JP4524433B2 - Separation and recovery of noble metal elements for quantitative analysis - Google Patents

Separation and recovery of noble metal elements for quantitative analysis Download PDF

Info

Publication number
JP4524433B2
JP4524433B2 JP2004173496A JP2004173496A JP4524433B2 JP 4524433 B2 JP4524433 B2 JP 4524433B2 JP 2004173496 A JP2004173496 A JP 2004173496A JP 2004173496 A JP2004173496 A JP 2004173496A JP 4524433 B2 JP4524433 B2 JP 4524433B2
Authority
JP
Japan
Prior art keywords
noble metal
quantitative analysis
hydrochloric acid
reducing agent
metal elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004173496A
Other languages
Japanese (ja)
Other versions
JP2005308705A (en
Inventor
三雄 鐙屋
透 清水
恒一郎 森松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2004173496A priority Critical patent/JP4524433B2/en
Publication of JP2005308705A publication Critical patent/JP2005308705A/en
Application granted granted Critical
Publication of JP4524433B2 publication Critical patent/JP4524433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、定量分析を目的として貴金属元素含有試料から貴金属元素を分離回収する方法であって、特にICP(高周波誘導結合プラズマ)を利用した分析に供するためのサンプル調製に好適な貴金属元素の分離回収方法に関するものである。   The present invention is a method for separating and recovering a noble metal element from a noble metal element-containing sample for the purpose of quantitative analysis, and particularly separation of a noble metal element suitable for sample preparation for analysis using ICP (high frequency inductively coupled plasma). It relates to the collection method.

従来、貴金属元素を定量分析するための分析サンプル調製手法として、NiS−マット法,乾式試金−灰吹法,Te共沈法などが知られている。   Conventionally, NiS-mat method, dry assay-ash blowing method, Te coprecipitation method, and the like are known as analytical sample preparation methods for quantitative analysis of noble metal elements.

NiS−マット法は、試料を酸化ニッケル,硫黄,炭酸ソーダ,ホウ砂,珪砂,食塩などとともに加熱溶融して硫化ニッケルボタンを作り、これを塩酸に溶解して濾過することにより白金族元素を分離回収するものである。
乾式試金−灰吹法は、試料を酸化鉛,硫黄,炭酸ソーダ,ホウ砂,珪砂,食塩などとともに加熱溶融して、鉛ボタンとともに貴金属元素を分離回収するものである。
Te共沈法は、試料をアルカリ溶剤,酸化剤とともに加熱溶融して溶融塩とし、これを冷却して得た固形物を塩酸中に溶解させ、共沈剤Teを添加してSnCl2等の還元剤で貴金属元素を沈殿させることにより貴金属元素を分離回収するものである。
In the NiS-mat method, a nickel sulfide button is made by heating and melting a sample together with nickel oxide, sulfur, sodium carbonate, borax, silica sand, salt, etc., and this is dissolved in hydrochloric acid and filtered to separate platinum group elements. It is to be collected.
In the dry assay-ash blowing method, a sample is heated and melted with lead oxide, sulfur, sodium carbonate, borax, silica sand, salt, etc., and a precious metal element is separated and recovered together with a lead button.
In the Te coprecipitation method, a sample is heated and melted together with an alkaline solvent and an oxidizing agent to form a molten salt, and the solid obtained by cooling this is dissolved in hydrochloric acid, and the coprecipitation Te is added to add SnCl 2 or the like. The noble metal element is separated and recovered by precipitating the noble metal element with a reducing agent.

特開2002−372518号公報JP 2002-372518 A

NiS−マット法および乾式試金−灰吹法は、いずれも工程が長く、分析結果が判明するまでに長時間を要するという欠点がある。
Te共沈法は、白金族元素の回収率にバラツキが多く、元素によっては、還元に熟成時間を要し、実際より低めの値を示すという問題がある。また、シリカ系石油化学触媒などの分析においてはゲル状の含水ケイ酸が発生し、共沈後の濾過ができなくなる場合があるという問題もある。
Both the NiS-matt method and the dry assay-ash blowing method have the disadvantage that the process is long and a long time is required until the analysis result is revealed.
The Te coprecipitation method has a large variation in the recovery rate of platinum group elements, and depending on the element, there is a problem that it takes a ripening time for reduction and shows a lower value than actual. Further, in the analysis of silica-based petrochemical catalysts, there is a problem that gel-like hydrous silicic acid is generated and filtration after coprecipitation may not be possible.

本発明は、迅速な分析が可能なTe共沈法をベースとした新たな貴金属元素の分離回収方法を開発し提供することで、Te共沈法の上記問題の解決を図ることを目的とする。   An object of the present invention is to develop and provide a new method for separating and recovering precious metal elements based on a Te coprecipitation method capable of rapid analysis, and to solve the above problems of the Te coprecipitation method. .

発明者らは種々検討の結果、共沈剤としてTeとAsを複合添加したとき、共沈による沈殿物中の白金族元素の回収率が短い熟成時間でも飛躍的に向上し、しかも安定することを見出した。また白金族以外のAu,Agについてもこの共沈法で回収可能であることがわかった。さらに、ゲル状含水ケイ酸の生成による濾過不能を防止するには、溶融塩生成過程においてホウ酸ナトリウムNa247の添加、および段階的な昇温パターンを採用することが極めて有効であることを見出した。本発明はこれらの知見に基づいて完成したものである。 As a result of various studies, the inventors have found that when Te and As are added together as a coprecipitation agent, the recovery rate of the platinum group elements in the precipitate by coprecipitation can be dramatically improved and stabilized even in a short ripening time. I found. It was also found that Au and Ag other than the platinum group can be recovered by this coprecipitation method. Furthermore, in order to prevent the inability to filter due to the formation of gel-like hydrous silicic acid, it is extremely effective to add sodium borate Na 2 B 4 O 7 and adopt a stepwise heating pattern in the molten salt formation process. I found out. The present invention has been completed based on these findings.

すなわち、上記目的を達成するために、
貴金属含有試料、例えばPt,Pd,Rh,Au,Agの1種以上を含む貴金属含有試料を溶解させた塩酸に、共沈剤としてTeとAsを複合添加し、SnCl2といった還元剤を作用させて貴金属元素をTe,Asに随伴させて沈殿させる工程、
得られた沈殿物を濾過して回収する工程、
を有する定量分析を目的とした貴金属元素の分離回収方法、例えば特にPt,PdまたはRhの定量分析を目的とした貴金属元素の分離回収方法が提供される。
That is, to achieve the above purpose,
Te and As are added together as a coprecipitation agent to hydrochloric acid in which a noble metal-containing sample, for example, a noble metal-containing sample containing one or more of Pt, Pd, Rh, Au, and Ag is dissolved, and a reducing agent such as SnCl 2 is allowed to act. Precipitating a precious metal element with Te and As,
Collecting the resulting precipitate by filtration,
There is provided a method for separating and collecting a noble metal element for the purpose of quantitative analysis having, for example, a method for separating and collecting a noble metal element, particularly for the purpose of quantitative analysis of Pt, Pd or Rh.

また、
[1] 白金族元素を含む貴金属含有試料をNaKCO3,Na22などのアルカリ溶剤およびNa247とともに、昇温過程において1回以上の恒温保持を行いながら段階的に昇温して加熱溶融することにより、貴金属元素の溶融塩を作り、これを冷却して固形物を得る工程、
[2] 前記固形物を塩酸中に完全に溶解させる工程、
[3] 得られた塩酸に共沈剤としてTeとAsを複合添加し、SnCl2といった還元剤を作用させて加熱し貴金属元素をTe,Asに随伴させて沈殿させる工程、
[4] 得られた沈殿物を濾過して回収する工程、
を有し、前記工程[1]においては、工程[4]での濾過がゲル状含水ケイ酸の存在により不可能にならないように、Na247の添加量と、段階的昇温過程における恒温保持回数および各恒温保持温度における保持時間をコントロールして含水ケイ酸の生成量を抑制する定量分析を目的とした貴金属元素の分離回収方法が提供される。
Also,
[1] Precious metal-containing sample containing platinum group elements, together with alkaline solvent such as NaKCO 3 and Na 2 O 2 and Na 2 B 4 O 7 And making a noble metal element molten salt by heating and melting, and cooling this to obtain a solid,
[2] A step of completely dissolving the solid in hydrochloric acid,
[3] A step of adding Te and As as a coprecipitation agent to the obtained hydrochloric acid, precipitating the precious metal element with Te and As by heating with a reducing agent such as SnCl 2 ,
[4] A step of filtering and collecting the obtained precipitate,
In the step [1], the amount of Na 2 B 4 O 7 added and the stepwise temperature rise so that the filtration in the step [4] is not impossible due to the presence of the gel-like hydrous silicic acid. There is provided a method for separating and recovering a noble metal element for the purpose of quantitative analysis for suppressing the amount of hydrous silicic acid produced by controlling the number of constant temperature holdings in the process and the holding time at each constant temperature holding temperature.

ここで、「工程[4]での濾過がゲル状含水ケイ酸の存在により不可能にならない」とは、工程[4]で使用する濾過方法(例えば1μmのメンブレンフィルターを用いた吸引濾過など)において、ゲル状含水ケイ酸が濾過フィルターを目詰まりさせて数十分の時間をかけても沈殿を含む溶液の全量が濾過しきれないような状況、にならないことをいう。
また、「Na247の添加量と、段階的昇温過程における恒温保持回数および各恒温保持温度における保持時間をコントロールして含水ケイ酸の生成量を抑制する」とは、工程[3]における溶液の加熱の際、含水ケイ酸の生成量は、Na247の添加量や、恒温保持回数,各恒温保持温度における保持時間によって変動するので、これらの条件因子を実状に合うように組み合わせて含水ケイ酸の生成量を抑制することを意味する。
Here, “the filtration in step [4] is not impossible due to the presence of the gel-like hydrous silicic acid” means that the filtration method used in step [4] (for example, suction filtration using a 1 μm membrane filter, etc.) The gel-like hydrous silicic acid clogs the filtration filter and does not result in a situation where the entire amount of the solution containing the precipitate cannot be filtered even if it takes several tens of hours.
“The amount of Na 2 B 4 O 7 added, the number of isothermal holdings in the stepwise temperature rising process, and the holding time at each isothermal holding temperature are controlled to suppress the amount of hydrous silicic acid produced” When heating the solution in [3], the amount of hydrous silicic acid varies depending on the amount of Na 2 B 4 O 7 added, the number of constant temperature holding times, and the holding time at each constant temperature holding temperature. This means that the amount of hydrous silicic acid produced is suppressed by combining them so as to meet the requirements.

本発明によれば、貴金属含有試料の化学分析において、ICPを利用した分析に供するためのサンプルを調製する際、従来のTe共沈法では回収率にバラツキが生じやすかった白金族元素を高い回収率で安定的に回収することが可能になった。また、シリカ系石油化学触媒などの試料を濾過する際に問題となっていたゲル状の含水ケイ酸による濾過不良も解消された。したがって本発明は、白金族元素を含む貴金属含有試料の分析精度の向上および分析作業性の向上に寄与するものである。   According to the present invention, in the chemical analysis of a noble metal-containing sample, when preparing a sample for analysis using ICP, a high recovery of platinum group elements in which the recovery rate of the conventional Te coprecipitation method is likely to vary is high. It became possible to recover stably at a high rate. Moreover, the filtration defect by the gel-like hydrous silicic acid which was a problem when filtering samples, such as a silica-type petrochemical catalyst, was also eliminated. Therefore, the present invention contributes to improvement in analysis accuracy and analysis workability of a noble metal-containing sample containing a platinum group element.

本発明では、貴金属元素含有試料として、例えば自動車排ガス浄化用触媒,石油化学系触媒,リサイクル原料,鉱石,湿式製錬残渣,スラッジ等を分析対象とすることができる。本発明は、このような貴金属含有試料を完全に溶解させた溶液を用意し、この溶液から貴金属元素を共沈現象によって沈殿させることによって分離回収する。従来、共沈剤としてはTeが使用されていた。しかしその場合、白金族元素の回収率が低めになるという不具合が生じていた。本発明では共沈剤としてTeとAsを複合で添加する。Te+Asの複合添加により白金族元素を共沈させた場合、メカニズムは十分に解明されていないが、その回収率を飛躍的に高め、かつ安定させることが可能となるのである。特にPt,Pd,Rhの1種以上を含む場合、その回収率の大きな向上効果が認められる。   In the present invention, as a noble metal element-containing sample, for example, automobile exhaust gas purification catalyst, petrochemical catalyst, recycled raw material, ore, hydrometallurgical residue, sludge and the like can be analyzed. The present invention prepares a solution in which such a noble metal-containing sample is completely dissolved, and separates and collects the noble metal element from the solution by precipitating by a coprecipitation phenomenon. Conventionally, Te has been used as a coprecipitation agent. However, in that case, there has been a problem that the recovery rate of the platinum group element is low. In the present invention, Te and As are added in combination as coprecipitation agents. When the platinum group element is co-precipitated by the combined addition of Te + As, the mechanism has not been fully elucidated, but the recovery rate can be dramatically increased and stabilized. In particular, when one or more of Pt, Pd, and Rh are included, a significant improvement in the recovery rate is recognized.

貴金属含有試料が完全に溶解した溶液にTe+Asの共沈剤を添加し、これを70〜85℃程度に加温した状態で還元剤を加え、その後20〜60分程度煮沸するとよい。Te+Asの共沈剤は、例えば溶解操作が簡便に行え、後工程への妨害要素がないTeO2とAs23に塩酸を加えてこれらを完全に溶解し、これに水を加えて希釈した溶液として添加することができる。還元剤としては例えばSnCl2を塩酸によって溶解し、水で希釈したものが使用できる。Te+Asの共沈剤の添加量としては、試料中に含まれる貴金属元素の合計量1〜30mgに対して、Te:30〜70mg+As:30〜70mgを含む共沈剤を添加すると効果的である。 A coprecipitate of Te + As is added to a solution in which the precious metal-containing sample is completely dissolved, and the reducing agent is added in a state where the coprecipitate is heated to about 70 to 85 ° C., and then boiled for about 20 to 60 minutes. Te + As coprecipitate can be dissolved easily by adding hydrochloric acid to TeO 2 and As 2 O 3 , which do not interfere with subsequent processes, for example, and can be easily dissolved, and diluted with water. It can be added as a solution. As the reducing agent, for example, SnCl 2 dissolved in hydrochloric acid and diluted with water can be used. As the addition amount of the Te + As coprecipitation agent, it is effective to add a coprecipitation agent containing Te: 30-70 mg + As: 30-70 mg with respect to the total amount of noble metal elements contained in the sample of 1-30 mg.

次に、得られた沈殿物を濾過する。メンブレンフィルターに堆積した沈殿物は、塩酸で洗浄し、さらに水で洗浄することが望ましい。沈殿物はフィルターごとビーカーに移し、濾過の器具をビーカー上で硝酸溶液で洗浄する。その後、ビーカーに硝酸溶液と塩酸を加えてフィルターごと液中で加熱し、沈殿物を溶解させる。沈殿物が完全に溶解してからフィルターを取り除き、これをビーカー上で水洗することで前記沈殿物に由来する貴金属元素は完全に回収される。   The resulting precipitate is then filtered. It is desirable to wash the deposit deposited on the membrane filter with hydrochloric acid and then with water. The precipitate is transferred to the beaker together with the filter, and the filtration apparatus is washed with a nitric acid solution on the beaker. Thereafter, a nitric acid solution and hydrochloric acid are added to the beaker, and the whole filter is heated in the solution to dissolve the precipitate. After the precipitate is completely dissolved, the filter is removed, and the precious metal element derived from the precipitate is completely recovered by washing with water in a beaker.

得られた液をシラップ状まで濃縮し、さらに塩酸と水を加えて加熱溶解した後、この液をメスフラスコで定容し、ICP発光分析に供すればよい。   The obtained liquid is concentrated to a syrup shape, and further, hydrochloric acid and water are added and dissolved by heating. Then, this liquid is fixed in a volumetric flask and subjected to ICP emission analysis.

ところで、前記の共沈反応に供するための「貴金属含有試料を完全に溶解させた溶液」を得るには、従来例えば、当該試料をアルカリ溶剤とともに加熱溶融して溶融塩とし、これを冷却して得た固形物を塩酸中に溶解させる手法が用いられていた。しかしながら、石油化学系触媒をはじめ、分析対象である貴金属含有試料にはシリカが多量に含まれている場合が多い。このような試料の溶融塩を作り、塩酸溶解した際、含水ケイ酸が生成しやすく、これが共沈後の濾過においてフィルターを目詰まりさせるという事態を招く。この場合、濾過が不可能となる。   By the way, in order to obtain a “solution in which a noble metal-containing sample is completely dissolved” for use in the coprecipitation reaction, conventionally, for example, the sample is heated and melted together with an alkaline solvent to form a molten salt, which is then cooled. A method of dissolving the obtained solid in hydrochloric acid has been used. However, the precious metal-containing samples to be analyzed, including petrochemical catalysts, often contain a large amount of silica. When a molten salt of such a sample is prepared and dissolved in hydrochloric acid, hydrous silicic acid is likely to be generated, which leads to a situation where the filter is clogged during filtration after coprecipitation. In this case, filtration becomes impossible.

そこで本発明では、分析対象試料の溶融塩を作る際に、吸引濾過等の迅速な濾過手段が可能な程度に含水ケイ酸の生成量を抑制させる。その手段としては、i) Na247(ホウ酸ナトリウム)を加えた溶融塩を作り、かつ、ii) 溶融に至るまでの昇温過程で1回以上の恒温保持を行うという段階的な昇温パターンを採る。 Therefore, in the present invention, when the molten salt of the sample to be analyzed is made, the amount of hydrous silicic acid produced is suppressed to such an extent that rapid filtration means such as suction filtration is possible. As a means to do so, i) make Na 2 B 4 O 7 (sodium borate) molten salt, and ii) keep it at least once in the temperature rising process until melting. A warm pattern.

発明者らの検討の結果、共沈時における含水ケイ酸の生成量を低減するには、Na247を適量添加することが有利であり、また、昇温時に恒温保持を行うことが有利であることがわかった。したがって、これらの条件因子を実状に合うように組み合わせることにより含水ケイ酸の生成量を抑制することができる。溶融状態は概ね600℃以上で実現されるが、例えば、Na247:0.5g,RT→300℃×10分→600℃×10分→800℃×30分のような昇温パターンが考えられる。
より具体的には、試料1gに対して、Na247を0.3〜1g添加し、室温から溶融状態に至るまでの昇温過程において、第1段保持:300℃±20℃で5〜20分保持、第2段保持:600℃±20℃で5〜20分保持の2回の恒温保持を行い、最終的に800℃±10℃で20〜60分溶融保持するという、段階的昇温過程を含むヒートパターンを採用すると、SiO2を約80質量%含む石油化学系触媒を分析する場合でも、共沈後の吸引濾過(1μmのメンブレンフィルター使用)が十分に可能となる。
As a result of the study by the inventors, it is advantageous to add an appropriate amount of Na 2 B 4 O 7 in order to reduce the amount of hydrous silicic acid produced during coprecipitation, and to maintain a constant temperature when the temperature is raised. Was found to be advantageous. Therefore, the production amount of hydrous silicic acid can be suppressed by combining these condition factors so as to match the actual conditions. The molten state is generally realized at 600 ° C. or higher. For example, Na 2 B 4 O 7 : 0.5 g, RT → 300 ° C. × 10 minutes → 600 ° C. × 10 minutes → 800 ° C. × 30 minutes Possible patterns.
More specifically, 0.3 to 1 g of Na 2 B 4 O 7 is added to 1 g of the sample, and the first stage is maintained in the temperature rising process from room temperature to the molten state: 300 ° C. ± 20 ° C. Hold for 5 to 20 minutes at 2nd stage: 600 ° C. ± 20 ° C. Hold for 5 to 20 minutes, and finally hold at 800 ° C. ± 10 ° C. for 20 to 60 minutes. When a heat pattern including a stepwise temperature rise process is employed, even when a petrochemical catalyst containing about 80% by mass of SiO 2 is analyzed, suction filtration (using a 1 μm membrane filter) after coprecipitation is sufficiently possible. .

溶融塩を作るには、白金族元素を含む貴金属含有試料を、アルカリ溶剤(例えばNaKCO3,Na22)、およびNa247とともに加熱溶融する。上記ヒートパターンを採用する例だと、試料1gに対し、NaKCO3:5〜10g,Na22:5〜10g,Na247:0.3〜1gを添加すると、SiO2を約80質量%含む試料で1μmのメンブレンフィルターを使用した吸引濾過が十分可能となる。 To make a molten salt, a noble metal-containing sample containing a platinum group element is heated and melted together with an alkali solvent (for example, NaKCO 3 , Na 2 O 2 ) and Na 2 B 4 O 7 . In the example of adopting the above heat pattern, when NaKCO 3 : 5 to 10 g, Na 2 O 2 : 5 to 10 g, Na 2 B 4 O 7 : 0.3 to 1 g are added to 1 g of sample, SiO 2 is added. Suction filtration using a 1 μm membrane filter is sufficiently possible with a sample containing about 80% by mass.

〔白金属元素の共沈・回収実験〕
500mLビーカーに温純水100mLを入れ、放冷後、下記内容物15.5gを、それが入った坩堝ごと前記ビーカーに移した。
(内容物)試料:1g、KNaCO3:7g、Na22:7g、Na247:0.5g
これに塩酸:水=1:1の濃度の塩酸50mLを混合したのち、市販の標準液を用いてPt:1mg,Pd:1mg,Rh:1mg相当量を上記ビーカーに添加し、「貴金属含有試料を溶解させた標準溶液」を作った。これを試液Aと呼ぶ。
以下に述べる共沈剤の種類と同じロット数の試液Aを用意した。
[Coprecipitation and recovery experiment of white metal elements]
100 mL of warm pure water was put into a 500 mL beaker, and after standing to cool, 15.5 g of the following contents were transferred to the beaker together with the crucible containing it.
(Contents) Sample: 1 g, KNaCO 3 : 7 g, Na 2 O 2 : 7 g, Na 2 B 4 O 7 : 0.5 g
After mixing 50 mL of hydrochloric acid with a concentration of hydrochloric acid: water = 1: 1, the equivalent amount of Pt: 1 mg, Pd: 1 mg, Rh: 1 mg was added to the beaker using a commercially available standard solution. A standard solution in which was dissolved. This is referred to as test solution A.
A test solution A having the same lot number as the type of coprecipitate described below was prepared.

一方、共沈剤としては、Te濃度が4g/L,10g/L,20g/Lの塩酸(以上、比較剤)、およびTe:10g/L+As:10g/Lを含む塩酸(発明対象剤)を用意した。Teは試薬のTeO2を、Asは試薬のAs23を用い、それぞれ塩酸に溶解させた。
また、還元剤として、SnCl2を280g/L溶解させた塩酸を用意した。
On the other hand, as a coprecipitation agent, hydrochloric acid containing Te concentrations of 4 g / L, 10 g / L, and 20 g / L (above, a comparative agent) and hydrochloric acid containing Te: 10 g / L + As: 10 g / L (invention target) Prepared. Te was dissolved in hydrochloric acid using TeO 2 as a reagent and As 2 O 3 as As.
As a reducing agent, hydrochloric acid in which SnCl 2 was dissolved at 280 g / L was prepared.

坩堝を洗い取り出した各試液Aに、上記各共沈剤溶液5mLを添加し、さらに水を加えることで、それぞれ液量を330mLに調整した。これを約80℃に加温した状態で上記還元剤(SnCl2溶液)を20mL添加し、その後、煮沸を30分間行った。煮沸時の塩酸濃度は約1.4Nである。 The respective coprecipitate solutions 5 mL were added to each sample solution A from which the crucible was washed out, and water was further added to adjust the liquid volume to 330 mL. 20 mL of the above reducing agent (SnCl 2 solution) was added in a state of being heated to about 80 ° C., followed by boiling for 30 minutes. The concentration of hydrochloric acid during boiling is about 1.4N.

煮沸後の液を室温まで放冷したのち、1μmのメンブレンフィルターを用いて吸引濾過した。フィルターに貯まった沈殿物を塩酸:水=1:5の濃度の塩酸10mLで3回洗浄し、さらに水で数回洗浄した。洗浄後の沈殿物をフィルターごとビーカーに移し、濾過の器具をビーカー上で水洗し、硝酸5mLを使用してさらに洗浄した。ビーカー縁から硝酸5mLと塩酸10mLを加えた後、加熱し、沈殿物を溶解させた。沈殿物が完全に分解したのを確認後、フィルターを取り出し、ビーカー上で水洗した。このようにして沈殿物が完全に回収された液(沈殿物が全量溶解している液)を加熱することでシラップ状まで濃縮し(脱硝酸)、これに塩酸10mLと少量の水を加えて加熱溶解し、得られた液を100mLメスフラスコに定容した。   The solution after boiling was allowed to cool to room temperature, and then filtered with suction using a 1 μm membrane filter. The precipitate stored in the filter was washed three times with 10 mL of hydrochloric acid having a concentration of hydrochloric acid: water = 1: 5, and further washed several times with water. The washed precipitate was transferred to the beaker together with the filter, and the filtration device was washed with water on the beaker and further washed with 5 mL of nitric acid. Nitric acid (5 mL) and hydrochloric acid (10 mL) were added from the beaker edge and then heated to dissolve the precipitate. After confirming that the precipitate was completely decomposed, the filter was taken out and washed in a beaker. The liquid in which the precipitate was completely recovered in this way (the liquid in which the entire amount of the precipitate was dissolved) was heated to concentrate to syrup (denitrification), and 10 mL of hydrochloric acid and a small amount of water were added thereto. The resulting solution was heated and dissolved, and the volume of the resulting solution was adjusted to a 100 mL volumetric flask.

これをICP発光分析装置(バリアン社製、VISTA)で測定し、貴金属元素を分析した。各元素とも5秒5回の積分時間とした。例えばPt10.0mg添加の試液で測定結果が9.94mgであれば、Ptの回収率は99.4%となる。なお、計算上、回収率が100%をわずかに超える場合もあるが、この場合ほぼ100%とみなしてよい。
結果を表1に示す。
This was measured with an ICP emission analyzer (manufactured by Varian, VISTA) to analyze noble metal elements. The integration time was 5 seconds 5 times for each element. For example, if the measurement result is 9.94 mg with 10.0 mg of Pt added, the recovery rate of Pt is 99.4%. Note that, in the calculation, the recovery rate may slightly exceed 100%, but in this case, it may be regarded as almost 100%.
The results are shown in Table 1.

Figure 0004524433
Figure 0004524433

表1からわかるように、共沈剤としてTeとAsを複合添加することによって、Te単独使用の場合よりも貴金属元素回収率は大幅に向上した。また、表1には示していないが、TeとAsの複合添加により、回収率のバラツキも非常に小さくなることが確認された。本発明法により白金族元素の分析精度は大きく向上した。   As can be seen from Table 1, the combined recovery of Te and As as a coprecipitate significantly improved the precious metal element recovery rate compared to the case of using Te alone. Further, although not shown in Table 1, it was confirmed that the dispersion of the recovery rate was very small by the combined addition of Te and As. The analytical accuracy of platinum group elements has been greatly improved by the method of the present invention.

〔Au,Agの共沈・回収実験〕
市販の標準液を用いてAu:20mg,Ag:2mg相当量をビーカーに添加した以外は、実施例1と同じ方法で「貴金属含有試料を溶解させた塩酸溶液」に相当する液(貴金属含有量は既知)を作った。これを試液Bと呼ぶ。
共沈剤はTe:10g/L+As:10g/Lを含む塩酸(発明対象剤)を用意した。還元剤は実施例1と同じである。
実施例1と同じ方法で共沈および回収実験を行った。
その結果、回収率はAu:97.8%、Ag:97.1%であった。
Au,Agについては、白金族元素に比べて回収率は低いものの、回収率のバラツキは小さいため、TeとAsの複合添加による共沈法を用いて白金族元素と同様に分析が可能であることが確かめられた。
[Co-precipitation and recovery experiment of Au and Ag]
A solution (noble metal content) corresponding to “a hydrochloric acid solution in which a noble metal-containing sample is dissolved” by the same method as in Example 1 except that a commercially available standard solution is used to add Au: 20 mg, Ag: 2 mg equivalent to the beaker. Made known). This is called reagent solution B.
As a coprecipitation agent, hydrochloric acid containing Te: 10 g / L + As: 10 g / L (invention target) was prepared. The reducing agent is the same as in Example 1.
Coprecipitation and recovery experiments were performed in the same manner as in Example 1.
As a result, the recoveries were Au: 97.8% and Ag: 97.1%.
As for Au and Ag, although the recovery rate is lower than that of the platinum group element, since the variation in the recovery rate is small, it can be analyzed in the same manner as the platinum group element using the coprecipitation method by the combined addition of Te and As. It was confirmed.

〔白金族元素とAu,Agの同時共沈・回収実験〕
市販の標準液を用いてPt:1mg,Pd:1mg,Rh:1mg相当量およびAu:20mg,Ag:2mg相当量をビーカーに添加した以外は、実施例1と同じ方法で「貴金属含有試料を溶解させた塩酸溶液」に相当する液(貴金属含有量は既知)を作った。これを試液Cと呼ぶ。
共沈剤は、実施例1と同様に4種類(比較剤1種,発明対象剤3種)を用意した。還元剤も実施例1と同じである。
実施例1と同じ方法で共沈および回収実験を行った。
結果を表2に示す。
[Simultaneous coprecipitation and recovery experiment of platinum group elements and Au, Ag]
Except that Pt: 1 mg, Pd: 1 mg, Rh: 1 mg equivalent and Au: 20 mg, Ag: 2 mg equivalent were added to the beaker using a commercially available standard solution, the same method as in Example 1 was used. A solution corresponding to the “dissolved hydrochloric acid solution” was prepared (the noble metal content was known). This is referred to as test solution C.
Four types of coprecipitation agents (comparative agent 1 type, invention target agent 3 types) were prepared in the same manner as in Example 1. The reducing agent is the same as in Example 1.
Coprecipitation and recovery experiments were performed in the same manner as in Example 1.
The results are shown in Table 2.

Figure 0004524433
Figure 0004524433

表2からわかるように、共沈剤としてTeとAsを複合添加することによって、Te単独使用の場合よりも元素間の回収率のバラツキが減少し、各貴金属元素ともほぼ100%に近い回収率が達成できた。本発明法により、白金族元素とAu,Agを含有する試料において、これらの元素の分析精度を同時に大きく向上できることが確認された。   As can be seen from Table 2, the combined addition of Te and As as coprecipitates reduces the variation in the recovery rate between elements compared to the case of using Te alone, and the recovery rate is almost 100% for each noble metal element. Was achieved. According to the method of the present invention, it was confirmed that the analysis accuracy of these elements can be greatly improved at the same time in a sample containing platinum group elements and Au and Ag.

〔共沈後の濾過性試験〕
試料としてSiO2を約80質量%含む石油化学系触媒を用い、KNaCO3,Na22、あるいはさらにNa247とともに50mLのアルミナ坩堝を用いて加熱溶融し、溶融塩を作った。その際、Na247の添加量および昇温時のヒートパターンを種々変えた。溶融保持はいずれも800℃×30分とした。得られた溶融塩を冷却(放冷)して、固形物とし、これを塩酸に完全に溶解した。この「貴金属含有試料を溶解させた溶液」にTe+Asの共沈剤およびSnCl2の還元剤を添加して貴金属元素を共沈させ、沈殿を含む溶液について1μmのメンブレンフィルターを用いた吸引濾過を試みた。
[Filterability test after coprecipitation]
Using a petrochemical catalyst containing about 80% by mass of SiO 2 as a sample, it was heated and melted with KNaCO 3 , Na 2 O 2 , or Na 2 B 4 O 7 in a 50 mL alumina crucible to make a molten salt. . At that time, the addition amount of Na 2 B 4 O 7 and the heat pattern at the time of temperature increase were variously changed. All the melt holdings were performed at 800 ° C. for 30 minutes. The obtained molten salt was cooled (cooled) and turned into a solid, which was completely dissolved in hydrochloric acid. A Te + As coprecipitation agent and a SnCl 2 reducing agent are added to the “solution in which the precious metal-containing sample is dissolved” to coprecipitate the precious metal element, and the solution containing the precipitate is subjected to suction filtration using a 1 μm membrane filter. It was.

共沈剤および還元剤は実施例1で用いたものと同じである。坩堝の内容物を塩酸に溶かす工程から「貴金属含有試料を溶解させた溶液」を処理して濾過する工程までの手順は、標準液によるPt等の添加を行わない点を除き、実施例1と同様とした。
実験結果を表3に示す。
The coprecipitation agent and the reducing agent are the same as those used in Example 1. The procedure from the step of dissolving the contents of the crucible in hydrochloric acid to the step of processing and filtering the “solution in which the noble metal-containing sample is dissolved” is the same as in Example 1 except that Pt or the like is not added by the standard solution. Same as above.
The experimental results are shown in Table 3.

Figure 0004524433
Figure 0004524433

表3からわかるように、600℃×20分の1段階の恒温保持を行う場合、Na247の添加量が5g(試料1gに対する値、以下同様)で濾過が可能となった。これに対し、300℃×10分→600℃×10分の2段階の恒温保持を行うと、Na247の添加量がわずか0.5gでも濾過が可能となった。すなわち、Na247の添加量を多くするように、あるいは恒温保持の回数を増やし且つ1回の保持時間をあまり長くしないように、Na247の添加量と、段階的昇温過程における恒温保持回数および各恒温保持温度における保持時間をコントロールすることで、濾過時の目詰まりを防止できることがわかった。
なお、フィルターの目詰まりを起こしたゲル状物質を分析したところ、ゲル状含水ケイ酸であることが確認された。
As can be seen from Table 3, in the case where the constant temperature holding at 600 ° C. × 1/20 was performed, filtration was possible with an addition amount of Na 2 B 4 O 7 of 5 g (value for 1 g of sample, the same applies hereinafter). On the other hand, when two-stage constant temperature holding at 300 ° C. × 10 minutes → 600 ° C. × 10 minutes was performed, filtration was possible even when the addition amount of Na 2 B 4 O 7 was only 0.5 g. That, Na 2 B 4 so as to increase the amount of O 7, or increasing the number of isothermal holding and once the holding time to not too long, the amount of Na 2 B 4 O 7, stepwise It was found that clogging during filtration can be prevented by controlling the number of constant temperature holdings in the temperature raising process and the holding time at each constant temperature holding temperature.
In addition, when the gel-like substance which caused clogging of the filter was analyzed, it was confirmed that it was gel-like hydrous silicic acid.

Claims (7)

貴金属含有試料を溶解させた塩酸に、共沈剤としてTeとAsを複合添加し、還元剤を作用させて貴金属元素をTe,Asに随伴させて沈殿させる工程、
得られた沈殿物を濾過して回収する工程、
を有する定量分析を目的とした貴金属元素の分離回収方法。
A step of adding Te and As as co-precipitating agents to hydrochloric acid in which a precious metal-containing sample is dissolved and precipitating the precious metal elements accompanying Te and As by acting a reducing agent;
Collecting the resulting precipitate by filtration,
A method for separating and recovering precious metal elements for the purpose of quantitative analysis.
Pt,Pd,Rhの1種以上を含む貴金属含有試料を溶解させた塩酸に、共沈剤としてTeとAsを複合添加し、還元剤を作用させて貴金属元素をTe,Asに随伴させて沈殿させる工程、
得られた沈殿物を濾過して回収する工程、
を有するPt,PdまたはRhの定量分析を目的とした貴金属元素の分離回収方法。
Te and As are added as a coprecipitation agent to hydrochloric acid in which a noble metal-containing sample containing at least one of Pt, Pd, and Rh is dissolved, and a reducing agent is allowed to act to precipitate the noble metal element accompanying Te and As. The process of
Collecting the resulting precipitate by filtration,
A method for separating and recovering noble metal elements for the purpose of quantitative analysis of Pt, Pd or Rh.
Pt,Pd,Rhの1種以上と、Au,Agの1種以上を含む貴金属含有試料を溶解させた塩酸に、共沈剤としてTeとAsを複合添加し、還元剤を作用させて貴金属元素をTe,Asに随伴させて沈殿させる工程、
得られた沈殿物を濾過して回収する工程、
を有するPt,Pd,Rh,AuまたはAgの定量分析を目的とした貴金属元素の分離回収方法。
Te and As are co-precipitated in hydrochloric acid in which a noble metal-containing sample containing at least one of Pt, Pd, and Rh and at least one of Au and Ag is dissolved, and a reducing agent is allowed to act on the noble metal element. A step of precipitating with Te and As,
Collecting the resulting precipitate by filtration,
A method for separating and recovering noble metal elements for the purpose of quantitative analysis of Pt, Pd, Rh, Au, or Ag having the above.
前記還元剤がSnCl2である請求項1〜3に記載の定量分析を目的とした貴金属元素の分離回収方法。 The method for separating and recovering a noble metal element for quantitative analysis according to claim 1, wherein the reducing agent is SnCl 2 . [1] 貴金属含有試料をアルカリ溶剤とともに加熱溶融することにより、貴金属元素の溶融塩を作り、これを冷却して固形物を得る工程、
[2] 前記固形物を塩酸中に完全に溶解させる工程、
[3] 得られた塩酸に共沈剤としてTeとAsを複合添加し、還元剤を作用させて貴金属元素をTe,Asに随伴させて沈殿させる工程、
[4] 得られた沈殿物を濾過して回収する工程、
を有する定量分析を目的とした貴金属元素の分離回収方法。
[1] A step in which a noble metal-containing sample is heated and melted together with an alkali solvent to form a molten salt of a noble metal element and cooled to obtain a solid,
[2] A step of completely dissolving the solid in hydrochloric acid,
[3] A step of adding Te and As as co-precipitating agents to the obtained hydrochloric acid and allowing a precipitating metal element to accompany Te and As by causing a reducing agent to act;
[4] A step of filtering and collecting the obtained precipitate,
A method for separating and recovering precious metal elements for the purpose of quantitative analysis.
前記[1]の加熱溶融は昇温過程で1回以上の恒温保持を行いながら段階的に昇温して加熱溶融するものである請求項に記載の定量分析を目的とした貴金属元素の分離回収方法。 6. Separation of noble metal elements for quantitative analysis according to claim 5 , wherein the heating and melting of [1] is performed by heating and melting stepwise while holding at least one constant temperature in the temperature raising process. Collection method. 前記工程[1]で使用するアルカリ溶剤がNaKCO3,Na22であり、前記工程[3]で使用する還元剤がSnCl2である請求項5または6に記載の定量分析を目的とした貴金属元素の分離回収方法。 Alkaline solvent used in the step [1] is NaKCO 3, Na 2 O 2, the reducing agent used in the step [3] for the purpose of quantitative analysis according to claim 5 or 6 is SnCl 2 A method for separating and recovering precious metal elements.
JP2004173496A 2004-03-25 2004-06-11 Separation and recovery of noble metal elements for quantitative analysis Expired - Fee Related JP4524433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173496A JP4524433B2 (en) 2004-03-25 2004-06-11 Separation and recovery of noble metal elements for quantitative analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004089058 2004-03-25
JP2004173496A JP4524433B2 (en) 2004-03-25 2004-06-11 Separation and recovery of noble metal elements for quantitative analysis

Publications (2)

Publication Number Publication Date
JP2005308705A JP2005308705A (en) 2005-11-04
JP4524433B2 true JP4524433B2 (en) 2010-08-18

Family

ID=35437636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173496A Expired - Fee Related JP4524433B2 (en) 2004-03-25 2004-06-11 Separation and recovery of noble metal elements for quantitative analysis

Country Status (1)

Country Link
JP (1) JP4524433B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4257373B2 (en) * 2007-03-29 2009-04-22 日鉱金属株式会社 Sample preparation method and apparatus for analysis of recycled materials
JP4699505B2 (en) * 2008-10-17 2011-06-15 Jx日鉱日石金属株式会社 Automatic compounding device and sample pretreatment method for quantitative analysis of valuable metals
JP5106518B2 (en) * 2009-11-17 2012-12-26 Jx日鉱日石金属株式会社 Method for analyzing precious metals using laser ablation ICP analysis
CN103115916B (en) * 2013-01-25 2015-08-26 内蒙古包钢钢联股份有限公司 A kind of method measuring content of niobium in ferrocolumbium
CN103234955B (en) * 2013-04-24 2015-09-02 天津虹炎科技有限公司 The measuring method of metallic antimony in pulverized specimen
CN104518045B (en) * 2013-09-26 2018-03-23 中国建材国际工程集团有限公司 For nursing one's health the method for the CdTe layer of CdTe thin-layer solar cells
CN113834709B (en) * 2021-09-22 2023-06-30 中国地质科学院矿产综合利用研究所 Plasma mass spectrum/spectrum determination method for enriching noble metals in geological sample by bismuth test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148390A (en) * 1992-11-04 1994-05-27 Sumitomo Metal Mining Co Ltd Separating method for fission product noble metal
JPH08217460A (en) * 1995-02-13 1996-08-27 Sumitomo Metal Mining Co Ltd Method for collectively separating and analyzing ruthenium, osmium and/or iridium
JPH08239721A (en) * 1995-02-28 1996-09-17 Sumitomo Metal Mining Co Ltd Separation of platinum-group element and low-basicity impurity
JP2001207223A (en) * 2000-01-25 2001-07-31 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from copper electrolytic slime

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148390A (en) * 1992-11-04 1994-05-27 Sumitomo Metal Mining Co Ltd Separating method for fission product noble metal
JPH08217460A (en) * 1995-02-13 1996-08-27 Sumitomo Metal Mining Co Ltd Method for collectively separating and analyzing ruthenium, osmium and/or iridium
JPH08239721A (en) * 1995-02-28 1996-09-17 Sumitomo Metal Mining Co Ltd Separation of platinum-group element and low-basicity impurity
JP2001207223A (en) * 2000-01-25 2001-07-31 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from copper electrolytic slime

Also Published As

Publication number Publication date
JP2005308705A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP3616314B2 (en) Method for treating copper electrolytic deposits
TWI402354B (en) Processes for the recovery of ruthenium from materials containing ruthenium or ruthenium oxides or from ruthenium-containing noble metal ore concentrates
JP2013508566A (en) Precious metal recovery method
JP5454461B2 (en) Method for recovering selenium from copper electrolytic slime
JP6030005B2 (en) Method for recovering platinum group elements
JP4524433B2 (en) Separation and recovery of noble metal elements for quantitative analysis
JP6620031B2 (en) Quantitative determination of precious metal elements
US6290749B1 (en) Preparation of ultra-pure silver metal
AU2004274670B2 (en) Method for processing anode sludge
JP4268646B2 (en) Recovery method of rhodium
JP2012246198A (en) Method for purifying selenium by wet process
JP2018169389A (en) Method for determining noble metal element
NO140111B (en) PROCEDURE FOR ENRICHMENT OF A CONCENTRATE OF ONE OR MORE SECONDARY PLATINUM METALS
RU2306347C1 (en) Method of processing catalysts containing platinum metals and rhenium on aluminum oxide carriers
RU2288288C1 (en) Method of assay determination of content of gold in ores and in products of their processing
GB2358874A (en) Obtaining ultra-pure silver from crude silver halide matrix
JP5339068B2 (en) Ruthenium purification and recovery method
JP5777150B2 (en) Method for recovering platinum and palladium
JP2011208249A (en) Method for separating platinum group element
JP2011208248A (en) Method for separating platinum group element
JP7311349B2 (en) Scandium recovery method
JP6585955B2 (en) Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material
RU2301774C2 (en) Method of separation of palladium from solutions obtained by dissolving of materials containing precious metals
JP2020193939A (en) Method for preparing sample for quantification and method for manufacturing silver chloride
KR100423350B1 (en) Method for processing anode slime of copper electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees