JP4526248B2 - Manufacturing method of substrate with ITO transparent conductive film and substrate with ITO transparent conductive film - Google Patents

Manufacturing method of substrate with ITO transparent conductive film and substrate with ITO transparent conductive film Download PDF

Info

Publication number
JP4526248B2
JP4526248B2 JP2003282834A JP2003282834A JP4526248B2 JP 4526248 B2 JP4526248 B2 JP 4526248B2 JP 2003282834 A JP2003282834 A JP 2003282834A JP 2003282834 A JP2003282834 A JP 2003282834A JP 4526248 B2 JP4526248 B2 JP 4526248B2
Authority
JP
Japan
Prior art keywords
substrate
transparent conductive
conductive film
ito transparent
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003282834A
Other languages
Japanese (ja)
Other versions
JP2005050730A (en
Inventor
敦 高松
正和 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003282834A priority Critical patent/JP4526248B2/en
Priority to PCT/JP2004/009963 priority patent/WO2005013290A1/en
Publication of JP2005050730A publication Critical patent/JP2005050730A/en
Application granted granted Critical
Publication of JP4526248B2 publication Critical patent/JP4526248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、フラットパネルディスプレイ、電子デバイス、太陽電池、光学素子などに用いられるITO系透明導電膜に関し、特に、有機高分子フィルムなどの有機高分子でなる基板上に形成されるITO透明導電膜に関する。   The present invention relates to an ITO-based transparent conductive film used for flat panel displays, electronic devices, solar cells, optical elements and the like, and in particular, an ITO transparent conductive film formed on a substrate made of an organic polymer such as an organic polymer film. About.

透明導電膜は、フラットパネルディスプレイや太陽電池において、“光を通し、かつ電気を流す”稀有な特徴から、欠かすことができない重要な部材となっている。特に酸化インジウムにスズを数wt%含むITOは、透明導電膜で最も有名なものである。 The transparent conductive film is an indispensable important member for flat panel displays and solar cells because of its rare feature of “transmitting light and flowing electricity”. In particular, ITO containing several wt% tin in indium oxide is the most famous transparent conductive film.

ITO透明導電膜をこれらのデバイス分野で用いるときには、真空成膜法で形成することが多い。ITOを真空法で成膜する方法としては、イオンプレーティング法、蒸着法などもあるが、スパッタ法が最も一般的な手法である(特許文献1、非特許文献1)。   When an ITO transparent conductive film is used in these device fields, it is often formed by a vacuum film formation method. As a method for depositing ITO by a vacuum method, there are an ion plating method and a vapor deposition method, but the sputtering method is the most common method (Patent Document 1, Non-Patent Document 1).

このスパッタ法でITO透明導電膜の抵抗値を2×10−4Ω・cm以下に下げるには、ITOの結晶を十分に成長させる必要があり、そのため通常は基板温度を300℃以上に加熱して膜付けする。また、基板の温度を上げたくない場合には、2層のITO透明導電膜の中間にAgなどの高い導電性の金属を挟み込む手法がある(特許文献2)。 In order to reduce the resistance value of the ITO transparent conductive film to 2 × 10 −4 Ω · cm or less by this sputtering method, it is necessary to sufficiently grow the ITO crystal. Therefore, the substrate temperature is usually heated to 300 ° C. or higher. Apply the film. Moreover, when it is not desired to raise the temperature of the substrate, there is a method in which a highly conductive metal such as Ag is sandwiched between two ITO transparent conductive films (Patent Document 2).

また、プラズマガンを使用するイオンプレーティング法では、成膜粒子のエネルギーが高いことから、基板の加熱温度が200℃程度の比較的低い温度でも、抵抗値が低いITO透明導電膜が得られる事が知られている(特許文献1,3)。   Further, in the ion plating method using a plasma gun, since the energy of the film-forming particles is high, an ITO transparent conductive film having a low resistance value can be obtained even when the substrate heating temperature is relatively low, such as about 200 ° C. Is known (Patent Documents 1 and 3).

特開平9−25575号公報Japanese Patent Laid-Open No. 9-25575 特開平9−171188号公報JP-A-9-171188 特開2000−17430号公報JP 2000-17430 A 日本学術振興会 透明酸化物光・電子材料第166委員会編、“透明導電膜の技術”、オーム社(1999)p171Japan Society for the Promotion of Science, Transparent Oxide Optical and Electronic Materials, 166th Committee, “Technology of Transparent Conductive Films”, Ohmsha (1999) p171

ディスプレイや電子デバイスの分野では、素子の軽量化、薄膜化、フレキシブル化のために、基板を従来のガラスなどの無機物の基板から、各種高分子などの有機物の基板に置き換える試みがある。また、今日では素子の構造が複雑になり、無機物の基板上に有機物の素子を形成することもある。この様に、基板が有機高分子の場合や無機物の表面や内部に有機物を含ませた基板では、ガラスなどの無機材料を用いる基板に比べ、耐熱性が低く、融点に近い温度に基板を加熱すると、基板の形状が変化し、また、弾性率、屈折率、拡散係数、誘電率などの機械的特性や電気的特性が大きく変わるという問題が生じる。   In the field of displays and electronic devices, in order to reduce the weight, thickness, and flexibility of elements, there is an attempt to replace a substrate with an inorganic substrate such as a conventional glass with an organic substrate such as various polymers. In addition, today, the structure of the element becomes complicated, and an organic element may be formed on an inorganic substrate. In this way, when the substrate is an organic polymer or a substrate containing an organic substance on the surface or inside of an inorganic substance, the substrate is heated to a temperature close to the melting point, which is lower in heat resistance than a substrate using an inorganic material such as glass. Then, the shape of the substrate changes, and there arises a problem that mechanical characteristics such as elastic modulus, refractive index, diffusion coefficient, dielectric constant, and electrical characteristics change greatly.

そのため、有機高分子を基板として用いる場合には、250℃以下の温度で行うスパッタリング法による成膜では、ITO透明導電膜の抵抗を下げることが困難であった。   For this reason, when an organic polymer is used as the substrate, it is difficult to reduce the resistance of the ITO transparent conductive film by film formation by a sputtering method performed at a temperature of 250 ° C. or lower.

一方、2層のITO透明導電膜の中間にAgなどの金属を挟み込む手法では、基板の加熱を行わずに抵抗の低い導電膜が得られるが、工程が複雑で高コストであり、さらに、金属の吸収によって透過率が低い、また、パターニングして素子として用いるときには、3段階のエッチングが必要となり、エッジの形状制御が難しいといった問題がある。   On the other hand, in the method of sandwiching a metal such as Ag between two ITO transparent conductive films, a conductive film having low resistance can be obtained without heating the substrate, but the process is complicated and expensive, There is a problem that the transmittance is low due to the absorption of light, and when patterning is used as an element, three-stage etching is required, and it is difficult to control the shape of the edge.

また、プラズマガンを使用するイオンプレーティング法も、比較的低い基板温度でも低い抵抗の膜が得られることが知られているが、成膜する粒子のエネルギーが高いがために形成された膜に圧縮応力が入りやすく、剛性が乏しい有機高分子基板を用いた場合には基板が大きく反るという問題があった。   The ion plating method using a plasma gun is also known to obtain a low resistance film even at a relatively low substrate temperature. However, since the energy of particles to be formed is high, When using an organic polymer substrate that is easily subjected to compressive stress and has low rigidity, there has been a problem that the substrate is greatly warped.

本発明は、このような問題点に鑑みてなされたものであり、ITO透明導電膜の比抵抗が1.2×10―4〜3.0×10―4Ω・cmの導電性に優れた有機高分子を基板とするITO透明導電膜付き基板を得るものである。 The present invention has been made in view of such problems, and the specific resistance of the ITO transparent conductive film is excellent in conductivity of 1.2 × 10 −4 to 3.0 × 10 −4 Ω · cm. A substrate with an ITO transparent conductive film using an organic polymer as a substrate is obtained.

本発明のITO透明導電膜付き基板の製法は、有機高分子を有する基板上にITO透明導電膜が成膜されてなるITO透明導電膜付き基板の製法において、 ITO透明導電膜は酸化インジウムにスズを酸化物換算で5〜10wt%添加したものあり、該ITO透明導電膜の比抵抗が1.2×10―4〜3.0×10―4Ω・cmの範囲にあり、プラズマガンを用いるイオンプレーティング法で該ITO透明導電膜が成膜され、有機高分子のガラス転移点Tgが、250℃以下であり、
(1)基板を形成する有機高分子の融点Tmが明確な場合は、ITO透明導電膜を成膜するときの基板の温度を、該有機高分子のガラス転移点Tgに対して、Tg〜(Tg+(Tm−Tg)/2)の温度範囲とし、
(2)基板を形成する有機高分子の融点Tmが不明確な場合は、ITO透明導電膜を成膜するときの基板の温度を、該有機高分子のガラス転移点Tgに対して、Tg〜250℃の温度範囲にする、
ことを特徴とするITO透明導電膜付き基板の製法である
Preparation of ITO transparent conductive film-attached substrate of the present invention, the tin in the preparation process of the ITO transparent conductive film substrate with an ITO transparent conductive film is formed by deposition on a substrate, an ITO transparent conductive film is indium oxide having an organic polymer Is added in an amount of 5 to 10 wt% in terms of oxide, and the specific resistance of the ITO transparent conductive film is in the range of 1.2 × 10 −4 to 3.0 × 10 −4 Ω · cm, and a plasma gun is used. The ITO transparent conductive film is formed by an ion plating method, and the glass transition point Tg of the organic polymer is 250 ° C. or lower.
(1) When the melting point Tm of the organic polymer forming the substrate is clear, the temperature of the substrate when forming the ITO transparent conductive film is changed from Tg to (to the glass transition point Tg of the organic polymer). Tg + (Tm−Tg) / 2)
(2) When the melting point Tm of the organic polymer forming the substrate is unclear, the temperature of the substrate when forming the ITO transparent conductive film is changed from Tg to the glass transition point Tg of the organic polymer. A temperature range of 250 ° C.
It is a manufacturing method of the board | substrate with an ITO transparent conductive film characterized by the above-mentioned .

また、有機高分子がポリエチレンテレフタレートであり、基板温度が75〜162℃の範囲とすることを特徴とする請求項1に記載のITO透明導電膜付き基板の製法である
また、本発明のITO透明導電膜付き基板は、有機高分子を有する基板上にITO透明導電膜が成膜されてなるITO透明導電膜付き基板において、表面粗さが2nm以下であることを特徴とする前記ITO透明導電膜付き基板の製法によるITO透明導電膜付き基板である。

2. The method for producing a substrate with an ITO transparent conductive film according to claim 1, wherein the organic polymer is polyethylene terephthalate and the substrate temperature is in the range of 75 to 162 ° C.
The substrate with an ITO transparent conductive film of the present invention is a substrate with an ITO transparent conductive film in which an ITO transparent conductive film is formed on a substrate having an organic polymer, and the surface roughness is 2 nm or less. It is a board | substrate with an ITO transparent conductive film by the manufacturing method of the said board | substrate with an ITO transparent conductive film.

図1に示すように、本発明のITO透明導電膜付き基板は、基板2の表面にITO透明導電膜1が成膜されてなるものである。   As shown in FIG. 1, the substrate with an ITO transparent conductive film of the present invention has an ITO transparent conductive film 1 formed on the surface of a substrate 2.

本発明のITO透明導電膜を成膜する基板2は、全体が有機高分子でなるものや、あるいは、無機材料をベースにその一部が有機高分子で構成されているものである。   The substrate 2 on which the ITO transparent conductive film of the present invention is formed is either entirely composed of an organic polymer, or partially composed of an organic polymer based on an inorganic material.

有機高分子は、特に制限されるものではないが、高分子プラスチック樹脂であれば、ポリエチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンナフタレート、ポリエーテルスルフォン、ナイロン、ポリアリレート、シクロオレフィンポリマー、およびこれらの延伸フィルム、板材、膜が使用できる。
また、有機高分子のガラス転移点Tgが250℃以下であって、250℃以上に加熱すると、溶解したり大幅に変形するといった不具合が生じるようなものが好適に使用できる。このような温度特性を有する有機高分子を用いると、ITO透明導電膜の成膜時に発生する、ITO透明導電膜の応力と、基板のわずかな変形とが、よくバランスして、ITO透明導電膜の比抵抗が3.0×10―4Ω・cm以下となる、低抵抗のITO透明導電膜を成膜せしめることができる。
The organic polymer is not particularly limited, but as long as it is a polymer plastic resin, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene naphthalate, polyether sulfone, nylon, polyarylate, cycloolefin polymer, and these Stretched films, plate materials, and membranes can be used.
Moreover, the glass transition point Tg of the organic polymer is 250 ° C. or lower, and those that cause problems such as melting or significant deformation when heated to 250 ° C. or higher can be suitably used. When an organic polymer having such temperature characteristics is used, the stress of the ITO transparent conductive film generated during the formation of the ITO transparent conductive film and the slight deformation of the substrate are well balanced. A low-resistance ITO transparent conductive film having a specific resistance of 3.0 × 10 −4 Ω · cm or less can be formed.

基板2を構成する有機高分子の表面を、コロナ放電処理、アンカーコーティング処理、平滑化処理したものでもよい。   The surface of the organic polymer constituting the substrate 2 may be subjected to corona discharge treatment, anchor coating treatment, or smoothing treatment.

また、本発明で用いる基板は、異種あるいは同種の有機高分子を合体化もしくは積層化したものも用いることができる。   In addition, as the substrate used in the present invention, a substrate in which different or similar organic polymers are combined or laminated can be used.

さらに、有機高分子の表面に、SiO、SiOx、SiON、SiN、SiOCN、SiAlONなどの無機膜、ガスバリア膜を成膜したもの、ガラスやセラミックスや金属の上に耐熱性がない各種有機物を塗布したもの、有機ELなどの電子デバイス関連素子を成膜したものを、基板2として用いることができる。 Further, the surface of the organic polymer, SiO 2, SiOx, SiON, SiN, SiOCN, inorganic films such as SiAlON, which was formed a gas barrier film, applying various organic substances is not heat-resistant on a glass or ceramic or metal Those obtained by forming a film on which an electronic device-related element such as an organic EL is formed can be used as the substrate 2.

基板2に成膜されるITO透明導電膜は、酸化インジウムにスズを酸化物換算で5〜10wt%添加したもである。   The ITO transparent conductive film formed on the substrate 2 is obtained by adding 5 to 10 wt% of tin to oxide indium oxide.

スズの添加量が酸化物換算で5wt%未満の場合は、ITO透明導電膜中のキャリヤ濃度が低くなり、10wt%を越える場合は、キャリヤの移動度が小さくなるため、どちらの場合も導電性が低下するので、スズの添加量は酸化物換算で、5〜10wt%とすることが好ましい。   When the amount of tin added is less than 5 wt% in terms of oxide, the carrier concentration in the ITO transparent conductive film is low, and when it exceeds 10 wt%, the carrier mobility is low. Therefore, the amount of tin added is preferably 5 to 10 wt% in terms of oxide.

ITO透明導電膜は、プラズマガンを使用するイオンプレーティング法、より好ましくは圧力勾配型ホロカソードプラズマガンを用いたアークプラズマ蒸着法を用いて成膜する。該アークプラズマ蒸着法は、真空チャンバー内に向けてプラズマビームを生成する圧力勾配型プラズマガンと、プラズマビームの横断面を収縮させる磁石及び環状収束コイルを備え、プラズマビームにより真空チャンバー内に配置した基板上に薄膜を形成する成膜法であり、例えば、図2に概略を示す成膜装置を用いる。   The ITO transparent conductive film is formed by an ion plating method using a plasma gun, more preferably an arc plasma deposition method using a pressure gradient type holocathode plasma gun. The arc plasma deposition method includes a pressure gradient type plasma gun that generates a plasma beam toward the inside of a vacuum chamber, a magnet that contracts the cross section of the plasma beam, and an annular focusing coil, and is arranged in the vacuum chamber by the plasma beam. A film forming method for forming a thin film on a substrate, for example, using a film forming apparatus schematically shown in FIG.

図2に示す成膜装置は、真空チャンバー3と、真空チャンバー3の側壁に取り付けられた圧力勾配型プラズマガン4と、真空チャンバー3内の底部に配置したルツボ5と、真空チャンバー3内の上部に配置した基板支持ホルダー6によって構成されている。   The film forming apparatus shown in FIG. 2 includes a vacuum chamber 3, a pressure gradient type plasma gun 4 attached to the side wall of the vacuum chamber 3, a crucible 5 disposed at the bottom of the vacuum chamber 3, and an upper portion in the vacuum chamber 3. It is comprised by the board | substrate support holder 6 arrange | positioned.

ルツボ5は、カーボン製のものを使用することが望ましい。   The crucible 5 is desirably made of carbon.

圧力勾配型プラズマガン4には、圧力勾配型ホロカソードプラズマガンを用いることが望ましい。圧力勾配型プラズマガン4は、Ta製のパイプ7とLaB製の円盤8とで構成された複合陰極であり、Ta製のパイプ7の内部にArガス18を導入した際に加熱されたTa、LaBから熱電子が放出され、プラズマビーム9を形成する。圧力勾配型プラズマガン4の内部は、真空チャンバー3より常に圧力が高く保たれており、高温に曝されたTaやLaBが酸素などの反応性ガスによって劣化することを防ぐ構造になっている。 The pressure gradient type plasma gun 4 is preferably a pressure gradient type holocathode plasma gun. The pressure gradient type plasma gun 4 is a composite cathode composed of a Ta pipe 7 and a LaB 6 disk 8, and is heated when Ar gas 18 is introduced into the Ta pipe 7. , LaB 6 emits thermoelectrons to form a plasma beam 9. The inside of the pressure gradient plasma gun 4 is always kept at a higher pressure than the vacuum chamber 3, and has a structure that prevents Ta and LaB 6 exposed to high temperatures from being deteriorated by a reactive gas such as oxygen. .

基板支持ホルダー6は、モーターにより回転する機構になっている。また、基板支持ホルダー6の上部には、基板加熱用ヒーター10と温度計11が配置されている。基板加熱用ヒーター10は、成膜する基板2を所定温度に保持するために設けられるもので、温度計11の測定値をもとに基板加熱ヒーター10の出力を制御している。また、真空チャンバー3の側壁にはガス供給ノズル12が配置されており、このガス供給ノズル12には、マスフローコントローラを介して酸素ガス13が必要に応じて供給される。また、真空チャンバー3はコンダクタンスバルブ14を介して真空排気装置15に接続されており、真空チャンバー3に取り付けられた真空計16の測定値をもとに、コンダクタンスバルブ14の開度を調整して真空チャンバー3内が所定の圧力(真空度)に維持されるようになっている。   The substrate support holder 6 is a mechanism that is rotated by a motor. In addition, a substrate heating heater 10 and a thermometer 11 are disposed above the substrate support holder 6. The substrate heater 10 is provided to keep the substrate 2 to be deposited at a predetermined temperature, and controls the output of the substrate heater 10 based on the measured value of the thermometer 11. A gas supply nozzle 12 is disposed on the side wall of the vacuum chamber 3, and an oxygen gas 13 is supplied to the gas supply nozzle 12 as needed via a mass flow controller. The vacuum chamber 3 is connected to the vacuum exhaust device 15 via a conductance valve 14, and the opening degree of the conductance valve 14 is adjusted based on the measured value of the vacuum gauge 16 attached to the vacuum chamber 3. The inside of the vacuum chamber 3 is maintained at a predetermined pressure (degree of vacuum).

図2に示す成膜装置を用いて、次の手順で本発明に関わるITO透明導電膜1を成膜する。   Using the film forming apparatus shown in FIG. 2, the ITO transparent conductive film 1 according to the present invention is formed by the following procedure.

カーボンで製造されたルツボ5に、粒状のITO原料17を充填し、このルツボ5を真空チャンバー3の底部にセットする。ITO蒸発原料17は、ルツボに入れるため粒状であることが好ましいが、その形状を特に限定するものではない。   A crucible 5 made of carbon is filled with granular ITO raw material 17, and this crucible 5 is set at the bottom of the vacuum chamber 3. The ITO evaporating raw material 17 is preferably in the form of a granule so as to be put in the crucible, but the shape thereof is not particularly limited.

ITO透明導電膜を成膜する基板2は基板支持ホルダー6に取り付け、真空チャンバー3内を約2×10−4Paに排気する。この際、基板2を所定の温度に加熱して、表面に吸着したガスや内部から放出されるガスを除去する。排気後、マスフローコントローラーを用いて流量を制御(10〜40sccm)した放電用Arガス18を、圧力勾配型プラズマガン4を通して真空チャンバー3内に供給する。 The substrate 2 on which the ITO transparent conductive film is formed is attached to the substrate support holder 6 and the inside of the vacuum chamber 3 is evacuated to about 2 × 10 −4 Pa. At this time, the substrate 2 is heated to a predetermined temperature to remove the gas adsorbed on the surface and the gas released from the inside. After evacuation, discharge Ar gas 18 whose flow rate is controlled (10 to 40 sccm) using a mass flow controller is supplied into the vacuum chamber 3 through the pressure gradient plasma gun 4.

次に、酸素ガス13をガス供給ノズル12から真空チャンバー3内に所定量供給するとともに、真空排気装置15と真空チャンバー3との間に配置されたコンダクタンスバルブ14の開口の程度を調整して、真空チャンバー3内を約0.1Paの圧力に調整する。酸素ガスの流量は、成膜速度、圧力勾配型プラズマガン4の出力、真空度、基板の温度、および放電圧力によって最適値を選ぶ。   Next, a predetermined amount of oxygen gas 13 is supplied from the gas supply nozzle 12 into the vacuum chamber 3, and the degree of opening of the conductance valve 14 disposed between the vacuum exhaust device 15 and the vacuum chamber 3 is adjusted, The inside of the vacuum chamber 3 is adjusted to a pressure of about 0.1 Pa. The flow rate of the oxygen gas is selected to be an optimum value according to the film forming speed, the output of the pressure gradient plasma gun 4, the degree of vacuum, the substrate temperature, and the discharge pressure.

次に、圧力勾配型プラズマガン4を作動させ、プラズマビーム9をルツボ5内のITO蒸発原料17に収束させ、原料が蒸発する温度に蒸発原料17を加熱する。プラズマビーム9をルツボ5中の蒸発原料17に集束させるために、集束コイル19や磁石20などを使用する。   Next, the pressure gradient type plasma gun 4 is operated, the plasma beam 9 is converged on the ITO evaporation material 17 in the crucible 5, and the evaporation material 17 is heated to a temperature at which the material evaporates. In order to focus the plasma beam 9 on the evaporation raw material 17 in the crucible 5, a focusing coil 19 and a magnet 20 are used.

プラズマビーム9によって加熱・蒸発したITO原料17と導入された酸素ガス13は、プラズマ雰囲気21によってイオン化される。イオン化したこれらの物質は、雰囲気中のプラズマのもつプラズマポテンシャルと、基板2のもつフローティングポテンシャルとの電位差によって基板2に向かって加速され、粒子は約20eVという大きなエネルギーをもって基板2の下表面に到達・堆積し、低抵抗で緻密な本発明のITO透明導電膜1が成膜される。   The ITO raw material 17 heated and evaporated by the plasma beam 9 and the introduced oxygen gas 13 are ionized by the plasma atmosphere 21. These ionized substances are accelerated toward the substrate 2 by the potential difference between the plasma potential of the plasma in the atmosphere and the floating potential of the substrate 2, and the particles reach the lower surface of the substrate 2 with a large energy of about 20 eV. The deposited ITO transparent conductive film 1 of the present invention is deposited with a low resistance.

ITO透明導電膜を成膜する基板2の温度が50℃以下の場合には、ITO透明導電膜の抵抗値が大きく、また、基板の反りが大きくなって、デバイスとして用いることが困難である。   When the temperature of the substrate 2 on which the ITO transparent conductive film is formed is 50 ° C. or less, the resistance value of the ITO transparent conductive film is large and the warpage of the substrate is large, making it difficult to use as a device.

基板2の温度を100℃程度に加熱するとITO透明導電膜の抵抗値は下がって導電性がよくなるので、基板2の成膜時の温度は100℃以上とすることが好ましい。   When the temperature of the substrate 2 is heated to about 100 ° C., the resistance value of the ITO transparent conductive film is lowered and the conductivity is improved. Therefore, the temperature during the film formation of the substrate 2 is preferably 100 ° C. or more.

さらに、基板2の温度を有機高分子のガラス転移点Tg以上にしてITO透明導電膜を成膜すると、基板2の極めてわずかな塑性変形によって、ITO透明導電膜の圧縮応力が緩和され、導電性の大変優れたITO透明導電膜を成膜することができ、さらに、基板の反りも無くなるので、基板2の温度はガラス転移点Tg以上の温度にして、ITO透明導電膜を成膜することが好ましい
基板の温度を有機高分子の融点に近い温度に加熱してITO透明導電膜を成膜すると、基板2は原形をとどめなくなり、さらに、基板2から分解ガスが発生するなどし、導電性が著しく低下するので、基板2の温度は、有機高分子の融点Tmに対して、Tg+(Tm−Tg)/2以下の温度にすることが好ましい。
Further, when the ITO transparent conductive film is formed by setting the temperature of the substrate 2 to the glass transition point Tg or higher of the organic polymer, the compressive stress of the ITO transparent conductive film is relieved by the very slight plastic deformation of the substrate 2, and the conductive property is increased. In addition, since the ITO transparent conductive film can be formed, and the warp of the substrate is eliminated, the ITO transparent conductive film can be formed at a temperature of the glass transition point Tg or higher. If the ITO transparent conductive film is formed by heating the substrate temperature to a temperature close to the melting point of the organic polymer, the substrate 2 does not stay in its original form, and further, decomposition gas is generated from the substrate 2 and the conductivity is improved. Since the temperature is significantly lowered, the temperature of the substrate 2 is preferably Tg + (Tm−Tg) / 2 or less with respect to the melting point Tm of the organic polymer.

明確な融点を有しない有機高分子を基板2に用いる場合でも、基板2の温度は、Tg以上、かつ250℃以下とすることが好ましい。
250℃以下とするのは、明確に融点を有さない有機高分子でも、250℃を超えた温度に加熱すると有機高分子の変形が起きやすく、基板2が溶解したり大幅に変形するといった不具合が生じるためである。
Even when an organic polymer having no clear melting point is used for the substrate 2, the temperature of the substrate 2 is preferably Tg or more and 250 ° C. or less.
The reason why the temperature is set to 250 ° C. or lower is that even when the organic polymer does not clearly have a melting point, the organic polymer is likely to be deformed when heated to a temperature exceeding 250 ° C., and the substrate 2 is melted or greatly deformed. This is because.

ITO透明導電膜の膜厚は、厚膜化による膜応力の増加や生産コスト、光の透過率を考慮すると300nm以下とすることが好ましく、より好ましくは200nm以下とする。   The thickness of the ITO transparent conductive film is preferably 300 nm or less, more preferably 200 nm or less in consideration of an increase in film stress due to thickening, production costs, and light transmittance.

本発明のプラズマガンを用いるイオンプレーティング法で有機高分子でなる基板に成膜される、本発明のITO膜は、中心線平均粗さを2nm以下にすることができ、スパッタリング法で得られるITO膜の中心線平均粗さは約5nmに比較し、平滑性の良好な膜が得られる。従って、本発明のITO透明導電膜は、表面を研磨加工して平滑にする必要もなく、有機ELディスプレイなどの平滑性を要求されるデバイスに好適に用いることができる。   The ITO film of the present invention, which is formed on a substrate made of an organic polymer by an ion plating method using the plasma gun of the present invention, can have a center line average roughness of 2 nm or less, and is obtained by a sputtering method. The center line average roughness of the ITO film is about 5 nm, and a film with good smoothness can be obtained. Therefore, the ITO transparent conductive film of the present invention does not need to be polished and smoothed, and can be suitably used for a device that requires smoothness such as an organic EL display.

以下に本発明の実施例を述べるが、本発明は、以下の実施例に限定するものではない。
実施例1
本発明の透明導電膜を、図2に示す成膜装置を用い、次に示す手順で基板に成膜した。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
Example 1
The transparent conductive film of the present invention was formed on a substrate by the following procedure using the film forming apparatus shown in FIG.

蒸発原料17には、高純度化学製のITO粉粒体(Snの含有量は酸化物換算で5wt%)を使用した。これを、カーボン製のルツボ5に充填し、真空チャンバー3の所定の位置に設置した。   As the evaporation raw material 17, ITO powder made of high purity chemical (Sn content is 5 wt% in terms of oxide) was used. This was filled in a carbon crucible 5 and placed at a predetermined position in the vacuum chamber 3.

20cm角に切り出したPETフィルム(厚さ100μm;東洋紡製ポリエステルフィルムE5100)を洗浄し、静電気を除去した後に基板2に用いた。このPETフィルムを同じ大きさのガラス基板に真空用テープで貼り付け、これを真空チャンバー3内の基板支持ホルダー6に設置した。   A PET film (thickness: 100 μm; polyester film E5100 manufactured by Toyobo Co., Ltd.) cut into a 20 cm square was washed and used for the substrate 2 after removing static electricity. This PET film was attached to a glass substrate of the same size with a vacuum tape, and this was placed on the substrate support holder 6 in the vacuum chamber 3.

この後、真空チャンバー3内の圧力が2.0×10−4Paに達するまで、約2時間、真空排気装置15で排気した。PETフィルムのガラス転移温度は約75℃、融点は250℃であり、この排気操作中にPETフィルム2をガラス転移点よりわずかに高い100℃に加熱した。 Thereafter, the vacuum exhaust device 15 was evacuated for about 2 hours until the pressure in the vacuum chamber 3 reached 2.0 × 10 −4 Pa. The PET film had a glass transition temperature of about 75 ° C. and a melting point of 250 ° C. During this evacuation operation, the PET film 2 was heated to 100 ° C. slightly higher than the glass transition point.

圧力勾配型プラズマガン4に20sccmのアルゴンガスを流し、さらに、酸素ガスを20sccm流した。次に圧力勾配型プラズマガン4の出力が5kWになるまで徐々に電力を印加し、圧力勾配型プラズマガン4からプラズマビームを発生させて原料に照射し、原料を加熱して蒸発させた。なお、圧力勾配型プラズマガン4には、圧力勾配型ホロカソードプラズマガンを用いた。   The pressure gradient type plasma gun 4 was supplied with 20 sccm of argon gas, and further oxygen gas was supplied with 20 sccm. Next, electric power was gradually applied until the output of the pressure gradient type plasma gun 4 reached 5 kW, a plasma beam was generated from the pressure gradient type plasma gun 4 to irradiate the raw material, and the raw material was heated and evaporated. As the pressure gradient type plasma gun 4, a pressure gradient type holo cathode plasma gun was used.

このとき、また、真空チャンバー3内の圧力が0.1Paとなるように真空排気装置の排気能力を制御した。   At this time, the exhaust capacity of the vacuum exhaust device was controlled so that the pressure in the vacuum chamber 3 was 0.1 Pa.

放電、圧力、原料の蒸発が安定した後、シャッターを80秒間開け、PETフィルム上に膜を成膜した。
得られた膜の厚さは190nmであり、2nm/sという著しく早い成膜速度で成膜できた。このITO透明導電膜のシート抵抗値は7.5Ω/□で、比抵抗が1.4×10−4Ω・cmという著しく低い抵抗値であった。
碁盤目ピール試験でこのITO透明導電膜つきフィルムの密着性を調べたところ、まったくITO透明導電膜の剥離はなく、密着性は良好であった。
After the discharge, pressure, and evaporation of the raw material were stabilized, the shutter was opened for 80 seconds to form a film on the PET film.
The thickness of the obtained film was 190 nm, and the film could be formed at a remarkably high film formation rate of 2 nm / s. The ITO transparent conductive film had a sheet resistance value of 7.5Ω / □ and a remarkably low resistance value of 1.4 × 10 −4 Ω · cm.
When the adhesion of this film with an ITO transparent conductive film was examined by a cross peel test, the ITO transparent conductive film was not peeled off at all, and the adhesion was good.

また、このITO透明導電膜にはほとんど応力は入っておらず、ITO透明導電膜によるPETフィルムの湾曲は見られなかった。また、膜は透明であった。この膜の中心線平均粗さRaは1nmと、平滑であった。   The ITO transparent conductive film contained almost no stress, and no curvature of the PET film due to the ITO transparent conductive film was observed. The film was transparent. The center line average roughness Ra of this film was as smooth as 1 nm.

比較例1
実施例1で使用した装置で、基板温度をガラス転移点より低い50℃として、実施例1と同じ条件で原料を蒸発させ、同じ時間成膜した。得られた膜の厚さは200nmであったが、シート抵抗値は11.5Ω/□で、比抵抗は2.3×10−4Ω・cmと実施例1に比べて高い値を示した。ITO透明導電膜には圧縮応力が作用しており、得られた基板は膜面側を凸に大きく湾曲していた。さらに膜には可視光域に光の吸収があり、透過率は70%と小さかった。
Comparative Example 1
In the apparatus used in Example 1, the substrate temperature was set to 50 ° C. lower than the glass transition point, the raw material was evaporated under the same conditions as in Example 1, and film formation was performed for the same time. Although the thickness of the obtained film was 200 nm, the sheet resistance value was 11.5Ω / □, and the specific resistance was 2.3 × 10 −4 Ω · cm, which was higher than that of Example 1. . Compressive stress was acting on the ITO transparent conductive film, and the obtained substrate was greatly curved with the film surface side convex. Furthermore, the film had light absorption in the visible light region, and the transmittance was as small as 70%.

比較例2
実施例1で使用した装置で、基板温度をTg+(Tm−Tg)/2(約162℃)より高い180℃として、実施例1と同じ条件で原料を蒸発させ、同じ時間成膜した。得られたITO透明導電膜つきPET基板では、ITO透明導電膜の全面にクラックが生じてITO透明導電膜が破断し、シート抵抗は無限大となって測定できなかった。この破断したITO透明導電膜つき基板の外観は白濁していた。
Comparative Example 2
In the apparatus used in Example 1, the substrate temperature was set to 180 ° C. higher than Tg + (Tm−Tg) / 2 (about 162 ° C.), the raw material was evaporated under the same conditions as in Example 1, and film formation was performed for the same time. In the obtained PET substrate with an ITO transparent conductive film, a crack was generated on the entire surface of the ITO transparent conductive film, the ITO transparent conductive film was broken, and the sheet resistance was infinite and could not be measured. The appearance of the broken substrate with the ITO transparent conductive film was cloudy.

比較例3
実施例1で使用した装置で、基板にソーダーライムガラスを用いた以外、実施例1と同じ条件で原料を蒸発させ、同じ時間成膜した。得られた膜の厚さはPETフィルム上と同じ190nmであったが、シート抵抗値は9.0Ω/□で、比抵抗が1.7×10−4Ω・cmと、基板2にPETフィルムを用いた実施例1に比べて高い抵抗値を示した。
Comparative Example 3
In the apparatus used in Example 1, the raw material was evaporated under the same conditions as in Example 1 except that soda lime glass was used for the substrate, and a film was formed for the same time. The thickness of the obtained film was 190 nm which was the same as that on the PET film, but the sheet resistance value was 9.0Ω / □ and the specific resistance was 1.7 × 10 −4 Ω · cm. The resistance value was higher than that of Example 1 using

有機高分子などの基板に成膜したITO透明導電膜の構成を示す断面の概略図である。It is the schematic of the cross section which shows the structure of the ITO transparent conductive film formed into a film | membrane on substrates, such as an organic polymer. プラズマガンを用いたイオンプレーティング法(圧力勾配型プラズマガンを使用する活性化反応蒸着法)の装置概略図である。It is an apparatus schematic diagram of an ion plating method using a plasma gun (an activated reaction vapor deposition method using a pressure gradient type plasma gun).

符号の説明Explanation of symbols

1 ITO透明導電膜
2 基板
3 真空チャンバー
4 圧力勾配型プラズマガン
5 ルツボ
6 基板支持ホルダー
7 Ta製のパイプ
8 LaB6製の円盤
9 プラズマビーム
10 基板加熱用ヒーター
11 温度計
12 酸素ガス導入ノズル
13 酸素ガス
14 コンダクタンスバルブ
15 真空排気装置
16 真空計
17 ITO蒸発原料
18 放電用アルゴンガス
19 収束コイル
20 磁石
21 プラズマ雰囲気
DESCRIPTION OF SYMBOLS 1 ITO transparent conductive film 2 Substrate 3 Vacuum chamber 4 Pressure gradient type plasma gun 5 Crucible 6 Substrate support holder 7 Ta pipe 8 LaB6 disk 9 Plasma beam 10 Substrate heating heater 11 Thermometer 12 Oxygen gas introduction nozzle 13 Oxygen Gas 14 Conductance valve 15 Vacuum exhaust device 16 Vacuum gauge 17 ITO evaporation raw material 18 Discharge argon gas 19 Converging coil 20 Magnet 21 Plasma atmosphere

Claims (3)

有機高分子を有する基板上にITO透明導電膜が成膜されてなるITO透明導電膜付き基板の製法において、 ITO透明導電膜は酸化インジウムにスズを酸化物換算で5〜10wt%添加したものあり、該ITO透明導電膜の比抵抗が1.2×10―4〜3.0×10―4Ω・cmの範囲にあり、プラズマガンを用いるイオンプレーティング法で該ITO透明導電膜が成膜され、有機高分子のガラス転移点Tgが、250℃以下であり、
(1)基板を形成する有機高分子の融点Tmが明確な場合は、ITO透明導電膜を成膜するときの基板の温度を、該有機高分子のガラス転移点Tgに対して、Tg〜(Tg+(Tm−Tg)/2)の温度範囲とし、
(2)基板を形成する有機高分子の融点Tmが不明確な場合は、ITO透明導電膜を成膜するときの基板の温度を、該有機高分子のガラス転移点Tgに対して、Tg〜250℃の温度範囲にする、
ことを特徴とするITO透明導電膜付き基板の製法
In the manufacturing method of a substrate with an ITO transparent conductive film in which an ITO transparent conductive film is formed on a substrate having an organic polymer , the ITO transparent conductive film is obtained by adding 5 to 10 wt% of tin in oxide conversion to indium oxide. The ITO transparent conductive film has a specific resistance in the range of 1.2 × 10 −4 to 3.0 × 10 −4 Ω · cm, and the ITO transparent conductive film is formed by ion plating using a plasma gun. The glass transition point Tg of the organic polymer is 250 ° C. or lower,
(1) When the melting point Tm of the organic polymer forming the substrate is clear, the temperature of the substrate when forming the ITO transparent conductive film is changed from Tg to (to the glass transition point Tg of the organic polymer). Tg + (Tm−Tg) / 2)
(2) When the melting point Tm of the organic polymer forming the substrate is unclear, the temperature of the substrate when forming the ITO transparent conductive film is changed from Tg to the glass transition point Tg of the organic polymer. A temperature range of 250 ° C.
ITO transparent conductive film-coated substrate manufacturing method, characterized in that.
有機高分子が、ポリエチレンテレフタレートであり、基板温度が75〜162℃の範囲とすることを特徴とする請求項1に記載のITO透明導電膜付き基板の製法 Organic polymer is a polyethylene terephthalate, ITO transparent conductive film-coated substrate manufacturing method according to claim 1, characterized in that the substrate temperature is in the range of seventy-five to one hundred and sixty-two ° C.. 有機高分子を有する基板上にITO透明導電膜が成膜されてなるITO透明導電膜付き基板において、ITO透明導電膜の表面粗さが、2nm以下であることを特徴とする請求項1に記載のITO透明導電膜付き基板の製法によるITO透明導電膜付き基板。
In ITO transparent conductive film substrate with an ITO transparent conductive film is formed by deposition on a substrate having an organic polymer, according to claim 1, the surface roughness of the ITO transparent conductive film, characterized in that it is 2nm or less A substrate with an ITO transparent conductive film produced by the method for producing a substrate with an ITO transparent conductive film.
JP2003282834A 2003-07-30 2003-07-30 Manufacturing method of substrate with ITO transparent conductive film and substrate with ITO transparent conductive film Expired - Fee Related JP4526248B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003282834A JP4526248B2 (en) 2003-07-30 2003-07-30 Manufacturing method of substrate with ITO transparent conductive film and substrate with ITO transparent conductive film
PCT/JP2004/009963 WO2005013290A1 (en) 2003-07-30 2004-07-13 Substrate with ito transparent conductive film and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282834A JP4526248B2 (en) 2003-07-30 2003-07-30 Manufacturing method of substrate with ITO transparent conductive film and substrate with ITO transparent conductive film

Publications (2)

Publication Number Publication Date
JP2005050730A JP2005050730A (en) 2005-02-24
JP4526248B2 true JP4526248B2 (en) 2010-08-18

Family

ID=34113786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282834A Expired - Fee Related JP4526248B2 (en) 2003-07-30 2003-07-30 Manufacturing method of substrate with ITO transparent conductive film and substrate with ITO transparent conductive film

Country Status (2)

Country Link
JP (1) JP4526248B2 (en)
WO (1) WO2005013290A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925575A (en) * 1995-07-10 1997-01-28 Chugai Ro Co Ltd Formation of ito film
JP2000265259A (en) * 1999-03-15 2000-09-26 Dainippon Printing Co Ltd Transparent conductive film and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925575A (en) * 1995-07-10 1997-01-28 Chugai Ro Co Ltd Formation of ito film
JP2000265259A (en) * 1999-03-15 2000-09-26 Dainippon Printing Co Ltd Transparent conductive film and its production

Also Published As

Publication number Publication date
JP2005050730A (en) 2005-02-24
WO2005013290A1 (en) 2005-02-10

Similar Documents

Publication Publication Date Title
EP1944386B1 (en) Transparent conductive film and method for producing the same
EP1163543B1 (en) Adhesion layer for metal oxide uv filters
CA2330123C (en) Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
KR100736664B1 (en) Substrate with ITO transparent conductive film and method for producing same
JP2010241638A (en) Thin film laminate with metal nanoparticle layer interposed
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
CN115298762A (en) Transparent conductive film
JP2004148673A (en) Transparent gas barrier film, substrate with transparent gas barrier film, and its manufacturing process
JPH0315536B2 (en)
KR100854441B1 (en) A board having layer for preventing humidity from percolation inclusive of metal thin film and silicone compounds and method of manufacturing the same
JP4526248B2 (en) Manufacturing method of substrate with ITO transparent conductive film and substrate with ITO transparent conductive film
JPH09226046A (en) Transparent conductive layered body and its manufacture
JP2006147235A (en) Film with indium tin oxide transparent conductive membrane
JP4656926B2 (en) Method for forming ITO transparent conductive film and substrate with ITO transparent conductive film
JP5506275B2 (en) Heat ray shielding film
CN113213774B (en) Graphene glass and preparation method thereof
JP3311172B2 (en) Reflector
JP4520107B2 (en) Translucent thin film and method for producing the same
Wen et al. Improved electrical and optical properties of ultra-thin tin doped indium oxide (ITO) thin films by a 3-dimensionally confined magnetron sputtering source
JPS6224505A (en) Formation of light transmitting conductive film
CN112941479B (en) Method for adjusting thickness of silver layer by tin dioxide/silver/tin dioxide transparent conductive film and application
JP4693401B2 (en) Method for forming ITO transparent conductive film and color filter substrate with ITO transparent conductive film
EP1367653A1 (en) Method for preparing transparent and conducting sheets on polymers
JP5206111B2 (en) Raw material powder for ion plating evaporation source material, ion plating evaporation source material and manufacturing method thereof, and gas barrier sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees