JP4523115B2 - 強誘電体メモリ装置及びその製造方法 - Google Patents

強誘電体メモリ装置及びその製造方法 Download PDF

Info

Publication number
JP4523115B2
JP4523115B2 JP2000133093A JP2000133093A JP4523115B2 JP 4523115 B2 JP4523115 B2 JP 4523115B2 JP 2000133093 A JP2000133093 A JP 2000133093A JP 2000133093 A JP2000133093 A JP 2000133093A JP 4523115 B2 JP4523115 B2 JP 4523115B2
Authority
JP
Japan
Prior art keywords
film
gate electrode
opening
insulating film
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000133093A
Other languages
English (en)
Other versions
JP2001320028A (ja
Inventor
正樹 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000133093A priority Critical patent/JP4523115B2/ja
Publication of JP2001320028A publication Critical patent/JP2001320028A/ja
Application granted granted Critical
Publication of JP4523115B2 publication Critical patent/JP4523115B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強誘電体メモリ装置及びその製造方法に関し、特に強誘電体膜の残留分極により電界効果トランジスタ(FET)のしきい値を制御して情報を記憶する強誘電体メモリ装置及びその製造方法に関する。
【0002】
【従来の技術】
図7に、従来の金属−強誘電体−金属−絶縁体−半導体(MFMIS)構造の強誘電体メモリ装置の断面図を示す。シリコン基板101の表面のチャネル領域102の上に、ゲート絶縁膜105、フローティングゲート電極106、強誘電体膜107、及びコントロールゲート電極108がこの順番に積層されている。チャネル領域102の両側の基板表面層に、ソース領域103とドレイン領域104が形成されている。
【0003】
シリコン基板101とコントロールゲート電極108との間に電圧を印加すると、強誘電体膜107が分極する。その後、印加電圧を0Vにしても、強誘電体膜107内に残留分極が残る。この残留分極の大きさ及び向きの変化により、MFMIS型FETのしきい値が変化する。しきい値の変化によるドレイン電流の大小を、情報の「0」と「1」に対応させることにより、1ビットの情報が記憶される。一つのトランジスタで1ビットの情報を記憶することができるため、原理的に、1トランジスタ−1キャパシタ型のメモリ装置等に比べて高集積化が可能である。
【0004】
【発明が解決しようとする課題】
図7に示した従来の強誘電体メモリ装置においては、コントロールゲート電極108からゲート絶縁膜105までの積層構造が、エッチングにより加工される。コントロールゲート電極108及びフローティングゲート電極105は、PtやIr等で形成され、強誘電体膜107はPb(Zr,Ti)O3(PZT)等で形成される。これらの膜の微細加工の困難さが、強誘電体メモリ装置の微細化の妨げになっている。
【0005】
また、ゲート絶縁膜105からコントロールゲート電極108までの積層構造を形成した後に、ソース領域103及びドレイン領域104を形成するためのイオン注入が行われる。このため、注入された不純物を活性化するための熱処理時に、強誘電体膜107も高温環境に晒される。これにより、強誘電体膜107の残留分極特性が劣化してしまう。
【0006】
また、チャネル領域102、ゲート絶縁膜105及びフローティングゲート電極106で構成されるゲートキャパシタと、フローティングゲート電極106、強誘電体膜107、及びコントロールゲート電極108で構成される強誘電体キャパシタとの面積が等しくなる。チャネル領域102とコントロールゲート電極108との間に印加した電圧は、ゲートキャパシタと強誘電体キャパシタとに分割される。強誘電体キャパシタに加わる電圧が小さいと、コントロールゲート電極108に大きな書込電圧を印加しなければならない。書込電圧を小さくするために、誘電率の低い強誘電体膜の開発が望まれている。
【0007】
さらに、MOSトタンジスタの製造工程と、強誘電体キャパシタの製造工程とが混在するため、製造ラインの汚染が問題になる。
【0008】
本発明の目的は、微細化しやすく、強誘電体膜の残留分極特性の劣化が生じにくい強誘電体メモリ装置及びその製造方法を提供することである。
【0009】
本発明の他の目的は、書込電圧を低くすることが可能な強誘電体メモリ装置及びその製造方法を提供することである。
【0010】
本発明のさらに他の目的は、製造ラインの汚染問題を回避することができる強誘電体メモリ装置の製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明の一観点によると、
表面に半導体領域を有する基板と、
前記半導体領域内のチャネル領域の両側に配置されたソース領域及びドレイン領域と、
前記半導体基板の表面上に配置され、前記チャネル領域上に開口が設けられた第1の層間絶縁膜と、
前記開口の底面のチャネル領域を覆うゲート絶縁膜と、
前記ゲート絶縁膜の上に配置され、前記開口内の半導体基板側の一部の空間に充填されたフローティングゲート電極と、
前記フローティングゲート電極の上面よりも上の前記開口の内周面上に形成された内側サイドウォール絶縁部と、
前記内側サイドウォール絶縁部で囲まれた前記開口内の空間を埋め尽くす強誘電体膜と、
前記強誘電体膜の上に配置されたコントロールゲート電極と
を有する強誘電体メモリ装置が提供される。
【0013】
上述の強誘電体メモリ装置では、フローティングゲート電極、強誘電体膜、及びコントロールゲート電極により構成される強誘電体キャパシタの実効面積が、チャネル領域、ゲート絶縁膜、及びフローティングゲート電極により構成されるゲートキャパシタの実効面積よりも小さい。このため、両者の実効面積が等しい場合に比べて、強誘電体キャパシタの静電容量が相対的に小さくなる。このため、強誘電体キャパシタに加わる電圧が大きくなり、書込電圧を低くすることが可能になる。
【0016】
本発明の他の観点によると、
表面に半導体領域が露出した基板の該半導体領域の表面を第1の絶縁膜で覆う工程と、
前記第1の絶縁膜の一部の領域上に、ダミーゲート電極を形成する工程と、
前記ダミーゲート電極の両側の前記半導体領域の表面層に、不純物を添加する工程と、
前記ダミーゲート電極を覆うように、前記基板上に層間絶縁膜を形成する工程と、
前記層間絶縁膜の上面を平坦化するとともに、前記ダミーゲート電極の上面を露出させる工程と、
前記ダミーゲート電極を除去し、該ダミーゲート電極の跡に開口を残す工程と、
前記開口内を埋め込むように、前記層間絶縁膜上に導電膜を形成する工程と、
前記層間絶縁膜の上に堆積した前記導電膜を除去するとともに、前記開口内の一部の前記導電膜を除去し、該開口内の底面上に前記導電膜の一部を残す工程と、
前記開口内に前記導電膜の一部を残した後、残された導電膜よりも上の前記開口の内周面上に、内側サイドウォール絶縁部を形成する工程と、
前記開口内に残った前記導電膜の上及び前記層間絶縁膜の上に、強誘電体膜を形成し、前記内側サイドウォール絶縁部に囲まれた開口内の空間を該強誘電体膜で埋め込む工程と、
前記層間絶縁膜の上面よりも上の前記強誘電体膜を除去し、前記開口内に前記強誘電体膜の一部を残す工程と、
前記開口内に残った前記強誘電体膜の上に、コントロールゲート電極を形成する工程と
を有する強誘電体メモリ装置の製造方法が提供される。
【0017】
強誘電体膜を形成する前に、ダミーゲート電極の両側に不純物が添加される。このため、強誘電体膜が、不純物を活性化するための高温環境に晒されない。これにより、強誘電体の劣化を防止することができる。
【0018】
【発明の実施の形態】
図1に、本発明の実施例による強誘電体メモリ装置の断面図を示す。シリコン基板1の表面上に形成されたフィールド酸化膜2により活性領域が画定されている。活性領域内のチャネル領域10の両側に、n型不純物が添加されたソース領域11及びドレイン領域12が形成されている。
【0019】
チャネル領域10の表面上に、ゲート絶縁膜20、フローティングゲート電極21、強誘電体膜22がこの順番に積層されている。ゲート絶縁膜20は酸化シリコンで形成される。フローティングゲート電極21は白金(Pt)、イリジウム(Ir)、ストロンチウムルテニウムオキサイド(SrRuO3)(以下、省略してSROと記す)、もしくはIrとIrO2との2層で形成される。強誘電体膜22はPZTで形成されている。酸窒化シリコンからなる内側サイドウォール絶縁部23が、強誘電体膜22の側面を取り囲んでいる。
【0020】
内側サイドウォール絶縁部23の外周面が、その下のフローティングゲート電極21の側面に滑らかに繋がっている。ゲート絶縁膜20、フローティングゲート電極21、及び内側サイドウォール絶縁部23が、一つの滑らかな外周面を画定する。すなわち、強誘電体膜22は、フローティングゲート電極21の上面のうち、その外周部近傍を除いた領域に接する。
【0021】
内側サイドウォール絶縁部23は、フローティングゲート電極21から離れるに従って薄くなっている。言い換えれば、フローティングゲート電極21から離れるに従って、強誘電体膜22の外周面が外側に広がっている。このため、フローティングゲート電極21に接触している強誘電体膜22の下面の面積が、その上面の面積よりも小さい。ゲート絶縁膜20、フローティングゲート電極21及び内側サイドウォール絶縁部23の外周面上に、外側サイドウォール絶縁部24が形成されている。
【0022】
シリコン基板1の上に酸化シリコンからなる層間絶縁膜30が形成されている。層間絶縁膜30は、外側サイドウォール絶縁部24の外周面に接する。層間絶縁膜30の上面は平坦化されており、その高さは強誘電体膜22の上面に整合している。
【0023】
強誘電体膜22の上に、コントロールゲート電極25が形成されている。コントロールゲート電極25は、Pt膜、Ir膜、Ir膜とIrO2膜との2層、もしくはSRO膜等で構成される。コントロールゲート電極25は、図1の紙面に垂直な方向に延在し、ワード線を構成する。
【0024】
コントロールゲート電極25を覆うように、層間絶縁膜30の上に他の層間絶縁膜40が形成されている。層間絶縁膜40は、例えば酸化シリコンで形成される。コンタクトホール41が、ドレイン領域12に対応する位置において、層間絶縁膜30と40との2層を貫通する。コンタクトホール45内にタングステンプラグ45が埋め込まれている。タングステンプラグ45は、ドレイン領域12に電気的に接続される。
【0025】
層間絶縁膜40の表面上にビット線50が形成されている。ビット線50は、アルミニウム(Al)で形成され、タングステンプラグ45に電気的に接続されている。このビット線50は、コントロールゲート電極25で構成されるワード線と交差する方向、すなわち図1の横方向に延在する。
【0026】
次に、図2〜図4を参照して、図1に示した強誘電体メモリ装置の製造方法について説明する。
【0027】
図2(A)に示す状態までの工程を説明する。シリコン基板1の表面にフィールド酸化膜2を形成し、フィールド酸化膜2に囲まれた活性領域を画定する。活性領域の表面を熱酸化し、酸化シリコン膜を形成する。酸化シリコン膜上に、n+型ポリシリコン膜を形成する。この酸化シリコン膜とポリシリコン膜とをパターニングし、チャネル領域10の上にゲート絶縁膜20及びダミーゲート電極31を残す。
【0028】
ゲート絶縁膜20とダミーゲート電極31との側面上に、外側サイドウォール絶縁部24を形成する。外側サイドウォール絶縁部24は、化学気相成長(CVD)により基板全面上に酸化シリコン膜を堆積した後、異方性の反応性イオンエッチング(RIE)を行うことにより形成される。
【0029】
ダミーゲート電極31及び外側サイドウォール絶縁部24をマスクとして、活性領域の表面層にn型不純物、例えばリン(P)をイオン注入する。1000℃で10秒程度のラピッドサーマルアニール(RTA)を行い、注入された不純物を活性化する。チャネル領域10の両側に、n型のソース領域11及びドレイン領域12が形成される。
【0030】
図2(B)に示すように、基板上に酸化シリコンからなる層間絶縁膜30を堆積する。層間絶縁膜30の堆積は、例えばCVDにより行われる。ダミーゲート電極31及び外側サイドウォール絶縁部24が、層間絶縁膜30で覆われる。
【0031】
図2(C)に示すように、層間絶縁膜30の表面を平坦化し、ダミーゲート電極31の上面を露出させる。層間絶縁膜30の平坦化は、例えば化学機械研磨(CMP)により行われる。
【0032】
図3(D)に示すように、ダミーゲート電極31を除去する。ダミーゲート電極31の除去は、Cl2とBCl3との混合ガスを用いたドライエッチングにより行われる。ダミーゲート電極31の跡に開口32が形成される。開口32の底面にゲート絶縁膜20が露出する。なお、このゲート絶縁膜20をウェットエッチングにより除去し、開口32の底面に露出したチャネル領域10の表面を熱酸化して再度ゲート絶縁膜を形成してもよい。
【0033】
図3(E)に示すように、基板全面上にPt膜21Aをスパッタリングにより堆積する。開口32内がPt膜21Aで埋め込まれる。なお、Pt膜21Aの代わりに、Ir膜やSRO膜を堆積してもよい。
【0034】
図3(F)に示すように、層間絶縁膜30の上のPt膜21Aを、CMPにより除去する。このCMPは、例えばダイヤモンド砥粒と濃度5〜10重量%のフタル酸カリウム研磨液とを用いて行う。また、研磨布として比較的柔らかいもの、例えばロデール社製のSUBA400等を用いる。層間絶縁膜30の上面が露出した後も、CMPを続ける。柔らかい研磨布を用いているため、シンキングが生じ、開口32内の一部のPt膜21Aも除去される。開口32の底に、Ptからなるフローティングゲート電極21が残る。
【0035】
図4(G)に示すように、フローティングゲート電極21よりも上の開口32の内周面上に、内側サイドウォール絶縁部23を形成する。内側サイドウォール絶縁部23は、全面にCVDにより酸化シリコン膜を堆積した後、異方性エッチングを行うことにより形成される。内側サイドウォール絶縁部23は、フローティングゲート電極21から離れるに従って薄くなる。このため、内側サイドウォール絶縁部23で囲まれた開口32内の空間は、上方の開口面が広がった形状を有する。
【0036】
スピンコート法を用い、基板全面上にPZT膜22Aを形成する。スピンコート後、650℃で1時間程度の熱処理を行い、PZT膜22Aの結晶化を行う。内側サイドウォール絶縁部23で囲まれた開口32内がPZT膜22Aで埋め込まれる。開口32内の空間が、上方の広がった形状を有するため、開口32内にPZT膜22Aを容易に埋め込むことができる。
【0037】
図4(H)に示すように、層間絶縁膜30の上面よりも上のPZT膜22Aを、CMPにより除去する。内側サイドウォール絶縁部23で囲まれた開口32内にPZTからなる強誘電体膜32が残る。PZT膜22AのCMPは、例えばアルミナ砥粒(例えばロデール社製のIC1000)及び濃度5〜10重量%のフタル酸カリウム研磨液を用いて行う。
【0038】
図4(I)に示すように、強誘電体膜22の表面上にコントロールゲート電極25を形成する。コントロールゲート電極25は、Pt膜を形成した後、このPt膜をパターニングすることにより形成される。コントロールゲート電極25を埋め込むように、層間絶縁膜30の上に2層目の層間絶縁膜40を形成する。2層目の層間絶縁膜40は、酸化シリコン膜をCVDにより堆積した後、CMPで表面の平坦化を行うことにより形成される。
【0039】
図1に示すように、層間絶縁膜30と40の2層を貫通するコンタクトホール45を形成する。コンタクトホール45内を埋め込むタングステンプラグ45を形成する。タングステンプラグ45は、全面にタングステン膜を形成した後、このタングステン膜をエッチバックすることにより形成される。2層目の層間絶縁膜40の上にAlからなるビット線50を形成する。ビット線50は、Al膜を堆積した後、このAl膜をパターニングすることにより形成される。
【0040】
図5に、MFMIS型FETの等価回路図を示す。チャネル領域10、ゲート絶縁膜20、及びフローティングゲート電極21により構成されるゲートキャパシタCoxと、フローティングゲート電極21、強誘電体膜22、及びコントロールゲート電極25により構成される強誘電体キャパシタCfとの直列回路が形成される。コントロールゲート電極25とチャネル領域10との間に印加される電圧をVcc、強誘電体キャパシタCfに加わる電圧をVf、ゲートキャパシタCox及び強誘電体キャパシタCfの静電容量をそれぞれCox及びCfとすると、
【0041】
【数1】
f={Cox/(Cox+Cf)}Vcc ・・・(1)
が成立する。
【0042】
強誘電体キャパシタCfに加わる電圧Vfを大きくするために、静電容量Coxに対してCfを相対的に小さくすることが好ましい。実用的には、
【0043】
【数2】
f<Cox ・・・(2)
とすることが好ましい。
【0044】
一般的に、強誘電体の誘電率は、酸化シリコンの誘電率の100倍程度である。また、経験上、強誘電体膜22の膜厚をゲート絶縁膜20の膜厚の20倍程度以下に抑えることが実用的であることがわかっている。これらの条件を考慮し、かつ上記式(2)を満足するためには、強誘電体キャパシタCfの実効面積を、ゲートキャパシタCoxの実効面積の20%以下にすればよい。また、強誘電体膜22の残留分極による蓄積電荷量の変化を、MFMIS型FETのしきい値変動として余裕をもって判別するために、強誘電体キャパシタCfの実効面積を、ゲートキャパシタCoxの実効面積の5%以上とすることが好ましい。
【0045】
図1において、強誘電体膜22の下面の面積をSf、フローティングゲート電極21とチャネル領域10とが対向している領域の面積をSoxとする。上述の好適条件は、
【0046】
【数3】
0.05≦Sf/Sox≦0.2
と表される。
【0047】
上記実施例では、Pt等のフローティングゲート電極や強誘電体膜のパターニングを行う必要がない。このため、これらの層のパターニングに起因する微細化の困難さを回避できる。また、図2(A)の工程でソース及びドレイン領域11及び12を形成した後、図4(G)の工程で強誘電体膜22Aの形成を行う。このため、強誘電体膜形成後の高温熱処理を行う必要がない。これにより、強誘電体膜の劣化を防止することができる。
【0048】
さらに、上記実施例の場合には、図3(D)の開口32を形成するまでの工程が、MOSFET作製工程であり、図3(E)のPt膜21Aの形成以降が強誘電体キャパシタの作製工程になる。このため、MOSFET作製工程と強誘電体キャパシタの作製工程とを分離しやすい。従って、製造ラインの汚染による歩留まり低下を回避することができる。
【0049】
また、上記実施例では、図3(D)の工程において、ダミーゲート電極31を完全に除去したが、開口32の底部にダミーゲート電極31の一部を残しておいてもよい。この場合、図1のゲート絶縁膜20とフローティングゲート電極21との間にダミーゲート電極31が残る。ダミーゲート電極31をn+型ポリシリコンで形成しておけば、MFMIS型FETの動作上問題は生じない。図3(D)に示した工程でゲート絶縁膜20が露出しないため、ゲート絶縁膜20のダメージを軽減することができる。
【0050】
次に、図6を参照して、他の実施例による強誘電体メモリ装置について説明する。上記実施例では、図4(G)の工程で、内側サイドウォール絶縁部23を形成した。強誘電体膜22として誘電率のより小さな材料を用い、ゲート絶縁膜20として誘電率のより大きな材料を用いると、上述の式(2)が成立しやすくなる。従って、図6に示すように、必ずしも内側サイドウォール絶縁部を形成する必要はない。内側サイドウォール絶縁部が形成されない場合には、強誘電体膜22の外周面が、フローティングゲート電極21の外周面に滑らかに繋がる。
【0051】
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【0052】
(付記1) 表面に半導体領域を有する基板と、
前記半導体領域内のチャネル領域の両側に配置されたソース領域及びドレイン領域と、
前記半導体基板の表面上に配置され、前記チャネル領域上に開口が設けられた第1の層間絶縁膜と、
前記開口の底面のチャネル領域を覆うゲート絶縁膜と、
前記ゲート絶縁膜の上に配置され、前記開口内の半導体基板側の一部の空間に充填されたフローティングゲート電極と、
前記フローティングゲート電極の上面よりも上の前記開口の内周面上に形成された内側サイドウォール絶縁部と、
前記サイドウォール絶縁部で囲まれた前記開口内の空間を埋め尽くす強誘電体膜と、
前記強誘電体膜の上に配置されたコントロールゲート電極と
を有する強誘電体メモリ装置。
【0053】
(付記2) 前記フローティングゲート電極が、前記ゲート絶縁膜側に配置されたポリシリコン膜と、前記強誘電体膜側に配置された導電膜とを含む付記1に記載の強誘電体メモリ装置。
【0054】
(付記3) 表面に半導体領域を有する基板と、
前記半導体領域内のチャネル領域の両側に配置されたソース領域及びドレイン領域と、
前記チャネル領域の表面上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜の上に配置されたフローティングゲート電極と、
前記フローティングゲート電極の上に配置され、該フローティングゲート電極の側面に滑らかに連続した側面を有する強誘電体膜と、
前記ゲート絶縁膜、フローティングゲート電極、及び強誘電体膜の側面を覆う外側サイドウォール絶縁部と、
前記半導体基板の表面を覆い、前記強誘電体膜の上面に滑らかに繋がる上面を有する層間絶縁膜と、
前記強誘電体膜の上に配置されたコントロールゲート電極と
を有する強誘電体メモリ装置。
【0055】
(付記4) 前記フローティングゲート電極が、前記ゲート絶縁膜側に配置されたポリシリコン膜と、前記強誘電体膜側に配置された導電膜とを含む付記3に記載の強誘電体メモリ装置。
【0056】
(付記5) 表面に半導体領域が露出した基板の該半導体領域の表面を第1の絶縁膜で覆う工程と、
前記第1の絶縁膜の一部の領域上に、ダミーゲート電極を形成する工程と、
前記ダミーゲート電極の両側の前記半導体領域の表面層に、不純物を添加する工程と、
前記ダミーゲート電極を覆うように、前記基板上に層間絶縁膜を形成する工程と、
前記層間絶縁膜の上面を平坦化するとともに、前記ダミーゲート電極の上面を露出させる工程と、
前記ダミーゲート電極を除去し、該ダミーゲート電極の跡に開口を残す工程と、
前記開口内を埋め込むように、前記層間絶縁膜上に導電膜を形成する工程と、
前記層間絶縁膜の上に堆積した前記導電膜を除去するとともに、前記開口内の一部の前記導電膜を除去し、該開口内の底面上に前記導電膜の一部を残す工程と、
前記開口内に残った前記導電膜の上及び前記層間絶縁膜の上に、強誘電体膜を形成する工程と、
前記層間絶縁膜の上面よりも上の前記強誘電体膜を除去し、前記開口内に前記強誘電体膜の一部を残す工程と、
前記開口内に残った前記強誘電体膜の上に、コントロールゲート電極を形成する工程と
を有する強誘電体メモリ装置の製造方法。
【0057】
(付記6) 前記開口内に前記導電体膜の一部を残した後、さらに、残された導電体膜よりも上の前記開口の内周面上に、内側サイドウォール絶縁部を形成する工程を含み、前記強誘電体膜を形成する工程において、前記内側サイドウォール絶縁部に囲まれた開口内の空間を該強誘電体膜で埋め込む付記5に記載の強誘電体メモリ装置の製造方法。
【0058】
(付記7) 前記ダミーゲート電極を形成した後、さらに、該ダミーゲート電極の側面上に外側サイドウォール絶縁部を形成する工程を含み、前記不純物を添加する工程が、前記ダミーゲート電極と外側サイドウォール絶縁部とをマスクとして前記半導体領域の表面層に不純物をイオン注入する工程を含む付記5または6に記載の強誘電体メモリ装置の製造方法。
【0059】
(付記8) 前記ダミーゲート電極を除去する工程において、前記第1の絶縁膜上に該ダミーゲート電極の一部を残す付記5〜7のいずれかに記載の強誘電体メモリ装置の製造方法。
【0060】
【発明の効果】
以上説明したように、本発明によると、MFMIS型FETの強誘電体キャパシタの実効面積を、チャネル領域とフローティングゲート電極との間のキャパシタの実効面積に比べて小さくすることができる。これにより、強誘電体キャパシタに加わる電圧が大きくなり、書込電圧の低電圧化を図ることが可能になる。
【0061】
また、ソース及びドレイン領域が形成された後に、強誘電体膜が形成される。
強誘電体膜が、ソース及びドレイン領域形成のための熱処理を経験しないため、熱処理による強誘電体膜の劣化を防止することができる。また、フォトリソグラフィを用いた強誘電体膜のパターニング工程がないため、微細化を妨げる一つの要因が回避される。
【図面の簡単な説明】
【図1】本発明の実施例による強誘電体メモリ装置の断面図である。
【図2】本発明の実施例による強誘電体メモリ装置の製造方法を説明するための断面図(その1)である。
【図3】本発明の実施例による強誘電体メモリ装置の製造方法を説明するための断面図(その2)である。
【図4】本発明の実施例による強誘電体メモリ装置の製造方法を説明するための断面図(その3)である。
【図5】MFMIS型FETの等価回路図である。
【図6】本発明の他の実施例による強誘電体メモリ装置の断面図である。
【図7】従来の強誘電体メモリ装置の断面図である。
【符号の説明】
1 シリコン基板
2 フィールド酸化膜
10 チャネル領域
11 ソース領域
12 ドレイン領域
20 ゲート絶縁膜
21 フローティングゲート電極
22 強誘電体膜
23 内側サイドウォール絶縁部
24 外側サイドウォール絶縁部
25 コントロールゲート電極
30、40 層間絶縁膜
31 ダミーゲート電極
32 開口

Claims (4)

  1. 表面に半導体領域を有する半導体基板と、
    前記半導体領域内のチャネル領域の両側に配置されたソース領域及びドレイン領域と、
    前記半導体基板の表面上に配置され、前記チャネル領域上に開口が設けられた第1の層間絶縁膜と、
    前記開口の底面のチャネル領域を覆うゲート絶縁膜と、
    前記ゲート絶縁膜の上に配置され、前記開口内の半導体基板側の一部の空間に充填されたフローティングゲート電極と、
    前記フローティングゲート電極の上面よりも上の前記開口の内周面上に形成された内側サイドウォール絶縁部と、
    前記内側サイドウォール絶縁部で囲まれた前記開口内の空間を埋め尽くす強誘電体膜と、
    前記強誘電体膜の上に配置されたコントロールゲート電極と
    を有する強誘電体メモリ装置。
  2. 前記内側サイドウォール絶縁部は、前記フローティングゲート電極から離れるに従って薄くなり、
    前記内側サイドウォール絶縁部で囲まれた前記開口内の空間は、上方に向かって広がった形状を有する請求項1に記載の強誘電体メモリ装置。
  3. 表面に半導体領域が露出した基板の該半導体領域の表面を第1の絶縁膜で覆う工程と、
    前記第1の絶縁膜の一部の領域上に、ダミーゲート電極を形成する工程と、
    前記ダミーゲート電極の両側の前記半導体領域の表面層に、不純物を添加する工程と、
    前記ダミーゲート電極を覆うように、前記基板上に層間絶縁膜を形成する工程と、
    前記層間絶縁膜の上面を平坦化するとともに、前記ダミーゲート電極の上面を露出させる工程と、
    前記ダミーゲート電極を除去し、該ダミーゲート電極の跡に開口を残す工程と、
    前記開口内を埋め込むように、前記層間絶縁膜上に導電膜を形成する工程と、
    前記層間絶縁膜の上に堆積した前記導電膜を除去するとともに、前記開口内の一部の前記導電膜を除去し、該開口内の底面上に前記導電膜の一部を残す工程と、
    前記開口内に前記導電膜の一部を残した後、残された導電膜よりも上の前記開口の内周面上に、内側サイドウォール絶縁部を形成する工程と、
    前記開口内に残った前記導電膜の上及び前記層間絶縁膜の上に、強誘電体膜を形成し、前記内側サイドウォール絶縁部に囲まれた開口内の空間を該強誘電体膜で埋め込む工程と、
    前記層間絶縁膜の上面よりも上の前記強誘電体膜を除去し、前記開口内に前記強誘電体膜の一部を残す工程と、
    前記開口内に残った前記強誘電体膜の上に、コントロールゲート電極を形成する工程と
    を有する強誘電体メモリ装置の製造方法。
  4. 内側サイドウォール絶縁部を形成する工程において、前記開口内の底面上に残った前記導電膜の上、及び前記層間絶縁膜の上に絶縁膜を堆積した後、該絶縁膜を異方性エッチングすることにより前記内側サイドウォール絶縁部を形成する請求項3に記載の強誘電体メモリ装置の製造方法。
JP2000133093A 2000-05-02 2000-05-02 強誘電体メモリ装置及びその製造方法 Expired - Fee Related JP4523115B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133093A JP4523115B2 (ja) 2000-05-02 2000-05-02 強誘電体メモリ装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133093A JP4523115B2 (ja) 2000-05-02 2000-05-02 強誘電体メモリ装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2001320028A JP2001320028A (ja) 2001-11-16
JP4523115B2 true JP4523115B2 (ja) 2010-08-11

Family

ID=18641651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133093A Expired - Fee Related JP4523115B2 (ja) 2000-05-02 2000-05-02 強誘電体メモリ装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4523115B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502103B2 (en) * 2018-08-28 2022-11-15 Intel Corporation Memory cell with a ferroelectric capacitor integrated with a transtor gate
US11980037B2 (en) 2020-06-19 2024-05-07 Intel Corporation Memory cells with ferroelectric capacitors separate from transistor gate stacks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031291A (ja) * 1998-07-13 2000-01-28 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129592A (ja) * 1991-10-30 1993-05-25 Takehide Shirato 半導体装置
JPH10294431A (ja) * 1997-04-18 1998-11-04 Oki Electric Ind Co Ltd 半導体記憶素子およびその製造方法
JP3159245B2 (ja) * 1997-04-22 2001-04-23 日本電気株式会社 半導体装置の動作方法及び製造方法
US5907762A (en) * 1997-12-04 1999-05-25 Sharp Microelectronics Technology, Inc. Method of manufacture of single transistor ferroelectric memory cell using chemical-mechanical polishing
JPH11220098A (ja) * 1998-02-02 1999-08-10 Oki Electric Ind Co Ltd 半導体記憶素子およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031291A (ja) * 1998-07-13 2000-01-28 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502103B2 (en) * 2018-08-28 2022-11-15 Intel Corporation Memory cell with a ferroelectric capacitor integrated with a transtor gate
US11980037B2 (en) 2020-06-19 2024-05-07 Intel Corporation Memory cells with ferroelectric capacitors separate from transistor gate stacks

Also Published As

Publication number Publication date
JP2001320028A (ja) 2001-11-16

Similar Documents

Publication Publication Date Title
US6982453B2 (en) Semicondutor device having ferroelectric capacitor and hydrogen barrier film and manufacturing method thereof
EP1271624A2 (en) Capacitor, semiconductor memory device, and method for manufacturing the same
JP4887566B2 (ja) 半導体不揮発性記憶素子及びその製造方法
JPH0437170A (ja) 半導体装置の製造方法
JP3250257B2 (ja) 半導体装置及びその製造方法
JP6299114B2 (ja) 半導体装置及び半導体装置の製造方法
US6531325B1 (en) Memory transistor and method of fabricating same
JP5168273B2 (ja) 半導体装置とその製造方法
US7226837B2 (en) Semiconductor device and method for fabricating the same
US6576479B2 (en) Method for forming vertical ferroelectric capacitor comprising forming ferroelectric material in gap between electrodes
JP2003086771A (ja) 容量素子、半導体記憶装置及びその製造方法
JP3833887B2 (ja) 強誘電体メモリ及びその製造方法
JPH09162369A (ja) 半導体メモリ素子の製造方法
US20030025145A1 (en) Semiconductor device and method for fabricating the same
JP4523115B2 (ja) 強誘電体メモリ装置及びその製造方法
JP5414077B2 (ja) 半導体不揮発性記憶素子及びその製造方法
JPH09232542A (ja) 半導体装置およびその製造方法
JP3795882B2 (ja) 半導体装置およびその製造方法
JP4657545B2 (ja) 半導体装置の製造方法
JP2002289810A (ja) 半導体装置およびその製造方法
JP2004095866A (ja) 半導体装置及びその製造方法
JP3785170B2 (ja) 半導体装置及びその製造方法
JPH1131792A (ja) 半導体記憶素子およびその製造方法
JP2012074479A (ja) 半導体装置の製造方法
WO2022176549A1 (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees