JP4521047B2 - クライオポンプ - Google Patents

クライオポンプ Download PDF

Info

Publication number
JP4521047B2
JP4521047B2 JP2008130138A JP2008130138A JP4521047B2 JP 4521047 B2 JP4521047 B2 JP 4521047B2 JP 2008130138 A JP2008130138 A JP 2008130138A JP 2008130138 A JP2008130138 A JP 2008130138A JP 4521047 B2 JP4521047 B2 JP 4521047B2
Authority
JP
Japan
Prior art keywords
cooling stage
radiation shield
refrigerator
temperature
cryopump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008130138A
Other languages
English (en)
Other versions
JP2009275672A (ja
Inventor
秀和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2008130138A priority Critical patent/JP4521047B2/ja
Priority to US12/453,525 priority patent/US20090282841A1/en
Publication of JP2009275672A publication Critical patent/JP2009275672A/ja
Application granted granted Critical
Publication of JP4521047B2 publication Critical patent/JP4521047B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

本発明は、クライオポンプに関する。
クライオポンプは、極低温に冷却されたクライオパネルに気体分子を凝縮または吸着により捕捉して排気する真空ポンプである。クライオポンプは半導体回路製造プロセス等に要求される清浄な真空環境を実現するために一般に利用される。
例えば特許文献1には、ガス侵入方向に関して熱シールドパネルの背面側に放射状に取り付けられ、熱シールドパネルから背面方向に延びる複数の細長板状パネルを有するクライオポンプが記載されている。熱シールドパネル及び細長板状パネルはヘリウム冷凍機の第2ヒートステージに結合されている。第2ヒートステージは、第1冷却筒先端の第1ヒートステージから延びる第2冷却筒の先端に設けられている。
特開平2−308985号公報
しかし、上述のクライオポンプにおいては、第2冷却筒の表面に気体が凝縮しうる。この場合、第2冷却筒表面での第1ヒートステージ温度から第2ヒートステージ温度への温度分布に起因する気体凝縮及び再気化がクライオポンプ内部の圧力を不安定に変動させるおそれがある。不安定な圧力変動は防止されることが望ましい。また、クライオポンプの最大気体吸蔵量は大きいことが望ましい。
そこで、本発明は、クライオポンプの排気運転中の不安定な圧力変動を抑制するとともに、大きな気体吸蔵量を実現することができるクライオポンプを提供することを目的とする。
本発明のある態様のクライオポンプは、第1冷却ステージと、第1冷却ステージよりも低温に冷却される第2冷却ステージと、を備える冷凍機と、側面に開口が形成され、第1冷却ステージが外部に配置されかつ第2冷却ステージが内部に配置されるように開口に冷凍機が挿通されており、第1冷却ステージに熱的に接続されている放射シールドと、第2冷却ステージに熱的に接続され、放射シールドの内部から外部へと開口を通じて延び、開口において放射シールドとの間に間隙を有して配置されている冷凍機カバーと、を備える。
この態様によれば、第2冷却ステージに熱的に接続され低温に冷却される冷凍機カバーが、放射シールドの内部から外部へと冷凍機挿通用の開口を通じて延び、その開口において放射シールドとの間に間隙を有して配置されている。よって、気体の凝縮により生じる氷層を保持するための空間を冷凍機カバー上に広くとることができるので、クライオポンプの気体吸蔵量を大きくすることができる。また、冷凍機カバーと放射シールドとの間に間隙が設けられているので、冷凍機カバー上の氷層を放射シールドに接触させにくくすることができる。これにより、放射シールドに氷層が接触して真空度が低下することを抑制することができる。
冷凍機は、第1冷却ステージが前記開口から外向きにオフセットを有して放射シールドの外部に配置されており、冷凍機カバーは、前記開口から放射シールドの外部へとオフセットより短い長さだけ突き出して延びる末端部を有してもよい。
放射シールドと冷凍機カバーとの間隙及び冷凍機カバーが前記開口から突き出して延びる長さは、クライオポンプの最大吸蔵量に達するまでに気体の凝縮により冷凍機カバーに堆積する氷層が放射シールド及び第1冷却ステージに接触しないように大きさが設定されていてもよい。
第2冷却ステージに熱的に接続されているクライオパネルをさらに備えてもよい。放射シールドと冷凍機カバーとの間隙及び冷凍機カバーが前記開口から突き出して延びる長さは、クライオポンプへの気体流入が停止されてから所定時間内に到達すべき圧力として設定されているリカバリ圧力よりも、気体の凝縮によりクライオパネルに堆積した氷層の表面における気体蒸気圧が高圧となるまで冷凍機カバー上の氷層が放射シールド及び第1冷却ステージに接触しないように大きさが設定されていてもよい。
冷凍機カバーは、冷凍機カバーが前記開口から突き出して延びる長さが放射シールドと冷凍機カバーとの間隙以上に設定されていてもよい。
前記末端部を包囲し、第1冷却ステージと放射シールドとを接続する遮蔽部材をさらに備えてもよい。この遮蔽部材は、第1冷却ステージと放射シールドとを熱的に接続する伝熱部材であってもよい。
本発明の別の態様のクライオポンプは、開口が形成されている筒状側面を有する放射シールドと、第1の温度に冷却され、放射シールドに熱的に接続される第1冷却ステージと、第1の温度よりも低温である第2の温度に冷却される第2冷却ステージと、第1冷却ステージと第2冷却ステージとを接続し、第1の温度から第2の温度へと向かう温度分布を表面に有する接続部材と、を備え、第2冷却ステージが放射シールドの内部に配置されるように前記開口に挿通されている冷凍機と、第2冷却ステージに熱的に接続され、接続部材の表面に沿って第1冷却ステージに向けて延びる冷凍機カバーと、冷凍機カバーに堆積する氷層を前記放射シールドとの干渉を避けて収容する空間を、第1冷却ステージに近接する冷凍機カバーの端部との間に画定する干渉抑制構造と、を備える。
干渉抑制構造は、接続部材及び冷凍機カバーの第1冷却ステージに近接する端部を包囲するよう放射シールドから突出する部材を含んでもよい。
本発明によれば、大きな気体吸蔵量を有するクライオポンプが提供される。
図1は、クライオポンプ10を模式的に示す図である。クライオポンプ10は、例えばイオン注入装置やスパッタリング装置等の真空チャンバに取り付けられて、真空チャンバ内部の真空度を所望のプロセスに要求されるレベルまで高めるために使用される。クライオポンプ10は、クライオポンプ容器30と、放射シールド40と、冷凍機50と、を含んで構成される。
冷凍機50は、例えばギフォード・マクマホン式冷凍機(いわゆるGM冷凍機)などの冷凍機である。冷凍機50は、第1シリンダ11、第2シリンダ12、第1冷却ステージ13、第2冷却ステージ14、バルブ駆動用モータ16を備える。第1シリンダ11と第2シリンダ12は直列に接続される。第1シリンダ11の第2シリンダ12との結合部側には第1冷却ステージ13が設置され、第2シリンダ12の第1シリンダ11から遠い側の端には第2冷却ステージ14が設置される。図1に示す冷凍機50は、二段式の冷凍機であり、シリンダを直列に二段組み合わせてより低い温度を達成している。冷凍機50は冷媒管18を介して圧縮機52に接続される。
圧縮機52は、例えばヘリウム等の冷媒ガス、すなわち作動気体を圧縮して、冷媒管18を介して冷凍機50に供給する。冷凍機50は、作動気体を蓄冷器を通過させることにより冷却しつつ、まず第1シリンダ11の内部の膨張室で、次いで第2シリンダ12の内部の膨張室で膨張させてさらに冷却する。蓄冷器は膨張室内部に組み込まれている。これにより、第1シリンダ11に設置される第1冷却ステージ13は第1の冷却温度レベルに冷却され、第2シリンダ12に設置される第2冷却ステージ14は第1の冷却温度レベルよりも低温の第2の冷却温度レベルに冷却される。例えば、第1冷却ステージ13は65K〜100K程度に冷却され、第2冷却ステージ14は10K〜20K程度に冷却される。
冷凍機50に付随して、制御部20及び交流電源22が設けられている。制御部20は、周波数変換器24および周波数決定部26を含む。制御部20はまた、温度センサ28を含んで構成されてもよい。温度センサ28は、冷凍機50の第1冷却ステージ13に設置され、第1冷却ステージ13の温度を検出し、周波数決定部26に温度情報を送信する。なお、温度センサ28の設置場所は第1冷却ステージ13に限られず、例えば第2冷却ステージ14や第1シリンダ11、第2シリンダ12の任意の箇所など、その温度を制御したい場所でよい。また、複数の温度センサ28を複数の箇所に設置してもよい。これにより、よりきめ細かく各箇所の温度を制御することが可能となる。
膨張室で順次膨張することで吸熱し、各冷却ステージを冷却した作動気体は、再び蓄冷器を通過し、冷媒管18を経て圧縮機52に戻される。圧縮機52から冷凍機50へ、また冷凍機50から圧縮機52への作動気体の流れは、冷凍機50内のロータリバルブ(図示せず)により切り替えられる。バルブ駆動用モータ16は、交流電源22から電力の供給を受けて、ロータリバルブを回転させる。
周波数変換器24は、バルブ駆動用モータ16と、交流電源22の間に設けられ、交流電源22から供給された電力の周波数を変換して出力し、バルブ駆動用モータ16に供給する。周波数決定部26は、温度センサ28から得た温度情報に基づいて、周波数変換器24を制御する。なお、図示のように周波数変換器は制御部20に一体に設けられてもよいし、制御部20とは別体に設けられていてもよい。
図1に示されるクライオポンプ10は、いわゆる横型のクライオポンプである。横型のクライオポンプとは一般に、冷凍機の第2冷却ステージ14が筒状の放射シールド40の軸方向に交差する方向(通常は直交方向)に沿って放射シールド40の内部に挿入されているクライオポンプである。なお、本発明はいわゆる縦型のクライオポンプにも同様に適用することができる。縦型のクライオポンプとは、放射シールドの軸方向に沿って冷凍機が挿入されているクライオポンプである。
クライオポンプ容器30は、一端に開口を有し他端が閉塞されている円筒状の形状に形成された部位(以下、「胴部」と呼ぶ)32を有する。開口は、スパッタ装置等の真空チャンバから排気されるべき気体が進入する吸気口34として、設けられている。吸気口34はクライオポンプ容器30の胴部32の上端部内面により画定される。また胴部32には冷凍機50を挿通するための開口37が形成されている。胴部32の開口37には円筒状の冷凍機収容部38の一端が取り付けられ、他端は冷凍機50のハウジングに取り付けられている。冷凍機収容部38は冷凍機50の第1シリンダ11を収容する。
またクライオポンプ容器30の胴部32の上端には径方向外側に向けて取付フランジ36が延びている。クライオポンプ10は、排気対象容積であるスパッタ装置等の真空チャンバに、取付フランジ36を用いて取り付けられる。
クライオポンプ容器30は、クライオポンプ10の内部と外部とを隔てるために設けられている。上述のようにクライオポンプ容器30は胴部32と冷凍機収容部38とを含んで構成されており、胴部32及び冷凍機収容部38の内部は共通の圧力に気密に保持される。クライオポンプ容器30の外面は、クライオポンプ10の動作中、すなわち冷凍機が作動している間も、クライオポンプ10の外部の環境にさらされるため、放射シールド40よりも高い温度に維持される。典型的にはクライオポンプ容器30の温度は環境温度に維持される。ここで環境温度とは、クライオポンプ10が設置されている場所の温度、またはその温度に近い温度をいい、例えば室温程度である。
放射シールド40は、クライオポンプ容器30の内部に配設されている。放射シールド40は、一端に開口を有し他端が閉塞されている円筒状の形状、すなわちカップ状の形状に形成されている。放射シールド40は、図1に示されるような一体の筒状に構成されていてもよく、また、複数のパーツにより全体として筒状の形状をなすように構成されていてもよい。これら複数のパーツは互いに間隙を有して配設されていてもよい。
クライオポンプ容器30の胴部32及び放射シールド40はともに略円筒状に形成されており、同軸に配設されている。クライオポンプ容器30の胴部32の内径が放射シールド40の外径を若干上回っており、放射シールド40はクライオポンプ容器30の胴部32の内面との間に若干の間隔をもってクライオポンプ容器30とは非接触の状態で配置される。すなわち、放射シールド40の外面は、クライオポンプ容器30の内面と対向している。なお、クライオポンプ容器30の胴部32および放射シールド40の形状は、円筒形状には限られず、角筒形状や楕円筒形状などいかなる断面の筒形状でもよい。典型的には、放射シールド40の形状はクライオポンプ容器30の胴部32の内面形状に相似する形状とされる。
放射シールド40は、第2冷却ステージ14およびこれに熱的に接続される低温クライオパネル60を主にクライオポンプ容器30からの熱放射から保護する放射シールドとして設けられている。第2冷却ステージ14は、放射シールド40の内部空間において、放射シールド40のほぼ中心軸上に配置される。放射シールド40は、第1冷却ステージ13に熱的に接続された状態で固定され、第1冷却ステージ13と同程度の温度に冷却される。
低温クライオパネル60は、例えば複数のパネル64を含む。パネル64は例えば、それぞれが円すい台の側面の形状、いわば傘状の形状を有する。各パネル64は、第2冷却ステージ14に取り付けられているパネル取付部材66に取り付けられている。各パネル64には通常活性炭等の吸着剤(図示せず)が設けられている。吸着剤は例えばパネル64の裏面に接着されている。
パネル取付部材66は一端が閉塞され他端が開放されている円筒状の形状を有し、閉塞された端部が第2冷却ステージ14の上端に取り付けられて円筒状側面が第2冷却ステージ14を取り囲むように放射シールド40の底部に向けて延びている。パネル取付部材66の円筒状側面に複数のパネル64が互いに間隔をあけて取り付けられている。パネル取付部材66の円筒状側面には、冷凍機50の第2シリンダ12を通すための開口が形成されている。
放射シールド40の吸気口には、真空チャンバ等からの熱放射から第2冷却ステージ14およびこれに熱的に接続される低温クライオパネル60を保護するために、バッフル62が設けられている。バッフル62は、例えば、ルーバ構造やシェブロン構造に形成される。バッフル62は、放射シールド40の中心軸を中心とする同心円状に形成されていてもよいし、あるいは格子状等他の形状に形成されていてもよい。バッフル62は放射シールド40の開口側の端部に取り付けられており、放射シールド40と同程度の温度に冷却される。
放射シールド40の側面には冷凍機取付孔42が形成されている。冷凍機取付孔42は、放射シールド40の中心軸方向に関して放射シールド40側面の中央部に形成されている。放射シールド40の冷凍機取付孔42はクライオポンプ容器30の開口37と同軸に設けられている。冷凍機50の第2シリンダ12及び第2冷却ステージ14は冷凍機取付孔42から放射シールド40の中心軸方向に垂直な方向に沿って挿入されている。放射シールド40は、冷凍機取付孔42において第1冷却ステージ13に熱的に接続された状態で固定される。
また、クライオポンプ10には、冷凍機50の第2シリンダ12を包囲する冷凍機カバー70が設けられている。冷凍機カバー70は第2シリンダ12よりも若干大径の円筒形状に形成されており、一端が第2冷却ステージ14に取り付けられ、他端が放射シールド40の冷凍機取付孔42に向けて延びている。冷凍機カバー70と放射シールド40との間には間隙が設けられており、冷凍機カバー70と放射シールド40とは接触していない。冷凍機カバー70は第2冷却ステージ14に熱的に接続されており、第2冷却ステージ14と同じ温度に冷却される。
上記の構成のクライオポンプ10による動作を以下に説明する。
温度センサ28は第1冷却ステージ13の温度を測定し、測定結果を周波数決定部26に送信する。周波数決定部26は、温度センサ28から得た温度情報に基づいて、周波数を決定する。例えば、周波数決定部26は、温度センサ28から取得した第1冷却ステージ13の温度が、設定された目標温度より高いときは周波数変換器24の出力周波数を高くすることを決定し、第1冷却ステージ13の温度が目標温度より低いときは周波数変換器24の出力周波数を低くすることを決定する。そして、周波数決定部26は決定結果を周波数変換器24に送信する。
周波数変換器24は、周波数決定部26からの信号を受けて、交流電源22の周波数を変換してバルブ駆動用モータ16に電力を供給する。例えば、出力周波数を高くした場合、バルブ駆動用モータ16の回転数が大きくなり、ロータリバルブの回転が速くなる。この結果、冷凍機50における作動気体の吸排気がより速く切り替えられることとなり、単位時間あたりの作動気体の吸排気量が増加し、単位時間あたりの作動気体による吸熱量も増える。したがって、第1冷却ステージ13は設定された目標温度まで冷却される。よって、第1冷却ステージ13の冷却に伴って、第2冷却ステージ14の温度もさらに下がる。
逆に、第1冷却ステージ13の温度が所望の温度より低いときには、周波数決定部26は、周波数変換器24の出力周波数を低くすることを決定する。そして、周波数変換器24は、周波数決定部26からの信号を受けて、交流電源22から供給される電力を、低い周波数に変換して出力する。これにより、バルブ駆動用モータ16の回転周期が長くなり、冷凍機50の吸排気のサイクルが遅くなる。そうすると単位時間あたりの作動気体の吸排気量が減少し、単位時間あたりの作動気体の吸熱量も減少する。これにより、第1冷却ステージ13の温度は上昇し、これに連動して第2冷却ステージ14の温度も上がる。
このように制御部20が冷凍機50の冷凍サイクルの周波数を制御し、第1冷却ステージ13については、目標温度において、クライオポンプ容器30からの放射等による熱負荷と、作動気体の膨張による吸熱が均衡するように調整される。
図2は、排気運転中のクライオポンプ10を模式的に示す図である。図2に示されるように、クライオポンプ10の低温クライオパネル60には凝縮した気体からなる氷層が堆積している。クライオポンプ10の排気対象容積が例えばスパッタ装置の真空チャンバである場合には、この氷層の主成分は例えばアルゴンである。この氷層は排気運転時間とともに成長して厚みが増していく。
クライオポンプ10においては、第2冷却ステージ14によって低温クライオパネル60だけではなく冷凍機カバー70も冷却されているから、冷凍機カバー70にも気体が凝縮して氷層が堆積する。冷凍機カバー70もクライオパネルの一部として使用することができるから、クライオポンプ10の気体吸蔵量を大きくすることができる。また、冷凍機カバー70により第2シリンダ12が覆われていることにより第2シリンダ12への氷層の形成が抑制されるから、真空度の不安定を起こりにくくすることができる。
この真空度の不安定は第2シリンダ12表面の温度勾配に起因するものである。第2シリンダ12の表面には、第2冷却ステージ14の第2冷却温度から第1冷却ステージ13の第1冷却温度へと温度勾配が生じている。この第2冷却温度から第1冷却温度までの温度範囲には、低温クライオパネル60に凝縮する気体(例えばアルゴン)の沸点が含まれる。よって、第2シリンダ12の表面には、その気体沸点の温度に一致する位置が存在する。低温クライオパネル60への氷層堆積とともに低温クライオパネル60への熱負荷も増加するため、低温クライオパネル60の温度も変動し得る。そうすると、第2シリンダ12の表面での気体沸点温度位置も(図において左右に)移動する。
その結果、冷凍機カバー70がなく第2シリンダ12が露出されている場合には、第2シリンダ12に堆積した氷層の一部が第2シリンダ12表面の温度変化により急激に気化されて真空度が悪化する。例えば、第2冷却ステージ14の温度が上昇して気体沸点温度位置が第2冷却ステージ14に近づく方向に移動すると、もとの気体沸点温度位置に凝縮していた気体は凝縮状態を維持できなくなり急激に気化されることになる。
冷凍機カバー70が設けられている場合にも類似の現象が起こりうる。それは、冷凍機カバー70に堆積した氷層が放射シールド40に接触した場合である。第2シリンダ12の表面の露出を最小化するように冷凍機カバー70の端部は放射シールド40に近接している。このため、放射シールド40に近接する冷凍機カバー70の端部において氷層が成長すると放射シールド40に接触しうる。放射シールド40に接触した氷層は放射シールド40により加熱されることとなり、急激に気化される。この場合、クライオポンプ10は更に真空度を高めることが困難である。よって、冷凍機カバー70上の氷層が放射シールド40に接触するときの気体吸蔵量がクライオポンプ10の最大吸蔵量を定めることになる。
しかし、放射シールド40との氷層の接触がなければ、原理的には更に大きい吸蔵量を実現することが可能である。クライオポンプ10は原理的には、低温クライオパネル60に堆積した氷層表面での気体蒸気圧が達成すべき真空度を超えるまで排気が可能である。氷層表面での気体蒸気圧が達成すべき真空度を超えた場合には、雰囲気から氷層への気体凝縮よりも氷層からの気化のほうが支配的となるため、更なる排気をすることができない。クライオパネル表面から氷層表面に向けて徐々に温度が上昇する温度分布が生じており、氷層表面での気体蒸気圧は氷層表面の温度によって決まる。よって、氷層が成長して厚くなり氷層表面温度が高くなり、氷層表面での気体蒸気圧が達成すべき真空度を超えたときのクライオポンプ10の気体吸蔵量が所与の低温クライオパネル60の下での最大の吸蔵量となる。この最大吸蔵量に達する前に放射シールド40に氷層が接触する場合には、この潜在的な最大吸蔵量よりも小さい最大吸蔵量しか得られないことになる。
図3は、本発明の一実施形態に係るクライオポンプ100を模式的に示す図である。図3に示されるクライオポンプ100は、図1に示されるクライオポンプ10とは放射シールド40が伝熱用の第1スリーブ80を介して第1冷却ステージ13へと接続されている点で異なる。また、冷凍機カバー70としての第2スリーブ82が放射シールド40を貫通して延びている点でも異なる。以下の説明においては、説明を簡潔にするために、図3に示されるクライオポンプ100と図1に示されるクライオポンプ10とで共通する部分については説明を適宜省略する。
クライオポンプ100は、冷凍機カバー70に堆積する氷層をと放射シールド40との干渉を避ける干渉抑制構造を備える。この干渉抑制構造は例えば、冷凍機50の軸方向に沿って延びる二重のスリーブ構造を有する。クライオポンプ100においては、この二重スリーブを構成する第1スリーブ80と第2スリーブ82との間に、凝縮した気体の氷層の末端を収容する霜収容空間84が形成されていることが1つの特徴である。この霜収容空間84は、クライオポンプ100の最大吸蔵量に達するまでに、第1冷却温度に冷却されている部位に氷層が接触しないように寸法が調整されている。冷凍機カバー70に堆積する氷層が放射シールド40との干渉を避けて霜収容空間84に収容される。すなわち、第2冷却温度に冷却されている部位に堆積する氷層と第1冷却温度に冷却されている部位との間に最大吸蔵量まで間隙が保たれるように霜収容空間84は寸法が調整されている。
放射シールド40の側面には、冷凍機挿通孔43が設けられている。冷凍機挿通孔43は、クライオポンプ容器30の胴部32の開口37に対応する位置に設けられている。冷凍機挿通孔43は開口37と同軸にかつ冷凍機挿通孔43よりも小径に形成されている。
冷凍機挿通孔43及び開口37を挿通して冷凍機50が配置されている。第2冷却ステージ14が放射シールド40の内部に包囲されて配置され、第1冷却ステージ13が放射シールド40の外部においてクライオポンプ容器30の冷凍機収容部38の内部に配置されるように冷凍機50は冷凍機挿通孔43に挿通されている。このため、第1冷却ステージ13は、放射シールド40との間に外向きにオフセットを有して放射シールド40の外側に位置している。クライオポンプ容器30の開口37及び冷凍機収容部38の径のほうが第1冷却ステージ13の径よりも大きい。このため、第1冷却ステージ13は、冷凍機50の長手方向に関して冷凍機収容部38の内部の任意位置に配置することが可能であり、第1冷却ステージ13と放射シールド40との間のオフセットの大きさを自由に選択することができる。また第2シリンダ12及び冷凍機カバー70が冷凍機挿通孔43及び開口37を通過しており、第2シリンダ12及び冷凍機カバー70は放射シールド40の側面に交差している。
放射シールド40は、第1スリーブ80により第1冷却ステージ13に固定され熱的に接続されている。第1スリーブ80は円筒形状に形成されており、両端には放射シールド40及び第1冷却ステージ13のそれぞれにボルト等で取り付けるためのフランジ部が設けられている。第1スリーブ80は、第1冷却ステージ13から第2冷却ステージ14に向けて放射シールド40まで延びている。第1スリーブ80の径は放射シールド40の冷凍機挿通孔43と同径とされ、長さは放射シールド40と第1冷却ステージ13とのオフセットに等しい。第1スリーブ80は第1冷却ステージ13を放射シールド40に熱的に接続する伝熱部材であり、第1スリーブ80の厚さは例えば伝熱特性を考慮して放射シールド40の厚さよりも厚くてもよい。また、第1スリーブ80は、より低温に冷却されている第2スリーブ82を包囲するよう筒状に形成されているので、第2スリーブ82への外部からの熱輻射を遮蔽する放射シールドの一部としても機能する。
第1冷却ステージ13が放射シールド40の外部において放射シールド40から隔てられているため、第2シリンダ12の長さが比較的長い。第2シリンダ12の長さは、第1冷却ステージ13を放射シールド40に直接取り付ける場合に比べて、第1冷却ステージ13と放射シールド40とのオフセット量だけ長くなる。第2シリンダ12の長さが長くなることにより、第1冷却ステージ13と第2冷却ステージ14との温度差を大きくすることができる。よって、第1冷却ステージ13の冷却温度を所定の目標温度とした場合における第2冷却ステージ14の冷却温度をより低くすることができる。その結果、低温クライオパネル60がより低温に冷却され、クライオポンプ100の気体吸蔵量を大きくすることができる。
多段式冷凍機において、各冷却ステージの温度の間には所定の関係がある。例えば二段式冷凍機において、一定の条件の下で、第1冷却ステージ13と第2冷却ステージ14のうちの一の温度を定めると、他方の温度は一意に定まる。例えば、第1冷却ステージ13を所望の目標温度に保つとき、一定の条件の下で、第2冷却ステージ14の温度が一意に定まる。ここで、一定の条件として、最小負荷状態を仮定する。最小負荷状態とは、クライオポンプ10の稼働中において、各冷却ステージへの負荷が最低となり、第2冷却ステージ14の冷却温度を最も低い温度に維持できる状態である。ここで、第1冷却ステージ13を所望の目標温度に保ちつつ、第2冷却ステージ14をある要求温度以下に冷却したい場合を考える。
この要求温度が、最小負荷状態において第1冷却ステージ13を目標温度に維持するときに一意に定まる第2冷却ステージ14の温度よりも低い場合、第1冷却ステージ13を目標温度に保ちつつ第2冷却ステージ14をその要求温度以下に冷却することはできない。この場合、冷凍機50における吸排気サイクルを速くすると第2冷却ステージ14の温度を下げることはできるが、第1冷却ステージ13の温度も目標温度よりも低くなってしまう。これに対処するため、本発明においては、第1冷却ステージ13の温度を目標温度に冷却したときに第2冷却ステージが要求温度以下に冷却されるように、放射シールド40と第1冷却ステージ13との間のオフセット量すなわち第2シリンダ12の長さが調整されている。これにより、第1冷却ステージ13の温度を所望の目標温度に保ちつつ、第2冷却ステージ14を要求温度以下に冷却することができる。
第1冷却ステージ13及び第2冷却ステージ14をともに所望の温度範囲とするには例えば、冷凍能力に余裕がある冷凍機を使用し第1冷却ステージ13及び第2冷却ステージ14をそれぞれヒータで加熱することで温度を調整することも可能である。しかし、これは過度に冷却したうえでヒータで加熱していることになり、省エネルギー性に劣る。これに対して本実施形態によれば、シリンダ長さを調整することによりヒータを使用することなく第1冷却ステージ13及び第2冷却ステージ14をともに所望の温度範囲とすることができるので、省エネルギー性に優れるクライオポンプが提供される。
冷凍機カバー70としての第2スリーブ82は、第2冷却ステージ14から第1冷却ステージ13に向けて放射シールド40を貫通して延びている。第2スリーブ82と放射シールド40との間には幅Dのクリアランスが設けられている。第2スリーブ82は、円筒状に形成されており、第2シリンダ12のほぼ全体を包囲している。第2スリーブ82は、放射シールド40の冷凍機挿通孔43から放射シールド40の外部に長さhだけ延びている。第2スリーブ82は、第1冷却ステージ13の手前まで延びており、第1冷却ステージ13との間に間隙を有しており、第1冷却ステージ13とは非接触である。例えば、クライオポンプ外部から見て第2スリーブ82の末端が見えないように第2スリーブ82の長さを定めることが望ましい。
また、第2スリーブ82の半径は、第1スリーブ80の半径よりも長さDだけ短い。このため、第2スリーブ82の第1冷却ステージ13側の端部には、第1スリーブ80の内部に、長さがhで径がDの円環状の霜収容空間84が形成されている。長さhは長さD以上に設定されることが好ましい。例えば長さhは長さDの4倍以上としてもよい。このように長さhを比較的長くすることにより、氷層を第1冷却ステージ13に接触しにくくすることができる。
霜収容空間84は、第2スリーブ82に堆積した氷層が、クライオポンプ100の気体吸蔵量が最大吸蔵量に達するまでに第1冷却温度に冷却されている部位に接触しないように大きさが設定されている。すなわち、第2スリーブ82に堆積した氷層が放射シールド40、第1スリーブ80、及び第1冷却ステージ13に接触しないように大きさが設定されている。霜収容空間84は、放射シールド40の内面に形成された凹みである。よって、クライオポンプ100の吸気口34から霜収容空間84へは気体分子が到達しにくい。このように、霜収容空間84を吸気口34から見て凹みとなるように形成することにより霜収容空間84に進入する気体分子が抑制され、霜収容空間84での氷層の堆積速度は緩やかとなる。よって、氷層が第1冷却温度部位に接触するまでの時間を長く取ることができ、クライオポンプ100の排気運転を長時間継続することができる。
最大吸蔵量は例えば、クライオポンプ容器30の内部において所望の真空度を実現する最大の気体吸蔵量である。また、最大吸蔵量は例えば、低温クライオパネル60に堆積した氷層表面における気体蒸気圧が所望の真空度に等しくなったときの気体吸蔵量である。ここで、所望の真空度は、クライオポンプ100への気体流入が停止されてから所定時間内に到達すべき圧力として設定されているリカバリ圧力であってもよい。
図4は、排気運転中のクライオポンプ100を模式的に示す図である。図4に示されるように、クライオポンプ100の低温クライオパネル60には凝縮した気体からなる氷層が堆積している。クライオポンプ10の排気対象容積が例えばスパッタ装置の真空チャンバである場合には、この氷層の主成分は例えばアルゴンである。この氷層は排気運転時間とともに成長して厚みが増していく。そうして、氷層の厚さ方向に生じる温度勾配によって氷層表面における蒸気圧がリカバリ圧力を超えるまで排気運転を継続することができる。
本実施形態によれば、図示されるように、霜収容空間84にも氷層を収容することができるので、クライオポンプ100の気体吸蔵量を大きくすることができる。また、霜収容空間84は、クライオポンプ100の最大吸蔵量に達するまで氷層が放射シールド40または第1冷却ステージ13に接触しないように設定されているので、搭載された低温クライオパネル60について原理的に享受しうる最大の吸蔵量を実現することができる。更に、放射シールド40と第1冷却ステージ13との間にオフセットをとることにより第2シリンダ12を長くすることができるので、低温クライオパネル60をより低温に冷却することができる。これもクライオポンプ100の吸蔵量の増大に寄与する。
以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
例えば、放射シールド40と第1スリーブ80とは別体の部材として形成されているが、これに限られない。放射シールド40と伝熱部材とは一体に形成されてもよい。この場合、放射シールド40の側面から放射シールド40の外部に向けて冷凍機50に沿って延び、第1冷却ステージ13に取り付けられる伝熱部を放射シールド40が備えてもよい。
また、伝熱部材としての第1スリーブ80は円筒形状を有しているが、放射シールド40と第1冷却ステージ13とを熱的に接続する構造であればいかなる形状であってもよい。例えば、放射シールド40の冷凍機挿通孔43から外向きに離れるにつれて第1スリーブ80の径が小さくなる円すい台側面の形状を伝熱部材が有していてもよい。このようにすれば、冷凍機挿通孔43の近傍では霜収容空間84を比較的広くすることができるので、放射シールド40または第1スリーブ80への氷層の接触をしにくくすることができる。また、伝熱部材は放射シールド40の内部へと突出していてもよい。
冷凍機カバー70及び第2スリーブ82は、第2シリンダ12の全体を必ずしも覆わなくてもよい。第2シリンダ12の表面のうち例えば、排気すべき気体の沸点を含む温度範囲で温度が変動する部位(例えば第2スリーブ82の中央部)を少なくとも冷凍機カバー70及び第2スリーブ82が覆うように冷凍機カバー70及び第2スリーブ82の形状が定められていてもよい。このようにすれば、冷凍機カバー70に覆われていない第2シリンダ12の表面は、排気すべき気体沸点よりも常に相当低温であるか相当高温であるかのいずれかとなる。よって、第2シリンダ12の表面に堆積した氷層が圧力不安定を引き起こすことがないようにすることができる。
また、冷凍機カバー70及び第2スリーブ82は、クライオポンプ100の吸気口から見て露出されている第2シリンダ12の表面を遮蔽するように形状が定められていてもよい。このようにすれば、冷凍機カバー70によって、クライオポンプ100の吸気口から進入する気体分子が第2シリンダ12の表面に直接到達することを避けることができる。よって、第2シリンダ12の表面への氷層の堆積を低減することができる。
冷凍機カバー70及び第2スリーブ82の長さは、末端部における温度が排気すべき気体の沸点よりも低温となるように定めることが好ましい。冷凍機カバー70の表面においてはある程度の温度勾配が生じ、第2冷却ステージ14から離れるにつれて温度が高くなり得る。よって、このように末端での温度が充分に低温になるように長さを定めれば、冷凍機カバー70の全体を排気すべき気体の沸点よりも低温に維持して気体を凝縮することができる。または、冷凍機カバー70及び第2スリーブ82の末端部における温度が排気すべき気体の沸点よりも低温となるように冷凍機50が調整されていてもよい。
冷凍機カバー70及び第2スリーブ82は、冷凍機50の第2冷却ステージ14と等しい温度に冷却されなくてもよい。例えば、冷凍機カバー70は、冷凍機50の第2シリンダ12に熱的に接続されていてもよい。この場合、冷凍機カバー70が接続される第2シリンダ12の部位は、排気すべき気体が固体状態を維持する温度を有する部位から選択されることが好ましい。
クライオポンプの一実施例を模式的に示す図である。 排気運転中のクライオポンプを模式的に示す図である。 本発明の一実施形態に係るクライオポンプを模式的に示す図である。 排気運転中のクライオポンプを模式的に示す図である。
符号の説明
10 クライオポンプ、 11 第1シリンダ、 12 第2シリンダ、 13 第1冷却ステージ、 14 第2冷却ステージ、 20 制御部、 30 クライオポンプ容器、 40 放射シールド、 43 冷凍機挿通孔、 50 冷凍機、 60 低温クライオパネル、 70 冷凍機カバー、 80 第1スリーブ、 82 第2スリーブ。

Claims (7)

  1. 第1冷却ステージと、第1冷却ステージよりも低温に冷却される第2冷却ステージと、を備える冷凍機と、
    側面に開口が形成され、前記第1冷却ステージが外部に配置されかつ前記第2冷却ステージが内部に配置されるように前記開口に前記冷凍機が挿通されており、前記第1冷却ステージに熱的に接続されている放射シールドと、
    前記第2冷却ステージに熱的に接続され、前記放射シールドの内部から外部へと前記開口を通じて延び、前記開口において前記放射シールドとの間に間隙を有して配置されている冷凍機カバーと、を備えることを特徴とするクライオポンプ。
  2. 前記冷凍機は、前記第1冷却ステージが前記開口から外向きにオフセットを有して前記放射シールドの外部に配置されており、
    前記冷凍機カバーは、前記開口から前記放射シールドの外部へと前記オフセットより短い長さだけ突き出して延びる末端部を有することを特徴とする請求項1に記載のクライオポンプ。
  3. 前記放射シールドと前記冷凍機カバーとの間隙及び前記冷凍機カバーが前記開口から突き出して延びる長さは、クライオポンプの最大吸蔵量に達するまでに気体の凝縮により前記冷凍機カバーに堆積する氷層が前記放射シールド及び前記第1冷却ステージに接触しないように大きさが設定されていることを特徴とする請求項1または2に記載のクライオポンプ。
  4. 前記第2冷却ステージに熱的に接続されているクライオパネルをさらに備え、
    前記放射シールドと前記冷凍機カバーとの間隙及び前記冷凍機カバーが前記開口から突き出して延びる長さは、クライオポンプへの気体流入が停止されてから所定時間内に到達すべき圧力として設定されているリカバリ圧力よりも気体の凝縮により前記クライオパネルに堆積した氷層の表面における気体蒸気圧が高圧となるまで前記冷凍機カバー上の氷層が前記放射シールド及び前記第1冷却ステージに接触しないように大きさが設定されていることを特徴とする請求項1または2に記載のクライオポンプ。
  5. 前記冷凍機カバーは、前記冷凍機カバーが前記開口から突き出して延びる長さが前記放射シールドと前記冷凍機カバーとの間隙以上に設定されていることを特徴とする請求項1から4のいずれかに記載のクライオポンプ。
  6. 前記冷凍機カバーの末端部を包囲し、前記第1冷却ステージと前記放射シールドとを接続する伝熱部材をさらに備えることを特徴とする請求項1から5のいずれかに記載のクライオポンプ。
  7. 開口が形成されている筒状側面を有する放射シールドと、
    第1の温度に冷却され、前記放射シールドに熱的に接続される第1冷却ステージと、第1の温度よりも低温である第2の温度に冷却される第2冷却ステージと、第1冷却ステージと第2冷却ステージとを接続し、第1の温度から第2の温度へと向かう温度分布を表面に有する接続部材と、を備え、前記第2冷却ステージが前記放射シールドの内部に配置されるように前記開口に挿通されている冷凍機と、
    前記第2冷却ステージに熱的に接続され、前記接続部材の表面に沿って前記第1冷却ステージに向けて延びる冷凍機カバーと、
    前記冷凍機カバーに堆積する氷層を前記放射シールドとの干渉を避けて収容する空間を、前記第1冷却ステージに近接する冷凍機カバーの端部との間に画定し、前記接続部材及び前記冷凍機カバーの前記第1冷却ステージに近接する端部を包囲するよう前記放射シールドから突出する伝熱部材を含む干渉抑制構造と、を備えることを特徴とするクライオポンプ。
JP2008130138A 2008-05-16 2008-05-16 クライオポンプ Active JP4521047B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008130138A JP4521047B2 (ja) 2008-05-16 2008-05-16 クライオポンプ
US12/453,525 US20090282841A1 (en) 2008-05-16 2009-05-14 Cryopump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130138A JP4521047B2 (ja) 2008-05-16 2008-05-16 クライオポンプ

Publications (2)

Publication Number Publication Date
JP2009275672A JP2009275672A (ja) 2009-11-26
JP4521047B2 true JP4521047B2 (ja) 2010-08-11

Family

ID=41314840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130138A Active JP4521047B2 (ja) 2008-05-16 2008-05-16 クライオポンプ

Country Status (2)

Country Link
US (1) US20090282841A1 (ja)
JP (1) JP4521047B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266039B2 (en) * 2010-11-24 2016-02-23 Brooks Automation, Inc. Cryopump with controlled hydrogen gas release
JP5296811B2 (ja) * 2011-01-17 2013-09-25 住友重機械工業株式会社 クライオポンプ及び真空バルブ装置
KR101986159B1 (ko) * 2011-02-09 2019-06-05 브룩스 오토메이션, 인크. 극저온 펌프
JP6053552B2 (ja) * 2013-02-18 2016-12-27 住友重機械工業株式会社 クライオポンプ及びクライオポンプ取付構造
JP6076843B2 (ja) * 2013-06-14 2017-02-08 住友重機械工業株式会社 クライオポンプ
TWI580865B (zh) * 2013-03-25 2017-05-01 Sumitomo Heavy Industries Low temperature pump
JP6338403B2 (ja) 2013-03-25 2018-06-06 住友重機械工業株式会社 クライオポンプ及び真空排気方法
JP6415230B2 (ja) * 2014-10-07 2018-10-31 住友重機械工業株式会社 クライオポンプ
CN106438276B (zh) 2015-08-10 2019-05-28 住友重机械工业株式会社 低温泵
WO2020049915A1 (ja) * 2018-09-03 2020-03-12 住友重機械工業株式会社 クライオポンプおよびクライオポンプの監視方法
JP2022117029A (ja) 2021-01-29 2022-08-10 アルバック・クライオ株式会社 クライオポンプ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3232324C2 (de) * 1982-08-31 1986-08-28 Leybold-Heraeus GmbH, 5000 Köln Refrigerator-betriebene Kryopumpe
US4514204A (en) * 1983-03-21 1985-04-30 Air Products And Chemicals, Inc. Bakeable cryopump
JPS6138179A (ja) * 1984-07-31 1986-02-24 Hitachi Ltd クライオポンプ
JPH0355829Y2 (ja) * 1986-07-15 1991-12-12
US4763483A (en) * 1986-07-17 1988-08-16 Helix Technology Corporation Cryopump and method of starting the cryopump
WO2005052369A1 (ja) * 2003-11-28 2005-06-09 Sumitomo Heavy Industries, Ltd. 水の再生方法及び装置

Also Published As

Publication number Publication date
JP2009275672A (ja) 2009-11-26
US20090282841A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP4521047B2 (ja) クライオポンプ
JP5184995B2 (ja) クライオポンプ
JP5632241B2 (ja) クライオポンプ及び極低温冷凍機
JP6710604B2 (ja) クライオポンプ
JP6338403B2 (ja) クライオポンプ及び真空排気方法
JP2012219730A (ja) クライオポンプシステム、圧縮機、及びクライオポンプの再生方法
JP2015001186A (ja) クライオポンプ
JP5123103B2 (ja) クライオポンプ
KR102436493B1 (ko) 크라이오펌프
KR101339978B1 (ko) 크라이오펌프 및 극저온 냉동기
JP2009281363A (ja) クライオポンプ
JP2011153629A (ja) クライオポンプ
JP6913049B2 (ja) クライオポンプ
TW202010941A (zh) 低溫泵
JPH10122144A (ja) クライオトラップ
KR20200123100A (ko) 크라이오펌프
US10359034B2 (en) Cryopump
JP6053552B2 (ja) クライオポンプ及びクライオポンプ取付構造
JP6762672B2 (ja) クライオポンプ
JP2017122414A (ja) クライオポンプ
WO2010097888A1 (ja) 二段式冷凍機の運転制御方法、二段式冷凍機を有するクライオポンプの運転制御方法、二段式冷凍機、クライオポンプ及び真空基板処理装置
KR20220110073A (ko) 크라이오 펌프
TW202332832A (zh) 低溫泵

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4521047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3