitrides. If the treatment surface 13a is densely formed of oxide or nitride, the initial growth portion of the underlayer 14 in contact with the treatment surface 13a is easily affected by oxygen or nitrogen, so that a crystal structure (fcc structure) is formed. It becomes difficult to do. As a result, the crystallinity and crystal orientation of the underlayer 14 are lowered, and the recording layer 16 is affected via the intermediate layer 15.

配向制御層13の膜厚は、その処理表面13aを含めて、1nm〜5nmの範囲に設定されることが好ましい。なお、処理表面13aは酸化および窒化の両方がなされていてもよい。   The film thickness of the orientation control layer 13 is preferably set in the range of 1 nm to 5 nm including the treated surface 13a. The treatment surface 13a may be both oxidized and nitrided.

下地層14は、fcc構造を有する結晶質の金属材料から構成される。fcc構造は細密充填構造であるので、この上に形成されるhcp構造の中間層15がエピタキシャル成長において、格子整合性が良好となる。すなわち、下地層14の(111)結晶面上に中間層15の(001)面が整合し、中間層15は結晶性が良好な状態で成長する。その結果、記録層16の磁性粒子の結晶性が向上して再生出力や保磁力が向上する。   The underlayer 14 is made of a crystalline metal material having an fcc structure. Since the fcc structure is a close-packed structure, the lattice matching is good when the intermediate layer 15 of the hcp structure formed thereon is epitaxially grown. That is, the (001) plane of the intermediate layer 15 is aligned with the (111) crystal plane of the underlayer 14, and the intermediate layer 15 grows with good crystallinity. As a result, the crystallinity of the magnetic particles in the recording layer 16 is improved, and the reproduction output and the coercive force are improved.

下地層14の金属材料としては、fcc構造を有するNiを主成分とする金属材料が好ましく、さらに、NiとFeを含む材料が特に好ましい。このような材料としては、NiFe、NiFe、NiFeNb、NiFeCr、NiFeSiが挙げられる。また、下地層14の膜厚は、3nm〜10nmの範囲に設定されることが好ましい。   The metal material of the underlayer 14 is preferably a metal material mainly composed of Ni having an fcc structure, and more preferably a material containing Ni and Fe. Examples of such a material include NiFe, NiFe, NiFeNb, NiFeCr, and NiFeSi. The film thickness of the underlayer 14 is preferably set in the range of 3 nm to 10 nm.

中間層15は、hcp構造を有する金属材料から構成される。このような金属材料としては、RuあるいはRuを主成分とするRu−X合金(X=Co、Cr、Fe、Ni、W、Cu、B、C、SiおよびMnのうち少なくとも1種の元素)であることが好ましい。このような材料を用いることで、上述したように、下地層14との格子整合性が良好となり、良好な結晶性、(001)結晶面の良好な配向性、および結晶粒子の均一性を有する。したがって、この上に形成される記録層16の磁性粒子の結晶性、結晶配向性および磁性粒子の均一性を向上する。   The intermediate layer 15 is made of a metal material having an hcp structure. As such a metal material, Ru or an Ru—X alloy containing Ru as a main component (X = Co, Cr, Fe, Ni, W, Cu, B, C, Si and Mn) It is preferable that By using such a material, as described above, the lattice matching with the underlayer 14 is good, and has good crystallinity, (001) crystal plane orientation, and crystal grain uniformity. . Therefore, the crystallinity, crystal orientation and magnetic particle uniformity of the magnetic particles of the recording layer 16 formed thereon are improved.

また、RuあるいはRu−X合金は格子定数が、記録層16に用いられるhcp構造を有するCoを主成分とする合金の格子定数と近接しているので、格子整合性が良好である。このため、中間層15との界面付近の記録層16の初期成長部の結晶性が良好となり、記録層16を薄膜化しても、S/N比が劣化し難い。   In addition, since the lattice constant of Ru or Ru-X alloy is close to the lattice constant of the alloy mainly composed of Co having the hcp structure used for the recording layer 16, the lattice matching is good. Therefore, the crystallinity of the initial growth portion of the recording layer 16 in the vicinity of the interface with the intermediate layer 15 becomes good, and even if the recording layer 16 is thinned, the S / N ratio is hardly deteriorated.

中間層15の膜厚は、5nm〜20nmの範囲に設定されることが好ましい。中間層15は厚い程、中間層15の結晶性が良好になるが、20nmを超えるといわゆるスペーシングロスが大きくなるため、再生出力が低下し易い。   The thickness of the intermediate layer 15 is preferably set in the range of 5 nm to 20 nm. The thicker the intermediate layer 15 is, the better the crystallinity of the intermediate layer 15 is. However, when it exceeds 20 nm, so-called spacing loss increases, and the reproduction output tends to decrease.

記録層16は、いわゆる柱状グラニュラ構造を有し、柱状構造を有する磁性粒子と、磁性粒子を囲み、隣り合う磁性粒子を物理的に離隔する非磁性材料からなる非固溶相から構成される。磁性粒子は基板面に対して略垂直方向に延びている。また、非固溶相は、多数の磁性粒子の各々の間を充填するように形成されている。このような柱状グラニュラ構造は、スパッタ法等により自己組織的に形成される。なお、一つの磁性粒子は、その全体が単結晶領域からなることが理想的であるが、複数の単結晶領域を有してもよく、結晶粒界や結晶欠陥を有していてもよい。   The recording layer 16 has a so-called columnar granular structure, and is composed of a magnetic particle having a columnar structure and a non-solid solution phase made of a nonmagnetic material that surrounds the magnetic particles and physically separates adjacent magnetic particles. The magnetic particles extend in a direction substantially perpendicular to the substrate surface. Further, the non-solid solution phase is formed so as to be filled between each of a large number of magnetic particles. Such a columnar granular structure is formed in a self-organized manner by sputtering or the like. One magnetic particle is ideally composed of a single crystal region as a whole, but may have a plurality of single crystal regions, and may have crystal grain boundaries and crystal defects.

磁性粒子は、hcp構造を有し、CoPt、CoCr、CoCrTa、CoCrPt、CoCrPt−Mからなる強磁性材料から選択される。ここで、Mは、B、Mo、Nb、Ta、W、Cuおよびこれらの元素の合金から選択される。磁性粒子は基板面に対して略垂直方向に沿って磁化容易軸を有する。例えば、磁性粒子を構成する強磁性材料が六方細密充填(hcp)構造を有する場合は、磁性粒子は、c軸が基板面に対して略垂直方向になるように結晶配向する。   The magnetic particles have an hcp structure and are selected from ferromagnetic materials made of CoPt, CoCr, CoCrTa, CoCrPt, and CoCrPt-M. Here, M is selected from B, Mo, Nb, Ta, W, Cu and alloys of these elements. The magnetic particles have an easy axis of magnetization along a direction substantially perpendicular to the substrate surface. For example, when the ferromagnetic material constituting the magnetic particles has a hexagonal close packed (hcp) structure, the magnetic particles are crystallized so that the c-axis is substantially perpendicular to the substrate surface.

磁性粒子がCoCrPt−Mからなる場合は、Co含有量が50原子%〜80原子%、Pt含有量が15原子%〜30原子%、M濃度が0原子%よりも多くかつ20原子%以下、残りがCr含有量となるように設定する。このようにPt含有量を従来の垂直磁気記録媒体と比較して多く含有させることにより、異方性磁界を増加して基板面に対して垂直方向の保磁力を高めることができる。   When the magnetic particles are made of CoCrPt-M, the Co content is 50 atom% to 80 atom%, the Pt content is 15 atom% to 30 atom%, the M concentration is more than 0 atom% and not more than 20 atom%, The balance is set so as to have a Cr content. Thus, by containing a larger amount of Pt than in the conventional perpendicular magnetic recording medium, the anisotropic magnetic field can be increased and the coercivity in the direction perpendicular to the substrate surface can be increased.

非固溶相は、各々、磁性粒子を形成する強磁性材料と固溶しない、あるいは化合物を形成しない非磁性材料から構成される。このような非磁性材料は、Si、Al、Cr、Ta、Zr、Y、Ti、およびMgから選択されるいずれか1種の元素と、O、N、およびCから選択される少なくともいずれか1種の元素との化合物からなる。このような非磁性材料としては酸化物、窒化物、炭化物が挙げられる。酸化物としては、例えば、SiO2、Al23、Cr23、Ta25、ZrO2、Y23、TiO2、MgO等が挙げられる。また、窒化物としては、Si34、AlN、TaN、ZrN、TiN、Mg32等が挙げられる。また、炭化物としては、SiC、TaC、ZrC、TiC等が挙げられる。このような非磁性材料からなる非固溶相によって、隣り合う磁性粒子が互いに物理的に離隔される。したがって、磁性粒子間に働く磁気的相互作用が低減され、その結果、媒体ノイズを低減することができる。 Each non-solid solution phase is composed of a non-magnetic material that does not form a solid solution with a ferromagnetic material that forms magnetic particles or does not form a compound. Such a nonmagnetic material is any one element selected from Si, Al, Cr, Ta, Zr, Y, Ti, and Mg, and at least one selected from O, N, and C. Consists of compounds with seed elements. Such nonmagnetic materials include oxides, nitrides, and carbides. Examples of the oxide include SiO 2 , Al 2 O 3 , Cr 2 O 3 , Ta 2 O 5 , ZrO 2 , Y 2 O 3 , TiO 2 , and MgO. Examples of the nitride include Si 3 N 4 , AlN, TaN, ZrN, TiN, and Mg 3 N 2 . Moreover, SiC, TaC, ZrC, TiC etc. are mentioned as a carbide | carbonized_material. Adjacent magnetic particles are physically separated from each other by such a non-solid solution phase made of a non-magnetic material. Therefore, the magnetic interaction acting between the magnetic particles is reduced, and as a result, the medium noise can be reduced.

また、非固溶相を構成する非磁性材料は、絶縁性材料であることが好ましい。これにより、強磁性を担う電子のトンネル効果を抑制でき、磁性粒子間の交換相互作用を低減することができる。   The nonmagnetic material constituting the non-solid solution phase is preferably an insulating material. Thereby, the tunnel effect of the electrons responsible for ferromagnetism can be suppressed, and the exchange interaction between the magnetic particles can be reduced.

記録層16は、強磁性材料と非固溶相を構成する非磁性材料とのモル比が、強磁性材料:非磁性材料=85:15〜95:5の範囲に設定されることが好ましい。非磁性材料のモル分率が5モル%未満では、磁性粒子同士が結合し易くなり磁性粒子同士が充分に離隔されない。記録層16の膜厚は、5nm〜25nmの範囲に設定されることが好ましく、10nm〜20nmの範囲に設定されることがさらに好ましい。   In the recording layer 16, the molar ratio of the ferromagnetic material to the nonmagnetic material constituting the non-solid solution phase is preferably set in the range of ferromagnetic material: nonmagnetic material = 85: 15 to 95: 5. When the molar fraction of the nonmagnetic material is less than 5 mol%, the magnetic particles are easily bonded to each other and the magnetic particles are not sufficiently separated from each other. The film thickness of the recording layer 16 is preferably set in the range of 5 nm to 25 nm, and more preferably in the range of 10 nm to 20 nm.

例えば、記録層16の具体例としては、(CoCrPt−M)−SiO2からなり、SiO2のモル分率は5モル%〜15モル%の範囲に設定されることが好ましい。 For example, as a specific example of the recording layer 16 is made of (CoCrPt-M) -SiO 2, the mole fraction of SiO 2 is preferably set in the range of 5 mol% to 15 mol%.

保護膜18は、例えば膜厚が0.5nm〜15nmであり、アモルファスカーボン、水素化カーボン、窒化カーボン、および酸化アルミニウム等から選択される材料により構成される。なお、保護膜18はその材料に特に制限はない。   The protective film 18 has a film thickness of 0.5 nm to 15 nm, for example, and is made of a material selected from amorphous carbon, hydrogenated carbon, carbon nitride, aluminum oxide, and the like. The material of the protective film 18 is not particularly limited.

潤滑層19は、例えば膜厚が0.5nm〜5nmのパーフルオロポリエーテルが主鎖の潤滑剤などにより構成される。潤滑剤としては、例えば、末端基が−OHやピペロニル基等からなるパーフルオロポリエーテルを用いることができる。なお、潤滑層19は、保護膜18の材料に応じて設けてもよく、設けなくともよい。   The lubricating layer 19 is made of, for example, a main chain lubricant made of perfluoropolyether having a film thickness of 0.5 nm to 5 nm. As the lubricant, for example, perfluoropolyether whose terminal group is made of —OH, piperonyl group or the like can be used. The lubricating layer 19 may or may not be provided depending on the material of the protective film 18.

なお、記録層16は、上述した柱状グラニュラ構造を有する場合の他に、hcp構造を有するCoCr、CoCrTa、CoCrPt、CoCrPt−Mから構成される、いわゆる連続膜構造でもよい。ここで、Mは、B、Mo、Nb、Ta、W、Cuおよびこれらの元素の合金から選択される。連続膜構造は、磁性粒子と、磁性粒子間に偏析するCrを含む非磁性の粒界部からなる。上述したように、配向制御層13の影響で、下地層14と中間層15の結晶粒子の粒径が均一となり、結晶粒子の結晶性も良好となる。したがって、記録層16の連続膜構造の磁性粒子は、中間層15の結晶粒子上に成長するので、記録層16の磁性粒子の大きさが均一化し、結晶性も向上する。その結果、優れたS/N比を有する磁気記録媒体が実現できる。   The recording layer 16 may have a so-called continuous film structure composed of CoCr, CoCrTa, CoCrPt, and CoCrPt-M having an hcp structure in addition to the above-described columnar granular structure. Here, M is selected from B, Mo, Nb, Ta, W, Cu and alloys of these elements. The continuous film structure is composed of magnetic particles and nonmagnetic grain boundary portions containing Cr segregating between the magnetic particles. As described above, due to the influence of the orientation control layer 13, the crystal grains of the underlayer 14 and the intermediate layer 15 have a uniform grain size, and the crystallinity of the crystal grains is improved. Therefore, since the magnetic particles having a continuous film structure of the recording layer 16 grow on the crystal particles of the intermediate layer 15, the size of the magnetic particles of the recording layer 16 is made uniform and the crystallinity is improved. As a result, a magnetic recording medium having an excellent S / N ratio can be realized.

また、記録層16は、粒状グラニュラ構造や連続膜構造の代わりにCoまたはCo合金と、PdまたはPtとが交互に積層された多層積層膜でもよい。このような多層積層膜の具体例としては、Co/Pd、CoB/Pd、Co/Pt、CoB/Pt等が挙げられる。例えばCoB/Pdの多層積層膜の場合、CoB(厚さ:0.3nm)とPd(厚さ0.8nm)を交互に各々を5層から30層を積層して構成される。多層積層膜は垂直磁気異方性定数が大きいので熱的安定性に優れている。特に、上述した配向制御層13の影響で、下地層14と中間層15の結晶性が良好なので、多層積層膜の結晶性も良好となり、さらに垂直磁気異方性定数を向上できる。   The recording layer 16 may be a multilayer laminated film in which Co or a Co alloy and Pd or Pt are alternately laminated instead of the granular granular structure or the continuous film structure. Specific examples of such a multilayer laminated film include Co / Pd, CoB / Pd, Co / Pt, and CoB / Pt. For example, in the case of a CoB / Pd multilayer laminated film, CoB (thickness: 0.3 nm) and Pd (thickness 0.8 nm) are alternately laminated to form 5 to 30 layers. Since the multilayer laminated film has a large perpendicular magnetic anisotropy constant, it has excellent thermal stability. In particular, because the crystallinity of the underlayer 14 and the intermediate layer 15 is good due to the influence of the orientation control layer 13 described above, the crystallinity of the multilayer film is also good, and the perpendicular magnetic anisotropy constant can be improved.

次に、図1を参照しつつ、第1の実施の形態に係る垂直磁気記録媒体の製造方法を説明する。   Next, a method for manufacturing a perpendicular magnetic recording medium according to the first embodiment will be described with reference to FIG.

最初に、基板11の表面を洗浄・乾燥後、基板11上に上述した軟磁性裏打ち層12を、無電解めっき法、電気めっき法、スパッタ法、真空蒸着法等により形成する。具体的には、DCマグネトロン法によりArガス雰囲気中で、例えば圧力0.5Paに設定して成膜する。成膜の際、基板11の加熱は行わない方が好ましい。   First, after cleaning and drying the surface of the substrate 11, the above-described soft magnetic backing layer 12 is formed on the substrate 11 by an electroless plating method, an electroplating method, a sputtering method, a vacuum evaporation method, or the like. Specifically, the film is formed by a DC magnetron method in an Ar gas atmosphere, for example, at a pressure of 0.5 Pa. It is preferable not to heat the substrate 11 during film formation.

次いで、軟磁性裏打ち層12上に、スパッタ装置を用いて、上述したbcc構造を有する金属材料からなるスパッタターゲットを用いて配向制御層13を形成する。具体的には、DCマグネトロン法によりArガス雰囲気中で、例えば圧力0.5Paに設定して成膜する。成膜の際、基板11の加熱は行わない方が好ましい。   Next, the orientation control layer 13 is formed on the soft magnetic backing layer 12 using a sputtering target made of the metal material having the bcc structure described above, using a sputtering apparatus. Specifically, the film is formed by a DC magnetron method in an Ar gas atmosphere, for example, at a pressure of 0.5 Pa. It is preferable not to heat the substrate 11 during film formation.

次いで、配向制御層13の表面をO2ガスまたはN2ガス、O2ガスとN2ガスの両方を含む混合ガス(これらのガスを「処理ガス」と称する。)に曝露する。具体的には、真空チャンバー内に、不活性ガスと処理ガスとを導入する。処理ガスの分圧を0.1Pa〜1.0Paに設定することが好ましい。また、曝露時間は、1秒〜8秒に設定することが好ましい。さらに、後述する実施例1に示すように、曝露量を処理ガスの分圧と処理時間との積で表すと、0.3Pa秒以上に設定することが好ましい。曝露量は5Pa秒以下とすることが製造効率が低下しない点で好ましい。なお、処理ガスがO2ガスとN2ガスの両方を含む場合は、曝露量を計算する際の処理ガスの分圧は、O2ガスの分圧とN2ガスの分圧の和となる。 Then exposing the surface of the orientation control layer 13 O 2 gas or N 2 gas, a mixed gas containing both of the O 2 gas and N 2 gas (these gases is referred to as a "process gas".). Specifically, an inert gas and a processing gas are introduced into the vacuum chamber. It is preferable to set the partial pressure of the processing gas to 0.1 Pa to 1.0 Pa. The exposure time is preferably set to 1 second to 8 seconds. Furthermore, as shown in Example 1 described later, when the exposure amount is expressed by the product of the partial pressure of the processing gas and the processing time, it is preferably set to 0.3 Pa seconds or more. The exposure amount is preferably 5 Pa seconds or less from the viewpoint that the production efficiency does not decrease. When the processing gas contains both O 2 gas and N 2 gas, the partial pressure of the processing gas when calculating the exposure amount is the sum of the partial pressure of O 2 gas and the partial pressure of N 2 gas. .

なお、この曝露処理は、配向制御層13の表面にO2ガスあるいはN2ガスあるいはO2ガスとN2ガスの両方が吸着するだけでも下地層14の形成に好ましい効果を与えると考えられる。すなわち、配向制御層13の表面にO2ガスやN2ガスが吸着して吸着点が形成されると、下地層14を構成する材料の原子は、配向制御層13の表面に到達した際、吸着点にトラップされ易くなり、結晶成長核を形成する。配向制御層13の表面にO2ガスやN2ガスが均一に吸着しているので、結晶成長核も均一に形成される。その結果、結晶粒子の分布が均一になり、その大きさも均一になる。 Note that this exposure process, both of the O 2 gas or N 2 gas or O 2 gas and N 2 gas on the surface of the orientation control layer 13 is believed to provide a positive effect on the formation of the underlayer 14 just to adsorption. That is, when an adsorption point is formed by adsorbing O 2 gas or N 2 gas on the surface of the orientation control layer 13, when atoms of the material constituting the base layer 14 reach the surface of the orientation control layer 13, It becomes easy to be trapped at the adsorption point and forms a crystal growth nucleus. Since O 2 gas and N 2 gas are uniformly adsorbed on the surface of the orientation control layer 13, crystal growth nuclei are also formed uniformly. As a result, the distribution of crystal grains becomes uniform and the size thereof becomes uniform.

次いで、スパッタ装置を用いて、下地層14および中間層15を順次、それぞれの材料からなるスパッタターゲットを用いて形成する。   Next, the underlayer 14 and the intermediate layer 15 are sequentially formed using a sputtering target made of each material using a sputtering apparatus.

次いで、中間層15上に、スパッタ装置を用いて、上述した強磁性材料と非磁性材料からなるスパッタターゲットを用いて、記録層16を形成する。具体的には、DCあるいはRFマグネトロン法により、上述した磁性材料と非磁性材料を複合化したスパッタターゲットを用い、不活性ガス雰囲気で、圧力2.00Pa〜8.00Pa(好ましくは2.00Pa〜3.99Pa)に設定して記録層16を成膜する。なお、記録層16の成膜の際、非磁性材料が酸素を含む場合は不活性ガスに酸素を添加してもよく、非磁性材料が窒素を含む場合は、不活性ガスに窒素を添加してもよい。   Next, the recording layer 16 is formed on the intermediate layer 15 by using a sputtering target made of the above-described ferromagnetic material and nonmagnetic material using a sputtering apparatus. Specifically, by using a sputtering target obtained by combining the above-described magnetic material and nonmagnetic material by a DC or RF magnetron method, in an inert gas atmosphere, a pressure of 2.00 Pa to 8.00 Pa (preferably 2.00 Pa to The recording layer 16 is formed at a pressure of 3.99 Pa). When forming the recording layer 16, oxygen may be added to the inert gas if the nonmagnetic material contains oxygen, and nitrogen is added to the inert gas if the nonmagnetic material contains nitrogen. May be.

なお、記録層16の形成は、磁性材料からなるスパッタターゲットと、非磁性材料からなるスパッタターゲットを用いて、これらのスパッタターゲットを同時にスパッタして行ってもよい。   The recording layer 16 may be formed by simultaneously sputtering a sputter target made of a magnetic material and a sputter target made of a nonmagnetic material.

次いで、記録層16上に、スパッタ法、CVD法、FCA(Filtered Cathodic Arc)法等を用いて保護膜18を形成する。なお、上述した軟磁性裏打ち層12を形成する工程から保護膜18を形成する工程までは、工程間は真空あるいは不活性ガス雰囲気中に保持することが、各々の層の表面の清浄性を保持できる点で好ましい。   Next, a protective film 18 is formed on the recording layer 16 by using a sputtering method, a CVD method, an FCA (Filtered Cathodic Arc) method, or the like. It should be noted that from the step of forming the soft magnetic backing layer 12 to the step of forming the protective film 18, it is possible to maintain the cleanliness of the surface of each layer by maintaining in a vacuum or an inert gas atmosphere between the steps. It is preferable in that it can be performed.

次いで、保護膜18の表面に潤滑層19を形成する。潤滑層19は、浸漬法、スピンコート法等を用いて、潤滑剤を溶媒で希釈した希釈溶液を塗布する。以上により、本実施の形態に係る垂直磁気記録媒体が形成される。   Next, the lubricating layer 19 is formed on the surface of the protective film 18. The lubricating layer 19 is applied with a diluted solution obtained by diluting a lubricant with a solvent by using a dipping method, a spin coating method, or the like. Thus, the perpendicular magnetic recording medium according to the present embodiment is formed.

本実施の形態によれば、配向制御層13の表面をO2ガスあるいはN2ガス等の処理ガスに曝すことで、その上に形成される下地層14の結晶粒子の大きさが均一なり、結晶配向性が良好となる。その結果、結晶粒子の大きさの均一性および結晶配向性が中間層15および記録層16に引き継がれ、記録層16の磁性粒子の大きさの均一性および結晶性が良好となる。その結果、磁気記録媒体はS/N比が向上し、高記録密度化が可能となる。次に実施例について説明する。 According to the present embodiment, by exposing the surface of the orientation control layer 13 to a processing gas such as O 2 gas or N 2 gas, the size of the crystal grains of the underlayer 14 formed thereon becomes uniform, The crystal orientation is good. As a result, the uniformity of crystal grain size and crystal orientation are inherited by the intermediate layer 15 and the recording layer 16, and the uniformity of crystal grain size and crystallinity of the recording layer 16 are improved. As a result, the S / N ratio of the magnetic recording medium is improved and a high recording density can be achieved. Next, examples will be described.

[実施例1]
実施例1は、第1の実施の形態に係る垂直磁気記録媒体と同様の構成の垂直磁気記録媒体を作製した。実施例1は、配向制御層にTa膜を用い、その表面を酸素ガスを含む処理ガスに曝し、その酸素曝露量を異ならせた垂直磁気記録媒体を作製した。
[Example 1]
In Example 1, a perpendicular magnetic recording medium having the same configuration as that of the perpendicular magnetic recording medium according to the first embodiment was produced. In Example 1, a perpendicular magnetic recording medium was manufactured using a Ta film for the orientation control layer, exposing the surface to a processing gas containing oxygen gas, and varying the amount of oxygen exposure.

実施例1に係る垂直磁気記録媒体は以下に示す構成とした。なお、実施例1では、保磁力測定の都合のため、軟磁性裏打ち層を設けなかった。   The perpendicular magnetic recording medium according to Example 1 has the following configuration. In Example 1, the soft magnetic backing layer was not provided for the convenience of coercive force measurement.

基板:ガラス基板
配向制御層:Ta膜(3nm)、酸素曝露処理有り
下地層:NiFe膜(5nm)
中間層:Ru膜(10nm)
記録層:(Co75Cr15Pt10)90モル%−(SiO2)10モル%膜(10nm)
保護膜:ダイアモンドライクカーボン膜(3nm)
潤滑層:パーフルオロポリエーテル(1nm)
なお、括弧内の数値は膜厚を示す。また、記録層の組成は、スパッタターゲットの組成を示しており、実際に形成された記録層の組成は、非磁性材料が1モル%程度減少する傾向にある。
Substrate: Glass substrate Orientation control layer: Ta film (3 nm), with oxygen exposure treatment Underlayer: NiFe film (5 nm)
Intermediate layer: Ru film (10 nm)
Recording layer: (Co 75 Cr 15 Pt 10 ) 90 mol%-(SiO 2 ) 10 mol% film (10 nm)
Protective film: Diamond-like carbon film (3 nm)
Lubricating layer: perfluoropolyether (1 nm)
In addition, the numerical value in a parenthesis shows a film thickness. Further, the composition of the recording layer indicates the composition of the sputter target, and the composition of the actually formed recording layer tends to decrease by about 1 mol% of the nonmagnetic material.

実施例1の垂直磁気記録媒体の作製は以下のようにして行った。DCマグネトロンスパッタ装置を用いて、洗浄したガラス基板を使用し、アルゴンガス雰囲気中で圧力を0.5Paに設定し、配向制御層を形成した。その際、基板の加熱は行わなかった。   The perpendicular magnetic recording medium of Example 1 was manufactured as follows. Using a cleaned glass substrate using a DC magnetron sputtering apparatus, the pressure was set to 0.5 Pa in an argon gas atmosphere, and an orientation control layer was formed. At that time, the substrate was not heated.

次いで、真空チャンバー内で配向制御層のTa膜表面をアルゴンガスと酸素ガスとの混合ガスに曝して行った。その際、酸素分圧を0.1Pa〜0.6Pa、曝露時間を1秒〜6秒の範囲に設定し、酸素曝露量を0.1Pa秒〜3.6Pa秒に異ならせた5条件の酸素曝露処理を行った。なお、酸素曝露量は、酸素分圧(Pa)と処理時間(秒)との積で表されるものである。   Next, the Ta film surface of the orientation control layer was exposed to a mixed gas of argon gas and oxygen gas in a vacuum chamber. At this time, oxygen partial pressure was set in the range of 0.1 Pa to 0.6 Pa, exposure time was set in the range of 1 second to 6 seconds, and the oxygen exposure amount was varied from 0.1 Pa seconds to 3.6 Pa seconds. Exposure treatment was performed. The oxygen exposure amount is represented by the product of oxygen partial pressure (Pa) and processing time (seconds).

次いで、再びDCマグネトロンスパッタ装置を用いて、アルゴンガス雰囲気中で下地層から記録層までを形成した。この際、圧力は下地層では0.5Paに設定し、中間層および記録層では4Paに設定した。次いで、プラズマCVD装置によりエチレンガスとアルゴンガスを供給して保護膜を形成し、浸漬法により潤滑層を形成した。   Next, again from the underlayer to the recording layer was formed in an argon gas atmosphere using a DC magnetron sputtering apparatus. At this time, the pressure was set to 0.5 Pa for the underlayer, and 4 Pa for the intermediate layer and the recording layer. Next, ethylene gas and argon gas were supplied by a plasma CVD apparatus to form a protective film, and a lubricating layer was formed by an immersion method.

図2は、実施例1に係る垂直磁気記録媒体の保磁力と酸素曝露量との関係を示す図である。保磁力は、基板面に対して垂直方向の保磁力であり、振動試料型磁力計(VSM)を用いて測定した。   FIG. 2 is a diagram illustrating a relationship between the coercive force and the oxygen exposure amount of the perpendicular magnetic recording medium according to the first embodiment. The coercive force is a coercive force perpendicular to the substrate surface, and was measured using a vibrating sample magnetometer (VSM).

図2を参照するに、実施例1に係る垂直磁気記録媒体の保磁力は酸素曝露量が増加するにしたがって保磁力が増加している。保磁力は特に酸素曝露量が0.27Pa秒付近から増加し、4Pa秒付近では略飽和している。したがって、酸素曝露量は、0.3Pa秒以上で保磁力増加の効果が確実に得られることが分かる。また、実施例1の酸素曝露量の範囲では、酸素曝露量が大きい程、保磁力が増加していることが分かる。酸素曝露量の上限は、製造効率が良好な点で酸素曝露処理の時間が短い方がよいため、5Pa秒以下に設定されることが好ましい。   Referring to FIG. 2, the coercive force of the perpendicular magnetic recording medium according to Example 1 increases as the oxygen exposure amount increases. In particular, the coercive force increases from the vicinity of 0.27 Pasec of oxygen exposure, and is substantially saturated near 4 Pasec. Therefore, it can be seen that the effect of increasing the coercive force can be obtained with an oxygen exposure amount of 0.3 Pa seconds or more. Moreover, in the range of the oxygen exposure amount of Example 1, it turns out that a coercive force is increasing, so that oxygen exposure amount is large. The upper limit of the oxygen exposure amount is preferably set to 5 Pa seconds or less because it is preferable that the time of the oxygen exposure treatment is short in terms of good production efficiency.

実施例1によれば、酸素曝露量は、0.3Pa秒以上に設定されることが好ましいことが分かった。また、製造効率が良好な点から5Pa秒以下に設定されることが好ましい。   According to Example 1, it was found that the oxygen exposure amount is preferably set to 0.3 Pa seconds or more. Moreover, it is preferable to set to 5 Pa second or less from a point with favorable manufacturing efficiency.

[実施例2]
実施例2は、軟磁性裏打ち層を設けた以外は実施例1と同様の構成の垂直磁気記録媒体を作製した。実施例2の軟磁性裏打ち層として、CoZrNb膜(膜厚50nm)を形成した。具体的には、実施例1と同様にDCマグネトロンスパッタ装置を用いて、基板加熱を行わず、アルゴンガス雰囲気中(圧力0.5Pa)で軟磁性裏打ち層を形成した。また、Ta膜の表面の酸素曝露処理は、アルゴンガス(分圧0.5Pa)と酸素ガス(分圧0.5Pa)との混合ガスに曝し、処理時間6秒に設定した。なお、この場合の酸素曝露量は3Pa秒である。
[Example 2]
In Example 2, a perpendicular magnetic recording medium having the same configuration as that of Example 1 was prepared except that a soft magnetic backing layer was provided. A CoZrNb film (film thickness 50 nm) was formed as the soft magnetic backing layer of Example 2. Specifically, the soft magnetic backing layer was formed in an argon gas atmosphere (pressure 0.5 Pa) without heating the substrate using a DC magnetron sputtering apparatus as in Example 1. Moreover, the oxygen exposure process of the surface of Ta film | membrane was exposed to the mixed gas of argon gas (partial pressure 0.5Pa) and oxygen gas (partial pressure 0.5Pa), and set processing time to 6 second. In this case, the oxygen exposure amount is 3 Pa seconds.

[比較例1]
比較例1は、酸素曝露処理を行わなかった以外は、実施例2と同様の構成の垂直磁気記録媒体を形成した。
[Comparative Example 1]
In Comparative Example 1, a perpendicular magnetic recording medium having the same configuration as that of Example 2 was formed except that the oxygen exposure treatment was not performed.

[比較例2]
比較例2は、Ta膜表面の酸素曝露処理を行わず、NiFe膜表面に酸素曝露処理を行った以外は、実施例2と同様の構成の垂直磁気記録媒体を形成した。NiFe膜表面の酸素曝露処理の条件は、実施例2の酸素曝露処理の条件と同様とした。
[Comparative Example 2]
In Comparative Example 2, a perpendicular magnetic recording medium having the same configuration as that of Example 2 was formed except that the surface of the Ta film was not exposed to oxygen and the surface of the NiFe film was subjected to oxygen exposure. The conditions for the oxygen exposure treatment on the NiFe film surface were the same as those for the oxygen exposure treatment in Example 2.

[比較例3]
比較例3は、Ta膜表面の酸素曝露処理を行わず、Ru膜表面の酸素曝露処理を行った以外は、実施例2と同様の構成の垂直磁気記録媒体を形成した。Ru膜表面の酸素曝露処理の条件は、実施例2の酸素曝露処理の条件と同様とした。
[Comparative Example 3]
In Comparative Example 3, a perpendicular magnetic recording medium having the same configuration as that of Example 2 was formed except that the Ta film surface was not exposed to oxygen and the Ru film surface was subjected to oxygen exposure. The conditions for the oxygen exposure treatment on the Ru film surface were the same as the oxygen exposure treatment conditions in Example 2.

図3は、実施例2および比較例1〜3に係る垂直磁気記録媒体のS/N比を示す図である。図3に示すS/Nmは、平均出力と媒体ノイズNmから求めたS/N比である。   FIG. 3 is a diagram showing the S / N ratio of the perpendicular magnetic recording media according to Example 2 and Comparative Examples 1 to 3. S / Nm shown in FIG. 3 is an S / N ratio obtained from the average output and the medium noise Nm.

図3を参照するに、酸素曝露処理を行わない場合よりも、Ta膜表面の酸素曝露処理を行う実施例2がS/Nmが0.5dBも優れていることが分かる。また、NiFe膜やRu膜の表面を酸素曝露処理した比較例2および比較例3の場合は、実施例2および比較例1よりもS/Nmが低下している。このことは、記録層に近いNiFe膜やRu膜では、酸素曝露処理するよりも金属材料同士によるエピタキシャル成長をさせる方が、S/Nmが良好であることが分かる。   Referring to FIG. 3, it can be seen that Example 2 in which the oxygen exposure treatment on the surface of the Ta film is superior to the case where the oxygen exposure treatment is not performed has an S / Nm of 0.5 dB. In the case of Comparative Example 2 and Comparative Example 3 in which the surface of the NiFe film or Ru film was subjected to oxygen exposure treatment, the S / Nm was lower than that in Example 2 and Comparative Example 1. This indicates that in the NiFe film or Ru film close to the recording layer, the S / Nm is better when the epitaxial growth is performed with metal materials than with the oxygen exposure treatment.

実施例2および比較例1〜3によれば、Ta膜表面に酸素曝露処理する方が、酸素曝露処理しない場合や、NiFe膜やRu膜に酸素曝露処理する場合よりもS/Nmが良好であることが確認できた。   According to Example 2 and Comparative Examples 1 to 3, the S / Nm is better when the oxygen exposure treatment is performed on the Ta film surface than when the oxygen exposure treatment is not performed or when the NiFe film or the Ru film is subjected to the oxygen exposure treatment. It was confirmed that there was.

なお、S/Nmは、市販のスピンスタンドを用い、単磁極型記録素子とGMR素子からなる複合ヘッドを用いて測定した。線記録密度を473kFCIに設定して平均出力V(mV)を測定し、媒体ノイズNm(mVrms)は、線記録密度を473kFCIの条件で測定し、S/Nm=20×log(V/Nm)とした。   S / Nm was measured using a commercially available spin stand and a composite head composed of a single magnetic pole type recording element and a GMR element. The linear recording density is set to 473 kFCI, the average output V (mV) is measured, the medium noise Nm (mVrms) is measured under the condition of the linear recording density of 473 kFCI, and S / Nm = 20 × log (V / Nm) It was.

(第2の実施の形態)
図4は、本発明の第2の実施の形態に係る磁気記憶装置の要部を示す平面図である。図4を参照するに、磁気記憶装置30は、ハウジング31内に、ハブ32に固定された垂直磁気記録媒体33、アクチュエータユニット34、アーム35およびサスペンション36を介してアクチュエータユニット34に支持された磁気ヘッド38等が設けられている。磁気記憶装置30は、スピンドル(図示されず)により垂直磁気記録媒体33を回転駆動し、磁気ヘッド38をアクチュエータユニット34により垂直磁気記録媒体33の半径方向に回動して、記録再生動作を行う。
(Second Embodiment)
FIG. 4 is a plan view showing the main part of the magnetic memory device according to the second embodiment of the present invention. Referring to FIG. 4, the magnetic storage device 30 includes a magnetic medium supported by an actuator unit 34 in a housing 31 via a perpendicular magnetic recording medium 33 fixed to a hub 32, an actuator unit 34, an arm 35, and a suspension 36. A head 38 and the like are provided. The magnetic storage device 30 rotates and drives the perpendicular magnetic recording medium 33 by a spindle (not shown), and rotates the magnetic head 38 in the radial direction of the perpendicular magnetic recording medium 33 by an actuator unit 34 to perform a recording / reproducing operation. .

磁気ヘッド38は、例えば、単磁極型記録ヘッドとGMR(Giant Magneto Resistive)素子を備えた再生ヘッドから構成される。   The magnetic head 38 is composed of, for example, a reproducing head including a single magnetic pole type recording head and a GMR (Giant Magneto Resistive) element.

単磁極型記録ヘッドは、垂直磁気記録媒体33に記録磁界を印加するための、軟磁性材料からなる主磁極と、主磁極に磁気的に接続されたリターンヨークと、主磁極とリターンヨークに記録磁界を誘導するための記録用コイルなどから構成されている。単磁極型記録ヘッドは、主磁極から記録磁界を垂直磁気記録媒体33の基板面に対して垂直方向に印加して、垂直磁気記録媒体33の記録層に垂直方向の磁化を形成する。   The single-pole type recording head has a main magnetic pole made of a soft magnetic material for applying a recording magnetic field to the perpendicular magnetic recording medium 33, a return yoke magnetically connected to the main magnetic pole, and recording on the main magnetic pole and the return yoke. It is composed of a recording coil for inducing a magnetic field. The single magnetic pole type recording head applies a recording magnetic field from the main magnetic pole in a direction perpendicular to the substrate surface of the perpendicular magnetic recording medium 33, and forms perpendicular magnetization in the recording layer of the perpendicular magnetic recording medium 33.

また、再生ヘッドはGMR素子を備え、GMR素子は、垂直磁気記録媒体33の磁化が漏洩する磁界の方向を抵抗変化として感知して垂直磁気記録媒体33の記録層に記録された情報を得ることができる。なお、GMR素子の替わりにTMR(Ferromagnetic Tunnel Junction Magneto Resistive)素子等を用いることができる。   The reproducing head also includes a GMR element, and the GMR element senses the direction of the magnetic field in which the magnetization of the perpendicular magnetic recording medium 33 leaks as a resistance change, and obtains information recorded on the recording layer of the perpendicular magnetic recording medium 33. Can do. Note that a TMR (Ferromagnetic Tunnel Junction Magneto Resistive) element or the like can be used instead of the GMR element.

垂直磁気記録媒体33は、第1の実施の形態に係る垂直磁気記録媒体である。垂直磁気記録媒体33は優れたS/N比を有するので、高記録密度化が可能な磁気記憶装置30が実現する。   The perpendicular magnetic recording medium 33 is the perpendicular magnetic recording medium according to the first embodiment. Since the perpendicular magnetic recording medium 33 has an excellent S / N ratio, the magnetic storage device 30 capable of increasing the recording density is realized.

なお、本実施の形態に係る磁気記憶装置30の基本構成は、図4に示すものに限定されるものではなく、磁気ヘッド38は上述した構成に限定されず、公知の磁気ヘッドを用いることができる。また、本発明で用いる垂直磁気記録媒体33は、磁気ディスクに限定されず磁気テープであってもよい。   The basic configuration of the magnetic storage device 30 according to the present embodiment is not limited to that shown in FIG. 4, and the magnetic head 38 is not limited to the configuration described above, and a known magnetic head is used. it can. Further, the perpendicular magnetic recording medium 33 used in the present invention is not limited to a magnetic disk but may be a magnetic tape.

本実施の形態によれば、磁気記憶装置30は、優れたS/N比を有し、高記録密度化が可能となる。   According to the present embodiment, the magnetic storage device 30 has an excellent S / N ratio and can achieve a high recording density.

以上本発明の好ましい実施の形態について詳述したが、本発明は係る特定の実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the present invention described in the claims. It can be changed.

なお、以上の説明に関してさらに以下の付記を開示する。
(付記1) 基板と、記録層とを備える垂直磁気記録媒体であって、
前記基板と記録層との間に、該基板側から、配向制御層、fcc構造を有する下地層、hcp構造を有する中間層が順次積層されてなり、
前記配向制御層は、下地層との界面に酸化および/または窒化された処理表面を有することを特徴とする垂直磁気記録媒体。
(付記2) 前記基板と配向制御層との間に、軟磁性裏打ち層を備えることを特徴とする付記1記載の垂直磁気記録媒体。
(付記3) 前記配向制御層は、その結晶質状態の構造がbcc構造を有する金属材料からなることを特徴とする付記1または2記載の垂直磁気記録媒体。
(付記4) 前記配向制御層の膜厚は、処理表面を含めて1nm〜5nmの範囲に設定されることを特徴とする付記1〜3のうち、いずれか一項記載の垂直磁気記録媒体。
(付記5) 前記下地層は、Niを主成分とする金属材料からなることを特徴とする付記1〜4のうちいずれか一項記載の垂直磁気記録媒体。
(付記6) 前記中間層は、RuあるいはRuを主成分とするRu−X合金(X=Co、Cr、Fe、Ni、W、Cu、B、C、SiおよびMnのうち少なくとも1種の元素)からなることを特徴とする付記1〜5のうちいずれか一項記載の垂直磁気記録媒体。
(付記7) 前記記録層は、磁性粒子と、該磁性粒子を囲む非固溶相からなり、
前記磁性粒子は、hcp構造を有し、CoPt、CoCr、CoCrTa、CoCrPt、CoCrPt−Mからなる群のうちいずれか1種の材料からなり、該Mは、B、Mo、Nb、Ta、W、Cuおよびこれらの合金からなる群のうち少なくとも1種の材料からなることを特徴とする付記1〜6のうちいずれか一項記載の垂直磁気記録媒体。
(付記8) 前記非固溶相が、Si、Al、Cr、Ta、Zr、Y、およびMgからなる群のうちいずれか1種の元素と、O、C、およびNからなる群のうち少なくともいずれか1種の元素との化合物であることを特徴とする付記7記載の垂直磁気記録媒体。
(付記9) 基板と、該基板上に、配向制御層と、fcc構造を有する下地層と、hcp構造を有する中間層と、基板面に対して略垂直方向に磁化容易軸を有する記録層とが順次積層されてなる垂直磁気記録媒体の製造方法であって、
前記基板上に配向制御層を形成する工程と、
前記配向性制御層の表面をO2ガス、N2ガス、あるいは、O2ガスとN2ガスの両方を含む処理ガスに曝す曝露工程と、を含むことを特徴とする垂直磁気記録媒体の製造方法。
(付記10) 前記曝露工程は、O2ガス、N2ガス、あるいは、O2ガスとN2ガスの両方を合わせた分圧と曝露時間との積が0.3Pa秒よりも大きく、かつ5Pa秒以下の範囲に設定されることを特徴とする付記9記載の垂直磁気記録媒体の製造方法。
(付記11) 磁気ヘッドを有する記録再生手段と、
付記1〜8のうち、いずれか一項記載の垂直磁気記録媒体と、を備える磁気記憶装置。
In addition, the following additional notes are disclosed regarding the above description.
(Appendix 1) A perpendicular magnetic recording medium comprising a substrate and a recording layer,
Between the substrate and the recording layer, an orientation control layer, a base layer having an fcc structure, and an intermediate layer having an hcp structure are sequentially laminated from the substrate side.
The perpendicular magnetic recording medium, wherein the orientation control layer has a treated surface oxidized and / or nitrided at an interface with the underlayer.
(Supplementary note 2) The perpendicular magnetic recording medium according to supplementary note 1, wherein a soft magnetic backing layer is provided between the substrate and the orientation control layer.
(Supplementary note 3) The perpendicular magnetic recording medium according to Supplementary note 1 or 2, wherein the orientation control layer is made of a metal material having a crystalline structure in a bcc structure.
(Additional remark 4) The perpendicular magnetic recording medium as described in any one of Additional remarks 1-3 characterized by the film thickness of the said orientation control layer being set to the range of 1 nm-5 nm including a process surface.
(Supplementary note 5) The perpendicular magnetic recording medium according to any one of supplementary notes 1 to 4, wherein the underlayer is made of a metal material containing Ni as a main component.
(Supplementary Note 6) The intermediate layer is made of Ru or a Ru—X alloy containing Ru as a main component (X = Co, Cr, Fe, Ni, W, Cu, B, C, Si and Mn. The perpendicular magnetic recording medium according to any one of supplementary notes 1 to 5, wherein:
(Appendix 7) The recording layer comprises magnetic particles and a non-solid solution phase surrounding the magnetic particles,
The magnetic particles have an hcp structure and are made of any one material selected from the group consisting of CoPt, CoCr, CoCrTa, CoCrPt, and CoCrPt-M, where M is B, Mo, Nb, Ta, W, The perpendicular magnetic recording medium according to any one of appendices 1 to 6, wherein the perpendicular magnetic recording medium is made of at least one material selected from the group consisting of Cu and alloys thereof.
(Supplementary Note 8) The non-solid solution phase is at least one element selected from the group consisting of Si, Al, Cr, Ta, Zr, Y, and Mg, and at least the group consisting of O, C, and N The perpendicular magnetic recording medium according to appendix 7, wherein the perpendicular magnetic recording medium is a compound with any one element.
(Supplementary Note 9) A substrate, an orientation control layer, an underlayer having an fcc structure, an intermediate layer having an hcp structure, and a recording layer having an easy axis of magnetization in a direction substantially perpendicular to the substrate surface. Is a method of manufacturing a perpendicular magnetic recording medium in which are sequentially stacked,
Forming an orientation control layer on the substrate;
And exposing the surface of the orientation control layer to O 2 gas, N 2 gas, or a processing gas containing both O 2 gas and N 2 gas, and manufacturing a perpendicular magnetic recording medium, Method.
(Supplementary Note 10) In the exposure step, the product of O 2 gas, N 2 gas, or partial pressure of both O 2 gas and N 2 gas and exposure time is greater than 0.3 Pa seconds, and 5 Pa. The method of manufacturing a perpendicular magnetic recording medium according to appendix 9, wherein the range is set to a range of seconds or less.
(Supplementary Note 11) Recording / reproducing means having a magnetic head;
A magnetic storage device comprising: the perpendicular magnetic recording medium according to any one of appendices 1 to 8.

本発明の第1の実施の形態に係る垂直磁気記録媒体の概略断面図である。1 is a schematic cross-sectional view of a perpendicular magnetic recording medium according to a first embodiment of the invention. 実施例1に係る垂直磁気記録媒体の保磁力と酸素曝露量との関係を示す図である。3 is a diagram illustrating a relationship between a coercive force and an oxygen exposure amount of a perpendicular magnetic recording medium according to Example 1. FIG. 実施例2および比較例1〜3に係る垂直磁気記録媒体のS/N比を示す図である。It is a figure which shows S / N ratio of the perpendicular magnetic recording medium based on Example 2 and Comparative Examples 1-3. 本発明の第2の実施の形態に係る磁気記憶装置の要部を示す平面図である。It is a top view which shows the principal part of the magnetic memory device based on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10、33 垂直磁気記録媒体
11 基板
12 軟磁性裏打ち層
13 配向制御層
13a 処理表面
14 下地層
15 中間層
16 記録層
18 保護膜
19 潤滑層
30 磁気記憶装置
DESCRIPTION OF SYMBOLS 10, 33 Perpendicular magnetic recording medium 11 Substrate 12 Soft magnetic backing layer 13 Orientation control layer 13a Processed surface 14 Underlayer 15 Intermediate layer 16 Recording layer 18 Protective film 19 Lubricating layer 30 Magnetic storage device

Claims (5)

基板と、記録層とを備える垂直磁気記録媒体であって、
前記基板と記録層との間に、該基板側から、配向制御層、fcc構造を有する下地層、hcp構造を有する中間層が順次積層されてなり、
前記配向制御層は、下地層との界面に酸化および/または窒化された処理表面を有することを特徴とする垂直磁気記録媒体。
A perpendicular magnetic recording medium comprising a substrate and a recording layer,
Between the substrate and the recording layer, an orientation control layer, a base layer having an fcc structure, and an intermediate layer having an hcp structure are sequentially laminated from the substrate side.
The perpendicular magnetic recording medium, wherein the orientation control layer has a treated surface oxidized and / or nitrided at an interface with the underlayer.
前記配向制御層は、その結晶質状態の構造がbcc構造を有する金属材料からなることを特徴とする請求項1記載の垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein the orientation control layer is made of a metal material having a crystalline structure in a bcc structure. 基板と、該基板上に、配向制御層と、fcc構造を有する下地層と、hcp構造を有する中間層と、基板面に対して略垂直方向に磁化容易軸を有する記録層とが順次積層されてなる垂直磁気記録媒体の製造方法であって、
前記基板上に配向制御層を形成する工程と、
前記配向性制御層の表面をO2ガス、N2ガス、あるいは、O2ガスとN2ガスの両方を含む処理ガスに曝す曝露工程と、を含むことを特徴とする垂直磁気記録媒体の製造方法。
A substrate, an orientation control layer, an underlayer having an fcc structure, an intermediate layer having an hcp structure, and a recording layer having an easy axis of magnetization in a direction substantially perpendicular to the substrate surface are sequentially stacked on the substrate. A method of manufacturing a perpendicular magnetic recording medium comprising:
Forming an orientation control layer on the substrate;
And exposing the surface of the orientation control layer to O 2 gas, N 2 gas, or a processing gas containing both O 2 gas and N 2 gas, and manufacturing a perpendicular magnetic recording medium, Method.
前記曝露工程は、O2ガス、N2ガス、あるいは、O2ガスとN2ガスの両方を合わせた分圧と曝露時間との積が0.3Pa秒よりも大きく、かつ5Pa秒以下の範囲に設定されることを特徴とする請求項3記載の垂直磁気記録媒体の製造方法。 In the exposure step, the product of O 2 gas, N 2 gas, or partial pressure of both O 2 gas and N 2 gas combined with the exposure time is greater than 0.3 Pa seconds and less than 5 Pa seconds The method of manufacturing a perpendicular magnetic recording medium according to claim 3, wherein 磁気ヘッドを有する記録再生手段と、
請求項1または2記載の垂直磁気記録媒体と、を備える磁気記憶装置。
Recording / reproducing means having a magnetic head;
A magnetic storage device comprising: the perpendicular magnetic recording medium according to claim 1.
JP2005105231A 2005-03-31 2005-03-31 Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device Expired - Fee Related JP4624838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105231A JP4624838B2 (en) 2005-03-31 2005-03-31 Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105231A JP4624838B2 (en) 2005-03-31 2005-03-31 Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device

Publications (2)

Publication Number Publication Date
JP2006286103A true JP2006286103A (en) 2006-10-19
JP4624838B2 JP4624838B2 (en) 2011-02-02

Family

ID=37407858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105231A Expired - Fee Related JP4624838B2 (en) 2005-03-31 2005-03-31 Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device

Country Status (1)

Country Link
JP (1) JP4624838B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123446A1 (en) * 2007-03-30 2008-10-16 Hoya Corporation Magnetic recording medium
KR20100103313A (en) * 2009-03-13 2010-09-27 삼성전자주식회사 Perpendicular magnetic recording medium
US8703307B2 (en) 2010-10-12 2014-04-22 HGST Netherlands B.V. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
JP2019169220A (en) * 2018-03-23 2019-10-03 昭和電工株式会社 Magnetic recording medium and magnetic recording and reproducing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143865A (en) * 1996-11-05 1998-05-29 Hitachi Ltd Magnetic recording medium, its production and magnetic storage device
JP2003077122A (en) * 2001-08-31 2003-03-14 Fuji Electric Co Ltd Perpendicular magnetic recording medium and manufacturing method therefor
JP2003317230A (en) * 2002-04-16 2003-11-07 Ken Takahashi Perpendicular magnetic recording medium, method for manufacturing the same, and magnetic recording device
JP2003346334A (en) * 2002-03-19 2003-12-05 Fuji Electric Co Ltd Vertical magnetic record medium and manufacturing method therefor
JP2005190517A (en) * 2003-12-24 2005-07-14 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and magnetic storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143865A (en) * 1996-11-05 1998-05-29 Hitachi Ltd Magnetic recording medium, its production and magnetic storage device
JP2003077122A (en) * 2001-08-31 2003-03-14 Fuji Electric Co Ltd Perpendicular magnetic recording medium and manufacturing method therefor
JP2003346334A (en) * 2002-03-19 2003-12-05 Fuji Electric Co Ltd Vertical magnetic record medium and manufacturing method therefor
JP2003317230A (en) * 2002-04-16 2003-11-07 Ken Takahashi Perpendicular magnetic recording medium, method for manufacturing the same, and magnetic recording device
JP2005190517A (en) * 2003-12-24 2005-07-14 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and magnetic storage device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123446A1 (en) * 2007-03-30 2008-10-16 Hoya Corporation Magnetic recording medium
JP2008276915A (en) * 2007-03-30 2008-11-13 Hoya Corp Magnetic recording medium
US8142916B2 (en) 2007-03-30 2012-03-27 WD Media (Singapore) Pte, Ltd Magnetic recording medium
KR20100103313A (en) * 2009-03-13 2010-09-27 삼성전자주식회사 Perpendicular magnetic recording medium
US8021770B2 (en) 2009-03-13 2011-09-20 Samsung Electronics Co., Ltd. Perpendicular magnetic recording medium
KR101580225B1 (en) * 2009-03-13 2015-12-24 시게이트 테크놀로지 엘엘씨 Perpendicular magnetic recording medium
US8703307B2 (en) 2010-10-12 2014-04-22 HGST Netherlands B.V. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
JP2019169220A (en) * 2018-03-23 2019-10-03 昭和電工株式会社 Magnetic recording medium and magnetic recording and reproducing device

Also Published As

Publication number Publication date
JP4624838B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
KR100819410B1 (en) Perpendicular magnetic recording medium, method of producing the same, and magnetic storage device
JP4812254B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US20060222902A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
US7781079B2 (en) Perpendicular magnetic recording medium, its manufacturing method, and a magnetic storage apparatus
JP4379817B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording apparatus
JP2005044464A (en) Perpendicular magnetic recording medium
JP2008034060A (en) Perpendicular magnetic recording medium and magnetic storage device
JP4922648B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP2009059431A (en) Magnetic recording medium and magnetic recording and reproducing apparatus
US20070218316A1 (en) Magnetic recording medium, method of producing same, and magnetic storage apparatus
JP2007317304A (en) Magnetic recording medium and magnetic recording system
JP2003168207A (en) Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium
JP2006155865A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing device
JP3637053B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP3900999B2 (en) Perpendicular magnetic recording medium
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP2005004945A (en) Perpendicular magnetic recording medium and its manufacturing method
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4624838B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
US20070207348A1 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic storage unit
JP2006185489A (en) Magnetic recording medium and magnetic storage device
US20060210836A1 (en) Magnetic recording medium and magnetic storage unit
JP4214472B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4367326B2 (en) Perpendicular magnetic recording medium
JP2006286106A (en) Vertical magnetic recording medium and magnetic storage apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090902

A131 Notification of reasons for refusal

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216

A521 Written amendment

Effective date: 20100514

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20100524

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20101104

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees